
Open eVision
Examples in .NET

USER GUIDE

© EURESYS S.A. 2024 - Doc. D113ET-Using Open eVision .NET-Open eVision-24.02.0.1198 built on 2024-03-26

2

This documentation is provided with Open eVision 24.02.0 (doc build 1198).
www.euresys.com

This documentation is subject to the General Terms and Conditions stated on the website of EURESYS S.A.
and available on the webpage https://www.euresys.com/en/Menu-Legal/Terms-conditions. The article 10
(Limitations of Liability and Disclaimers) and article 12 (Intellectual Property Rights) are more specifically
applicable.

Open eVision User Guide

https://www.euresys.com/
https://www.euresys.com/en/Menu-Legal/Terms-conditions

3

Contents
PART I : STARTING UP 8

1. Installing Open eVision 9
1.1. Installing on Windows 9
1.2. Installing on Linux 12

2. Managing the Licenses 15
2.1. Activating the Licenses 15
2.2. Selecting the Licensing Model 15

3. Conventions 17
3.1. Conventions for Strings 17
3.2. Image Coordinate Systems 17
3.3. Image and Depth Map Buffer 19

4. Basic Operations 21
4.1. Memory Allocation 21
4.2. Loading a Pixel Container File 22
4.3. Saving a Pixel Container File 23
4.4. Drawing in Open eVision 25
4.5. 3D Rendering of 2D Images 28
4.6. Vector Types and Main Properties 29
4.7. ROI Main Properties 33
4.8. Arbitrarily Shaped ROI (ERegion) 35
4.9. Flexible Masks 57
4.10. Profile 61

PART II : GENERAL PURPOSE LIBRARIES 63
1. EasyImage - Pre-Processing Images 64

1.1. Intensity Transformation 64
1.2. Thresholding 67
1.3. Arithmetic and Logic 68
1.4. Linear Filtering 71
1.5. Non-Linear Filtering 72
1.6. Geometric Transforms 77
1.7. Noise Reduction and Estimation 79
1.8. Scalar Gradient 82
1.9. Vector Operations 82
1.10. Canny Edge Detector 84
1.11. Harris Corner Detector 85
1.12. Overlay 87
1.13. Operations on Interlaced Video Frames 87
1.14. Flexible Masks in EasyImage 88
1.15. Computing Image Statistics 89
1.16. Fourier Transform 93
1.17. Gabor Filter 96

2. EasyColor - Pre-Processing Color Images 102
2.1. Bayer Conversion 105
2.2. LUT for Gain/Offset (Color) 109
2.3. LUT for Color Calibration 109
2.4. LUT for Color Balance 110

Open eVision User Guide

4

PART III : MATCHING AND MEASUREMENT TOOLS 112
1. EasyObject - Analyzing Blobs 113

1.1. Image Segmenters 116
1.2. Image Encoder 120
1.3. Holes Construction 122
1.4. Normal vs. Continuous Mode 124
1.5. Selecting and Sorting Blobs 126
1.6. Object Template Matcher 128
1.7. Advanced Features 130

Computable Features 130
Draw Coded Elements 136
Flexible Masks in EasyObject 136

2. EasyGauge - Measuring down to Sub-Pixel 139
2.1. Workflow 139
2.2. Gauge Definitions 140
2.3. Find Transition Points Using Peak Analysis 147
2.4. Find Shapes Using Geometric Models 152
2.5. Gauge Manipulation: Draw, Drag, Plot, Group 154
2.6. Calibration and Transformation 156
2.7. Calibration Using EWorldShape 157
2.8. Advanced Features 160
2.9. Unwarp an Image 162

3. EasyFind - Matching Geometric Patterns 165
3.1. Introduction 165
3.2. Purpose and Principles 165
3.3. Workflow 167
3.4. Using EasyFind 169
3.5. Learn the Model from Images 169
3.6. Learn the Model from Vectors 172
3.7. Find Instances of the Model 174
3.8. Open eVision Studio Tools 178
3.9. Use "Don't Care Areas" in the Model 178
3.10. Setting the Parameters 180
3.11. Learning Parameters 180
3.12. Finding Parameters 185
3.13. Vector Model Parameters 193

4. EasyMatch - Matching Area Patterns 196
4.1. Workflow 196
4.2. Learning Process 197
4.3. Matching Process 199
4.4. Advanced Features 200

5. EChecker2 - Validating Golden Templates 202
5.1. EChecker2 202
5.2. Creating a Model 202
5.3. Inspecting an Image 205

PART IV : TEXT AND CODE READING TOOLS 207
1. List of Supported Codes 208
2. ECodeReader - Unified Interface 211

2.1. Reading Codes 211
2.2. Reading Using a Grid 213

3. EasyBarCode - Reading Bar Codes 214

Open eVision User Guide

5

3.1. Reading Bar Codes 214
3.2. Reading Mail Bar Codes 218

4. EasyBarCode2 - Reading Bar Codes (Improved) 222
4.1. EasyBarCode2 vs EasyBarCode 222
4.2. Reading Bar Codes 223
4.3. Grading Bar Codes 225
4.4. Advanced Features 226

5. EasyMatrixCode - Reading Matrix Codes 230
5.1. EasyMatrixCode vs EasyMatrixCode2 230
5.2. EasyMatrixCode 230

Specifications 230
Supported Symbols 231
Workflow 233
Reading a Matrix Code 233
Learning a Matrix Code 233
Computing the Print Quality 235
Using GS1 Data Matrix Codes 235

5.3. EasyMatrixCode2 236
Specifications 236
Supported Symbols 238
Workflow 240
Reading a Matrix Code 240
Learning a Matrix Code 241
Computing the Print Quality 242
Using GS1 Data Matrix Codes 242
Asynchronous Processing 243
Reading Using a Grid 244
Returning Unreadable Codes 245
Advanced Parameters 245

6. EasyQRCode - Reading QR Codes 247
6.1. Workflow 247
6.2. QR Codes Specifications 248
6.3. Reading QR Codes 252

7. EasyOCR - Reading Texts 256
7.1. Workflow 256
7.2. Learning Process 257
7.3. Segmenting 258
7.4. Recognition 259

8. EasyOCR2 - Reading Texts (Improved) 262
8.1. Introduction 262
8.2. Purpose and Principles 262
8.3. Workflow 263
8.4. EasyOCR2 vs EasyOCR 264
8.5. Using EasyOCR2 264
8.6. Detect the Characters 264
8.7. Set the Topology 269
8.8. Learn the Characters 272
8.9. Recognize the Characters 276
8.10. Open eVision Studio Tools 279
8.11. View Elements in Open eVision Studio 279
8.12. View Results in Open eVision Studio 280
8.13. Setting the Parameters 281
8.14. Segmentation Parameters 281
8.15. Detection Parameters 284
8.16. No Topology Parameters 288

Open eVision User Guide

6

9. Code Grading 290
9.1. What Is Grading? 290
9.2. How to Compute the Grading with Open eVision 290
9.3. ISO/IEC 15416 for 1D Bar Codes 293
9.4. ISO/IEC 15415 for Data Matrix and QR Codes 296
9.5. ISO/IEC 29158 for Data Matrix and QR Codes 302
9.6. SEMI T10-0701 for Data Matrix Codes 304
9.7. Implementation Specifics and Limitations 307
9.8. References 308

PART V : DEEP LEARNING INSPECTION TOOLS 309
1. Deep Learning Tools - Inspecting Images with Deep Learning 310

1.1. Purpose and Workflow 310
1.2. Deep Learning Studio and Additional Resources 313
1.3. Engines and Hardware Support (CPU/GPU) 317
1.4. Managing the Dataset and the Annotations 322

Images and Labels 322
Adding Images 325
Editing the Label of an Image 327
Editing the Segmentation of an Image 328
Editing the Objects of an Image 329
ROI and Mask 331

1.5. Managing the Dataset Splits 334
1.6. Using Data Augmentation 337
1.7. Training a Deep Learning Tool 340
1.8. Using a Deep Learning Tool 343
1.9. Benchmarking a Deep Learning Tool 344

2. EasyClassify - Classifying Images 349
2.1. Tool and Images 349
2.2. Validating the Results 353
2.3. Classifying New Images 355
2.4. Benchmarks for EasyClassify 358

3. EasySegment - Detecting and Segmenting Defects 363
3.1. Unsupervised vs Supervised Modes 363
3.2. EasySegment Unsupervised 364

Tool and Configuration 364
Validating the Results 367
Applying the Tool to New Images 369
Benchmarks for EasySegment Unsupervised 370

3.3. EasySegment Supervised 373
Tool and Configuration 373
Using the Supervised Segmenter 375
Evaluating the Results 378
Benchmarks for EasySegment Supervised 382

4. EasyLocate - Locating Objects and Defects 386
4.1. Tool and Configuration 386
4.2. Locating Objects 391
4.3. Validating the Results 394
4.4. Benchmarks for EasyLocate 396

PART VI : 3D PROCESSING TOOLS 400
1. Easy3D - Using 3D Toolset 401

1.1. Basic Concepts 401

Open eVision User Guide

7

1.2. Static Methods 406
1.3. Point Cloud 409

Mapping Attributes 409
Normals and Curvatures 409
Coordinates Transformations 409
Reducing a Point Cloud 410
Managing Planes 412
Aligning 415
Using Spheres 418

1.4. Mesh 418
1.5. ZMap 420

Generating a ZMap 420
Creating a Point Cloud from a ZMap 422
Managing the Coordinates 423

1.6. 3D Viewer 424
1.7. Photometric Stereo 431

Photometric Stereo and Process 431
Calibration 433
Computation and Results 435
Processing the Results with Open eVision Tools 438
Optimizing your Setup 440
Improving the Results 442

2. Easy3DLaserLine - Laser Line Extraction and Calibration 445
2.1. Laser Triangulation 445
2.2. The Laser Line 3D Acquisition Pipeline 446
2.3. Laser Line Extraction 447
2.4. Software vs Hardware Line Extraction 451
2.5. Calibration 454
2.6. Object-Based Calibration Guidelines 457

3. Easy3DObject - Extracting 3D Objects 466
3.1. Purpose and Workflow 466
3.2. Object Features 467
3.3. Extracting and Using Objects 473
3.4. Use Case - Inspecting a PCB 477

4. Easy3DMatch - 3D Alignment and Comparison 483
4.1. Purpose and Workflow 483
4.2. Alignment (E3DAligner) 485
4.3. Comparison (E3DComparer) 489
4.4. Alignment and Comparison (E3DMatcher) 494
4.5. 3D Sensor Fusion (EPointCloudMerger) 502

PART VII : ADVANCED PROGRAMMING 506
1. Multicore Processing 507
2. EGrabberBridge - Using Images from eGrabber Sources 511
3. VimbaXBridge - Using Images from VimbaX Sources 513
4. Handling the Memory in .NET 515
5. Using Open eVision in a DLL 520

Open eVision User Guide

8

Open eVision User Guide

PART I
STARTING UP

9

1. Installing Open eVision

1.1. Installing on Windows

Installer package on Windows

Open eVision comes as a single installer package open_evision-win-X.Y.Z.B.exe. It contains
everything needed to run or develop applications using Open eVision

Installation types

The Open eVision Installer provides the following installation types:
□ Complete: everything needed for running or developing applications is installed on the

system.
□ Typical: same as Complete, with the exception of legacy components and VC++ 6.0 specific

components.
□ Runtime: installs all binaries needed to run applications using Open eVision on the system.
□ Custom: allows to select exactly what components are installed on the system.

Older versions

Open eVision does not replace other Open eVision versions but installs alongside them. Only
maintenance releases (with the same major and minor versions but a different revision number)
automatically update an existing installation.

Command-line interface

To install Open eVision with the command line, use:

● open_evision-win-X.Y.Z.B.exe -silent INSTALLTYPE=[install_type]
□ Where [install_type] can be Complete, Typical or Runtime.
□ By default, installation type is Typical.

● For the command prompt to wait for the end of the installation add "start /wait" at the
start of the command:
□ start /wait "open_evision-win-X.Y.Z.B.exe -silent INSTALLTYPE=[install_type]"

Open eVision User Guide PART I Starting Up

10

Installation logs

● By default, the Open eVision installer generates installation log files in the
%LOCALAPPDATA%/Temp directory.

● If you want the installer to generate the installation logs somewhere else, use the following
command:
□ open_evision-win-X.Y.Z.B.exe -log [logFilename]
□ Where [logFilename] indicates where the main installation log is saved.
□ Additional log files may be created along the main one, their name is derived from

[logFilename].

Supported platforms and requirements

Open eVision in C++ - Using the global header

Include the main Open eVision header (Open_eVision.h) located in the installation folder >
Include subfolder. No linker settings are required.

Microsoft Visual Studio C++ environments automatically adds the Open eVision Include folder
at installation time.

Open eVision User Guide PART I Starting Up

11

The header of Open eVision has a lot of content, and it is highly recommended:

● To include the main header into a precompiled header to avoid unnecessarily
recompilations.

● When using Visual Studio, to use the following settings to avoid compilation issues:
□ /bigobj: allows the compiler to handle more code in the headers.
□ /zm256 (or bigger): allows bigger precompiled headers.

● To disable Browse Information, as it is superseded by Intellisense and it is known to crash
when handling big projects.

When using only a subset of the libraries and tools, you can include smaller headers to improve
the compilation times.

These headers are:
□ Easy.h
□ Easy3D.h
□ EasyBarCode.h
□ EasyColor.h
□ EasyDeepLearning.h
□ EasyFind.h
□ EasyGauge.h
□ EasyImage.h
□ EasyMatch.h
□ EasyMatrixCode.h
□ EasyObject.h
□ EasyOcr.h
□ EasyOcv.h
□ EasyQRCode.h

● These headers are required to use the tools corresponding to the license sharing their name
if you don’t use the global header.

● You can include multiple headers together.
□ Thus, an application reading bar codes, QR codes and matrix codes compiles faster if you

include EasyBarCode.h, EasyMatrixCode.h and EasyQRCode.h instead of Open_eVision.h.

● As reference, the C++ samples include only the relevant headers.

Open eVision in C++ - Using library-focused headers

Open eVision in .NET

Add a reference to the Open_eVision_NetApi.dll in the development environment. You do not
need to copy any other DLL.

Open eVision User Guide PART I Starting Up

12

Retrieving the installation folders programmatically

If you need to programmatically retrieve the installation folders, use the following methods of
the Easy object:

● Easy.GetSampleImagesRootPath to retrieve the sample images installation path.

● Easy.GetSampleProgramsRootPath to retrieve the sample programs installation path.

● Easy.GetResourcesRootPath to retrieve the resources installation path.

Deprecation warnings in Open eVision

● The Open eVision tools and libraries are an evolving product, and regular improvements are
performed.
□ Sometimes, to implement these improvements, the API of a library must evolve too.
□ In this case, the old API is preserved alongside the new one, but is marked as deprecated,

indicating that it might be removed in the future.

● The deprecations are tagged within the Open eVision headers using the [[deprecated]]
attribute ([Obsolete] for .NET).
□ Open eVision raises warnings if you use these deprecated methods in your code.
□ You can safely ignore these warnings as they only indicate that you should update these

API features because, in the future, they might be removed.

1.2. Installing on Linux

Two archive files are provided for the Linux operating systems:
□ open_evision-linux-*.tar.gz contains the Open eVision libraries and the Neo License

Manager.
□ neo-linux-license-manager-*.tar.gz contains only the Neo License Manager.

NOTE: The packages are available in deb and rpm formats, for Intel x86-64 and ARM64
architectures.

Supported OS

● Open eVision and the Neo License Manager are designed to be distribution-independent on
x86_64 platforms.

● Open eVision is expected to work with all deb/rpm based distributions with glibc version 2.17
or newer.

● This release has been validated with the following distributions and their default gcc
compilers:
□ Ubuntu LTS 16.04 to 20.04
□ CentOS 7 and 8
□ Fedora 33 to 35

● Open eVision and the Neo License Manager need an SSE4 compatible CPU, 2 GB of RAM of
RAM and 2 GB of HDD.

NOTE: 8 GB of RAM are recommended to compile an Open eVision application.

Open eVision User Guide PART I Starting Up

easy-sampleimagesrootpath.htm
easy-sampleprogramsrootpath.htm
easy-resourcesrootpath.htm

13

Installing the Open eVision library and the Neo License Manager

● Use the apt package manager to install the deb packages:

(bash)
apt install ./neo-linux-license-manager-(x86_64|arm64)-(version).deb ./open_evision-linux-(x86_64|arm64)-
(version).deb ./codemeter-lite_7.40.4990.500_(amd64|arm64).deb

● Use the dnf or the yum package manager to install the rpm packages:

(bash)
(dnf | yum) install ./neo-license-manager-(version).x86_64.rpm ./open_evision-(version).x86_64.rpm
./Codemeter-lite_7.40.4990-500.x86_64.rpm

● Open eVision and the Neo License Manager depend on CodeMeter, provided by Euresys and
others packages (such as libc, libgcc, libssl, ca-certificates...) provided by the Dep/RPM
repositories.

Installing Qt and QtCreator

● Run the following command:

(bash)
apt install qt5-default qtcreator

Installing OpenGL

● Depending on your distribution, it may be required to install additional packages to use the
Neo License Manager and the 3D Viewer:

(bash)
apt install libglu1-mesa-dev freeglut3-dev mesa-common-dev

Using the Neo License Manager

● Start the Neo License Manager from your desktop menu.

● If you cannot find the desktop entry, execute the following script:

(bash)
/opt/euresys/neo_license_manager_X_Y/NeoLicenseManager

● For more details, see What is the Neo Licensing System?

Using the Open eVision library

● Open eVision is located in /opt/euresys/Open_eVision_X_Y

● The main header of Open eVision is Open_eVision.h

● Sample programs are provided in console mode as well as using the (Qt) GUI (the .pro Qt
projects files are included).
□ The samples programs are located in /opt/euresys/Open_eVision_X_Y/Sample Programs
□ The sample images are located in /opt/euresys/Open_eVision_X_Y/Sample Images

Open eVision User Guide PART I Starting Up

../../../../../Content/15 Neo Licensing System/What is the Neo Licensing System.htm

14

Using library-focused headers

When using only a subset of the libraries and tools, you can include smaller headers to improve
the compilation times.

These headers are:
□ Easy.h
□ Easy3D.h
□ EasyBarCode.h
□ EasyColor.h
□ EasyDeepLearning.h
□ EasyFind.h
□ EasyGauge.h
□ EasyImage.h
□ EasyMatch.h
□ EasyMatrixCode.h
□ EasyObject.h
□ EasyOcr.h
□ EasyOcv.h
□ EasyQRCode.h

● These headers are required to use the tools corresponding to the license sharing their name
if you don’t use the global header.

● You can include multiple headers together.
□ Thus, an application reading bar codes, QR codes and matrix codes compiles faster if you

include EasyBarCode.h, EasyMatrixCode.h and EasyQRCode.h instead of Open_eVision.h.

● As reference, the C++ samples include only the relevant headers.

Retrieving the installation folders programmatically

If you need to programmatically retrieve the installation folders, use the following methods of
the Easy object:

● Easy.GetSampleImagesRootPath to retrieve the sample images installation path.

● Easy.GetSampleProgramsRootPath to retrieve the sample programs installation path.

● Easy.GetResourcesRootPath to retrieve the resources installation path.

Open eVision User Guide PART I Starting Up

easy-sampleimagesrootpath.htm
easy-sampleprogramsrootpath.htm
easy-resourcesrootpath.htm

15

2. Managing the Licenses

2.1. Activating the Licenses

Open eVision licenses are activated from the Open eVision License Manager. The License
Manager can be launched at the end of the installation, or from the Windows start menu.

Open eVision licenses are activated using the included license managers.

Since release 2.13

● A new licensing system, named Neo License Manager, is available with Open eVision.

● The Neo License Manager manages these new licenses.

● You can launch it at the end of the installation, or from the Windows start menu.

● For more details, see What is the Neo Licensing System?

Previous licensing systems

● The dongle-based licensing system used before 2.13 is still available.

● Open eVision License Manager, the corresponding license manager, is still available too.

● You can launch it at the end of the installation, or from the Windows start menu.

2.2. Selecting the Licensing Model

Starting with Open eVision 2.13, you can select the Open eVision licensing model(s) that you
use with your application.

TIP
This avoids the delays that are sometimes added by the initialization of
licensing models you do not use.

The SelectLicensingModel function

● To select the licensing models to enable with Open eVision, call the following function:
Preconfiguration::SelectLicensingModels(ELicensingModel model)

● Always call it before any other Open eVision function as calling it after the first call to Open
eVision has no effect.

● The SelectLicensingModels function takes a single argument:
□ The licensing models to enable, as described by the ELicensingModel enumeration.

Open eVision User Guide PART I Starting Up

../../../../../Content/15 Neo Licensing System/What is the Neo Licensing System.htm

16

The ELicensingModel enumeration

● The ELicensingModel enumeration contains the different licensing models you can enable
within Open eVision:
□ Neo: the new licensing model introduced with Open eVision 2.13.
□ LegacyDongle: the licensing model associated to the dongles used before 2.13.
□ All (default): this licensing model enables all the others (Neo + LegacyDongle).

Open eVision User Guide PART I Starting Up

17

3. Conventions

3.1. Conventions for Strings

Since Open eVision 23.08, the only character encoding used in the Open eVision libraries and
tools is UTF-8.

□ All methods taking std.string as argument expect an UTF-8 encoded std.string.
□ All methods returning a std.string always return it as UTF-8 encoded.

Backward compatibility on Windows

On Windows (but not on Linux), there is also a sanitization process to preserve backward
compatibility with older releases that didn't use the UTF-8 encoding.

● The content of each input string is checked to ensure it is UTF-8 encoded.

If it is not the case:
□ The string is assumed to be encoded using the current Windows Language for Non-

Unicode Programs parameter.
□ It is converted to UTF-8.

● The output strings of all libraries and tools are always UTF-8.

TIP
Despite the presence of this backward compatibility layer it is recommended
to use exclusively UTF-8 to interact with Open eVision on all platforms to
ensure the best performance and compatibility.

3.2. Image Coordinate Systems

The conventions below apply to all Open eVision functions and results.
□ Pixel coordinates are usually given as integer numbers.
□ Some results can use subpixel precision with real (floating point) numbers.
□ Some exceptions apply and are documented per library.

Open eVision User Guide PART I Starting Up

18

Integer coordinates

● The origin (0,0) of the coordinate system is the upper left pixel of the image.

● The lower right pixel is (width-1, height-1).

Real coordinates

● With floating point (x,y) coordinates, the origin is the upper left corner of the upper left pixel.

● The first pixel area ranges in [0,1[for X and Y axis.

● Coordinates greater or equal than the width or the height are outside the image.

Open eVision User Guide PART I Starting Up

19

3.3. Image and Depth Map Buffer

The pixels of an image and of an depth map are stored contiguously into a buffer, from left to
right and from top to bottom, in the Windows bitmap format (top-down DIB -device-
independent bitmap-).

The buffer address is a pointer to the address that contains the top left pixel of the image.

● Image buffer pitch
□ The alignment must be a multiple of 4 bytes.
□ The default pitch in Open eVision is 32 bytes for performance reasons.

Memory layout

Image format Layout Illustration

EImageBW1 Stores 8 pixels in 1 byte

EImageBW8
EDepthMap8 Store 1 pixel in 1 byte

EImageBW16 Stores 1 pixel in 2 bytes

EImageC15
Stores 1 pixel in 2 bytes
- Each color component is coded with 5 bits
- The 16th bit is unused

Open eVision User Guide PART I Starting Up

eimagebw1-class.htm
eimagebw8-class.htm
edepthmap8-class.htm
eimagebw16-class.htm
eimagec15-class.htm

20

Image format Layout Illustration

EImageC16
Stores 1 pixel in 2 bytes
- The colors 1 and 3 are coded with 5 bits
- The color 2 is coded with 6 bits

EDepthMap16 Stores 1 pixel in 2 bytes (fixed point format)

EImageC24 Stores 1 pixel in 3 bytes
- Each color component is coded with 8 bits

EImageC24A
Stores 1 pixel in 4 bytes.
- Each color component is coded with 8 bits
- The alpha channel is coded with 8 bits

EDepthMap32f Stores 1 pixel in 4 bytes (float format)

Open eVision User Guide PART I Starting Up

eimagec16-class.htm
edepthmap16-class.htm
eimagec24-class.htm
eimagec24a-class.htm
edepthmap32f-class.htm

21

4. Basic Operations

4.1. Memory Allocation

You can construct an image using an internal or an external memory allocation.

Internal memory allocation

The image object dynamically allocates and deallocates a buffer:
□ The memory management is transparent.
□ When the image size changes, a reallocation occurs.
□ When an image object is destroyed, the buffer is deallocated.

To declare an image with an internal memory allocation:

1. Construct an image object, for instance EImageBW8, either with width and height arguments or
using the SetSize function.

2. Access a given pixel using one of the multiple available functions.
For example, use GetImagePtr to retrieve a pointer to the first byte of the pixel at the given
coordinates.

External memory allocation

Control the buffer allocation or link a third-party image in the memory buffer to an Open
eVision image.

□ You must specify the image size and the buffer address.
□ When an image object is destroyed, the buffer is unaffected.

2 For details, see "Image and Depth Map Buffer" on page 19 and Interfacing Third-Party
Images.

Open eVision User Guide PART I Starting Up

eimagebw8-class.htm
ebaseroi-setsize.htm
ebaseroi-getimageptr.htm
../../../../../Content/05 Resources/02 Code Snippets/01 Basic Types/interfacing-third-party-images.htm
../../../../../Content/05 Resources/02 Code Snippets/01 Basic Types/interfacing-third-party-images.htm

22

To declare an image with an external memory allocation:

1. Declare an image object, for instance EImageBW8.

2. Create a suitably sized and aligned buffer.

3. Assign the buffer to the image with SetImagePtr.

NOTE
Using the copy constructor of the EImage object to copy the externally
allocated image does not copy the buffer.
The copied image points to the same external buffer as the original image.

NOTE
If your buffer rows are not aligned on 4 bytes, use
InitializeFromUnalignedBuffer instead of SetImagePtr.
Please note that this allocates the memory internally and copies the external
buffer into the internal one instead of using the external one.

4.2. Loading a Pixel Container File

Loading images and depth maps

● Use the method Load to load image data into an image object.
□ It has only the argument path that includes the path, filename and file name extension.
□ The file type is determined by the file format.
□ The destination image is automatically resized according to the size of the image on disk.

● Load throws an exception when:
□ The file type identification fails.
□ The file type is incompatible with the pixel type of the image object.

NOTE: When loading a BW16 image (with integer values) in a depth map, the fixed point
precision set in the depth map (0 by default) is left unchanged and used.

Loading point clouds

Use the following methods to load a point cloud saved in a specific format:
□ EPointCloud.Load: Open eVision proprietary file format.
□ EPointCloud.LoadCSV: CSV file.
□ EPointCloud.LoadOBJ: OBJ file.
□ EPointCloud.LoadPCD: PCD file (supported in ASCII and binary modes).
□ EPointCloud.LoadPLY: PLY file (supported only in ASCII mode).
□ EPointCloud.LoadXYZ: XYZ file.

Open eVision User Guide PART I Starting Up

eimagebw8-class.htm
ebaseroi-setimageptr.htm
eimagebw8-initializefromunalignedbuffer.htm
ebaseroi-setimageptr.htm
ebaseroi-load.htm
ebaseroi-load.htm
epointcloud-load.htm
epointcloud-loadcsv.htm
epointcloud-loadobj.htm
epointcloud-loadpcd.htm
epointcloud-loadply.htm
epointcloud-loadxyz.htm

23

4.3. Saving a Pixel Container File

Images and depth maps

● Use the method Save of an image or the method SaveImage of a depth map or a ZMap to save
image data of the object into a file.
□ The argument Path includes the path, file name and file name extension.
□ The argument Image File Type can be omitted. In this case, the file name extension is

used.

● Save throws an exception when:
□ The requested image file format is incompatible with the pixel type of the image object.
□ The file name extension is not supported while using the Auto file type selection method.

NOTE: When saving a 16-bit depth map, the fixed point precision is lost and the pixels are
considered as 16-bit integers.

TIP
The images with a width or a height larger than 65,536 must be saved in
Open eVision proprietary format.

Image File Type arguments

Argument Image file type

EImageFileType_Auto (Default) Automatically determined by the file name extension. See
below.

EImageFileType_
Euresys Open eVision Serialization

EImageFileType_Bmp Windows bitmap - BMP

EImageFileType_Jpeg JPEG File Interchange Format - JFIF

EImageFileType_
Jpeg2000 JPEG 2000 File format / Code Stream - JPEG2000

EImageFileType_Png Portable Network Graphics - PNG

EImageFileType_Tiff Tagged Image File Format - TIFF

If the argument is EImageFileType_Auto or is missing, the assigned image file type is:

File name extension
(case-insensitive) Assigned image file type

BMP Windows Bitmap format

JPEG or JPG JPEG File Interchange Format - JFIF

JP2 JPEG 2000 file format

J2K or J2C JPEG 2000 Code Stream

PNG Portable Network Graphics

TIFF or TIF Tagged Image File Format

Open eVision User Guide PART I Starting Up

ebaseroi-save.htm
edepthmap8-saveimage.htm
ebaseroi-save.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm

24

Saving JPEG and JPEG2000 lossy compressions

SaveJpeg and SaveJpeg2K specify the compression quality when saving compressed images. They
have two arguments:

□ Path: a string of characters including the path, filename, and file name extension.
□ Compression quality of the image file, an integer value in range [0: 100].

SaveJpeg saves image data using JPEG File Interchange Format – JFIF.
SaveJpeg2K saves image data using JPEG 2000 File format.

JPEG compression values

JPEG compression Description

JPEG_DEFAULT_QUALITY (-1) Default quality (*)

100 Superb image quality, lowest compression factor

75 Good image quality (*)

50 Normal image quality

25 Average image quality

10 Bad Image quality
(*) The default quality corresponds to the good image quality (75).

Representative JPEG 2000 compression quality values

JPEG 2000 compression Description

-1 Default quality (*)

1 Highest image quality, lowest compression factor

16 Good Image Quality (*) (16:1 rate)

512 Lowest image quality, highest compression factor
(*) The default quality corresponds to the good image quality (16:1 rate).

Saving point clouds

Use the following methods to save a point cloud in a specific format:
□ EPointCloud::Save: Open eVision proprietary file format.
□ EPointCloud::SaveCSV: CSV file.
□ EPointCloud::SaveOBJ: OBJ file.
□ EPointCloud::SavePCD: PCD file.
□ EPointCloud::SavePLY: PLY file.
□ EPointCloud::SaveXYZ: XYZ file.

TIP
The PCD format is supported in ASCII and binary modes.

Open eVision User Guide PART I Starting Up

ebaseroi-savejpeg.htm
ebaseroi-savejpeg2k.htm
ebaseroi-save.htm
ebaseroi-savejpeg2k.htm
epointcloud-save.htm
epointcloud-savecsv.htm
epointcloud-saveobj.htm
epointcloud-savepcd.htm
epointcloud-saveply.htm
epointcloud-savexyz.htm

25

4.4. Drawing in Open eVision

Introduction

● Whenever relevant, the Open eVision tools provide methods Draw to render their contents
and/or configuration. This is, for instance, the contents of an EImage or the frame of an EROI.

● A given tool can have multiple methods Draw, usually one for each feature available.

● The Open eVision methods Draw take an object DrawAdapter as their main parameter, and
additional parameters for zoom and pan:

Tool::Draw(EDrawAdapter* adapter, float zoomX, float zoomY, float panX, float panY);
□ zoomX and zommY are expressed in percentage, 1 is the default value and means no zoom.
□ It can be different in the horizontal and vertical directions (which can be useful in the

case of non-square pixels for instance).
□ If you don’t provide a vertical zoom, or set it to 0, it will be set identical to the horizontal

one.
□ panX and panY are expressed in pixels, but in image coordinates. It means that the value

you pass to panX and panY are multiplied by the corresponding zoom before being
applied.

Example: How to draw an image and a ROI frame on a window under Windows:

EImageBW8 image;
EROIBW8 roi;
EWindowsDrawAdapter adapter(windowHdc);
image.Draw(adapter);
roi.DrawFrame(adapter);

Graphical interactions

● You can configure some of the Open eVision tools graphically and use the provided methods
to put your configuration in place.

● Graphical Interaction-enabled tools provide special parameters to some of their methods
Draw to draw handles on the tool representation.

● To capture the user interactions with those handles, these tools also provide two specialized
methods:
□ HitTest detects if a handle is under the mouse when providing it with the current cursor

coordinates. You typically use this test during a mouse button down event.
□ Drag moves the detected handle to the given coordinates. This in turn modifies the tool

configuration to match the new handle position. Drag is typically associated with the
mouse button up event.

NOTE: HitTest and Drag use the same zoom and pan parameters as Draw. You must set them
the same way (with the same values) to achieve the desired result.

Draw adapters

● The draw adapters are objects that, in addition to representing the context in which to draw,
provide methods to draw the selected primitives in that context.

● They are initialized by providing the targeted context to the constructor.

Open eVision User Guide PART I Starting Up

26

● Some of the drawing methods provided by the draw adapters are (but are not limited to):
□ EDrawAdapter::Line / Lines draws one or more lines on the context
□ EDrawAdapter::Rectangle / FilledRectangle draws a rectangle, filled or not, on the context
□ EDrawAdapter::Ellipse / FilledEllipse draws an ellipse, filled or not, in the context
□ EDrawAdapter::Text / BackedText renders a text in the context, with or without background
□ EDrawAdapter::Image renders an image in the context

● For more information about the drawing primitives provided by the draw adapters, please
refer to the reference documentation.

● To set the color of the primitives, provide a pen and/or a brush and use the methods
EDrawAdapter::SetPen and EDrawAdapter::SetBrush.
□ If you do not provide a pen and/or a brush, the default colors are used.

● The set the font of the text, provide a font with the method EDrawAdapter::SetFont.

Standard draw adapters

Open eVision provides a set of off-the-shelf draw adapters that you can use in different
situations:

● EWindowsDrawAdapter allows to draw on Windows systems. To draw on a window, provide the
window’s HDC to its constructor, or, to draw in an EImage buffer, provide that EImage.
□ It relies on GDI and GDI+ to provide its services.
□ This is the preferred way to draw on Windows.

● QtDrawAdapter allows you to draw using Qt on a QPainter context. To draw on a QPainter
context, provide the QPainter to the constructor, or, to draw on an EImage buffer, provide
that EImage.
□ You can use the QtDrawAdapter both on Windows and Linux.
□ This is the preferred way to draw on Linux.

NOTE: QtDrawAdapter is using an external resource (namely Qt) and as such is provided as
source code in its own header rather than in the global Open eVision header. For
more information about external and custom draw adapters, see below.

● EGenericDrawAdapter is a draw adapter that can only render on an EImage, but it can do it in a
consistent manner on all supported OSes.
□ It is available on both Windows and Linux.

Drawing in an EImage

● As said above, you can draw in an EImage (usually an EImageBW8 or EImageC24) by initializing a
draw adapter with that image and using either the Open eVision methods Draw or the draw
adapter drawing primitives:

EImageBW8 image;
EMatrixCode code;
EWindowsDrawAdapter adapter(image);
code.DrawPosition(adapter);

Open eVision User Guide PART I Starting Up

edrawadapter-line.htm
edrawadapter-rectangle.htm
edrawadapter-filledrectangle.htm
edrawadapter-ellipse.htm
edrawadapter-filledellipse.htm
edrawadapter-text.htm
edrawadapter-backedtext.htm
edrawadapter-image.htm
edrawadapter-pen.htm
edrawadapter-brush.htm
edrawadapter-font.htm
ewindowsdrawadapter-class.htm
egenericdrawadapter-class.htm

27

Custom draw adapters

● If you require a draw adapter to render in a specific, unsupported type of context (for ex. a
DirectDraw surface, an OpenGL context...), you can build your own draw adapter by deriving
from the interface EExternalDrawAdapter provided by Open eVision and implementing all the
required methods.

● Once this work is done, you will be able to use your new, custom draw adapter in the same
way as the off-the-shelf ones, taking advantage of Open eVision methods Draw.

● The provided QtDrawAdapter is a draw adapter built using that mechanism, you can use it as a
reference on how to build a custom draw adapter. The sources of the QtDrawAdapter are
bundled with the Qt Samples.

Enhanced Image Display

When the enhanced image display mode is enabled, a high-quality interpolation method is used
to display the resized images.

□ Set Easy::SetEnableEnhancedImageDisplay(bool) to TRUE, to enable the enhanced image
display.

□ By default, this option is disabled.
□ Enhanced image display has a significant impact on display speed, the drawing can be 4x

to 10x slower.
□ The drawing of images with EBW8Vector or EC24Vector used as Look Up Table doesn't

support enhanced image display

EnhancedImageDisplay disabled (left) and enabled (right)

□ Open eVision Studio exposes this option in View > Option dialog:

Open eVision User Guide PART I Starting Up

eexternaldrawadapter-class.htm
easy-enableenhancedimagedisplay.htm

28

4.5. 3D Rendering of 2D Images

These images are viewed by rotating them around the X-axis, then the Y-axis.

Gray 3D rendering

Easy::Render3D prepares a 3-dimensional rendering where gray-level values are altitudes.
Magnification factors in the three directions (X = width, Y = height and Z = depth) can be given.
The rendered image appears as independent dots whose size can be adjusted to make the
surface more or less opaque.

3D rendering

Color histogram 3D rendering

Easy::RenderColorHistogram prepares a 3-dimensional rendering of a color image histogram.
The pixels are drawn in the RGB space (not XY-plane) to show clustering and dispersion of RGB
values.
This function can process pixels in other color systems (using EasyColor to convert), but the raw
RGB image is required to display the pixels in their usual colors.

Magnification factors in all three directions (X = red, Y = green and Z = blue) can be given.

Color histogram rendering

Open eVision User Guide PART I Starting Up

easy-render3d.htm
easy-rendercolorhistogram.htm

29

4.6. Vector Types and Main Properties

A vector is a one-dimensional array of pixels (taken from an image profile or contour).

EVector is the base class for all vectors. It contains all non-type-specific methods, mainly for
counting elements and serialization.

Profile in a C24 image, RGB values plot along profile and RGB values array (EC24Vector)

A vector manages an array of elements. Memory allocation is transparent, so vectors can be
resized dynamically. Whenever a function uses a vector, the vector type, size and structure are
automatically adjusted to suit the function needs.

The use of vectors is quite straightforward:

● To create a vector of the appropriate type:
□ Use its constructor and preallocate elements if required.

● To fill a vector with values:
□ Call the EVector::Empty member to empty it.
□ Call the EC24Vector::AddElement member to add elements one by one.
□ Use the indexing to access any element.

● To access a vector element, either for reading or writing:
□ Use the brackets operator EC24Vector::operator[].

● To determine the current number of elements:
□ Use the EVector::NumElements member.

● To draw the vector:
□ A pixel vector is a plot of the element values as a function of the element index, so its

graphical appearance depends on its type. You can draw a vector in a window. For
legibility, the drawing should appear on a neutral background.

□ Drawing is done in the device context associated to the desired window. By default,
curves are drawn in blue and annotations in black. You can define: graphicContext, width,
height, originX, originY, color0, color1 and color2.

□ The EC24Vector has three curves drawn instead of one, each corresponding to a color
component. By default the red, blue and green pens are used.

Open eVision User Guide PART I Starting Up

evector-class.htm
ec24vector-class.htm
evector-empty.htm
ec24vector-addelement.htm
ec24vector-operator_index.htm
evector-numelements.htm
ec24vector-class.htm

30

Vector types

● EBW8Vector: a sequence of gray-level pixel values, often extracted from an image profile
(used by EasyImage::Lut, EasyImage::SetupEqualize, EasyImage::ImageToLineSegment,
EasyImage::LineSegmentToImage, EasyImage::ProfileDerivative...).

Graphical representation of an EBW8Vector (see Draw method)

● EBW16Vector: a sequence of gray-level pixel values, using an extended range (16 bits), mainly
for intermediate computations.

Graphical representation of an EBW16Vector

● EBW32Vector: a sequence of gray-level pixel values, using an extended range (32 bits), mainly
for intermediate computations
(used in EasyImage::ProjectOnARow, EasyImage::ProjectOnAColumn, ...).

Graphical representation of an EBW32Vector

Open eVision User Guide PART I Starting Up

ebw8vector-class.htm
easyimage-lut.htm
easyimage-setupequalize.htm
easyimage-imagetolinesegment.htm
easyimage-linesegmenttoimage.htm
easyimage-profilederivative.htm
ebw8vector-class.htm
ebw8vector-draw.htm
ebw16vector-class.htm
ebw16vector-class.htm
ebw32vector-class.htm
easyimage-projectonarow.htm
easyimage-projectonacolumn.htm
ebw32vector-class.htm

31

● EC24Vector: a sequence of color pixel values, often extracted from an image profile
(used by EasyImage::ImageToLineSegment, EasyImage::LineSegmentToImage,
EasyImage::ProfileDerivative, ...).

Graphical representation of an EC24Vector

● EBW8PathVector: a sequence of gray-level pixel values, extracted from an image profile or
contour, with corresponding pixel coordinates
(used by EasyImage::ImageToPath, EasyImage::PathToImage, ...).

Graphical representation of an EBW8PathVector (see Draw method)

● EBW16PathVector: a sequence of gray-level pixel values, extracted from an image profile or
contour, with corresponding pixel coordinates
(used by EasyImage::ImageToPath, EasyImage::PathToImage, ...).

Graphical representation of an EBW16PathVector (see Draw method)

Open eVision User Guide PART I Starting Up

ec24vector-class.htm
easyimage-imagetolinesegment.htm
easyimage-linesegmenttoimage.htm
easyimage-profilederivative.htm
ec24vector-class.htm
ebw8pathvector-class.htm
easyimage-imagetopath.htm
easyimage-pathtoimage.htm
ebw8pathvector-class.htm
ebw8pathvector-draw.htm
ebw16pathvector-class.htm
easyimage-imagetopath.htm
easyimage-pathtoimage.htm
ebw16pathvector-class.htm
ebw16pathvector-draw.htm

32

● EC24PathVector: a sequence of color pixel values, extracted from an image profile or contour,
with corresponding pixel coordinates
(used by EasyImage::ImageToPath, EasyImage::PathToImage, ...).

Graphical representation of an EC24PathVector (see Draw method)

● EBWHistogramVector: a sequence of frequency counts of pixels in a BW8 or BW16 image
(used by EasyImage::IsodataThreshold, EasyImage::Histogram, EasyImage::AnalyseHistogram,
EasyImage::SetupEqualize, ...).

Graphical representation of an EBWHistogramVector (see Draw method)

● EPathVector: a sequence of pixel coordinates. The corresponding pixels need not be
contiguous
(used by EasyImage::PathToImage and EasyImage::Contour).

Graphical representation of an EPathVector (see Draw method)

● EPeakVector: peaks found in an image profile
(used by EasyImage::GetProfilePeaks).

● EColorVector: a description of colors
(used by EasyColor::ClassAverages and EasyColor::ClassVariances).

Open eVision User Guide PART I Starting Up

ec24pathvector-class.htm
easyimage-imagetopath.htm
easyimage-pathtoimage.htm
ec24pathvector-class.htm
ec24pathvector-draw.htm
ebwhistogramvector-class.htm
easyimage-isodatathreshold.htm
easyimage-histogram.htm
easyimage-analysehistogram.htm
easyimage-setupequalize.htm
ebwhistogramvector-class.htm
ebwhistogramvector-draw.htm
epathvector-class.htm
easyimage-pathtoimage.htm
easyimage-contour.htm
epathvector-class.htm
epathvector-draw.htm
epeakvector-class.htm
easyimage-getprofilepeaks.htm
ecolorvector-class.htm
easycolor-classaverages.htm
easycolor-classvariances.htm

33

4.7. ROI Main Properties

ROIs are defined by a width, a height, and origin x and y coordinates.
The origins are specified with respect to the top left corner in the parent image or ROI.
The ROI must be wholly contained in its parent image.
The processing/analysis time of a BW1 ROI is faster if OrgX and Width are multiples of 8.

Save and load

You can save or load an ROI as a separate image, to be used as if it was a full image. The ROIs
perform no memory allocation at all and never duplicate parts of their parent image, the parent
image provides them with access to its image data.

The image size of the new file must match the size of the ROI being loaded into it. The image
around the ROI remains unchanged.

ROI Classes

An Open eVision ROI inherits parameters from the abstract class EBaseROI.

There are several ROI types, according to their pixel type. They have the same characteristics as
the corresponding image types.

□ EROIBW1
□ EROIBW8
□ EROIBW16
□ EROIBW32
□ EROIC15
□ EROIC16
□ EROIC24
□ EROIC24A

Attachment

An ROI must be attached to a parent (image/ROI) with parameters that set the parent, position
and size, and these links are updated transparently, avoiding dangling pointers.
A normal image cannot be attached to another image or ROI.

Nesting

Set and Get functions change or query the width, height and position of the origin of an ROI,
with respect to its immediate or topmost parent image.

An image may accommodate an arbitrary number of ROIs, which can be nested in a hierarchical
way. Moving the ROI also moves the embedded ROIs accordingly. The image/ROI classes provide
several methods to traverse the hierarchy of ROIs associated with an image.

Open eVision User Guide PART I Starting Up

ebaseroi-width.htm
ebaseroi-height.htm
ebaseroi-orgx.htm
ebaseroi-orgy.htm
ebaseroi-orgx.htm
ebaseroi-width.htm
ebaseroi-save.htm
ebaseroi-load.htm
ebaseroi-class.htm
Pixel Container Types.htm
eroibw1-class.htm
eroibw8-class.htm
eroibw16-class.htm
eroibw32-class.htm
eroic15-class.htm
eroic16-class.htm
eroic24-class.htm
eroic24a-class.htm
ebaseroi-attach.htm

34

Nested ROIs: Two sub-ROIs attached to an ROI, itself attached to the parent image

Cropping

CropToImage crops an ROI which is partially out of its image. The resized ROI never grows.
An exception is thrown if a function attempts to use an ROI that has limits that extend outside
of the parents.

NOTE
(In Open eVision 1.0.1 and earlier, an ROI was silently resized or repositioned
when placed out of its image and sometimes grew. If ROI limits extended
outside parents, they were silently resized to remain within parent limits.)

Resizing and moving

ROIs can easily be resized and positioned by two functions and dragging handles:

● EBaseROI.Drag adjusts the ROI coordinates while the cursor moves.

● EBaseROI.HitTest informs if the cursor is placed over a dragging handle.
□ Once the handle is known, the cursor shape can be changed by an OnSetCursor MFC event

handler. HitTest is unpredictable if called while dragging is in progress.
□ HitTest can be used in an OnSetCursor MFC event handler to change the cursor shape, or

before a dragging operation like OnLButtonDown,
(or EvSetCursor and EvLButtonDown in Borland/CodeGear's OWL)
(or FormMouseMove and FormMouseDown in Borland/CodeGear's VCL).

Open eVision User Guide PART I Starting Up

ebaseroi-croptoimage.htm
ebaseroi-drag.htm
ebaseroi-hittest.htm

35

4.8. Arbitrarily Shaped ROI (ERegion)

See also: example: Inspecting Pads Using Regions / code snippets: ERegion

Regions or arbitrarily shaped ROI

You define and use regions of interest (ROI) to restrict the area processed with your vision tool
and to reduce and optimize the processing time.

In Open eVision:
□ An ROI (EROIxxx class) designates a rectangular region of interest.
□ A region (ERegion class) designates an arbitrarily shaped ROI. With regions, you can

determine precisely which part of the image, down to a single pixel, is used for your
processing.

Currently, only the following Open eVision methods support ERegions:

Open eVision User Guide PART I Starting Up

../../../../../Content/05 Resources/03 2D Application Examples/Inspecting Pads Using Regions.htm
../../../../../Content/05 Resources/02 Code Snippets/01b ERegion/ERegion.htm
eregion-class.htm
eregion-class.htm

36

Library Method
EasyImage EasyImage::Threshold

Open eVision User Guide PART I Starting Up

easyimage-threshold.htm

37

Library Method
EasyImage::AutoThreshold

Open eVision User Guide PART I Starting Up

easyimage-autothreshold.htm

38

Library Method
EasyImage::Copy

Open eVision User Guide PART I Starting Up

easyimage-copy.htm

39

Library Method
EasyImage::ConvolKernel

Open eVision User Guide PART I Starting Up

easyimage-convolkernel.htm

40

Library Method
EasyImage::ConvolSymmetricKernel

Open eVision User Guide PART I Starting Up

easyimage-convolsymmetrickernel.htm

41

Library Method
EasyImage::ConvolLowpass1

Open eVision User Guide PART I Starting Up

easyimage-convollowpass1.htm

42

Library Method
EasyImage::ConvolLowpass2

Open eVision User Guide PART I Starting Up

easyimage-convollowpass2.htm

43

Library Method
EasyImage::ConvolLowpass3

Open eVision User Guide PART I Starting Up

easyimage-convollowpass3.htm

44

Library Method
EasyImage::ConvolUniform

Open eVision User Guide PART I Starting Up

easyimage-convoluniform.htm

45

Library Method
EasyImage::ConvolGaussian

Open eVision User Guide PART I Starting Up

easyimage-convolgaussian.htm

46

Library Method
EasyImage::ConvolHighpass1

Open eVision User Guide PART I Starting Up

easyimage-convolhighpass1.htm

47

Library Method
EasyImage::ConvolHighpass2

Open eVision User Guide PART I Starting Up

easyimage-convolhighpass2.htm

48

Library Method
EasyImage::ConvolGradientX

Open eVision User Guide PART I Starting Up

easyimage-convolgradientx.htm

49

Library Method
EasyImage::ConvolGradientY

Open eVision User Guide PART I Starting Up

easyimage-convolgradienty.htm

50

Library Method
EasyImage::ConvolGradient
EasyImage::ConvolSobelX
EasyImage::ConvolSobelY
EasyImage::ConvolSobel
EasyImage::ConvolPrewittX
EasyImage::ConvolPrewittY
EasyImage::ConvolPrewitt
EasyImage::ConvolRoberts
EasyImage::ConvolLaplacianX
EasyImage::ConvolLaplacianY
EasyImage::ConvolLaplacian8
EasyImage::DilateBox
EasyImage::ErodeBox
EasyImage::OpenBox
EasyImage::CloseBox
EasyImage::WhiteTopHatBox
EasyImage::BlackTopHatBox
EasyImage::MorphoGradientBox
EasyImage::ErodeDisk
EasyImage::DilateDisk
EasyImage::OpenDisk
EasyImage::CloseDisk
EasyImage::WhiteTopHatDisk
EasyImage::BlackTopHatDisk
EasyImage::MorphoGradientDisk
EasyImage::Median
EasyImage::ScaleRotate
EasyImage::DoubleThreshold
EasyImage::Histogram
EasyImage::Area
EasyImage::AreaDoubleThreshold
EasyImage::BinaryMoments
EasyImage::WeightedMoments
EasyImage::GravityCenter
EasyImage::PixelCount
EasyImage::PixelMax
EasyImage::PixelMin
EasyImage::PixelAverage
EasyImage::PixelStat
EasyImage::PixelVariance
EasyImage::PixelStdDev
EasyImage::PixelCompare
EasyImage::ImageToLineSegment
EasyImage::ImageToPath

Open eVision User Guide PART I Starting Up

easyimage-convolgradient.htm
easyimage-convolsobelx.htm
easyimage-convolsobely.htm
easyimage-convolsobel.htm
easyimage-convolprewittx.htm
easyimage-convolprewitty.htm
easyimage-convolprewitt.htm
easyimage-convolroberts.htm
easyimage-convollaplacianx.htm
easyimage-convollaplaciany.htm
easyimage-convollaplacian8.htm
easyimage-dilatebox.htm
easyimage-erodebox.htm
easyimage-openbox.htm
easyimage-closebox.htm
easyimage-whitetophatbox.htm
easyimage-blacktophatbox.htm
easyimage-morphogradientbox.htm
easyimage-erodedisk.htm
easyimage-dilatedisk.htm
easyimage-opendisk.htm
easyimage-closedisk.htm
easyimage-whitetophatdisk.htm
easyimage-blacktophatdisk.htm
easyimage-morphogradientdisk.htm
easyimage-median.htm
easyimage-scalerotate.htm
easyimage-doublethreshold.htm
easyimage-histogram.htm
easyimage-area.htm
easyimage-areadoublethreshold.htm
easyimage-binarymoments.htm
easyimage-weightedmoments.htm
easyimage-gravitycenter.htm
easyimage-pixelcount.htm
easyimage-pixelmax.htm
easyimage-pixelmin.htm
easyimage-pixelaverage.htm
easyimage-pixelstat.htm
easyimage-pixelvariance.htm
easyimage-pixelstddev.htm
easyimage-pixelcompare.htm
easyimage-imagetolinesegment.htm
easyimage-imagetopath.htm

51

Library Method

Easy3D

EDepthMapToMeshConverter::Convert
EDepthMapToPointCloudConverter::Convert
EStatistics::ComputePixelStatistics
EStatistics::ComputeStatistics
E3DObjectExtractor::Extract
EZMapToPointCloudConverter::Convert

EasyObject EImageEncoder::Encode

EasyFind
EPatternFinder::Find
EPatternFinder::Learn

EasyOCR2
EOCR2::Read
EOCR2::Detect

EasyGauge

EPointGauge::Measure
ELineGauge::Measure
ERectangleGauge::Measure
ECircleGauge::Measure
EWedgeGauge::Measure

EasyMatch
EMatcher::LearnPattern
EMatcher::Match

EasyQRCode EQRCodeReader::SetSearchField
EQRCodeReader::Read

TIP
In the future Open eVision releases, the support of ERegions will be gradually
extended to all operators.

Creating regions

Open eVision offers multiple ways to create regions, depending on the shape you need:

The ERegion is the base class for all regions and the most versatile. It encodes a region using a
Run-Length Encoded (RLE) representation.

□ The RLE representation of a region is made of runs (horizontal, 1-pixel high slices).
□ The runs are stored in the form of their ordinate, starting abscissa and length.

Run-Length Encoding of a circle-shaped region

Open eVision User Guide PART I Starting Up

edepthmaptomeshconverter-convert.htm
edepthmaptopointcloudconverter-convert.htm
estatistics-computepixelstatistics.htm
estatistics-computestatistics.htm
../../../../../Content/reference/e3dobjectextractor-extract.htm
../../../../../Content/reference/ezmaptopointcloudconverter-convert.htm
eimageencoder-encode.htm
epatternfinder-find.htm
../../../../../Content/reference/epatternfinder-learn.htm
../../../../../Content/reference/eocr2-read.htm
../../../../../Content/reference/eocr2-detect.htm
../../../../../Content/reference/epointgauge-measure.htm
../../../../../Content/reference/elinegauge-measure.htm
../../../../../Content/reference/erectanglegauge-measure.htm
../../../../../Content/reference/ecirclegauge-measure.htm
../../../../../Content/reference/ewedgegauge-measure.htm
../../../../../Content/reference/ematcher-learnpattern.htm
../../../../../Content/reference/ematcher-match.htm
eqrcodereader-searchfield.htm
eqrcodereader-read.htm
eregion-class.htm

52

To create a region, either:
□ Use one of the geometry-based region classes.
□ Use the result of another tool, such as EasyFind, EasyMatch or EasyObject.
□ Combine or modify other regions.
□ Use a mask image.
□ Directly provide the list of runs.

Geometry-based regions

Geometry based regions are specialized classes of regions that are encompassed in simple
geometries. Open eVision currently provides classes based on a rectangle, a circle, an ellipse or
a polygon.

Use these classes to setup geometric regions and modify them with translation, rotation and
scaling. The transformation operators return new regions, leaving the source object unchanged.

● ERectangleRegion
□ The contour of an ERectangleRegion class is a rectangle.
□ Define it using its center, width, height and angle.
□ Alternatively, use an ERectangle instance, such as one returned by an ERectangleGauge

instance.

Rectangle region separating a bar code from the background

● ECircleRegion
□ The contour of an ECircleRegion class is a circle.
□ Define it using its center and radius or 3 non-aligned points.
□ Alternatively, use an ECircle instance, such as one returned by an ECircleGauge instance.

Circle region encompassing the useful part of an X-Ray image

Open eVision User Guide PART I Starting Up

erectangle-class.htm
erectangle-class.htm
erectangle-class.htm
erectanglegauge-class.htm
ecircleregion-class.htm
ecircleregion-class.htm
ecircle-class.htm
ecirclegauge-class.htm

53

● EEllipseRegion
□ The contour of an EEllipseRegion class is an ellipse.
□ Define it using its center, long and short radius and angle.

Ellipse region encompassing a waffle

● EPolygonRegion
□ The contour of an EPolygonRegion class is a polygon.
□ It is constructed using the list of its vertices.

Polygon region encompassing a key

Using the result of other tools

The ERegion class provides a set of specialized constructors to create regions from the results of
another tool.

In a tool chain, these constructors restrict the processing of a tool to the area issued from the
previous tool.

Open eVision User Guide PART I Starting Up

eellipseregion-class.htm
eellipseregion-class.htm
epolygonregion-class.htm
epolygonregion-class.htm
eregion-class.htm

54

Open eVision provides constructors for the following tools:
□ EasyFind: EFoundPattern
□ EasyMatch: EMatchPosition
□ EasyGauge: ECircle and ERectangle
□ EasyObject: ECodedElement

TIP
When compatible, Open eVision also provides specialized constructors for
the geometry-based regions. For instance, ECircleRegion provides a
constructor using an ECircle.

Combining regions

Use the following operations to create a new region by combining existing regions:

● Union
□ The ERegion::Union(const ERegion&, const ERegion&) method returns the region that is

the addition of the two regions passed as arguments.

Union of 2 circles

● Intersection
□ The ERegion::Intersection(const ERegion&, const ERegion&) method returns the region

that is the intersection of the two regions passed as argument.

Intersection of 2 circles

Open eVision User Guide PART I Starting Up

efoundpattern-class.htm
ematchposition-struct.htm
ecircle-class.htm
erectangle-class.htm
ecodedelement-class.htm
ecircleregion-class.htm
ecircle-class.htm
eregion-union.htm
eregion-intersection.htm

55

● Subtraction
□ The ERegion::Subtraction(const ERegion&, const ERegion&) method returns the first

region passed as argument after removing the second one.

Subtraction of 2 circles

Morphological operations on regions

The initial arbitrary region used to illustrate the different morphological operations

● Grow
□ The ERegion::Grow(int radius) method returns a region that is the dilation of the region

by a disk with a radius equals to the argument.

Grow of the arbitrary region

● Shrink
□ The ERegion::Shrink(int radius) method returns a region that is the erosion of the region

by a disk with a radius equals to the argument.

Shrink of the arbitrary region

Open eVision User Guide PART I Starting Up

eregion-subtraction.htm
eregion-grow.htm
eregion-shrink.htm

56

● Contour
□ The ERegion::Contour(int thickness, bool centered = true) method returns a region

that is the contour of the region.

Contour of the arbitrary region

Free-hand drawing a region

● The ERegionFreeHandPainter class provides the methods that allow you to create a region by
hand, using the mouse or any other user input method.

● The RegionFreeHand sample, available both in C++ and C#, shows how to use this class to
draw a region on an image.

Using regions

The tools supporting regions provide methods that follow one of these conventions:
□ Method(const EImage& source, const ERegion& region)
□ Method(const EImage& source, const ERegion& region, EImage& destination)

NOTE
The source, the region and the destination must be compatible. It means
that the region must at least partly fit in the source, and that source and
destination must have the same size.

Preparing the region

● Open eVision automatically prepares the regions when it applies them to an image, but this
preparation can take some time.

● If you do not want your first call to a method to take longer than the next ones, you can
prepare the region in advance by using the appropriate Prepare() method.

● To manually prepare the regions, adapt the internal RLE description to your images.

Drawing regions

The ERegion classes provide several methods to display the regions:

● ERegion::Draw() draws the region area, in a semi-transparent way, in the provided device
context.

● ERegion::DrawContour() draws the region contour in the provided device context.

Open eVision User Guide PART I Starting Up

eregion-contour.htm
eregionfreehandpainter-class.htm
eregion-prepare.htm
eregion-class.htm
eregion-draw.htm
eregion-drawcontour.htm

57

● ERegion::ToImage() renders the region as a mask into the provided destination image.
□ You can configure the foreground and the background colors.
□ If you initialized your image with a width and a height, Open eVision renders the region

inside those bounds.
□ If not, Open eVision resizes the image to contain the whole region.
□ Use ToImage() to create masks for the Open eVision functions that support them.

ERegions and EROIs

● The older EROI classes of Open eVision are compatible with the new regions.

● Some tools allow the usage of regions with source and/or destinations that are ERoi instead
of EImage follow one of these conventions:
□ Method(const ERoi& source, const ERegion& region)
□ Method(const ERoi& source, const ERegion& region, ERoi& destination)

TIP
In that case, the coordinates used for the region are relative to the reduced
ROI space instead of the whole image space .

ERegion and 3D

● The new regions are compatible with the 2.5D representations of Easy3D (EDepthMap and
EZMap).

● You can also reduce the domain of processing when using these classes.

4.9. Flexible Masks

ROIs vs flexible masks

ROIs and masks restrict processing to part of an image:
□ "ROI Main Properties" on page 33 apply to all Open eVision functions. Using Regions of

Interest accelerates processing by reducing the number of pixels. Open eVision supports
hierarchically nested rectangular ROIs.

□ Flexible Masks are recommended to process disconnected ROIs or non-rectangular
shapes. They are supported by some EasyObject and EasyImage library functions.

Open eVision User Guide PART I Starting Up

eregion-toimage.htm
eregion-toimage.htm
edepthmap-class.htm
ezmap-class.htm

58

Flexible Masks

A flexible mask is a BW8 image with the same height and width as the source image. It contains
shapes of areas that must be processed and ignored areas (that will not be considered during
processing):

□ All pixels of the flexible mask having a value of 0 define the ignored areas.
□ All pixels of the flexible mask having any other value than 0 define the areas to be

processed.

Source image Associated mask Processed masked image

A flexible mask can be generated by any application that outputs BW8 images and by some
EasyObject and EasyImage functions.

Flexible Masks in EasyImage

Code Snippets

Source image (left) and mask variable (right)

Simple steps to use flexible masks in Easyimage

1. Call the functions from EasyImage that take an input mask as an argument. For instance,
one can evaluate the average value of the pixels in the white layer and after in the black
layer.

2. Display the results.

Resulting image

Open eVision User Guide PART I Starting Up

using-flexible-masks-easyimage.htm

59

EasyImage Functions that support flexible masks

● EImageEncoder.Encode has a flexible mask argument for BW1, BW8, BW16, and C24 source
images.

● AutoThreshold.

● Histogram (function HistogramThreshold has no overload with mask argument).

● RmsNoise, SignalNoiseRatio.

● Overlay (no overload with mask argument for BW8 source images).

● ProjectOnAColumn, ProjectOnARow (Vector projection).

● ImageToLineSegment, ImageToPath (Vector profile).

Flexible Masks in EasyObject

A flexible mask can be generated by any application that outputs BW8 images or uses the Open
eVision image processing functions.

EasyObject can use flexible masks to restrict blob analysis to complex or disconnected shaped
regions of the image.

If an object of interest has the same gray level as other regions of the image, you can define
"keep" and "ignore" areas using flexible masks and Encode functions.

A flexible mask is a BW8 image with the same height and width as the source image.
□ A pixel value of 0 in the flexible mask masks the corresponding source image pixel so it

doesn't appear in the encoded image.
□ Any other pixel value in the flexible mask causes the pixel to be encoded.

EasyObject functions that create flexible masks

Source image

1) ECodedImage2.RenderMask: from a layer of an encoded image
1. To encode and extract a flexible mask, first construct a coded image from the source image.

2. Choose a segmentation method (for the image above the default method
GrayscaleSingleThreshold is suitable).

3. Select the layer(s) of the coded image that should be encoded (i.e. white and black layers
using minimum residue thresholding).

4. Make the mask image the desired size using mask.SetSize(sourceImage.GetWidth(),
sourceImage.GetHeight()).

Open eVision User Guide PART I Starting Up

eimageencoder-encode.htm
easyimage-autothreshold.htm
easyimage-histogram.htm
easyimage-histogramthreshold.htm
easyimage-rmsnoise.htm
easyimage-signalnoiseratio.htm
easyimage-overlay.htm
easyimage-projectonacolumn.htm
easyimage-projectonarow.htm
easyimage-imagetolinesegment.htm
easyimage-imagetopath.htm
eimageencoder-encode.htm

60

5. Exploit the flexible mask as an argument to ECodedImage2.RenderMask.

BW8 resulting image that can be used as a flexible mask

2) ECodedElement.RenderMask: from a blob or hole
1. Select the coded elements of interest.

2. Create a loop extracting a mask from selected coded elements of the coded image using
ECodedElement.RenderMask.

3. Optionally, compute the feature value over each of these selected coded elements.

BW8 resulting image that can be used as a flexible mask

3) EObjectSelection.RenderMask: from a selection of blobs
EObjectSelection.RenderMask can, for example, discard small objects resulting from noise.

BW8 resulting image that can be used as a flexible mask

Open eVision User Guide PART I Starting Up

ecodedimage2-rendermask.htm
ecodedelement-rendermask.htm
eobjectselection-rendermask.htm

61

Example: Restrict the areas encoded by EasyObject

Find four circles (left) Flexible mask can isolate the central chip (right)

1. Declare a new ECodedImage2 object.

2. Setup variables: first declare source image and flexible mask, then load them.

3. Declare an EImageEncoder object and, if applicable, select the appropriate segmenter. Setup
the segmenter and choose the appropriate layer(s) to encode.

4. Encode the source image. Encoding a layer with just the area in the flexible mask is then
pretty straightforward.
We see that the circles are correctly segmented in the black layer with the grayscale single
threshold segmenter:

5. Select all objects of the coded image.

6. Select objects of interest by filtering out objects that are too small.

7. Display the blob feature by iterating over the selected objects to display the chosen feature.

4.10. Profile

Code Snippets

Profile Sampling

A profile is a series of pixel values sampled along a line/path/contour in an image.

● EasyImage.ImageToLineSegment copies the pixel values along a given line segment (arbitrarily
oriented and wholly contained within the image) to a vector. The vector length is adjusted
automatically. This function supports flexible masks.

● A path is a series of pixel coordinates stored in a vector.
EasyImage.ImageToPath copies the corresponding pixel values to the vector. This function
supports flexible masks.

Open eVision User Guide PART I Starting Up

ecodedimage2-class.htm
eimageencoder-class.htm
egrayscalesinglethresholdsegmenter-class.htm
egrayscalesinglethresholdsegmenter-class.htm
profile-sampling.htm
easyimage-imagetolinesegment.htm
epathvector-class.htm
epath-struct.htm
easyimage-imagetopath.htm

62

● A contour is a closed or not (connected) path, forming the boundary of an object.
EasyImage.Contour follows the contour of an object, and stores its constituent pixels values
inside a profile vector.

Profile Analysis

The profile can be processed to find peaks or transitions:

● A transition corresponds to an object edge (black to white or white to black). It can be
detected by taking the first derivative of the signal (which transforms transitions (edges) into
peaks) and looking for peaks in it.
EasyImage.ProfileDerivative computes the first derivative of a profile extracted from a gray-
level image.
The EBW8 data type only handles unsigned values, so the derivative is shifted up by 128.
Values under [above] 128 correspond to negative [positive] derivative (decreasing
[increasing] slope).

● A peak is the portion of the signal that is above [or below] a given threshold - the maximum
or minimum of the signal. This may correspond to the crossing of a white or black line or
thin feature. It is defined by its:
□ Amplitude: difference between the threshold value and the max [or min] signal value.
□ Area: surface between the signal curve and the horizontal line at the given threshold.

EasyImage.GetProfilePeaks detects max and min peaks in a gray-level profile. To eliminate false
peaks due to noise, two selection criteria are used. The result is stored in a peaks vector.

Profile Insertion Into an Image

EasyImage.LineSegmentToImage copies the pixel values from a vector or constant to the pixels of a
given line segment (arbitrarily oriented and wholly contained within the image).

EasyImage.PathToImage copies the pixel values from a vector or a constant to the pixels of a given
path.

Open eVision User Guide PART I Starting Up

easyimage-contour.htm
easyimage-profilederivative.htm
ebw8-struct.htm
epeak-struct.htm
epeak-amplitude.htm
epeak-area.htm
easyimage-getprofilepeaks.htm
epeakvector-class.htm
easyimage-linesegmenttoimage.htm
easyimage-pathtoimage.htm

63

Open eVision User Guide

PART II
GENERAL PURPOSE LIBRARIES

64

1. EasyImage - Pre-Processing Images

EasyImage operations prepare images so that further processing gets better results by:
□ isolating defects using thresholding or intensity transformations
□ compensating perspective effects (for non-flat surfaces such as a bottle label)
□ processing complex or disconnected shapes using flexible masks

The main functions are:
□ Intensity Transformations change the gray-level of each pixel to clarify objects (histogram

stretching).
□ Thresholding transforms a binary image into a bi- or tri-level grayscale image by

classifying the pixel values.
□ Arithmetic and logic functions manipulate pixels in two images, or one image and a

constant.
□ Non-Linear Filtering functions use non-linear combinations of neighboring pixels (using a

kernel) to highlight a shape, or to remove noise.
□ Geometric transforms move selected pixels to realign, resize, rotate and warp.
□ Noise Reduction and Estimation functions ensure that noise is not unacceptably

enhanced by other operations (thresholding, high-pass filtering).
□ Gradient Scalar generates a gradient direction or gradient magnitude map from a gray-

level image.
□ Vector operations extract 1-dimensional data from an image into a vector, for example to

detect scratches or outlines, or to clarify images.
□ Harris corner detector returns a vector of points of interest in a BW8 image.
□ Canny edge detector returns a BW8 image of the edges found in a BW8 image.
□ Overlay overlays an image on top of a color image.
□ Operations on Interlaced Video Frames eliminate interlaced image artifacts by rebuilding

or re-aligning fields.
□ Flexible Masks help process irregular shapes in EasyImage.

1.1. Intensity Transformation

These EasyImage functions change the gray-levels of pixels to increase contrast.

Gain offset

Gain Offset changes each pixel to [old gray value * Gain coefficient + Offset].

l gain adjusts contrast. It should remain close to 1.
l offset adjusts intensity (brightness). It can be positive or negative.
l The resulting values are always saturated to range [0..255].

In this example, the resulting image has better contrast and is brighter than the source image.

Open eVision User Guide PART II General Purpose Libraries

easyimage-class.htm
easyimage-gainoffset.htm

65

Source and result images (with gain = 1.2 and offset = +12)

Color images have three separate gain and offset values, one per color component (red, green,
blue).

Example of gain/offset applied on a color image

Normalization

Normalize makes images of the same scene comparable, even with different lighting.

It compares the average gray level (brightness) and standard deviation (contrast) of the source
image and a reference image. Then, it normalizes the source image with gain and offset
coefficients such that the output image has the same brightness and contrast as the reference
image. This operation assumes that the camera response is reasonably linear and the image
does not saturate.

The reference image (from which the average and standard deviation are computed),
the source image (too bright),

and the normalized image (contrast and brightness are the same as the reference image)

Uniformization

Uniformize compensates for non-uniform illumination and/or camera sensitivity based on one or
two reference images. The reference image should not contain saturated pixel values and have
minimum noise.

Open eVision User Guide PART II General Purpose Libraries

easyimage-normalize.htm
easyimage-uniformize.htm

66

l When one reference image is used, the transformation is similar to an adaptive (space-
variant) gain; each pixel in the reference image encodes the gain for the corresponding
pixel in the source image.

l When two reference images are used, the transformation is similar to an adaptive gain
and offset; each pixel in the reference images encodes either the gain or the offset for the
corresponding pixel in the source image.

Example of an image uniformized with two reference images

Lookup tables

Lut uses a lookup table of new pixel values to replace the current ones - efficient for BW8 and
BW16 images. If the transform function never changes, it is best to use a lookup table.

Example of a transform

Open eVision User Guide PART II General Purpose Libraries

easyimage-lut.htm

67

1.2. Thresholding

Code Snippets

Thresholding transforms an image by classifying the pixel values using these methods:

l "Thresholding" on page 67 (BW8 and BW16 images only)
l "Thresholding" on page 67 (BW8 and BW16 images only)
l "Thresholding" on page 67 using one or two threshold values
l "Thresholding" on page 67 (computed before using the thresholding function)

These functions also return the average gray levels of each pixel below and above the threshold.

Keys to successful thresholding

l Object and background areas should be of uniform color and illumination. Image
uniformization may be required prior to thresholding.

l The gray level range of the object and background must be sufficiently different (all
background pixels should be darker than the darkest object pixel).

l You must decide if the threshold value should be:
o constant: absolute threshold
o adapted to ambient light intensity: relative or automatic threshold

Automatic thresholding

The threshold is calculated automatically if you use one of these arguments with the
EasyImage.Threshold function.

Min Residue: Minimizes the quadratic difference between the source and the resulting image
(default if the Threshold function is invoked without an argument).

Max Entropy: Maximizes the entropy (that is, the amount of information) between object and
background of the resulting image.

Open eVision User Guide PART II General Purpose Libraries

thresholding.htm
easyimage-threshold.htm

68

Isodata: Calculates a threshold value that is an average of the gray levels: halfway between the
average gray level of pixels below the threshold, and the average gray level of pixels above the
threshold.

Manual thresholding

Manual thresholds require that the user supplies one or two threshold values:

l one value to the Threshold function to classify source image pixels (BW8/BW16/C24) into
two classes and create a bi-level image. This can be:

o relativeThreshold is the percentage of pixels below the threshold. The Threshold
function then computes the appropriate threshold value, or

o absoluteThreshold. This value must be within the range of pixel values in the source
image.

l two values to the DoubleThreshold function to classify source image pixels (BW8/BW16)
into three classes and create a tri-level image.

o LowThreshold is the lower limit of the threshold
o HighThreshold is the upper limit of the threshold

Histogram based

When a histogram of the source image is available, you can speed up the automatic
thresholding operation by computing the threshold value from the histogram (using
HistogramThreshold or HistogramThresholdBW16) and using that value in a manual thresholding
operation.

These functions also return the average gray levels of each pixel below and above the threshold.

AutoThreshold

When no source image histogram is available, AutoThreshold can still calculate a threshold value
using these threshold modes: EThresholdMode_Relative, _MinResidue, _MaxEntropy and _
Isodata.

This function supports flexible masks.

1.3. Arithmetic and Logic

Code Snippets

Reasons you may use arithmetic and logic are:

l to emphasize differences between images by subtracting the pixels (a conformity check).
l to compensate for non-uniform lighting by dividing the target image by the image of the

background alone.
l to remove unwanted areas of an image by preparing an appropriate mask, and clearing

all the pixels that belong to the mask by using logical combinations of pixels.
l to create a combined image by combining the pixels of two source images to generate a

resulting image.

Arithmetic operations are handled by the Oper function, EArithmeticLogicOperation enum lists
all supported operators.

Open eVision User Guide PART II General Purpose Libraries

easyimage-threshold.htm
easyimage-doublethreshold.htm
easyimage-histogramthreshold.htm
easyimage-histogramthresholdbw16.htm
easyimage-autothreshold.htm
ethresholdmode-enum.htm
arithmetic-and-logic-operations.htm
easyimage-oper.htm
earithmeticlogicoperation-enum.htm

69

These operations can be applied to images and constants, they have one or two source
arguments (image or integer constants) and one destination argument. If the source operands
are a color and a gray-level image, each color component combines with the gray-level
component to give a color image. Histogram equalization can improve your results.

Arithmetic and logic combinations

Allowed combinations

General Copy Invert Shift Logical Overlay Set
Const BW8 -> Image BW8 x
Const C24 -> Image C24 x
Image BW8 -> Image BW8 x x
Image BW8 -> Image C24 x x x
Image C24 -> Image C24 x x
Const BW8, Image BW8 -> Image BW8 x
Image BW8, Const BW8 -> Image BW8 x x x
Image BW8, Image BW8 -> Image BW8 x x x
Image BW8, Image BW8 -> Image C24 x x
Const C24, Image C24 -> Image C24 x
Image C24, Const C24 -> Image C24 x x
Image C24, Image C24 -> Image C24 x x
Image C24, Image BW8 -> Image C24 x x x
Image BW8, Image C24 -> Image C24 x x x

NOTE
Note: For logical operators, a pixel with value 0 is assumed FALSE, otherwise
TRUE. The result of a logical operation is 0 when FALSE and 255 otherwise.

The classification of operations in the above table are:

General
l Compare (abs. value of the difference)
l Saturated sum
l Saturated difference
l Saturated product
l Saturated quotient
l Modulo
l Overflow-free sum
l Overflow-free difference
l Overflow-free product
l Overflow-free quotient
l Bitwise AND
l Bitwise OR

Open eVision User Guide PART II General Purpose Libraries

70

l Bitwise XOR
l Minimum
l Maximum
l Equal
l Not equal
l Greater or equal
l Lesser or equal
l Greater
l Lesser

Copy

l Sheer Copy

Invert

l Invert (negative)

Shift

l Left Shift
l Right Shift

Logical

l Logical AND
l Logical OR
l Logical XOR

Overlay

l Add an overlay

Set

Operators Copy if mask = 0 and Copy if mask <> 0 are very handy to perform masking: the first
image argument serves as a mask that allows or disallows changing the pixel values in the
destination image.

l Copy if mask = 0
l Copy if mask <> 0

Open eVision User Guide PART II General Purpose Libraries

71

1.4. Linear Filtering

The convolution functions use linear combinations of neighboring pixels to highlight some
features in an image.

A gradient X filter source and the destination image

● All the convolution functions can be destructive, meaning that the destination image
overwrites the source image.
□ These destructive operations are faster.

● Most of these functions have an EImageBW8, an EImageBW16 and an EImageC24 equivalent.

● Open eVision offers 2 ways of doing convolutions:
□ Use a predefined method with a predefined filter, and in some cases, a kernel size.
□ Create your own EKernel and use the function ConvolKernel.

Predefined filters

The available predefined filters are:

●ConvolLowpass1
●ConvolLowpass2
●ConvolLowpass3
●ConvolHighpass1
●ConvolHighpass2
●ConvolGradient

●ConvolGradientX
●ConvolGradientY
●ConvolLaplacian4
●ConvolLaplacian8
●ConvolLaplacianX
●ConvolLaplacianY

●ConvolPrewitt
●ConvolPrewittX
●ConvolPrewittY
●ConvolSobel
●ConvolSobelX
●ConvolSobelY

●ConvolRoberts
●ConvolUniform
●ConvolGaussian
●ConvolGabor

Customized EKernel

When you use your own kernel:

● You can choose the width and height of the kernel.
□ Use SetKernelData to fill the convolution coefficients.

Open eVision User Guide PART II General Purpose Libraries

ekernel-class.htm
easyimage-convolkernel.htm
easyimage-convollowpass1.htm
easyimage-convollowpass2.htm
easyimage-convollowpass3.htm
easyimage-convolhighpass1.htm
easyimage-convolhighpass2.htm
easyimage-convolgradient.htm
easyimage-convolgradientx.htm
easyimage-convolgradienty.htm
easyimage-convollaplacian4.htm
easyimage-convollaplacian8.htm
easyimage-convollaplacianx.htm
easyimage-convollaplaciany.htm
easyimage-convolprewitt.htm
easyimage-convolprewittx.htm
easyimage-convolprewitty.htm
easyimage-convolsobel.htm
easyimage-convolsobelx.htm
easyimage-convolsobely.htm
easyimage-convolroberts.htm
easyimage-convoluniform.htm
easyimage-convolgaussian.htm
easyimage-convolgabor.htm
ekernel-setkerneldata.htm

72

● Open eVision automatically normalizes the kernel coefficients so that their sum is 1.
□ If you define a Gain (multiplying all resulting pixels by that value) and an Offset (adding

that value to all resulting pixels), they are applied after that normalization.
□ Note that using any gain other than 1 can lead to a saturation in the resulting image and

an overflow or an underflow during the internal calculations.

● To rectify any value (to keep only the positive ones for instance), set an EKernelRectifier.

● The outside value is used for the border calculations (when the kernel needs values from out
of the image on the border of the image to compute the result).

● Another way to create a kernel is by giving the constructor an EKernelType. This is quite
similar to the way of doing a convolution with a predefined filter.

2 The following tutorial illustrates an application using a custom EKernel in Open eVision
Studio: "Enhancing an X-ray image" on page 1.

1.5. Non-Linear Filtering

These functions use non-linear combinations of neighboring pixels to highlight a shape, or to
remove noise.

Most can be destructive (except top-hat and median filters) i.e. the source image is overwritten
by the destination image. Destructive operations are faster.

All have a gray image and a bilevel equivalent, for example ErodeBox and BiLevelErodeBox.

1. They define the required shape by a "Non-Linear Filtering" on page 72 (usually in a
3x3 matrix).

2. They slide this Kernel over the image to determine the value of the destination
pixel when a match is found:

l Erosion, Dilation: shrinks / grows image regions.
l Opening, Closing: removes / fills image region boundary pixels.
l Thinning, Thickening: erodes / dilates using image pattern matching.
l Top-Hat filters: retains all the tiny image details while removing everything

else.
l Morphological distance: indicates how many erosions are required to make a

pixel black.
l Morphological gradient: indicates the outer and inner edges of the erosion

and dilation processes.
l Median filter: removes impulsive noise.
l Hit-and-Miss transform: detects patterns of foreground /background pixels,

can create skeletons.

Open eVision User Guide PART II General Purpose Libraries

ekernel-gain.htm
ekernel-offset.htm
ekernelrectifier-enum.htm
ekerneltype-enum.htm
../../../../../Content/05 Resources/01 Tutorials/01 EasyImage/Enhancing an X-ray image.htm
easyimage-erodebox.htm
easyimage-bilevelerodebox.htm
#Erosion,_Dilation
#Opening,_Closing
#Thinnening,_Thickening
#Top-Hat_filters
#Morphological_distance
#Morphological_gradient
#Median
#Hit-and-Miss_transform

73

Kernel

Rectangular kernel of half width = 3 and half height = 2 (left) Circular kernel of half width = 2 (right)

The morphological operators combine the pixel values in a neighborhood of given shape
(square, rectangular or circular) and replace the central pixel of the neighborhood by the result.
Three special cases are most often used erosion, dilation and median filter where : K can be 1
(minimum of the set), N (maximum) or N/2 (median).

Erosion, Dilation, Opening, Closing, Top-Hat and Morphological Gradient operations all use
rectangular or circular kernels of odd size. Kernel size has an important impact on the result.

examples

HalfWidth/HalfHeight Actual width/height

0 1

1 3

2 5

3 7

Erosion, Dilation

Erosion reduces white objects and enlarges black objects, Dilation does the opposite.

Erosion Dilation

Erosion thins white objects by removing a layer of pixels along the objects edges: ErodeBox,
ErodeDisk. As the kernel size increases, white objects disappear and black ones get fatter.

Dilation thickens white objects by adding a layer of pixels along the objects edges: DilateBox,
DilateDisk. As the kernel size increases, white objects get fatter and black ones disappear.

Open eVision User Guide PART II General Purpose Libraries

#Erosion,_Dilation
#Erosion,_Dilation
#Opening,_Closing
#Top-Hat_filters
#Morphological_gradient
easyimage-erodebox.htm
easyimage-erodedisk.htm
easyimage-dilatebox.htm
easyimage-dilatedisk.htm

74

Opening, Closing

Opening removes tiny white objects / dust. Closing removes tiny black holes / dust.

Opening Closing

An Opening is an erosion followed by a dilation using OpenBox, OpenDisk.
The global effect is to preserve the overall shape of objects, while removing white details that
are smaller than the kernel size.

A Closing is a dilation followed by an erosion using CloseBox, CloseDisk.
The global effect is to preserve the overall shape of objects, while removing the black details
that are smaller than the kernel size.

Thinning, Thickening

These functions use a 3x3 kernel to grow (Thick) or remove (Thin) pixels:

l Thinning: can help edge detectors by reducing lines to single pixel thickness.
l Thickening: can help determine approximate shape, or skeleton.

When a match is found between the kernel coefficients and the neighborhood of a pixel, the
pixel value is set to 255 if thickening, or 0 if thinning. The kernel coefficients are:

l 0: matching black pixel, value 0
l 1: matching non black pixel, value > 0
l -1: don't care

Top-Hat filters

Top-hat filters are excellent for improving non-uniform illumination.

White top-hat filter: source and destination images

They take the difference between an image and its opening (or closure). Thus, they keep the
features that an opening (or closing) would erase. The result is a perfectly flat background
where only black or white features smaller than the kernel size appear.

l White top-hat filter enhances thin white features: WhiteTopHatBox ,WhiteTopHatDisk.
l Black top-hat filter enhances thin black features:BlackTopHatBoxBlackTopHatDisk.

Open eVision User Guide PART II General Purpose Libraries

easyimage-openbox.htm
easyimage-opendisk.htm
easyimage-closebox.htm
easyimage-closedisk.htm
easyimage-thick.htm
easyimage-thin.htm
easyimage-whitetophatbox.htm
easyimage-whitetophatdisk.htm
easyimage-blacktophatbox.htm
easyimage-blacktophatdisk.htm

75

Morphological distance

Distance computes the morphological distance (number of erosion passes to set a pixel to
black) of a binary image (0 for black, non 0 for white) and creates a destination image, where
each pixel contains the morphological distance of the corresponding pixel in the source image.

Morphological gradient

The morphological gradient performs edge detection - it removes everything in the image but
the edges.

The morphological gradient is the difference between the dilation and the erosion of the image,
using the same structuring element.

MorphoGradientBox, MorphoGradientDisk.

Dilation – Erosion = Gradient

Median

The Median filter removes impulse noise, whilst preserving edges and image sharpness.
It replaces every pixel by the median (central value) of its neighbors in a 3x3 or larger kernel,
thus, outer pixels are discarded.

Median filter: source and destination images

Open eVision User Guide PART II General Purpose Libraries

easyimage-distance.htm
easyimage-morphogradientbox.htm
easyimage-morphogradientdisk.htm
easyimage-median.htm

76

Hit-and-Miss transform

Hit-and-miss transform operates on BW8, BW16 or C24 images or ROIs to detect a particular
pattern of foreground and background pixels in an image.

Hit-and-miss transform

The HitAndMiss function has three arguments:

l A pointer to the source image of type EROIBW8, EROIBW16, or EROIC24
l A pointer to the destination image of type corresponding to the type of the source image.

The sizes of the source and destination images must be identical.
l A kernel of type EHitAndMissKernel Two constructors are available for the kernel object:

o EHitAndMissKernel(int startX, int startY, int endX, int endY) where:
startX, startY are coordinates of the top left of the kernel, must be less than or
equal to zero.
endX, endY are coordinates of the bottom right of the kernel, must be greater than
or equal to zero.
The constructed kernel has no explicit restrictions on its size, and the following
characteristics:
kernel width = (endX – startX + 1), kernel height = (endY – startY + 1)

o EHitAndMissKernel(unsigned int halfSizeX, unsigned int halfSizeY) where:
halfSizeX is half of the kernel width – 1, must be greater than zero.
halfSizeY is half of the kernel height – 1, must be greater than zero.
The constructed kernel has the following characteristics:
kernel width = ((2 x halfSizeX) + 1), kernel height = ((2 x halfSizeY) + 1)
kernel StartX = - halfSizeX, kernel StartY = - halfSizeY

Example: detecting corners in a binary image.
The hit-and-miss transform can be used to locate corners.

Binary source image

1. Define the kernel by detecting the left corner. The left corner pixel has black pixels on its
immediate left, top and bottom; and it has white pixels on its right. The following hit-and-miss
kernel will detect the left corner:

Open eVision User Guide PART II General Purpose Libraries

easyimage-hitandmiss.htm
eroibw8-class.htm
eroibw16-class.htm
eroic24-class.htm
ehitandmisskernel-class.htm
ehitandmisskernel-class.htm
ehitandmisskernel-class.htm
#Hit-and-Miss_transform

77

- +
- + +
- +

2. Apply the filter on the source image. Note that the resulting image should be properly sized.

Resulting image, highlighted pixel is located on left corner of rhombus

3. Locate the three remaining corners in the same way: Declare three kernels that are the
rotation of the filter above and apply them.

4. Detect the right, top and bottom corners.

1.6. Geometric Transforms

Geometric transformation moves selected pixels in an image, which is useful if a shape in an
image is too large / small / distorted, to make point-to-point comparisons possible.

The selected area may be any shape, but the resulting image is always rectangular. Pixels in the
destination image that have corresponding pixels that are outside of the selected area are
considered not relevant and are left black.

When the source coordinates for a destination pixel are not integer, an interpolation technique
is required.
The nearest neighborhood method is the quickest - it uses the closest source pixel.
The bi-linear interpolation method is more accurate but slower - it uses a weighted average of
the four neighboring source pixels.

Possible geometric transformations are:

Re-alignment

The simplest way to realign two misaligned images is to accurately locate features in both
images (landmarks or pivots, using pattern matching, point measurement or other) and realign
one of the images so that these features are superimposed.

Open eVision User Guide PART II General Purpose Libraries

78

You can register an image by realigning one, two or three pivot points to reference positions.
For best accuracy, the pivot points should be as far apart as possible.

l A single pivot point transform is a simple translation. If interpolation bits are used, sub-
pixel translation is achieved.

l Two pivot points use a combination of translation, rotation and optionally scaling. If
scaling is not allowed, the second pivot point may not be matched exactly. Scaling should
not normally be used unless it corresponds to a change of lens magnification or viewing
distance.

l Three pivot points use a combination of translation, rotation, shear correction and
optionally scaling. A shear effect can arise when acquiring images with a misaligned line-
scan camera.

Mirroring

This destructive feature modifies the source image to create a mirror image:

l horizontally (the columns are swapped) or
l vertically (the rows are swapped).

Translation, Scaling and Rotation

If the position or size of an object of interest changes, you can measure the change in position
or size and generate a corrected image using the ScaleRotate and Shrink functions.

EasyImage.ScaleRotate performs:

l Image translation: you provide the position coordinates of a pivot-point in the source
image and a corresponding pivot point in the destination image.

l Image scaling: you provide scaling factor values for X- and Y-axis.
l Image rotation: you provide a rotation angle value.

For resampling, the nearest neighbor rule or bilinear interpolation with 4 or 8 bits of accuracy is
used. The size of the destination image is arbitrary.

Scale and rotate example

Shrink

EasyImage.Shrink: resizes an image to be smaller, applying pre-filtering to avoid aliasing.

Open eVision User Guide PART II General Purpose Libraries

easyimage-register.htm
easyimage-horizontalmirror.htm
easyimage-verticalmirror.htm
easyimage-scalerotate.htm
easyimage-shrink.htm

79

LUT-based unwarping

● If the feature of interest is distorted due to its shape (anamorphosized), you can unwarp a
circular ring-wedge shape (such as text on CD labels) into a straight rectangle. A ring-wedge
is delimited by two concentric circles and two straight lines passing through the center.

● EasyImage.SetCircleWarp prepares warp images for use with function EasyImage.Warp which
moves each pixel to locations specified in the "warp" images which are used as lookup
tables.

● To warp back the image to the circular ring:

a. Use EasyImage.SetInvCircleWarp with the same parameters as above.

b. Use the method EasyImage.Warp.

● Additionally, if the LUT-based unwarping is more peculiar:

a. Use the method EasyImage.SetupInverseWarp to inverse any inversible LUT

b. Use it with the method EasyImage.Warp.

1.7. Noise Reduction and Estimation

Code Snippets

Noise can degrade the visual quality of images, and certain processing operations (thresholding,
high-pass filtering) will enhance noise in a non-acceptable way. Acquired images are always
noisy (this is best observed on live images where the pixel values fluctuate around the true
intensity). When acquired with 8 bits of accuracy, the noise level typically amounts to about 3 to
5 gray-level values. One distinguishes several forms of noise:

l additive: noise amplitude is not related to image contents
l multiplicative: noise amplitude is proportional to local intensity
l uniform: noise amplitude follows a smooth distribution centered around zero
l impulse: noise amplitude is infinite.

Impulse noise produces a "salt and pepper" effect, while uniform noise blends.

Spatial noise reduction (if you only have 1 image)

Reduces uniform and impulse noise but blurs edges.
Cannot distinguish noise from actual signal changes, so always spoils part of the signal.
Uses the correlation between neighboring pixel values to perform convolution or median
filtering:

l Convolution replaces the value at each pixel by a combination of its neighbors, leading to
a localized averaging. Linear filtering is recommended to reduce uniform noise. Beware
that it tends to blur edges.

Open eVision User Guide PART II General Purpose Libraries

easyimage-setcirclewarp.htm
easyimage-warp.htm
easyimage-setinvcirclewarp.htm
easyimage-warp.htm
easyimage-setupinversewarp.htm
easyimage-warp.htm
Noise Reduction by Integration.htm

80

Uniform noise reduction by low-pass filtering

l Median filtering replaces each pixel by the median value in the pixel neighborhood (for
example: 5-th largest value in a 3x3 neighborhood). This reduces impulse noise and keeps
sharpness.

Impulse noise reduction by median filtering

o EasyImage.Median
o EasyImage.BiLevelMedian

Temporal noise reduction (for several images, such as moving objects)

Temporal noise reduction is achieved by combining the successive values of individual pixels
across time. EasyImage implements recursive averaging and moving averaging.

EasyImage provides three ways to minimize noise by means of several images:

l Temporal average: just accumulates N images and average them; using standard
arithmetic operations, as illustrated below. Creates denoised image after N acquisitions
using average values. Noise varies from frame to frame while the signal remains
unchanged, so if several images of the same (still) scene are available, noise can be
separated from the signal.
The disadvantage of producing one denoised image after N acquisitions only, is that fast
display refresh is not possible.

Simple average

l Temporal moving average: accumulates the last N images and updates the denoised
image each time a new one is acquired, in such a way that the computation time does
not depend on N. The whole process is handled by EMovingAverage. The disadvantage of
this method is that it combines noisy images together.

Open eVision User Guide PART II General Purpose Libraries

easyimage-median.htm
easyimage-bilevelmedian.htm
emovingaverage-class.htm

81

Moving average

l Temporal recursive average: combines a noisy image with the previously denoised image
using EasyImage.RecursiveAverage.

Recursive average

Recursive averaging

This is a well known process for noise reduction by temporal integration. The principle is to
continuously update a noise-free image by blending it, using a linear combination, with the raw,
noisy, live image stream. Algorithmically, this amounts to the following:

where a is a mixture coefficient. The value of this coefficient can be adjusted so that a
prescribed noise reduction ratio is achieved.

This procedure is effective when applied to still images, but generates a trailing effect on
moving objects. The larger the noise reduction ratio, the heavier the trailing effect is. To work
around this, a non-linearity can be introduced in the blending process: small gray-level value
variations between successive images are usually noise, while large variations correspond to
changes in the image.

EasyImage.RecursiveAverage uses this observation and applies stronger noise reduction to small
variations and conversely. This reduces noise in still areas and trailing in moving areas.

For optimal performance, the non-linearity must be precomputed once for all using function
EasyImage.SetRecursiveAverageLUT.

NOTE
Before the first call to the EasyImage.RecursiveAverage method, the 16-bit
work image must be cleared (all pixel values set to zero).

Noise estimation (of image compared to reference image):

To estimate the amount of noise, two or more successive images are required. In the simplest
mode, two noisy images are compared. (Other modes are available: if a noise-free image is
available, it is compared to a noisy one; a noise-free image can also be built by temporal
averaging.) Calculates the root-mean-square amplitude and signal-to-noise ratio.

Open eVision User Guide PART II General Purpose Libraries

easyimage-recursiveaverage.htm
easyimage-recursiveaverage.htm
easyimage-setrecursiveaveragelut.htm
easyimage-recursiveaverage.htm

82

l EasyImage.RmsNoise computes the root-mean-square amplitude of noise, by comparing a
given image to a reference image. This function supports flexible mask and an input mask
argument. BW8, BW16 and C24 source images are supported.
The reference image can be noiseless (obtained by suppressing the source of noise), or
affected by a noise of the same distribution as the given image.

l EasyImage.SignalNoiseRatio computes the signal to noise ratio, in dB, by comparing a
given image to a reference image. This function supports flexible mask and an input mask
argument. BW8, BW16 and C24 source images are supported.
The reference image can be noiseless (obtained by suppressing the source of noise) or be
affected by a noise of the same distribution as the given image.

Signal amplitude is the sum of the squared pixel gray-level values.

Noise amplitude is the sum of the squared difference between the pixel gray-level values of the
given image and the reference.

1.8. Scalar Gradient

EasyImage.GradientScalar computes the (scalar) gradient image derived from a given source
image.

The scalar value derived from the gradient depends on the preset lookup-table image.

The gradient of a grayscale image corresponds to a vector, the components of which are the
partial derivatives of the gray-level signal in the horizontal and vertical direction. A vector can
be characterized by a direction and a length, corresponding to the gradient orientation, and the
gradient magnitude.

This function generates a gradient direction or gradient magnitude map (gray-level image) from
a given gray-level image.
For efficiency, a pre-computed lookup-table is used to define the desired transformation.
This lookup-table is stored as a standard EImageBW8/EImageBW16.
Use EasyImage.ArgumentImage or EasyImage.ModulusImage once before calling GradientScalar.

1.9. Vector Operations

Code Snippets / Code Snippets

Extracting 1-dimensional data from an image generates linear sets of data that are handled as
vectors. Subsequent operations are fast because of the reduced amount of data. The methods
are either:

Open eVision User Guide PART II General Purpose Libraries

easyimage-rmsnoise.htm
easyimage-signalnoiseratio.htm
easyimage-gradientscalar.htm
eimagebw8-class.htm
eimagebw16-class.htm
easyimage-argumentimage.htm
easyimage-modulusimage.htm
easyimage-gradientscalar.htm
vector-operations.htm
profile-sampling.htm

83

Projection

Projects the sum or average of all gray color-level values in a given direction, into various vector
types (levels are added when projecting into an EBW32Vector and averaged when projecting into
an EBW8Vector, EBW16Vector or EC24Vector). These functions support flexible masks.

l EasyImage.ProjectOnAColumn projects an image horizontally onto a column.
l EasyImage.ProjectOnARow projects an image vertically onto a row.

Profile

Samples a series of pixel values along a given segment, path or contour, then analyze and
modify their Peaks and Transitions to make images clearer:

1. Obtain the profile of a line segment / path / contour.
EasyImage.ImageToLineSegment copies the pixel values along a given line segment
(arbitrarily oriented) to a vector. The line segment must be entirely contained within the
image. The vector length is adjusted automatically. This function supports flexible masks.

EasyImage.ImageToPath copies the corresponding pixel values to the vector. This function
supports flexible masks. A path is a series of pixel coordinates stored in a vector.

EasyImage.Contour follows the contour of an object, and stores its constituent pixels
values inside a profile vector. A contour is a closed or not connected path, forming the
boundary of an object.

2. Analyse the profile to find peaks or transitions.

Open eVision User Guide PART II General Purpose Libraries

ebw32vector-class.htm
ebw8vector-class.htm
ebw16vector-class.htm
ec24vector-class.htm
easyimage-projectonacolumn.htm
easyimage-projectonarow.htm
easyimage-imagetolinesegment.htm
easyimage-imagetopath.htm
epathvector-class.htm
epath-struct.htm
easyimage-contour.htm

84

EasyImage.GetProfilePeaks detects max and min peaks in a gray-level profile. To eliminate
false peaks due to noise, two selection criteria are used. The result is stored in a peaks
vector.
A peak is a maximum or minimum of the signal which may correspond to the crossing of
a white or black line or thin feature. It is defined by its:

l Amplitude: difference between the threshold value and the max [or min] signal
value.

l Area: surface between the signal curve and the horizontal line at the given
threshold.

A transition corresponds to an object edge (black to white, or white to black). It can be
detected by taking the first derivative of the signal and looking for peaks in it.
EasyImage.ProfileDerivative computes the first derivative of a profile extracted from a
gray-level image. This derivative transforms transitions (edges) into peaks.
EBW8 data type only handles unsigned values, so the derivative is shifted up by 128. Values
under 128 correspond to negative derivative (decreasing slope), values above 128
correspond to positive derivative (increasing slope).

3. Insert the profile into an image.
EasyImage.LineSegmentToImage copies the pixel values from a vector or a constant to the
pixels of a given line segment (arbitrarily oriented). The line segment must be wholly
contained within the image.

EasyImage.PathToImage copies pixel values from a vector or a constant to the pixels of a
given path.

1.10. Canny Edge Detector

Code Snippets

The Canny edge detector facilitates:

l Good detection: finds all edges
l Good localization: the found edges are as close as possible to the "real" edges in the

image
l Minimal response: one edge response is accepted for each position, i.e. avoiding multiple

close or intersecting edge responses

Source image and the result after a Canny edge detection

Open eVision User Guide PART II General Purpose Libraries

easyimage-getprofilepeaks.htm
epeakvector-class.htm
epeakvector-class.htm
epeak-struct.htm
epeak-amplitude.htm
epeak-area.htm
easyimage-profilederivative.htm
ebw8-struct.htm
easyimage-linesegmenttoimage.htm
easyimage-pathtoimage.htm

85

The EasyImage Canny edge detector operates on a grayscale BW8 image and delivers a black-
and-white BW8 image where pixels have only 2 possible values: 0 and 255. Pixels corresponding
to edges in the source image are set to 255; all others are set to 0. It can adjust the scale
analysis, it doesn't allow sub-pixel interpolation and it delivers a binary image after
thresholding.

Canny edge detector example

The Canny edge detector requires only two parameters:

l Characteristic scale of the features of interest: the standard deviation of the Gaussian
filter used to smooth the source image.

l Gradient threshold with hysteresis: maximum magnitude of the gradient of the source
image expressed as a fraction ranging from 0 to 1 (two values).

The API of the Canny edge detector is a single class, ECannyEdgeDetector, with the following
methods:

l Apply: applies the Canny edge detector on an image/ROI.
l GetHighThreshold: returns the high hysteresis threshold to consider that a pixel is an edge.
l GetLowThreshold: returns the low hysteresis threshold to consider that a pixel is an edge.
l GetSmoothingScale: returns the scale of the features of interest.
l GetThresholdingMode: returns the mode of the hysteresis thresholding.
l ResetSmoothingScale: prevents the smoothing of the source image by a Gaussian filter.
l SetHighThreshold: sets the high hysteresis threshold to consider that a pixel is an edge.
l SetLowThreshold: sets the low hysteresis threshold to consider that a pixel is an edge.
l SetSmoothingScale: sets the scale of the features of interest.
l SetThresholdingMode: sets the mode of the hysteresis thresholding.

The result image must have the same dimensions as the input image.

1.11. Harris Corner Detector

Code Snippets

The Harris corner detector is invariant to rotation, illumination variation and image noise. It
operates on a grayscale BW8 image and delivers a vector of points of interest.

Open eVision User Guide PART II General Purpose Libraries

ecannyedgedetector-class.htm
ecannyedgedetector-apply.htm
ecannyedgedetector-highthreshold.htm
ecannyedgedetector-lowthreshold.htm
ecannyedgedetector-smoothingscale.htm
ecannyedgedetector-thresholdingmode.htm
ecannyedgedetector-resetsmoothingscale.htm
ecannyedgedetector-highthreshold.htm
ecannyedgedetector-lowthreshold.htm
ecannyedgedetector-smoothingscale.htm
ecannyedgedetector-thresholdingmode.htm
Harris Corner Detector.htm

86

Harris corner detector example

The EasyImage Harris corner detector requires three parameters:

l The integration scale σi: the standard deviation of the Gaussian Filter used for scale
analysis.
σd = 0,7 x σi, where σd is the differentiation scale: the standard deviation of the Gaussian
Filter used for noise reduction during computation of the gradient.

l A corner threshold: a fraction ranging from 0 to 1 of the maximum value of the cornerness
of the source image.

l A Boolean that toggles sub-pixel detection.

The following characteristics are available for every point of interest:

l Corner position (pixel coordinates with sub-pixel accuracy if enabled).
l Cornerness measurement.
l Gradient magnitude with regards to the differentiation scale σd.
l Gradient value along the X-axis with regards to the differentiation scale σd.
l Gradient value along the Y-axis with regards to the differentiation scale σd

The API of the Harris corner detector is a single class named
EHarrisCornerDetector and these methods:

l Apply: applies the Harris corner detector on an image/ROI.
l EHarrisCornerDetector: constructs a EHarrisCornerDetector object initialized to its default

values.
l GetDerivationScale: returns the current derivation scale.
l GetScale: returns the integration scale.
l GetThreshold: returns the current threshold.
l GetThresholdingMode: returns the current thresholding mode for the cornerness measure.
l IsGradientNormalizationEnabled: returns whether the gradient is normalized before the

computation of the cornerness measure.
l IsSubpixelPrecisionEnabled: returns whether the sub-pixel interpolation is enabled.
l SetDerivationScale: sets the derivation scale.
l SetGradientNormalizationEnabled: sets whether the gradient is normalized before the

computation of the cornerness measure.
l SetScale: sets the integration scale.
l SetSubpixelPrecisionEnabled: sets whether the sub-pixel interpolation is enabled.
l SetThreshold: sets the threshold on the cornerness measure for a pixel to be considered

as a corner.
l SetThresholdingMode: sets the thresholding mode for the cornerness measure.

Open eVision User Guide PART II General Purpose Libraries

eharriscornerdetector-class.htm
eharriscornerdetector-apply.htm
eharriscornerdetector-class.htm
eharriscornerdetector-class.htm
eharriscornerdetector-derivationscale.htm
eharriscornerdetector-integrationscale.htm
eharriscornerdetector-threshold.htm
eharriscornerdetector-thresholdingmode.htm
eharriscornerdetector-gradientnormalizationenabled.htm
eharriscornerdetector-subpixelprecisionenabled.htm
eharriscornerdetector-derivationscale.htm
eharriscornerdetector-gradientnormalizationenabled.htm
eharriscornerdetector-integrationscale.htm
eharriscornerdetector-subpixelprecisionenabled.htm
eharriscornerdetector-threshold.htm
eharriscornerdetector-thresholdingmode.htm

87

Basic usage of Harris Corner Detector

An object of the EHarrisCornerDetector class can be reused across Harris detector applications,
in order to reduce the setup time.

1. Create an instance of the detector and set the appropriate method, for instance, the
integration scale, SetScale, with the structures of interest that could have a spatial extent
of 2 pixels.

2. Apply the detector with two arguments to the new image : the input image and the
interest points in the input image EHarrisInterestPoints.

3. Access the individual elements of the output vector.

1.12. Overlay

EasyImage.Overlay overlays an image on the top of a color image, at a given position.

If a color image is provided as the source image, all the pixels of this image are copied to the
destination image, except the ones that equal the reference color. When a C24 image is used as
overlay source image, the color of the overlay in destination image is the same as the one in the
overlay source image, thus allowing multicolored overlays.

If a BW8 image is provided as the source image, all the overlay image pixels are copied to the
destination image, apart from those that are the reference color which are replaced by the
source images.

This function supports flexible mask and an input mask argument. C24, C15 and C16 source
images are supported.

1.13. Operations on Interlaced Video Frames

When an image is interlaced, the two frames (even and odd lines) are not recorded at the same
time. If there is movement in the scene, a visible artifact can result (the edges of objects exhibit
a "comb" effect).

EasyImage.RealignFrame cures this problem if the movement is uniform and horizontal (objects
on a conveyor belt), by shifting one of the frames horizontally. The amplitude of the shift can be
estimated automatically.

EasyImage.GetFrame extracts the frame of given parity from an image while EasyImage.SetFrame
replaces the frame of given parity in an image.

EasyImage.MatchFrames determines the optimal shift amplitude by comparing two successive
lines of the image. These lines should be chosen such that they cross some edges or non-
uniform areas.

EasyImage.RebuildFrame rebuilds one frame of the image by interpolation between the lines of
the other frame.

EasyImage.SwapFrames: interchanges the even and odd rows of an image. This is helpful when
acquisition of an interlaced image has confused even and odd frames.

The same image should be used as source and destination because only the shifted rows are
copied. To use a different destination image, the source image must be copied first in the
destination image object.

Open eVision User Guide PART II General Purpose Libraries

eharriscornerdetector-class.htm
eharriscornerdetector-integrationscale.htm
eharriscornerdetector-apply.htm
eharrisinterestpoints-class.htm
easyimage-overlay.htm
easyimage-realignframe.htm
easyimage-getframe.htm
easyimage-setframe.htm
easyimage-matchframes.htm
easyimage-rebuildframe.htm
easyimage-swapframes.htm

88

The size of the destination image is determined as follows:

dstImage_Width = srcImage_Width

dstImage_Height = (srcImage_Height + 1 - odd) /2

1.14. Flexible Masks in EasyImage

Code Snippets

Source image (left) and mask variable (right)

Simple steps to use flexible masks in Easyimage

1. Call the functions from EasyImage that take an input mask as an argument. For instance,
one can evaluate the average value of the pixels in the white layer and after in the black
layer.

2. Display the results.

Resulting image

EasyImage functions that support flexible masks

● EImageEncoder::Encode has a flexible mask argument for BW1, BW8, BW16, and C24 source
images.

● EImageEncoder::AutoThreshold.

● EasyImage::Histogram (function EasyImage::HistogramThreshold has no overload with mask
argument).

● EasyImage::RmsNoise, EasyImage::SignalNoiseRatio.

● EasyImage::Overlay (no overload with mask argument for BW8 source images).

● EasyImage::ProjectOnAColumn, EasyImage::ProjectOnARow (vector projection).

● EasyImage::ImageToLineSegment, EasyImage::ImageToPath (vector profile).

Open eVision User Guide PART II General Purpose Libraries

using-flexible-masks-easyimage.htm
eimageencoder-encode.htm
easyimage-autothreshold.htm
easyimage-histogram.htm
easyimage-histogramthreshold.htm
easyimage-rmsnoise.htm
easyimage-signalnoiseratio.htm
easyimage-overlay.htm
easyimage-projectonacolumn.htm
easyimage-projectonarow.htm
easyimage-imagetolinesegment.htm
easyimage-imagetopath.htm

89

1.15. Computing Image Statistics

Code Snippets

EasyObject statistics are related to the objects in an image.

EasyImage statistics are related to whole images (global illumination / contrast, saturation,
presence or absence of an object).

Sliding window (creates new image of avg or std deviation of gray-level values)

The average and standard deviation of gray-level values can be computed in a sliding window,
i.e., computed for every position of a rectangular window centered on every pixel. The window
size is arbitrary.

NOTE
The computing time of these functions does not depend on the window size.

The result of the operation is another image.

The local average, EasyImage.LocalAverage, corresponds to a strong low-pass filtering.

Sliding window average

The local standard deviation, EasyImage.LocalDeviation enhances the regions with a high
frequency contents, such as noisy or textured areas.

Sliding window standard deviation

Open eVision User Guide PART II General Purpose Libraries

sliding-windows-statistics.htm
easyimage-localaverage.htm
easyimage-localdeviation.htm

90

Histogram computation and analysis(and LUT creation)

A histogram is a statistical summary of an image: it shows the number of occurrences of every
gray-level value in an image, and it's shape reveals characteristics of the image. For instance,
peaks in the histogram curve correspond to dominant colors in the image. If the histogram is bi-
modal, a large peak for the dark values corresponding to the background, and smaller peaks in
the light values.

Typical image histogram

Histogram Computation

EasyImage.Histogram computes the histogram of an image. It can take a flexible mask as input
argument.
BW8, BW16 and BW32 source images are supported.

You can compute the cumulative histogram of an image, i.e. the count of pixels below a given
threshold value, by calling EasyImage.CumulateHistogram after EasyImage.Histogram.

Histogram Analysis

EasyImage.AnalyseHistogram and
EasyImage.AnalyseHistogramBW16 provide statistics and thresholding values:

l Total number of pixels.
l Smallest and largest pixel value (gray-level range).
l Average and standard deviation of the pixel values.
l Value and frequency of the most frequent pixel.
l Value and frequency of the least frequent pixel.

Histogram equalization

EasyImage.Equalize re-maps the gray levels so that the histogram fills in the whole dynamic
range as uniformly as possible.

This may be useful to maximize image contrast, or reveal a lot of image details in dark areas.

Open eVision User Guide PART II General Purpose Libraries

easyimage-histogram.htm
easyimage-cumulatehistogram.htm
easyimage-histogram.htm
easyimage-analysehistogram.htm
easyimage-analysehistogrambw16.htm
easyimage-equalize.htm

91

Equalized image and histogram

Setup a lookup table

EasyImage.SetupEqualize creates a LUT so you can work explicitly with the histogram and LUT
vectors. It can be more efficient to keep the image histogram for other purposes (i.e statistics)
and keep the equalization LUT to apply to other images.

Equalization lookup table

Image focus

EasyImage.Focusing computes the total gradient energy of the image. You can then use this
gradient as a measure of the focusing of an image.

The gradients of the image show the edges of the structures present in the image, with strong
values if the image is well-focused and weaker values otherwise.

To compute the total gradient energy of the image, Open eVision:

a. Squares the pixel values of the horizontal and vertical gradient images.

b. Averages the squared pixel values over both images.

c. Sums the averages.

d. Takes the square root of the resulting value.

TIP
The resulting value is maximum if the image is well-focused.

Open eVision User Guide PART II General Purpose Libraries

easyimage-setupequalize.htm
easyimage-focusing.htm

92

A well-focused image, with its (absolute-valued) horizontal and vertical gradients.
The gradients show the edges of the structures with strong values. The total gradient energy for this

image is 17.9.

A badly focused image, with its (absolute-valued) horizontal and vertical gradients.
The gradients show the edges of the structures with weak values. The total gradient energy for this

image is 7.9.

EasyImage statistics functions

Area (number of pixels with values above/on/between thresholds)
l EasyImage.Area counts pixels with values above (or on) a threshold.
l EasyImage.AreaDoubleThreshold counts pixels whose values are comprised between (or on)

two thresholds.

Binary and weighted moments (object position and extent)
l EasyImage.BinaryMoments computes the 0th, 1st or 2nd order moments on a binarized

image, i.e. with a unit weight for those pixels with a value above or equal to the
threshold, and zero otherwise. It provides information such as object position and extent.

l EasyImage.WeightedMoments computes the 0th, 1st, 2nd, 3rd or 4th order weighted
moments on a gray-level image. The weight of a pixel is its gray-level value. It provides
information such as object position and extent.

Gravity center (average pixel coordinates above/on threshold)
l EasyImage.GravityCenter computes the coordinates of the gravity center of an image, i.e.

the average coordinates of the pixels above (or on) the threshold.

Pixel count (between 2 thresholds)
l EasyImage.PixelCount counts the pixels in the three value classes separated by two

thresholds.

Open eVision User Guide PART II General Purpose Libraries

easyimage-area.htm
easyimage-areadoublethreshold.htm
easyimage-binarymoments.htm
easyimage-weightedmoments.htm
easyimage-gravitycenter.htm
easyimage-pixelcount.htm

93

Minimum, maximum and average gray-level value
l EasyImage.PixelMax computes the maximum gray-level value in an image.
l EasyImage.PixelMin computes the minimum gray-level value in an image.
l EasyImage.PixelAverage computes the average pixel value in a gray-level or color image.

For a color image, it computes the means of the three pixel color components, the
variances of the components and the covariances between pairs of components.

Average, variance and standard deviation
l EasyImage.PixelStat computes min, max and average gray-level values.
l EasyImage.PixelVariance computes average and variance of pixel values.
l EasyImage.PixelStdDev computes average and standard deviation of pixel values. For a

color image, it computes the standard deviations and correlation coefficients (covariance
over the product of standard deviations) of the pairs of pixel component values.

Number of different pixels by comparing 2 images
l EasyImage.PixelCompare counts the number of different pixels between two images.

1.16. Fourier Transform

Basics

● The Fourier transform consists in representing an image by its frequential components. You
can then process the frequential components image (also called the Fourier image) to
perform specific filtering.

Left: the image of a PCB, oriented at 45°
Right: the corresponding Fourier Image (scaled for visualization)

with the frequential structures that are scaled as well

● The Fourier images contain complex numbers and are represented by a floating point image
(EImageBW32f).

NOTE: As the floating point images are seldom used in Open eVision, you have to process
these images manually.

● In Open eVision, use an object EFourierTransformer to perform the conversion between
spatial and Fourier images.
□ Use the method DirectTransform to convert a spatial image EImageBW8, EImageBW16 or

EImageBW32f to an image EImageBW32f.
□ Use the method InverseTransform to convert images the other way round.

Open eVision User Guide PART II General Purpose Libraries

easyimage-pixelmax.htm
easyimage-pixelmin.htm
easyimage-pixelaverage.htm
easyimage-pixelstat.htm
easyimage-pixelvariance.htm
easyimage-pixelstddev.htm
easyimage-pixelcompare.htm
eimagebw32f-class.htm
efouriertransformer-class.htm
efouriertransformer-directtransform.htm
eimagebw8-class.htm
eimagebw16-class.htm
eimagebw32f-class.htm
eimagebw32f-class.htm
efouriertransformer-inversetransform.htm

94

● When converting to a Fourier image and back to a spatial image, you should apply a scale
factor of 1/(height × width).
□ The method DirectTransform does not apply any scale factor.
□ The method InverseTransform applies a scale factor of 1/(height × width).

Frequential format and scaling

As the Fourier images contain redundant data, there are different possible representations.
□ Open eVision supports the Packed and Complex Extended formats.
□ Use the method SetFrequentialDomainFormat to select a format.

The Complex Extended format

The Complex Extended is the simplest of these two formats.

● The only subtlety is that the complex numbers are stored in a floating point array, so the
complex extended image is twice larger than the spatial image.

● Each odd column contains the imaginary part of a complex number.

● The following table is an illustration of an image in Complex Extended format, where the
complex pixel at row i and column j is:

Re(i,j) + i ×Im(i,j)

Re(0,0) Im(0,0) … Im(0,w-1)

Re(1,0) Im(1,0) … Im(1,w-1)

… … … …

Re(h-1,0) Im(h-1,0) … Im(h-1,w-1)

A Fourier image in the Complex Extended format

The Packed format

The Packed format is also called Complex Conjugate Symmetrical.

● It takes benefit of the conjugate symmetric properties of the Fourier transform of a real
image to reduce the Fourier image size and to be the same as the spatial image size.

Open eVision User Guide PART II General Purpose Libraries

efouriertransformer-directtransform.htm
efouriertransformer-inversetransform.htm
efouriertransformer-frequentialdomainformat.htm

95

● The following table is an illustration of an image in Packed format, where the complex pixel
at row i and column j is:

Re(i,j) + i ×Im(i,j)

NOTE: There is a difference between images of odd and even height:

Re(0,0) Re(0,1) Im(0,1) … Re(0,(w-1)/2) Im(0,(w-1)/2) Re(0,w/2)

Re(1,0) Re(1,1) Im(1,1) … Re(1,(w-1)/2) Im(1,(w-1)/2) Re(1,w/2)

Im(1,0) Re(2,1) Im(2,1) … Re(2,(w-1)/2) Im(2,(w-1)/2) Im(1,w/2)

… … … … … … …

Re(h/2,0) Re(h-2,1) Im(h-2,1) … Re(h-2,(w-1)/2) Im(h-2,(w-1)/2) Re(h/2,w/2)

Im(h/2,0) Re(h-1,1) Im(h-1,1) … Re(h-1,(w-1))/2 Im(h-1,(w-1)/2) Im(h/2,w/2)

A Fourier image in packed format, odd height

Re(0,0) Re(0,1) Im(0,1) … Re(0,(w-1)/2) Im(0,(w-1)/2) Re(0,w/2)

Re(1,0) Re(1,1) Im(1,1) … Re(1,(w-1)/2) Im(1,(w-1)/2) Re(1,w/2)

Im(1,0) Re(2,1) Im(2,1) … Re(2,(w-1)/2) Im(2,(w-1)/2) Im(1,w/2)

… … … … … … …

Re(h/2-1,0) Re(h-3,1) Im(h-3,1) … Re(h-3,(w-1)/2) Im(h-3,(w-1)/2) Re(h/2-1,w/2)

Im(h/2-1,0) Re(h-2,1) Im(h-2,1) … Re(h-2,(w-1)/2) Im(h-2,(w-1)/2) Im(h/2-1,w/2)

Re(h/2,0) Re(h-1,1) Im(h-1,1) … Re(h-1,(w-1)/2) Im(h-1,(w-1)/2) Re(h/2,w/2)

A Fourier image in packed format, even height

● The other coefficients are obtained by using the following properties:
□ For i = 1,…,h-1 and j = 1,…,w-1: Re(i,j) = Re(h-i,w-j) and Im(i,j) = -Im(h-i,w-j)

□ For j = 1,…,w-1: Re(0,j) = Re(0,w-j) and Im(0,j) = -Im(0,w-j)
□ For i = 1,…,h-1: Re(i,0) = Re(h-i,0) and Im(i,0) = -Im(h-i,0)

Open eVision User Guide PART II General Purpose Libraries

96

1.17. Gabor Filter

Basics

● The Gabor filter is a tool used to analyze textures or to create features for a classifier. It
operates by convolving the input image with a Gabor wavelet to detect specific frequency
content in an image in a given direction within a localized region around the point or region
of analysis.

The Gabor wavelet The input image The input image filtered by
convolving the wavelet

● A key aspect of the Gabor wavelet is that it is composed of two distinct structures which are
multiplied with one another:
□ A Gaussian surface (a bell-shaped surface) that provides a smooth window.

Its spread, its ellipticity and its orientation are influenced by the sigma (σ), the gamma (ɣ)
and the theta (θ) parameters respectively.

□ A sinusoidal plane wave with a regular oscillation pattern.
Its wavelength and phase are controlled by the lambda (λ) and psi (ψ) parameters
respectively. Its orientation is determined by the theta (θ) parameter.

The Gaussian surface The sinusoidal plane wave The corresponding Gabor
wavelet

Open eVision User Guide PART II General Purpose Libraries

97

Parameter descriptions

Sigma (σ)

● This parameter influences the spread of the Gaussian surface.
□ A larger σ value results in a wider spread, capturing larger structures in the image.
□ A smaller σ value results in a narrower spread.

σ = 60

σ = 30

The Gaussian surface The sinusoidal plane wave The corresponding Gabor
wavelet

Open eVision User Guide PART II General Purpose Libraries

98

Gamma (ɣ)

● This parameter specifies the ellipticity of the Gaussian surface.

● With ɣ = 1, the support is circular and as ɣ deviates from 1, the support becomes more
elongated.
□ A larger ɣ value results in a more elongated Gaussian in a direction perpendicular to the

stripes.
□ A smaller ɣ value results in a more elongated Gaussian along the orientation of the

parallel stripes of the wave.

ɣ = 2

ɣ = 1

The Gaussian surface The sinusoidal plane wave The corresponding Gabor
wavelet

Open eVision User Guide PART II General Purpose Libraries

99

Theta (θ)

● This parameter determines the orientation of both the Gaussian surface and the sinusoidal
plane wave.

θ = 0

θ = 0.7

The Gaussian surface The sinusoidal plane wave The corresponding Gabor
wavelet

Lambda (λ)

● This parameter controls the wavelength of the sinusoidal plane wave.

λ = 20

λ = 70

The Gaussian surface The sinusoidal plane wave The corresponding Gabor
wavelet

Open eVision User Guide PART II General Purpose Libraries

100

Psi (ψ)

● This parameter shifts the sinusoidal wave in the direction perpendicular to the stripes. By
adjusting psi, you can control the phase of the sinusoidal plane wave.

ψ = 0

ψ = π

The Gaussian surface The sinusoidal plane wave The corresponding Gabor
wavelet

Usage

In Open eVision, use the method ConvolGabor to apply a Gabor filter to an image.

This method takes several parameters including the source image, kernel size and Gabor
parameters:

● Use the method with or without a destination image.
□ If no destination image is provided, the source image is modified in-place.

● You can use the method with a region of interest (ROI).
□ If an ERegion object is provided, the Gabor filter is only applied to the pixels within the

region.

● Set the parameter normalize to True to ensure that the sum of all the values in the Gabor
kernel equals 1 by applying a uniform scaling factor to the kernel.
□ If not specified, the default value is False, meaning that no normalization is applied.

Open eVision User Guide PART II General Purpose Libraries

easyimage-convolgabor.htm

101

This visual arrangement displays input images interacting with distinct Gabor wavelets. Each
tile reveals the filtered output and illustrates how adjusting the parameters influences the
texture extraction during the image processing.

Open eVision User Guide PART II General Purpose Libraries

102

2. EasyColor - Pre-Processing Color
Images

Code Snippets

EasyColor makes color image processing as efficient as possible by detecting, classifying and
analyzing objects. Several conversion functions mean that any color system can be processed.

Color definition and supported systems

What is color?
The human eye is sensitive to light:

l Intensity, or achromatic sensation, captured by grayscale images.
l Wavelength, or chromatic sensation, described in red, green and blue primary colors.

True color digital images (24 bits per pixel; 8 bits per RGB channel) represent as many
colors as the eye can distinguish.

Visible color gamut in the XYZ color space

There are three color systems:

l Mixture systems (RGB/XYZ) give the proportions of the three primaries to be combined.
l YUV Luma/chroma systems (XYZ/YUV) separate the achromatic (Y) and chromatic

sensations (U & V). Used when a black and white image is required as well (television).
l Intensity/saturation/hue systems (RGB/XYZ/YUV) separate achromatic (black and white

Intensity) from enhanced chromatic (color Saturation and Hue) sensations. Used to
eliminate lighting effects, or to convert RGB images to another color system. More
saturated colors are more vivid, less saturated ones are grayer.

In general:

l RGB is used by monitors, cameras and other display devices.
l YUV is used for efficient transmission of color images by compressing the chrominance

information.
l XYZ is used for device-independent color representation.

Open eVision User Guide PART II General Purpose Libraries

color-components.htm
easycolor-library.htm

103

All image processing operations can use quantized coordinates: discrete values in the [0..255]
interval, which use a byte representation to store images in a frame buffer.

Color system conversion operations can also use simpler unquantized coordinates: continuous
values, often normalized to the [0..1] interval.

Color image processing
A color image is a vector field with three components per pixel. All three RGB components
reflected by an object have amplitude proportional to the intensity of the light source. By
considering the ratio of two color components, one obtains an illumination-independent image.
With a clever combination of three pieces of information per pixel, one can extract better
features.

There are 3 ways to process a color image:

l Component extraction: you can extract the most relevant feature from the triple color
information, to reduce the amount of data. For instance, objects may be distinguished by
their hue, a pre-processing step could transform the image to a gray-level image
containing only hue values.

l De-coupled transformation: you can perform operations separately on each color
component. For instance, adding two images together adds the red, green and blue
components and stores the result, component by component, in a resulting color image.

l Coupled transformation: you can combine all three color components to produce three
derived components. For example, converting YIQ to RGB.

Supported color systems
Easycolor supports color systems RGB, XYZ, L*a*b*, L*u*v*, YUV, YIQ, LCH, ISH/LSH, VSH and
YSH.

RGB is the preferred internal representation as it is compatible with 24-bit Windows Bitmaps.

RGB-based XYZ-based YUV-based

Mixture RGB XYZ —

Luma/Chroma — L*a*b*
L*u*v*

YUV
YIQ

Intensity/Saturation/Hue
ISH
LSH
VSH

LCH YSH

Transform using LUTs (LookUp Tables)

EasyColors Lookup tables provide an array of values that define what output corresponds to a
given input, so an image can be changed by a user-defined transformation.

A color pixel can take 16,777,216 (224) values, a full color LUT with these entries would occupy
50 MB of memory and transforms would be prohibitively time-consuming. Pre-computed LUTs
make color transforms feasible.

To transform a color image, you initialize a color LUT using one of the following functions:
□ "LUT for Gain/Offset (Color) " on page 109: EasyImage::GainOffset,
□ "LUT for Color Calibration" on page 109: EColorLookup::Calibrate,
□ "LUT for Color Balance" on page 110: EColorLookup::WhiteBalance,
□ EColorLookup::ConvertFromRGB, EColorLookup::ConvertToRGB.

Open eVision User Guide PART II General Purpose Libraries

rgb-color-system.htm
cie-xyz-color-system.htm
cie-l-a-b-color-system.htm
cie-l-u-v-color-system.htm
ccir-yuv-color-system.htm
ccir-yiq-color-system.htm
ish-color-system.htm
lsh-color-system.htm
vsh-color-system.htm
cie-lch-color-system.htm
ysh-color-system.htm
easyimage-gainoffset.htm
ecolorlookup-calibrate.htm
ecolorlookup-whitebalance.htm
ecolorlookup-convertfromrgb.htm
ecolorlookup-converttorgb.htm

104

This color LUT is then used in a transform operation such as EasyColor.Transform or you can
create a custom transform using EColorLookup which takes unquantized values (continuous,
normalized to [0..1] intervals), and specifies the source and destination color systems. Some
operations use the LUT on-the-fly thus avoid storing the transformed image, for example to
alter the U (of YUV) component while the image is in RGB format.

The optimum combination of accuracy and speed is determined by the choice of IndexBits and
Interpolation - the accuracy of the transformed values roughly corresponds to the number of
index bits.

l Fewer table entries mean smaller storage requirements, but less accuracy.
l No interpolation gives quicker running time, but less accuracy. Interpolation can recover

8 bits of accuracy per component. When the involved transform is linear (such as YUV to
RGB), interpolation always gives exact results, regardless of the number of table entries.

Index Bits Number of entries Table size (bytes)

4 2(3*4) = 4,096 14,739

5 2(3*5) = 32,768 107,811

6 2(3*6) = 262,144 823,875

Discrete quantized vs. continuous unquantized
Color coordinates in the classical systems are normally continuous values, often normalized to
the [0..1] interval. Computations on such values, termed unquantized, are simpler.

However, storage of images in a frame buffer imposes a byte representation, corresponding to
discrete values, in the [0..255] interval. Such values are termed quantized.

All image processing operations apply to quantized values, but conversion operations can also
be specified using unquantized coordinates.

Transform YUV444 / YUV422

YUV images can be minimized without degrading visual quality using function Format444To422 to
convert from 4:4:4 to 4:2:2 format (or you can convert Format 422 To 444).

l 4:4:4 uses 3 bytes of information per pixel.
l 4:2:2 uses 2 bytes of information per pixel.

It stores the even pixels of U and V chroma with the even and odd pixels of Y luma as
follows:

Y[even]U[even] Y[odd] V[even]

Merge, extract and color

A color image contains three color planes of continuous tone images.
A gray-level image can be a component of a color system.

Merge and extract components
EasyColor can change or extract one plane at a time, or all three together. See Compose,
Decompose, GetComponent, SetComponent.

Open eVision User Guide PART II General Purpose Libraries

easycolor-transform.htm
ecolorlookup-class.htm
ecolorlookup-indexbits.htm
ecolorlookup-interpolation.htm
easycolor-format444to422.htm
easycolor-format422to444.htm
easycolor-compose.htm
easycolor-decompose.htm
easycolor-getcomponent.htm
easycolor-setcomponent.htm

105

These operations can use a color LUT to transform on the fly, they could build an RGB image
from lightness, saturation and hue planes.

NOTE
EasyColor functions perform the necessary interleaving / un-interleaving
operations to support Windows bitmap format of interleaved color planes
(blue, green and red pixels follow each other).

Pseudo-color to transform gray-level images to color
The trick is to define a regular gamut of 256 colors and each color will be assigned to pixels with
a corresponding gray-level value.
To define pseudo-color shades, you specify a trajectory in the color space of an arbitrary
system. You can then pseudo-color using the drawing functions color palette (see Image and
Vector Drawing) then save and/or transform it like any other color image.

Gray-level and pseudo-colored image

Separate color objects

This EasyColor process takes a set of distinct colors and associates each pixel with the closest
color, using a layer index that can then be used in EasyObject with the labeled image segmenter
to improve blob creation.

Raw image and segmented image (3 colors)

2.1. Bayer Conversion

Code Snippets

Open eVision User Guide PART II General Purpose Libraries

bayer-pattern-decoding.htm

106

The Bayer pattern is a color image encoding format for capturing color information from a
single sensor.
A color filter with a specific layout is placed in front of the sensor so that some of the pixels
receive red light only, while others receive green or blue only. That filter is also named Color
Filter Array or CFA.
An image encoded by the Bayer pattern has the same format as a gray-level image and conveys
three times less information. The true horizontal and vertical resolutions are smaller than those
of a true color image.

Bayer vs. true color format

TIP
- The Bayer pattern normally starts with a GB/RG block in the upper left
corner.
- If the image is cropped, this parity rule can be lost.
- Parity adjustment is not necessary when working on a Open eVision ROI.

The Bayer conversion method EasyColor.BayerToC24 transforms an image captured using the
Bayer pattern and stored as a gray-level image, into a true color image. That process is also
known as demosaicing.

Along with the gray-level input image, the Bayer configuration is mandatory.

There are 4 different arrangements of the Bayer pattern, defined by the first 2 pixels of the first
row of the image:

Several methods are available to reconstruct the missing pixels.
□ Some are fast but the resulting image may have artifacts, like the zipper effect or color

aliasing.
□ Some are slower but achieve better interpolation and produce less artifacts.

Open eVision User Guide PART II General Purpose Libraries

easycolor-bayertoc24.htm

107

Interpolation modes

The frame rate is given for the conversion of a 1280 x 720 image on a single core Intel I7-6600U
CPU.

● Mode 0
□ No interpolation
□ Frame rate: 943

● Mode 1
□ Linear interpolation on a 3x3 kernel
□ Frame rate: 2159

● Mode 2
□ Advanced interpolation on a 3x3 kernel
□ Frame rate: 1303

Open eVision User Guide PART II General Purpose Libraries

108

● Mode 3
□ Interpolation on a 5x5 kernel
□ Frame rate: 449

● Mode 4
□ Interpolation on 9x9 kernel
□ Frame rate: 22

● Mode 5
□ Linear interpolation on 2x2 kernel
□ Frame rate: 950

The method EasyColor::C24ToBayer is the reciprocal function of EasyColor::BayerToC24. It
converts RGB color pixel images to Bayer images using the given EBayerConfiguration.

A Bayer encoded image is not compatible with a true color image (EC24), but you can apply
white balance and gamma correction with the EColorLookup parameter in
EasyColor::TransformBayer.

Open eVision User Guide PART II General Purpose Libraries

easycolor-c24tobayer.htm
easycolor-bayertoc24.htm
ecolorlookup-class.htm
easycolor-transformbayer.htm

109

2.2. LUT for Gain/Offset (Color)

Separate gains and offsets can be applied to each of the three components of an image
(contrast enhancement transform). The RGB image must be transformed to the targeted color
space, gains and offsets applied, then transformed back to RGB.

l When applied to a mixture representation, all three gains and offset should vary in a
similar way.

l When applied to luma/chroma representations, the gain and offset of the chromatic
components should vary in a similar way.

l When applied to intensity/saturation/hue representation, it makes no sense to apply gain
and offset to the hue component.

Enhanced saturation / Uniform lightness

NOTE
The contrast enhancement function can be used to uniformize a given
component: setting the gain to 0 for some component has the same result
as setting all pixels to the value of the offset for this component.

2.3. LUT for Color Calibration

Color distortions introduced by the image acquisition chain can be corrected by comparing
sample colors from the image with their true values. A calibrated color chart, such as the IT8, is
required.

l Sample colors are the average color in a suitable ROI using PixelAverage.
l True color values are specified in the XYZ color system. Even though the reference colors

are described by their XYZ coordinates, the image to be calibrated must contain RGB
information.

The calibration transform can be based on one, three or four reference colors. In the first case,
calibration is a gain adjustment for the three color components. In the second and third case, a
linear or affine transform is used.

Open eVision User Guide PART II General Purpose Libraries

easyimage-pixelaverage.htm

110

2.4. LUT for Color Balance

A color image can be improved by changing gamma correction and white balance.

These effects can be corrected efficiently by setting up a lookup table using WhiteBalance and
applying it on a series of images by means of Transform. The LUT only needs to be prepared
once (it implements a decoupled color transformation).

Gamma precompensation

Many color cameras use a gamma precompensation process that deals with the non-linear
response of the display device (such as a TV monitor).

Gamma precompensation should be used after processing because using it before would
change the result because of the nonlinearity introduced.

The precompensation process applies the inverse transform to the signal, so that the image
renders correctly on the display. Three predefined gamma values are available, depending on
the video standard at hand:

Video standard Gamma value EasyColor property

NTSC 1/2.2 CompensateNtscGamma

PAL 1/2.8 CompensatePalGamma

SMPTE 0.45 CompensateSmpteGamma

NOTE
Precompensation cancellation and pure precompensation correspond to
exponents that are inverse of each other.

Gamma precompensation cancellation

Many color cameras have a built-in gamma precompensation feature that can be turned off. If
this feature cannot be turned off and is not desired, its effect can be canceled by applying the
direct gamma transform. The following predefined gamma values are available for this purpose:

Video standard Gamma value EasyColor property

NTSC 2.2 NtscGamma

PAL 2.8 PalGamma

SMPTE 1/0.45 SmpteGamma

Open eVision User Guide PART II General Purpose Libraries

ecolorlookup-whitebalance.htm
ecolorlookup-transform.htm
easycolor-compensatentscgamma.htm
easycolor-compensatepalgamma.htm
easycolor-compensatesmptegamma.htm
easycolor-ntscgamma.htm
easycolor-palgamma.htm
easycolor-smptegamma.htm

111

White balance

A camera may exhibit color imbalance, that is, the three color channels having mismatched
gains, or the illuminant (the light sources) not being perfectly white. When this occurs, the white
areas appear as an unsaturated color. The white balance correction automatically adjusts three
independent gains so that the components of a white pixel become equal. This means that a
white balance calibration step is required, during which a white surface must be shown to the
camera and the corresponding color component are measured. PixelAverage can be used for
this purpose.

Raw image, and image with white balance and gamma precompensation

Open eVision User Guide PART II General Purpose Libraries

easyimage-pixelaverage.htm

112

Open eVision User Guide

PART III
MATCHING AND

MEASUREMENT TOOLS

113

1. EasyObject - Analyzing Blobs

Reference | Code Snippets

The EasyObject library picks out features in an image by creating and processing blobs (objects
or holes that have the same gray level range).

This library can be used for BW1, BW8, BW16 and C24 source images and is accessible from the
ECodedImage2 class which has improved execution time, especially for large images with many
objects.

Open eVision User Guide PART III Matching and Measurement
Tools

ecodedimage2-class.htm
constructing-blobs.htm
easyobject-library.htm
ecodedimage2-class.htm

114

Workflow

Open eVision User Guide PART III Matching and Measurement
Tools

115

Blob Definition

A blob is a grouping of neighboring pixels of the same gray level range.
Blobs may be objects or holes in objects. EasyObject functions analyze both objects and holes.
When blobs are built, the inclusion relationship between holes and objects is computed.

Even though holes may be the actual objects of interest, it is easier to find an object of interest,
then detect its holes (with EasyObject) and measure their characteristics (with EasyGauge or
EasyObject).

Blobs are handled as independent entities:

l They can be selected by means of the layer they belong to, their position, a rectangular
ROI or their computed features. The selection criteria can be combined (select the small
objects; among these, select those close to the right edge...).

l They can be listed and sorted by their geometric characteristics: such as area, width, or
ellipse of inertia.

Blob analysis can be restricted to rectangular and nested ROIs, and to complex or disconnected-
shape regions using flexible masks.

Build Blobs

EasyObject chooses objects of interest and constructs blobs/holes in two steps:

1. Segment: classifies the source image pixels, creates layers, and constructs the runs (a run
is a sequence of adjacent pixels in a row, that share the same property).

2. Encode: assembles runs, to build blobs for each layer.
You select which objects or holes are kept.
EImageEncoder.Encode analyzes the blobs and stores the result into a coded image which
has a set of superimposed, mutually exclusive image layers, where the pixels of each layer
have properties in common, such as being above a threshold.
Flexible masks can restrict encoding to an arbitrary shaped area.

There is no need to build holes, they are constructed on-the-fly when required.

Functions
l Segmentation GetSegmentationMethod and SetSegmentationMethod
l Grayscale single threshold EGrayscaleSingleThresholdSegmenter
l Grayscale double threshold EGrayscaleDoubleThresholdSegmenter
l Color single threshold EColorSingleThresholdSegmenter
l Color range threshold EColorRangeThresholdSegmenter
l Reference image EReferenceImageSegmenter
l Image range EImageRangeSegmenter
l Labeled image ELabeledImageSegmenter
l Binary images EBinaryImageSegmenter

Pixel aggregation (encoder)

l Layer selection
l Object construction: run aggregation into objects
l Hole construction: run aggregation into holes

Open eVision User Guide PART III Matching and Measurement
Tools

eimageencoder-encode.htm
eimageencoder-segmentationmethod.htm
eimageencoder-segmentationmethod.htm
egrayscalesinglethresholdsegmenter-class.htm
egrayscaledoublethresholdsegmenter-class.htm
ecolorsinglethresholdsegmenter-class.htm
ecolorrangethresholdsegmenter-class.htm
ereferenceimagesegmenter-class.htm
eimagerangesegmenter-class.htm
elabeledimagesegmenter-class.htm
ebinaryimagesegmenter-class.htm

116

Extract objects (using geometric parameters)

Once an image has been encoded, the coded elements (objects or holes) are accessible through
the abstract class ECodedElement which provides a large set of methods applicable to a particular
coded element:

Features computation and display

The objects, holes and their features can be efficiently accessed randomly (in an index-based
fashion).

1.1. Image Segmenters

Code Snippets

There are several ways to segment pixels. The method is chosen with GetSegmentationMethod and
SetSegmentationMethod.

1. Grayscale Single Threshold (default)

EGrayscaleSingleThresholdSegmenter is applicable to BW8 and BW16 grayscale images and
produces coded images with two layers:

l The black layer (usually Layer 0) contains unmasked pixels with a gray value below the
Threshold value.

l The white layer (usually Layer 1) contains the remaining unmasked pixels, i.e. unmasked
pixels having a gray value greater or equal to the Threshold value.

EasyObject provides 5 thresholding methods:

l Absolute (integer value): represents the first gray value of the white layer. Set with
SetAbsoluteThreshold method and got with GetAbsoluteThreshold method.

l Relative (%): represents the fraction of image pixels that belong to the Black layer, it is a
user-defined float value in range 0 to 1. Set with SetRelativeThreshold method and got
with GetRelativeThreshold method.

l Minimum Residue (default): The threshold is an automatically computed value such that
the quadratic difference between the source and thresholded image is minimized.

l Maximum Entropy: automatically computed value such that the entropy (i.e. the amount
of information) of the resulting thresholded image is maximized.

l IsoData: automatically computed value that lies halfway between the average dark gray
value (gray levels below the threshold) and average light gray values (gray levels above
the threshold).

Open eVision User Guide PART III Matching and Measurement
Tools

ecodedelement-class.htm
image-segmenter.htm
eimageencoder-segmentationmethod.htm
eimageencoder-segmentationmethod.htm
egrayscalesinglethresholdsegmenter-class.htm
egrayscalesinglethresholdsegmenter-absolutethreshold.htm
egrayscalesinglethresholdsegmenter-absolutethreshold.htm
egrayscalesinglethresholdsegmenter-relativethreshold.htm
egrayscalesinglethresholdsegmenter-relativethreshold.htm

117

Grayscale Single Threshold with a minimum residue thresholding method is the default. Only
objects whose pixels have a value that is above this threshold are encoded.

2. Grayscale Double Threshold

EGrayscaleDoubleThresholdSegmenter is applicable to BW8 and BW16 grayscale images and
produces coded images with three layers:

l The black layer (usually Layer 0) contains unmasked pixels having a gray value below the
Low Threshold value.

l The white layer (usually Layer 2) contains unmasked pixels having a gray value above or
equal the High Threshold value.

l The neutral layer (usually Layer 1) contains the remaining unmasked pixels.

The Low Threshold and High Threshold are user-defined integer values, set with
SetLowThreshold and SetHighThreshold methods, and got with GetLowThreshold and
GetHighThreshold methods.

3. Color Single Threshold

EColorSingleThresholdSegmenter is applicable to C24 color images; it produces coded images
with two layers:

l The white layer (usually Layer 1) contains unmasked pixels that belong to the cube of the
color space defined by the threshold point and the white point (255,255,255).

l The black layer(usually Layer 0) contains the remaining unmasked pixels.

The Color Threshold is a set of three user-defined integer values designating a color in the color
space, set with SetThreshold method and got with GetThreshold method.

4. Color Range Threshold

EColorRangeThresholdSegmenter is applicable to C24 color images; it produces coded images with
two layers:

l The white layer(usually Layer 1) contains unmasked pixels that belong to the cube of the
color space defined by the Low Threshold point and the High Threshold point.

l The black layer (usually Layer 0) contains the remaining unmasked pixels.

The Low Threshold and High Threshold are each a set of three user-defined integer values
designating a color in the color space, set with SetLowThreshold and SetHighThreshold methods
and got with GetLowThreshold and GetHighThreshold methods.

5. Image Range

The following cases need a segmentation using pixel-by-pixel thresholding which gives an
allowed range of values for each pixel:

l when the background is not uniform enough,
l when the illumination is not uniform across the image,
l when only differences between the image and a reference image (ideal) are to be

enhanced,

Open eVision User Guide PART III Matching and Measurement
Tools

egrayscaledoublethresholdsegmenter-class.htm
egrayscaledoublethresholdsegmenter-lowthreshold.htm
egrayscaledoublethresholdsegmenter-highthreshold.htm
egrayscaledoublethresholdsegmenter-lowthreshold.htm
egrayscaledoublethresholdsegmenter-highthreshold.htm
ecolorsinglethresholdsegmenter-class.htm
ecolorsinglethresholdsegmenter-threshold.htm
ecolorsinglethresholdsegmenter-threshold.htm
ecolorrangethresholdsegmenter-class.htm
ecolorrangethresholdsegmenter-lowthreshold.htm
ecolorrangethresholdsegmenter-highthreshold.htm
ecolorrangethresholdsegmenter-lowthreshold.htm
ecolorrangethresholdsegmenter-highthreshold.htm

118

The allowed range for each pixel is specified using two images: a low reference image with the
minimum values allowed for each pixel, a high reference image with the maximum values. The
reference images are thus the source image minus (or plus) a fixed value all over the image
(assuming noise distribution is uniform and additive).
The difficulty is preparing suitable high and low reference images.

Preparing high and low reference images
You can start from an image of the scene without defects and add security margins before
comparison.

Source image

Gray-level tolerance must be provided for noise and illumination variations.

Gray-level tolerance margins

The image may have a slight shift in some direction which can be corrected by enlarging the
light and dark areas using dilate and erode morphological operations. This geometric tolerance
margin is roughly as large as the morphological filter size.

Geometric tolerance margins

Combining both kinds of tolerance margins gives the best results.

Open eVision User Guide PART III Matching and Measurement
Tools

119

Combined margins

Image Segmenter
EImageRangeSegmenter and EReferenceImageSegmenter are applicable to BW8, BW16, and C24
images; and produce coded images with two layers.

The low threshold and the high threshold are defined for each pixel individually by means of
two reference images of the same type as the source image: the Low Image and the High Image.
The Reference Image defines the reference threshold of each pixel individually.

l For grayscale images, the white layer (usually Layer 1) contains unmasked pixels having a
gray value in a range defined by the gray value of the corresponding unmasked pixels in
the Low, High or Reference Image.

l For color images, the white layer (usually Layer 1) contains unmasked pixels having a
color inside the cube of the color space defined by the colors of the corresponding
unmasked pixels in the Low, High or Reference Image.

l The black layer (usually Layer 0) contains the remaining unmasked pixels.

Pointers to the Low Image can be set or got using the functions associated with the type of the
source image:

l BW8: SetLowImageBW8 GetLowImageBW8
l BW16: SetLowImageBW16GetLowImageBW16
l C24: SetLowImageC24GetLowImageC24

Pointers to the High Image can be set or got using the functions associated with the type of the
source image:

l BW8: SetHighImageBW8GetHighImageBW8
l BW16 SetHighImageBW16GetHighImageBW16
l C24 SetHighImageC24GetHighImageC24

Pointers to the Reference Image can be set or got using the functions associated with the type
of the source image:

l BW8: SetReferenceImageBW8, GetReferenceImageBW8
l BW16: SetReferenceImageBW16, GetReferenceImageBW16
l C24: SetReferenceImageC24 , GetReferenceImageC24

6. Labeled Image

ELabeledImageSegmenter is applicable to is applicable to BW8 and BW16 grayscale images; it
produces coded images with a number of layers equal to the maximum number of gray values:
256 for BW8 images or 65536 for BW16 images. The layer n contains all the unmasked pixels
having a gray value equal to n.

By default, all layers are encoded. However, it is possible to restrict the encoding to a single
range of layers with SetMinLayer and SetMaxLayer functions which return the lowest and the
highest values of the index range respectively.

Open eVision User Guide PART III Matching and Measurement
Tools

eimagerangesegmenter-class.htm
ereferenceimagesegmenter-class.htm
eimagerangesegmenter-lowimagebw8.htm
eimagerangesegmenter-lowimagebw8.htm
eimagerangesegmenter-lowimagebw16.htm
eimagerangesegmenter-lowimagebw16.htm
eimagerangesegmenter-lowimagec24.htm
eimagerangesegmenter-lowimagec24.htm
eimagerangesegmenter-highimagebw8.htm
eimagerangesegmenter-highimagebw8.htm
eimagerangesegmenter-highimagebw16.htm
eimagerangesegmenter-highimagebw16.htm
eimagerangesegmenter-highimagec24.htm
eimagerangesegmenter-highimagec24.htm
ereferenceimagesegmenter-referenceimagebw8.htm
ereferenceimagesegmenter-referenceimagebw8.htm
ereferenceimagesegmenter-referenceimagebw16.htm
ereferenceimagesegmenter-referenceimagebw16.htm
ereferenceimagesegmenter-referenceimagec24.htm
ereferenceimagesegmenter-referenceimagec24.htm
elabeledimagesegmenter-class.htm
elabeledimagesegmenter-minlayer.htm
elabeledimagesegmenter-maxlayer.htm

120

7. Binary Image

EBinaryImageSegmenter is applicable to BW1 binary images; it produces coded images with two
layers:

l Black layer (usually index 0) contains unmasked pixels with a binary value equal to zero.
l White layer (usually index 1) contains the remaining unmasked pixels, i.e. unmasked

pixels with a binary value equal to one.

1.2. Image Encoder

Reference | Code Snippets

The class representing the objects (EObject) derives from an abstract class ECodedElement.

Object building

Selecting the Layers to Encode

The segmentation methods (see Image Segmenters) determine which layer(s) to encode by
default, and do not encode pixels from the other layers.

Function GetMaxLayerIndex returns the highest Layer Index value. It is available for all
segmenters.

Enabling/disabling layer encoding for each layer individually

The following tables list, for each layer, the Set/Get function and the default enable/disable
value.

Two-layer segmenters

Layer Set LayerEncoded function Get LayerEncoded function Default value

Black layer SetBlackLayerEncoded IsBlackLayerEncoded FALSE

White layer SetWhiteLayerEncoded IsWhiteLayerEncoded TRUE

Three-layer segmenters

Open eVision User Guide PART III Matching and Measurement
Tools

ebinaryimagesegmenter-class.htm
eimageencoder-class.htm
image-encoder.htm
eobject-class.htm
ecodedelement-class.htm

121

Layer Set LayerEncoded function
name

Get LayerEncoded function
name

Default
value

Black layer SetBlackLayerEncoded IsBlackLayerEncoded FALSE

White layer SetWhiteLayerEncoded IsWhiteLayerEncoded FALSE

Neutral
layer SetNeutralLayerEncoded IsNeutralLayerEncoded TRUE

Manually Assigning a Layer Index to Each Layer Individually

The following tables list, for each layer, the Set/Get function and the default value.

Two-layer segmenters

Layer Set LayerEncoded function
name

Get LayerEncoded function
name

Default
value

Black
layer SetBlackLayerIndex IsBlackLayerIndex 0

White
layer SetWhiteLayerIndex IsWhiteLayerIndex 1

Three-layer segmenters

Layer Set LayerEncoded function
name

Get LayerEncoded function
name

Default
value

Black layer SetBlackLayerIndex IsBlackLayerIndex 0

Neutral
layer SetNeutralLayerIndex IsNeutralLayerIndex 1

White layer SetWhiteLayerIndex IsWhiteLayerIndex 2

Runs

For the sake of computational efficiency, the objects are described as lists of runs. A run is a
sequence of adjacent pixels that share homogeneous properties (such as being above a given
threshold). These runs are merged in objects by the image encoder.

A single object with five enhanced runs

Open eVision User Guide PART III Matching and Measurement
Tools

122

EasyObject can work at object level, and at run level which allows faster processing in critical
cases. This is useful to compute custom features on objects then list all runs belonging to a
given object as shown in this example of working at run level, with colored runs in the output
image.

1. Declare a new ECodedImage2 object.
2. Declare an EImageEncoder and, if applicable, select the appropriate segmenter.

Setup the segmenter and choose appropriate layer(s) to encode.
3. Set up an output image.
4. Encode the image.
5. Color the runs in the output image. Iterate over the objects of a specific layer by

constructing a loop and then a RunsIterator object. This iterator allows to browse
runs of the considered object. Once the iterator has finished a run of the
considered object, the inner loop processes the pixels spanned by this run in the
output image.

6. Select a specific layer.

Source image (left) with the white layer rendered (right)

Connexity

Pixels can touch each other along an edge or by a corner. In Four Connexity only pixels touching
by an edge are considered neighbors. In Eight Connexity (the default) pixels touching by a
corner are also considered neighbors.

Multiple images can be encoded in continuous mode.

1.3. Holes Construction

Code Snippets

A hole is a set of connected pixels that are entirely surrounded by a parent object (4 or 8 pixels
depending on the connexity mode).

A hole has no child. Objects inside a hole are considered as separate objects.

EObject and EHole classes both derive from ECodedElement, so objects and holes are managed in
the same way and share the same functions.

Open eVision User Guide PART III Matching and Measurement
Tools

ecodedimage2-class.htm
eimageencoder-class.htm
ecodedelement-runsiterator.htm
holes-extraction.htm
eobject-class.htm
ehole-class.htm
ecodedelement-class.htm

123

Encoding the white layer (3 objects and 3 holes)

Encoding the black layer (4 objects and 3 holes)

How to Color holes

1. Declare a new ECodedImage2 object.
2. Declare an EImageEncoder and, if applicable, select and setup the appropriate segmenter,

and choose the appropriate layer(s) to encode.
3. Set up an output image.
4. Encode the image.
5. Declare a helper function to draw the runs. A helper function (see also section Object

Construction/Working at the Run Level) draws the runs in an output image, using, for
example, a given color. This function can be shared for objects and holes.

6. Draw the objects and their holes in the output image. It is necessary to iterate over the
objects of the chosen layer.

a. The helper function draws the runs of each object (DrawRuns) using a specific color.
b. The holes are iterated over the current object, and their runs are drawn.
c. Each hole of an object is drawn with a different color computed in the global

function (GetFadedColor) that returns a color. This color depends upon the hole
index, for example a gradation of red to green colors.

Open eVision User Guide PART III Matching and Measurement
Tools

ecodedimage2-class.htm
eimageencoder-class.htm

124

Raw image (left) Building of objects and all holes (right)

1.4. Normal vs. Continuous Mode

Code Snippets

Normal Mode (default)

In normal mode, the image encoder does not track blobs across several successive images.
EasyObject works with one image, without keeping blobs in memory. All the blobs are returned
as objects.

Continuous Mode

In continuous mode EasyObject can process an image whose height is unknown or infinite (e.g.
coming from a line-scan camera). The image is split into several chunks that are fed into an
image encoder. Objects that straddle several successive image chunks can be detected.

The image encoder encodes only the objects that contain no run touching the last row of the
source image. Objects that touch the inferior border of the image are not written in the coded
image because they are expected to continue in subsequent image chunks, but they are kept in
memory and are processed when subsequent images are analyzed.

A large image is assumed to be divided into several chunks that are stored in the array
EImageBW8 chunk[x].

In this example, we generate a sequence of color images that exhibit objects
encoded over successive chunks

Original image

Open eVision User Guide PART III Matching and Measurement
Tools

continuous-mode.htm
eimagebw8-class.htm

125

Three chunks of the image

1. Draw the objects encoded in a layer of a coded image. This code is essentially the same
as in "Browsing Runs" code snippet. The only difference is that an offset can be applied
along the Y-axis.

2. Define a function to draw the objects of a layer. If a coded image contains objects that
were started in a previous image: the runs of this object from the previous image are
assigned with a negative Y-coordinate.
The zero Y-coordinate is the first row of the most recently encoded image. The
convention is to assign the lowest Y-coordinate to the oldest run in the encoded objects.
The method EImageEncoder.GetStartY obtains the Y-coordinate of this oldest run. It is
necessary to define a function that displays the content of a layer of a coded image.
Each object can be displayed with a different color(computed by GetFadedColor). This
function closely follows the function DrawRuns, but is adapted to continuous mode by
taking GetStartY into account.

3. Enable continuous mode in property EImageEncoder.SetContinuousModeEnabled. Additional
variables can be declared, for example to store the successive encoded image, or to hold
the output images.

4. Analyze the successive chunks. To encode successive chunks use Encode(chunk[count],
codedImage) and then DrawLayer. Note: The variable count spans integers 0, 1 and 2. When
an object from a chunk is not complete it is kept in the internal memory of the image
encoder.

Content of layerImage when count equals 0, after the application of DrawLayer.
Chunk of the large image that is under consideration.

Note that two objects in the lower-left of the image chunk are not encoded,
because they touch the border of the chunk.

Open eVision User Guide PART III Matching and Measurement
Tools

eimageencoder-continuousmodeenabled.htm
eimageencoder-encode.htm

126

When count reaches 1, one of these two objects becomes completed,
which leads to the encoding of the following image.
Two other objects are not encoded yet at this time.

Here is the result of the encoding of the last chunk (count = 2).

Three objects from the previous chunks have been closed, and have thus been encoded.

Flushing Continuous Mode

After encoding the three image chunks, there remains one object to be completed (in the
bottom-right corner of the large image). However, as there are no more chunks, it is necessary
to explicitly close this object and encode the remaining object using the flushing of the image
encoder. The internal memory of the image encoder is then empty.

Result of the flush

1.5. Selecting and Sorting Blobs

Code Snippets

The object segmentation process considers any blob as an object, including noise pixels which
appear as tiny objects. You can select which blobs to keep using the class EObjectSelection.

Create / modify a selection

You can use the methods Add and Remove of the class EObjectSelection to:
□ Add or remove a single object , a hole or a whole layer to/from a selection.

Open eVision User Guide PART III Matching and Measurement
Tools

eimageencoder-flushcontinuousmode.htm
eimageencoder-flushcontinuousmode.htm
selecting-and-sorting-blobs.htm
eobjectselection-class.htm
eobjectselection-add.htm
eobjectselection-remove.htm
eobjectselection-class.htm

127

□ Add or remove objects or holes based on some specified feature (see the feature list in
Computing the Coded Element Features).

□ Add or remove objects or holes based on their specific position, or whether they lie within
a specified ROI rectangle.

□ Add or remove objects based on their specific position, or whether they lie outside, on or
within a specified ROI rectangle or ERegion (AddObjectsUsingRectangle and
AddObjectsUsingRegion).

These actions can be cascaded and combined at will in a single selection.

Clear a selection

You can clear a previous selection using EObjectSelection.Clear.

Sort a selection

You can sort the elements of a selection according to any of their features.

Example

In this example, we select objects in the middle band of an image, with a surface >100 pixels.

Source image, and selection of objects

1. Declare a new ECodedImage2 object.

2. Declare an EImageEncoder object and, if applicable, select and setup the appropriate
segmenter and choose the appropriate layer(s) to encode.

3. Encode the source image.

4. Create a selection of objects. Create an instance of the EObjectSelection class and add
objects to this selection, for instance through EObjectSelection.AddObjects.

5. Remove objects based on the value of one feature at a time. The objects in a selection can
be unselected by calling one of the EObjectSelection.Remove methods.

6. Remove the objects based on their position using
EObjectSelection.RemoveUsingFloatFeature. For details, see also "Working at the Run Level".

7. Sort the selected objects using EObjectSelection.Sort.

8. Access the selected objects.

Open eVision User Guide PART III Matching and Measurement
Tools

eobjectselection-addobjectsusingrectangle.htm
eobjectselection-addobjectsusingregion.htm
eobjectselection-clear.htm
ecodedimage2-class.htm
eimageencoder-class.htm
eobjectselection-class.htm
eobjectselection-addobjects.htm
eobjectselection-remove.htm
eobjectselection-removeusingfloatfeature.htm
eobjectselection-sort.htm

128

1.6. Object Template Matcher

The class EObjectTemplateMatcher is a tool designed to align and match the output of EasyObject
to a reference template. It is designed and developed to handle efficiently thousand of objects.

Creating the reference template

Use the method BuildTemplate to create the reference template, with one of the following
parameters:

□ An ECodedImage2, result of the method EImageEncoder::Encode.
□ An EObjectSelection, a selection (subset) of ECodedImage2 objects.
□ A list of positions, given by a vector of points (std::vector<EPoint>).

An encoding of the reference image for use as the template.
And the center positions of each object for use in the matching process.

Sorting the objects

● To perform the matching after setting up the template:
□ Use the method SortSelection with an EObjectSelection as parameter.
□ Or use the more generic method SortPositions with a std::vector<EPoint> as parameter.

● When you pass the objects in a selection as the sort method parameter, the bounding box
center of the objects is the position used for the matching with the template.

Open eVision User Guide PART III Matching and Measurement
Tools

eobjecttemplatematcher-class.htm
eobjecttemplatematcher-buildtemplate.htm
ecodedimage2-class.htm
eimageencoder-encode.htm
eobjectselection-class.htm
ecodedimage2-class.htm
../../../reference/eobjectsort-sortselection.htm
eobjectselection-class.htm
../../../reference/eobjectsort-sortpositions.htm

129

● Before the sorting, EObjectTemplateMatcher performs an optional global rigid alignment of the
submitted positions with the defined template.
□ This alignment only applies the translation and rotation transformations.
□ Use the method SetEnableAlignment to enable the alignment process.

Left: the template.
Right: the alignment of the submitted selection.

● After the optional alignment, EObjectTemplateMatcher matches the submitted positions with
the reference template.
□ It uses the shortest distance criterion to pair these positions with the template.
□ You can set the maximum distance to constraint the search. This can speed up the

processing.

Retrieving the Sorting Results

● Use one of these methods to retrieve the sorting results:
□ GetSelectionIndexes returns, for each position in the template, the paired index in the

selection. The value -1 is used if the object in the template has no correspondence in the
selection.

□ GetTemplateIndexes returns, for each position in the selection, the paired index in the
template. The value -1 is used if the object in the selection has no correspondence in the
template.

□ GetUnpairedObjects returns the positions in the template and in the selection that have
not been paired.

● Use the method GetNumberOfPairedObjects to get the total number of paired objects.

● Use the methods Save and Load to store and retrieve the configuration of an
EObjectTemplateMatcher object, including the template.

Open eVision User Guide PART III Matching and Measurement
Tools

eobjecttemplatematcher-class.htm
../../../reference/eobjectsort-enablealignment.htm
eobjecttemplatematcher-class.htm
../../../reference/eobjectsort-selectionindexes.htm
../../../reference/eobjectsort-templateindexes.htm
../../../reference/eobjectsort-getunpairedobjects.htm
../../../reference/eobjectsort-numberofpairedobjects.htm
../../../reference/eobjectsort-save.htm
../../../reference/eobjectsort-load.htm
eobjecttemplatematcher-class.htm

130

1.7. Advanced Features

Computable Features
Methods prefixed with Get indicate a lazy evaluation: the result is computed on the first
invocation of the method and cached.

Methods prefixed with Compute indicate that the function is reevaluated at every invocation
and the result is never cached.

Open eVision User Guide PART III Matching and Measurement
Tools

131

Position

Limit
(top, bottom, left, right)

ECodedElement.GetTopLimit
ECodedElement.GetBottomLimit
ECodedElement.GetLeftLimit
ECodedElement.GetRightLimit

Gravity center
(X and Y)

ECodedElement.GetGravityCenter
ECodedElement.GetGravityCenterX
ECodedElement.GetGravityCenterY

Weight gravity center
(X and Y) ECodedElement.ComputeWeightedGravityCenter

Gravity center and weight gravity center

The gravity center returns the abscissa of the gravity center of the coded element.

The weight gravity center computes the gravity center of a given image over a coded element.

Extents

Area (pixel count) ECodedElement.Area

Feret box
(center X and Y, height, width
with distinct orientation angles
at 22, 45, 68 degrees)

ECodedElement.ComputeFeretBox
ECodedElement.GetFeretBox22Box
ECodedElement.GetFeretBox22Center
ECodedElement.GetFeretBox22CenterX
ECodedElement.GetFeretBox22CenterY
ECodedElement.GetFeretBox22Height
ECodedElement.GetFeretBox22Width
ECodedElement.GetFeretBox45Box
ECodedElement.GetFeretBox45Center
ECodedElement.GetFeretBox45CenterX
ECodedElement.GetFeretBox45CenterY
ECodedElement.GetFeretBox45Height
ECodedElement.GetFeretBox45Width
ECodedElement.GetFeretBox68Box
ECodedElement.GetFeretBox68Center
ECodedElement.GetFeretBox68CenterX
ECodedElement.GetFeretBox68CenterY
ECodedElement.GetFeretBox68Height
ECodedElement.GetFeretBox68Width

Open eVision User Guide PART III Matching and Measurement
Tools

ecodedelement-toplimit.htm
ecodedelement-bottomlimit.htm
ecodedelement-leftlimit.htm
ecodedelement-rightlimit.htm
ecodedelement-gravitycenter.htm
ecodedelement-gravitycenterx.htm
ecodedelement-gravitycentery.htm
ecodedelement-computeweightedgravitycenter.htm
ecodedelement-area.htm
ecodedelement-computeferetbox.htm
ecodedelement-feretbox22box.htm
ecodedelement-feretbox22center.htm
ecodedelement-feretbox22centerx.htm
ecodedelement-feretbox22centery.htm
ecodedelement-feretbox22height.htm
ecodedelement-feretbox22width.htm
ecodedelement-feretbox45box.htm
ecodedelement-feretbox45center.htm
ecodedelement-feretbox45centerx.htm
ecodedelement-feretbox45centery.htm
ecodedelement-feretbox45height.htm
ecodedelement-feretbox45width.htm
ecodedelement-feretbox68box.htm
ecodedelement-feretbox68center.htm
ecodedelement-feretbox68centerx.htm
ecodedelement-feretbox68centery.htm
ecodedelement-feretbox68height.htm
ecodedelement-feretbox68width.htm

132

Bounding box
(center X and Y, height, width)

ECodedElement.GetBoundingBox
ECodedElement.GetBoundingBoxCenter
ECodedElement.GetBoundingBoxCenterX
ECodedElement.GetBoundingBoxCenterY
ECodedElement.GetBoundingBoxHeight
ECodedElement.GetBoundingBoxWidth

Min. enclosing rectangle
(angle, center X and Y,
heath, width)

ECodedElement.MinimumEnclosingRectangle
ECodedElement.MinimumEnclosingRectangleAngle
ECodedElement.MinimumEnclosingRectangleCenter
ECodedElement.MinimumEnclosingRectangleCenterX
ECodedElement.MinimumEnclosingRectangleCenterY
ECodedElement.MinimumEnclosingRectangleHeight
ECodedElement.MinimumEnclosingRectangleWidth

Feret box
A Feret box is a rectangle with the minimum surface rotated at a specified angle that contains
all the pixels center points of an object.

● Bounding box is the Feret box at 0°.

● Minimum enclosing rectangle is the Feret box with the minimum surface across all the
possible angles.

● Width of a FeretBox rectangle is the length of the rectangle side that exhibits the smallest
angle with the X-axis. This is NOT necessarily the smallest side!

● The height of a Feret box rectangle is the length of the other side of the rectangle.

● Use ECodedElement.ComputeFeretBox to compute a Feret box with an arbitrary angle.
□ The angle is measured clockwise from the X axis to the width side of the rectangle as

shown in the image below:

● In the legacy EasyObject library, the class ECodedImage does not follow the same conventions.
The main differences are:
□ The minimum enclosing rectangle corresponds to the Feret box of the legacy EasyObject

library (features ELegacyFeature_Feret*).
□ The method ECodedElement.ComputeFeretBox corresponds to the ECodedImage.LimitAngle in

the legacy EasyObject library.

Open eVision User Guide PART III Matching and Measurement
Tools

ecodedelement-boundingbox.htm
ecodedelement-boundingboxcenter.htm
ecodedelement-boundingboxcenterx.htm
ecodedelement-boundingboxcentery.htm
ecodedelement-boundingboxheight.htm
ecodedelement-boundingboxwidth.htm
ecodedelement-minimumenclosingrectangle.htm
ecodedelement-minimumenclosingrectangleangle.htm
ecodedelement-minimumenclosingrectanglecenter.htm
ecodedelement-minimumenclosingrectanglecenterx.htm
ecodedelement-minimumenclosingrectanglecentery.htm
ecodedelement-minimumenclosingrectangleheight.htm
ecodedelement-minimumenclosingrectanglewidth.htm
ecodedelement-computeferetbox.htm
ecodedimage-class.htm
elegacyfeature-enum.htm
ecodedelement-computeferetbox.htm
ecodedimage-limitangle.htm

133

□ The angle, width and height in the legacy EasyObject library are defined as shown in the
image below:

Miscellaneous

Starting point of the object contour
(X and Y)

ECodedElement.GetContour
ECodedElement.GetContourX
ECodedElement.GetContourY

Path of the object contour ECodedElement.GetContourPath

Largest run ECodedElement.GetLargestRun

Run count ECodedElement.GetRunCount

Object number
(index)

ECodedElement.GetLayerIndex
ECodedElement.GetElementIndex

Pixel gray-level value
(average, deviation, variance)

ECodedElement.ComputePixelGrayAverage
ECodedElement.ComputePixelGrayDeviation
ECodedElement.ComputePixelGrayVariance

Pixel gray-level value
(min and max)

ECodedElement.ComputePixelMax
ECodedElement.ComputePixelMin

Ellipse of inertia

Eccentricity of the ellipse of inertia ECodedElement.Eccentricity

Moment
ECodedElement.GetCentralMoment
ECodedElement.GetMoment
ECodedElement.GetNormalizedCentralMoment

Open eVision User Guide PART III Matching and Measurement
Tools

ecodedelement-contour.htm
ecodedelement-contourx.htm
ecodedelement-contoury.htm
ecodedelement-contourpath.htm
ecodedelement-largestrun.htm
ecodedelement-runcount.htm
ecodedelement-layerindex.htm
ecodedelement-elementindex.htm
ecodedelement-computepixelgrayaverage.htm
ecodedelement-computepixelgraydeviation.htm
ecodedelement-computepixelgrayvariance.htm
ecodedelement-computepixelmax.htm
ecodedelement-computepixelmin.htm
ecodedelement-eccentricity.htm
ecodedelement-getcentralmoment.htm
ecodedelement-getmoment.htm
ecodedelement-getnormalizedcentralmoment.htm

134

Ellipse
(angle, height, width)

ECodedElement.GetEllipseAngle
ECodedElement.GetEllipseHeight
ECodedElement.GetEllipseWidth

Second order geometric moments
(Sigma: X, XX, XY, Y, YY)

ECodedElement.GetSigmaX
ECodedElement.GetSigmaXX
ECodedElement.GetSigmaXY
ECodedElement.GetSigmaY
ECodedElement.GetSigmaYY

NOTE
The object perimeter can be measured indirectly by tracing the object
contour with contouring methods and counting the pixels.

From the standard geometric features, others can be derived. For instance, object elongation is
computed as the ratio of large to short ellipse axis or max height over max width. Object
circularity is defined as the ratio of the squared perimeter divided by four times pi multiplied by
the object area.

NOTE
Note. Formulas (N = area):

Open eVision User Guide PART III Matching and Measurement
Tools

ecodedelement-ellipseangle.htm
ecodedelement-ellipseheight.htm
ecodedelement-ellipsewidth.htm
ecodedelement-sigmax.htm
ecodedelement-sigmaxx.htm
ecodedelement-sigmaxy.htm
ecodedelement-sigmay.htm
ecodedelement-sigmayy.htm

135

Convex Hull

The convex hull of a shape is the convex polygon of minimum area that completely surrounds
an object. The convex hull can be used to characterize the object footprint, as well as to observe
concavities. Given that the number of vertices of the convex hull is variable, they are stored in a
EPathVector container.

The corresponding function is ECodedElement.ComputeConvexHull.

Graphic Representation

The objects can be drawn onto the source image by means of ECodedImage2.Draw. The following
features also have a graphical representation that can be drawn by the means of
ECodedImage2.DrawFeature.

Objects Graphic Objects Graphic

Bounding box Feret box with an angle
of 45°

Contour Feret box with an angle
of 68°

Convex hull Gravity center

Ellipse Minimum enclosing
rectangle

Feret box Weighted gravity center

Feret box with an angle
of 22°

Coordinate System and Conventions

Coordinate system

EasyObject uses a pixel coordinate system where the origin is conventionally at the top left
corner of the top left pixel of an image. Consequently, the fractional part of the coordinates of
the center of a pixel is ".5". This convention is best suited for the representation of sub-pixel
coordinates.

Open eVision User Guide PART III Matching and Measurement
Tools

epathvector-class.htm
ecodedelement-computeconvexhull.htm
ecodedimage2-draw.htm
ecodedimage2-drawfeature.htm

136

Angles

According to the mathematical conventions, the angles are now counted inversely: A positive
angle brings the X axis on the Y axis.

Evaluating the features

There is one property per feature, removing the need to access the feature through an enum.

Draw Coded Elements
Once an image has been encoded, the coded elements (object or hole) are accessible through
the abstract class ECodedElement and a large set of methods:

To draw coded elements

1. Declare a new ECodedImage2 object.
2. Declare an EImageEncoder object and, if applicable, select and setup the appropriate

segmenter and choose the appropriate layer(s) to encode.
3. Create an output image: copy, pixel by pixel, the (grayscale) source image into a

(color) output image if the drawing of the resulting features has to be colored.
4. Encode the source image.
5. Draw the features for each object in a layer.
6. Read the result, which can be rounded down. A specific drawing can be created to

mark the feature (for example, draw a target for a gravity center).

To render flexible masks use ECodedElement.RenderMask.

The objects, holes and their features can be efficiently accessed randomly (in an index-based
fashion).

Flexible Masks in EasyObject

See also: using Code Snippets : Creating Code Snippets

A flexible mask can be generated by any application that outputs BW8 images or uses the Open
eVision image processing functions.
EasyObject can use flexible masks to restrict blob analysis to complex or disconnected shaped
regions of the image.

If an object of interest has the same gray level as other regions of the image, you can define
"keep" and "ignore" areas using flexible masks and Encode functions.

A flexible mask is a BW8 image with the same height and width as the source image.
□ A pixel value of 0 in the flexible mask masks the corresponding source image pixel so it

doesn't appear in the encoded image.
□ Any other pixel value in the flexible mask causes the pixel to be encoded.

Open eVision User Guide PART III Matching and Measurement
Tools

ecodedelement-class.htm
ecodedimage2-class.htm
eimageencoder-class.htm
ecodedelement-rendermask.htm
code-snippets.htm
generating-a-flexible-mask-from-an-encoded-image.htm
eimageencoder-encode.htm

137

EasyObject functions that create flexible masks

Source image

1. ECodedImage2.RenderMask: from a layer of an encoded image
1. To encode and extract a flexible mask, first construct a coded image from the source image.

2. Choose a segmentation method (for the image above the default method
GrayscaleSingleThreshold is suitable).

3. Select the layer(s) of the coded image that should be encoded (i.e. white and black layers
using minimum residue thresholding).

4. Make the mask image the desired size using mask.SetSize(sourceImage.GetWidth(),
sourceImage.GetHeight()).

5. Exploit the flexible mask as an argument to ECodedImage2.RenderMask.

BW8 resulting image that can be used as a flexible mask

2. ECodedElement.RenderMask: from a blob or hole
1. Select the coded elements of interest.

2. Create a loop extracting a mask from selected coded elements of the coded image using
ECodedElement.RenderMask.

3. Optionally, compute the feature value over each of these selected coded elements.

BW8 resulting image that can be used as a flexible mask

Open eVision User Guide PART III Matching and Measurement
Tools

ecodedimage2-rendermask.htm
ecodedelement-rendermask.htm

138

3. EObjectSelection.RenderMask: from a selection of blobs
EObjectSelection.RenderMask can, for example, discard small objects resulting from noise.

BW8 resulting image that can be used as a flexible mask

Example: Restrict the areas encoded by EasyObject

Find four circles (left) Flexible mask can isolate the central chip (right)

1. Declare a new ECodedImage2 object.

2. Setup variables: first declare source image and flexible mask, then load them.

3. Declare an EImageEncoder object and, if applicable, select the appropriate segmenter. Setup
the segmenter and choose the appropriate layer(s) to encode.

4. Encode the source image. Encoding a layer with just the area in the flexible mask is then
pretty straightforward.
We see that the circles are correctly segmented in the black layer with the grayscale single
threshold segmenter:

5. Select all objects of the coded image.

6. Select objects of interest by filtering out objects that are too small.

7. Display the blob feature by iterating over the selected objects to display the chosen feature.

Open eVision User Guide PART III Matching and Measurement
Tools

eobjectselection-rendermask.htm
ecodedimage2-class.htm
eimageencoder-class.htm
egrayscalesinglethresholdsegmenter-class.htm
egrayscalesinglethresholdsegmenter-class.htm

139

2. EasyGauge - Measuring down to Sub-
Pixel

2.1. Workflow

EasyGauge

EasyGauge library controls dimensions. It accurately determines position, orientation, curvature
and size of parts. It can interact graphically to place and size gauges, combine them in grouped
hierarchies, and store and retrieve them with all their parameters.

TIP
The theoretical best-case precision is 1/64th pixel for all EasyGauge
operators. In practice, you can assume a precision of 1/10th pixel.

Workflow

The gauge model can be built programmatically or in a graphical editor, then "played" in the
final application.
Choose the workflow that matches the complexity of your model and the accuracy required:
uncalibrated, calibrated or grouped.

Uncalibrated Gauging: for a simple model

EasyGauge basic use is straightforward.

a. Create a gauge object that corresponds to the required measurement.

b. Change the parameters whose default values are not appropriate.

c. Invoke the desired measurement function.

d. Read the resulting position parameters.

Open eVision User Guide PART III Matching and Measurement
Tools

140

Uncalibrated gauging is easy to implement but has several drawbacks:
□ Measurements are performed in pixels, not millimeters.
□ Measurement models are not portable: gauge positions and sizes must be reworked if

viewing conditions change.
□ Optical distortion or perspective causes inaccurate measurements.

Calibrated gauging: for one or two simple measurement sites

Calibrated gauging is more accurate, and measures the inspected parts independently of the
viewing conditions.
All measurements are taken in the calibrated units, with any distortion implicitly compensated.
Refer to Calibration to learn how to master field-of-view calibration.

a. Create a calibrator object.

b. Place it on the inspected scene.

c. Adjust calibration parameters.

d. Attach a gauge.

Complex Gauging

Gauges can be grouped (see Gauge Manipulation Processes) and attached to another item:

● Attaching gauges to an EFrameShape object moves the gauges with the frame (translation
and/or rotation), the application program must adjust the frame position to track the
inspected part.

● Attaching gauges to another gauge moves them according to the measured position of the
supporting gauge. For example, if gauges are attached to a common rectangle gauge that is
detecting the outline of a part, all gauges automatically track the part when the rectangle
outline is fitted.

If using several measurement sites, you can save the complete model, with calibration modes,
coefficients, and attached gauges, in a single file.

NOTE
Unlike the rest of Open eVision, EasyGauge uses a pixel center origin (see
"Image Coordinate Systems" on page 17). The subpixel coordinate (0, 0) is
the center of the upper left pixel of the image.

2.2. Gauge Definitions

Point gauge

You can select the most relevant transition points along a line segment probe that crosses one
or several objects edges. Crosswise and lengthwise filtering can be activated for noise
reduction.

Open eVision User Guide PART III Matching and Measurement
Tools

eframeshape-class.htm

141

Point location. Contrast-based selection

Usage

● Define and position the gauge, then fit the points with Measure.

● Use the methods EPointGauge.GetNumMeasuredPoint and EPointGauge.GetMeasuredPoint to
access the results.

Line gauge

The placement of a line gauge is defined by its center coordinates, its length and its angle with
respect to the X-axis. To constrain the line slope value, set Angle and KnownAngle.

Line fitting

Usage

● Define and position the gauge, then use Measure to fit the lines.
□ The method ELineGauge.GetFound returns TRUE if a suitable line is found.
□ To obtain the line properties, set the ActualShape property to TRUE to return the fitted line

(TRUE value) (instead of the nominal line position FALSE value, default).

● Alternatively, MeasuredLine provides the results as an ELine object.

Rectangle Gauge

The placement of a rectangle gauge is defined by its nominal position (given by the coordinates
of its center), its nominal size and its rotation angle.

Open eVision User Guide PART III Matching and Measurement
Tools

epointgauge-measure.htm
epointgauge-nummeasuredpoints.htm
epointgauge-getmeasuredpoint.htm
elinegauge-class.htm
elineshape-center.htm
elineshape-length.htm
elineshape-angle.htm
elineshape-angle.htm
elinegauge-knownangle.htm
elinegauge-measure.htm
eshape-getfound.htm
eline-class.htm
eshape-actualshape.htm
elinegauge-measuredline.htm
eline-class.htm
erectanglegauge-class.htm
erectangleshape-center.htm
erectangleshape-setsize.htm
erectangleshape-angle.htm

142

Each side of a rectangle can have its own transition detection parameters, and can be set to
active or inactive with the ActiveEdges property. When a side is active:

l setting the value of a parameter only applies to the currently active sides1.
l getting the value of a parameter yields a result only when the value of this property is the

same for all active sides.
l only active sides are used for measurement and model fitting.

These rules allow to set different parameters for different sides, and measure parallel sides or a
corner point instead of the whole rectangle. The four sides are denoted by letters "x", "y", "XX"
and "YY" respectively.

Naming conventions for the sides of a rectangle gauge

Usage

● Define and position the gauge, then use Measure to fit the lines.
□ The method ERectangleGauge.GetFound returns TRUE if a suitable rectangle is found.
□ To obtain the rectangle properties, set ActualShape to TRUE to return the fitted line (TRUE

value) (default is FALSE).

● Alternatively, MeasuredRectangle provides the results as an ERectangle object.

● For instance, you can accurately locate the four corners (landmarks) of a rectangle using a
rectangle fitting gauge.

Locating a rectangle's corners

Open eVision User Guide PART III Matching and Measurement
Tools

erectanglegauge-activeedges.htm
elinegauge-measure.htm
eshape-getfound.htm
erectangleshape-class.htm
eshape-actualshape.htm
erectanglegauge-measuredrectangle.htm
erectangle-class.htm

143

Circle gauge

The placement of a circle gauge is defined by its nominal position (given by the coordinates of
its center), its nominal diameter (or radius), the angular position from where it extends and its
angular amplitude.

The Set member can distinguish between a full circle and an arc (the arc amplitude must be
specified).

Circle fitting

Usage

● Once the gauge has been defined and positioned, use Measure to trigger the circle fitting
operation.
□ The method ECircleGauge.GetFound returns TRUE if a suitable rectangle is found.
□ To obtain the measurement results, set the ActualShape mode to TRUE. The ActualShape

mode determines whether an inquiry returns the fitted circle (TRUE value) or the nominal
circle position (FALSE value, default).

□ The requested information is then retrieved by means of the circle properties.

● Alternatively, MeasuredCircle provides the results as an ECircle object.

Wedge gauge

The placement of a wedge gauge is defined by its nominal position (given by the coordinates of
its center), its nominal inner and outer radius (inner and outer diameter), its breadth (difference
between radii), the angular position from where it extends and its angular amplitude.

The Set member can distinguish between a full ring, a sector of a ring and a disk.

Each side of a wedge can have its own transition detection parameters and can be set to active
or inactive with the ActiveEdges property. When a side is active, this means that:

l setting the value of a parameter only applies to the currently active sides;
l getting the value of a parameter yields a result only when the value of this parameter is

the same for all active sides;
l only active sides are used for measurement and model fitting.

So different sides can have different parameters, and you can measure parallel arcs or oblique
sides, or a corner point, instead of the whole wedge. The four sides are denoted by letters "a",
"r", "AA" and "RR" respectively.

Open eVision User Guide PART III Matching and Measurement
Tools

ecirclegauge-class.htm
ecircleshape-center.htm
ecircleshape-diameter.htm
ecircleshape-radius.htm
ecircleshape-amplitude.htm
ecirclegauge-measure.htm
eshape-getfound.htm
eshape-actualshape.htm
eshape-actualshape.htm
ecircleshape-class.htm
ecirclegauge-measuredcircle.htm
ecircle-class.htm
ewedgegauge-class.htm
ewedgeshape-center.htm
ewedgeshape-innerradius.htm
ewedgeshape-outerradius.htm
ewedgeshape-innerdiameter.htm
ewedgeshape-outerdiameter.htm
ewedgeshape-breadth.htm
ewedgeshape-angle.htm
ewedgeshape-amplitude.htm
ewedgegauge-activeedges.htm

144

Naming conventions for the sides of a wedge gauge

Usage

● Define and position the gauge, then use Measure to fit the lines.
□ The method EWedgeGauge.GetFound returns TRUE if a suitable rectangle is found.
□ To obtain the wedge properties, set the ActualShape property to TRUE to return the fitted

line (instead of the nominal line position FALSE, default).

● Alternatively, MeasuredWedge provides the results as an EWedge object.

Polygon gauge

● A polygon is defined as a list of connected vertices, forming a closed or an open shape.
EPolygonGauge computes several transition points along each edge of the polygon, like with a
line gauge. Then from these transition points, a measured polygon is computed with a
strategy depending on the measurement mode.

In orange, the closed or open polygon gauge and, in green, the measured transition points

Open eVision User Guide PART III Matching and Measurement
Tools

elinegauge-measure.htm
eshape-getfound.htm
ewedgeshape-class.htm
eshape-actualshape.htm
ewedgegauge-measuredwedge.htm
ewedge-class.htm
epolygongauge-class.htm

145

● The position of the vertices of the polygon are defined in the local EFrame of the polygon.
□ An EFrame is a coordinate system, with a position, an orientation and a scale.
□ The class EPolygon stores the vertices and other attributes.
□ The class EPolygonShape handles the hierarchy of the shapes and the drawing methods.
□ The class EPolygonGauge is the main class for the measurement process.

Class dependency of the class EPolygonGauge

● To setup the polygon geometry, use the following methods:
□ EPolygon.SetCenter (derived from EPoint.SetCenter), EPolygon.SetAngle (derived from

EFrame.SetAngle) and EPolygon.SetScale (derived from EFrame.SetScale) to change the
EFrame reference coordinate system.

□ EPolygon.SetIsClosed to choose between close or open polygon configuration.
□ EPolygon.AppendVertex to add a new vertex to the polygon.
□ EPolygon.SetVertex to change the position (x, y) of a vertex.
□ EPolygon.InsertVertex to insert a vertex before the given index.
□ EPolygon.RemoveVertex to remove a vertex at the given index.
□ EPolygonShape.AddVertexAtDisplayPosition to insert a vertex depending on a display

coordinate (typically a mouse click). This is useful for the graphical edition of a polygon.
□ EPolygonShape.RemoveVertexAtDisplayPosition to remove the closest vertex to a display

coordinate.

TIP
EPolygonGauge has 3 measurement modes EPolygonMeasurementMode.
The typical use cases are:
- For Global: the precise positioning of parts.
- For Edge: the verification of specific shapes defined by angles and lengths.
- For Point: the measure of complex object contours.

Open eVision User Guide PART III Matching and Measurement
Tools

eframe-class.htm
eframe-class.htm
epolygon-class.htm
epolygonshape-class.htm
epolygongauge-class.htm
epoint-center.htm
eframe-angle.htm
eframe-scale.htm
eframe-class.htm
epolygon-isclosed.htm
epolygon-appendvertex.htm
epolygon-setvertex.htm
epolygon-insertvertex.htm
epolygon-removevertex.htm
epolygonshape-addvertexatdisplayposition.htm
epolygonshape-removevertexatdisplayposition.htm
epolygongauge-class.htm
epolygonmeasurementmode-enum.htm
epolygonmeasurementmode-enum.htm
epolygonmeasurementmode-enum.htm
epolygonmeasurementmode-enum.htm

146

● Use the method EPolygonGauge.SetMeasurementMode to select the measurement mode:
□ Global: The position, the orientation and optionally the scale of the polygon (EFrame) are

adjusted to fit the detected transition points.

Illustration of the Global measurement mode:
the measured polygon is a translation and a rotation of the input polygon

By default, the global transformation is rigid:
- Only the translation and the rotation are optimized to match the contour of the object.
- If scaling is required, you must explicitly enable it with the method
EPolygonGauge.SetEnableScaling.
- The global measurement doesn’t change the polygon vertex positions, it only adjusts
the polygon frame.

□ Edge: Each polygon edge is measured individually.
- A polygon composed by the union of these fitted edges is generated.
- The number of edges of the measured polygon is the same as the input polygon.

The input polygon (blue) and the fitted polygon (green)

□ Point: All transition points on the object contour are used to build a new polygon, with an
optimized number of edges.
- The resulting polygon is simplified using a filtering threshold to reduce the number of
edges while keeping the shape of the object.
- The resulting number of edges depends on the geometry of the contour of the object
and on the filtering threshold.
- Set the filtering threshold with EPolygonGauge.SetFilteringThreshold.

Open eVision User Guide PART III Matching and Measurement
Tools

epolygongauge-measurementmode.htm
epolygonmeasurementmode-enum.htm
eframe-class.htm
epolygongauge-enablescaling.htm
epolygonmeasurementmode-enum.htm
epolygonmeasurementmode-enum.htm
epolygongauge-filteringthreshold.htm

147

A polygon gauge with a single edge produces a measured polygon that follow the contour of the object.
Depending on the filtering threshold, the number of vertices is reduced.

● Other parameters of the class EPolygonGauge.

The class EPolygonGauge inherits other common EasyGauge parameters:
□ EPolygonGauge.SetNumFilteringPasses sets the number of filtering passes, then removes

outliers before the line fitting operation. This parameter is only available in Global et Edge
measurement modes.

□ EPolygonGauge.SetMinNumFitSamples sets the minimum number of samples required for the
fitting on each edge of the polygon. The measure fails if the minimum is not achieved.

□ EPolygonGauge.SetTransitionType sets the transition type (ETransitionType): white to
black, black to white or both.

□ EPolygonGauge.SetTransitionChoice selects which peak is used when there are several
transitions.

□ EPolygonGauge.SetSamplingStep gives the distance, in pixels, between two sample points.

Usage

● Sets the parameters of the gauge, then use EPolygonGauge.Measure to fit the polygon.
□ The method EPolygonGauge.GetFound returns TRUE if a suitable polygon is found.
□ To obtain the polygon geometry, use the method EPolygonGauge.GetMeasuredPolygon.

2.3. Find Transition Points Using Peak Analysis

Finds the position of all transition points along a line segment probe that crosses one or several
objects edges, and allows selecting the most relevant ones. Crosswise and lengthwise filtering
can be activated for noise reduction.

Open eVision User Guide PART III Matching and Measurement
Tools

epolygongauge-class.htm
epolygongauge-class.htm
epolygongauge-numfilteringpasses.htm
epolygongauge-minnumfitsamples.htm
epolygongauge-transitiontype.htm
etransitiontype-enum.htm
epolygongauge-transitionchoice.htm
epolygongauge-samplingstep.htm
epolygongauge-measure.htm
eshape-getfound.htm
epolygongauge-measuredpolygon.htm

148

Point location. Contrast-based selection

Point Location principle

Point location principle (left) and S-shaped curve and its derivative (right)

On a linear profile extracted from an image, an edge appears as a transition from dark to light
(or vice versa). When plotting pixel values along the gauge, this transition appears as an S-
shaped curve. The first derivative of this curve exhibits a peak around the transition point. The
better the contrast, the sharper the transition and the higher the peak.

EasyGauge extracts the pixel values along a profile (red curve) then uses peak analysis to
determine the transition location. All the pixel values in the peak area1 are used to compute the
transition location.

l Sub-pixel accuracy is only possible if the transition is surrounded by almost uniform
regions of at least 2 pixels wide.

l BWB2 transitions have an increasing profile curve and the peak takes positive values.
Otherwise, the curve decreases and the peak extends negatively.

l You cannot normally detect peaks using the default threshold value (20) as BWB or WBW
transitions base the peak analysis on the gray level profile along the EPointGauge (or
sample path) and not its first derivative.

EPointGauge contains all point measurement parameters, with default values that detect
reasonably contrasted edges.

1Area between the derivative curve and a horizontal user-defined threshold level

2Black / White / Black

Open eVision User Guide PART III Matching and Measurement
Tools

epointgauge-class.htm

149

EPointGauge parameters
Center: Nominal point position (will normally be different before and after measurement).
Tolerance: Tolerance value and gauge orientations.
TransitionType, TransitionChoice, TransitionIndex: Peak selection strategies.
Threshold: Noise immunity.
MinAmplitude, MinArea: Peak strength.
Thickness, Smoothing: Local filter widths.
RectangularSamplingArea Sets sampling area (rectangular by default) to transverse filtering
mode.
Measure: Measures the object.
- In single transition mode, Valid returns True when an appropriate point was found. To obtain
measurement results, set ActualShape to True so that Center returns the located point. (False
default value returns nominal point position).
- In multiple transition mode, NumMeasuredPoints returns the number of points found,
GetMeasuredPoint returns an EPoint object which contains located point information.
An integer index between 0 and GetNumMeasuredPoints-1 must be passed.
GetMeasuredPeak: Returns EPeak containing the peak's Area and Amplitude, and the delimiting
coordinates along the probe segment (Start, Length and Center values).

Select Peaks to improve edge precision

The threshold level is very important:

l Too high can cause significant peaks to be missed, and insufficient pixel values to achieve
good precision.

l Too low can cause false peaks because of noise.

To resolve this dilemma, the EasyGauge peak selection mechanism can reject low contrast or
false edges: transition strength is measured by peak amplitude and area. Every edge
measurement determines peak amplitude and area. If either value falls below the minimum
amplitude or minimum area, the peak is disregarded and no point is assumed at that location.

Threshold level selection (left) and Peak amplitude and area (right)

Multiple versus single transition
EasyGauge can measure several edge points in a single go and retrieve all results afterwards
while in multiple transition mode.

Open eVision User Guide PART III Matching and Measurement
Tools

epointgauge-center.htm
epointgauge-tolerance.htm
epointgauge-transitiontype.htm
epointgauge-transitionchoice.htm
epointgauge-transitionindex.htm
epointgauge-threshold.htm
epointgauge-minamplitude.htm
epointgauge-minarea.htm
epointgauge-thickness.htm
epointgauge-smoothing.htm
epointgauge-rectangularsamplingarea.htm
epointgauge-measure.htm
epointgauge-valid.htm
eshape-actualshape.htm
epointgauge-center.htm
epointgauge-nummeasuredpoints.htm
epointgauge-getmeasuredpoint.htm
epoint-class.htm
epointgauge-getmeasuredpeak.htm
epeak-struct.htm
epeak-area.htm
epeak-amplitude.htm
epeak-start.htm
epeak-length.htm
epeak-center.htm
epointgauge-minamplitude.htm
epointgauge-minamplitude.htm
epointgauge-minarea.htm

150

Multiple transition (left) versus single transition (right)

You can select the single most relevant transition based on 4 criteria: the highest peak, the peak
with the largest area, the peak closest to the gauge center, or the N-th peak encountered
starting from one tip of the gauge.

Choice: (1) best area, (2) best amplitude, (3) closest, (4) 3rd from the start

NOTE: When several peaks have the same value (same area, same amplitude...), the last peak is
selected.

Positive or negative peak selection
Peak selection can also be refined by choosing the transition polarity: White to Black or Black to
White (i.e. positive or negative peak), or indifferent.

Black to white, white to black or indifferent polarities

Prefiltering
Prefiltering the image locally can reduce noise effects.
Transverse (lengthwise) filtering averages several parallel lines when sampling the image.
Longitudinal (crosswise) uniform filtering can also be applied to the resulting profile curve.

Open eVision User Guide PART III Matching and Measurement
Tools

151

Thick point gauge for filtering

Transverse Filtering
Transverse filtering places parallel line segments in either a parallelogram or a rectangle
(default). This behavior can be toggled.
Parallelogram mode is faster than rectangular if the angle is close to 0° or 90°, or thickness is
less than 5. If thickness=1, no difference exists between the two modes.
thickness determines the number of parallel lines.
sampling area is the smallest region containing all the parallel line segments.

Rectangular sampling area (left) and Parallelogram sampling area (right)

Point Probe Position
The expected nominal position of a point gauge is specified by its center, orientation angle with
respect to the X-axis, and length tolerance that the point position can vary.

The results are the coordinates of the located points (the actual location) and the strength of
the transition (amplitude and area).
Low values indicate a weak edge, possibly corresponding to an unreliable or inaccurate
measurement.

Tuning Point Measurement Parameters for unclear edges

The EasyGauge default parameters and working modes are good for clear edges. More complex
situations may need parameter tuning.

1. Set the gauge point location and tolerance.
The center position and orientation are easy to decide based on a sample
image or on coordinate considerations. The tolerance depends on the edge
position variations. A larger tolerance increases the likelihood of hitting an
edge, but it may be a false edge or extraneous feature.
2. Decide whether noise reduction is required. Lay the gauge over the desired
location and observe the profile curve and its derivative (play with the filtering
parameters while looking at the plotted curve). The curve regularity gives an
indication of the spread of the gray-level values.

Open eVision User Guide PART III Matching and Measurement
Tools

epointgauge-thickness.htm
epointgauge-rectangularsamplingarea.htm

152

When these coefficients are set, the gray-level profile will not change anymore.

3. Set the threshold value to be low enough for useful parts of the peaks to
cover enough pixels (to achieve better sub-pixel accuracy), but not lower than
the ambient image noise.

4. Remove weak or false edges using the list of peak amplitudes and areas.
Plotting these values along with good and extraneous peaks can help find
appropriate peak rejection limits.

5. Choose whether all transition points are needed or just the most relevant. If
all are required, they can be queried one after another. Otherwise, a point
selection strategy should be chosen based on strength, order or transition
polarity (black to white and/or conversely).

2.4. Find Shapes Using Geometric Models

The predefined geometric models ELineGauge, ECircleGauge, ERectangleGauge, EWedgeGauge or
EPolygonGauge can be fit over the edges of an object. The targeted edge must be defined, and
points sampled along it at regularly spaced point measurement gauges. Model fitting in the
least square sense can be applied.

● Line: Measures position and orientation of straight edges.

● Circle: Measures position and curvature of a circle or arc.

● Rectangle: Measures position, orientation and size of a rectangle.

Open eVision User Guide PART III Matching and Measurement
Tools

elinegauge-class.htm
ecirclegauge-class.htm
erectanglegauge-class.htm
ewedgegauge-class.htm
epolygongauge-class.htm

153

● Wedge: Measures position, orientation and size of a ring/ disk sector / curvilinear rectangle.

● Polygon: Fits a polygon to an object and measures the exact position of the polygon, the
relative orientation of the edges or the path of the contour.

All gauge types share these common features:

● Point sampling
□ Point gauges are placed along the edges and point measurement carried out at regularly

spaced spots, which can be adjusted differently per side in rectangle and wedge gauges.
All point measurement parameters and operating modes are available.

□ SamplingStep sets the spacing of point location gauges along the model.
□ NumSamples returns the number of points sampled during the model fitting operation.

Sampling paths and sampled points

● Model fitting
□ The model is adjusted to minimize error residue and provide the best edge parameter

estimates. Rectangles and wedges have parallelism and concentricity constraints. Image
shows sampled points and fitted line.

Open eVision User Guide PART III Matching and Measurement
Tools

elinegauge-samplingstep.htm
elinegauge-numsamples.htm

154

● Outlier rejection
□ After model fitting, some points will be too far away from the fitted model and may harm

location accuracy. EasyGauge can tag them as outliers to be ignored using the
FilteringThreshold property.

□ The outlier elimination process can be repeated several times using NumFilteringPasses.
The number of valid sample points remaining after a model fitting operation is kept in
NumValidSamples.
The average distance of these points to the fitted model is returned by AverageDistance.

● Skip range
□ The skip ranges define exclusion ranges for the paths. The sample point indexes in the

skip ranges are not taken into account to fit the model.
□ The skip ranges applie to all gauge models: line, circle, rectangle, wedge and polygon.
□ To define several skip ranges, use AddSkipRange.
□ To manage the skip ranges, use RemoveSkipRange, RemoveAllSkipRanges and GetSkipRange.
□ You must call the method Measure to take a skip range into account.
□ Use the attribute EDrawingMode_PointsInSkipRange with the method Draw to display the

skipped points.

2.5. Gauge Manipulation: Draw, Drag, Plot, Group

EasyGauge provides means to graphically interact with gauges to place and size them, combine
them as a hierarchy of grouped items, and store/retrieve them and all working parameters
to/from model files.

Draw

Draw gives a graphical representation of a gauge. Drawing is done with the current pen in the
device context associated with the desired window. Depending on the operation, handles may
be displayed.

Open eVision User Guide PART III Matching and Measurement
Tools

elinegauge-filteringthreshold.htm
elinegauge-numfilteringpasses.htm
elinegauge-numvalidsamples.htm
elinegauge-averagedistance.htm
elinegauge-class.htm
ecirclegauge-class.htm
erectanglegauge-class.htm
ewedgegauge-class.htm
epolygongauge-class.htm
elinegauge-addskiprange.htm
elinegauge-removeskiprange.htm
elinegauge-removeallskipranges.htm
elinegauge-getskiprange.htm
elinegauge-measure.htm
edrawingmode-enum.htm
elinegauge-draw.htm

155

Drag

An operator can drag a gauge interactively over an image. Several dragging handles are
available.

● HitTest determines when the mouse cursor is over a handle. When it is, the cursor shape
should be changed for feedback, and a drag can take place.

● Drag moves the handle and the corresponding gauge accordingly.

In addition, if you are interacting with a polygon gauge, you can:

● Use the method EPolygonGauge.AddVertexAtDisplayPosition (derived from
EPolygonShape.AddVertexAtDisplayPosition) to create a new vertex at a chosen position
(typically at a mouse click)

● Use the method EPolygonGauge.RemoveVertexAtDisplayPosition (derived from
EPolygonShape.RemoveVertexAtDisplayPosition) to remove a vertex.

Plot

EasyGauge can Plot gray-level values along the sampled paths and/or its derivative - useful for
parameter tuning.

● Point measurement gauges can plot after calling Measure.

● Model fitting gauges can plot after calling MeasureSample with an index argument that lies
between 0 and GetNumSamples-1 (included).

● To view the corresponding sampling path, use the method Draw with mode EDrawingMode_
SampledPath.

Group

Measurement gauges can be grouped (their relative placement remains fixed) to form a
dedicated tool that can be moved (translated and rotated) to follow the movement of inspected
items / probes before computing measurements.

● Attach associates a gauge to a mother gauge or EFrameShape object.

● NumDaughters, GetDaughter, or Mother retrieves information relative to attached daughters or
mother.

● Detach, DetachDaughters dissociates the gauge or daughters from the mother.

Open eVision User Guide PART III Matching and Measurement
Tools

epolygonshape-addvertexatdisplayposition.htm
epolygonshape-removevertexatdisplayposition.htm
epointgauge-measure.htm
eshape-attach.htm
eframeshape-class.htm
eshape-numdaughters.htm
eshape-getdaughter.htm
eshape-mother.htm
eshape-detach.htm
eshape-detachdaughters.htm

156

2.6. Calibration and Transformation

Field-of-view calibration

Calibration establishes the relationship between real-world point
coordinates and image pixels. A simple calibration model computes faster, a
repeatable part position is easier to locate.

The Raw sensor coordinate system starts from upper left and extends
rightwards and downwards.
The range of abscissas is 0 to width-1 and the range of ordinates is 0 to
height-1 where integer coordinate values correspond to pixel centers.

The Centered sensor coordinate system starts at the center ([width-1]/2,
[height-1]/2 in the Raw system) and extends rightwards and upwards.

The real world 3D coordinates are defined in a 2D reference frame tied to a
reference plane. The origin and direction of the axis are normally aligned
with major features of the inspected parts.

Before World-to-Sensor Transform

Before converting from world to sensor coordinates, sources of distortion should be eliminated:
□ adjust sweep frequency or scanning speed to avoid non-square pixels.
□ adjust optical alignment to minimize perspective effect. The field of view should be

parallel to the sensor plane.
□ use long focal distances and good quality lenses to minimize Optical distortion.
□ use appropriate scale factor based on lens magnification, observation distance and

focusing.
□ minimize skew and translation effects by secure fixtures, and part-movement /

acquisition-triggering synchronization.

Effects of World-to-Sensor Transform

● No calibration. World and sensor coordinates are identical.

● Translated calibration: The coordinate origin can be moved. World
coordinates correspond to pixel units.

● Isotropic scaling (square pixels). A scale factor converts pixel values to
physical measurements.

Open eVision User Guide PART III Matching and Measurement
Tools

157

● Anisotropic scaling (non-square pixels). Uses two scale factors with pixel
aspect ratio (X /Y) in the range [-4/3, -3/4] (or [3/4, 4/3]). Pixels are always
displayed as square, so the image appears stretched.

● Scaled and skewed (square pixels). Real-world axis aligns with rotated
inspected part using translation, rotation and scaling.

● Scaled and skewed (non-square pixels). Distortion is apparent. Occurs when
camera scan speed does not match pixel spacing.

● Perspective distortion causes further away objects to look smaller; lines
remain straight but angles are not preserved.

● Optical distortion causes cushion or barrel appearance of rectangles.

● Combined distortions result in a complex, non linear, transform from real-
world to sensor spaces.

2.7. Calibration Using EWorldShape

The EWorldShape object can calibrate the whole field of view (in given imaging conditions with
fixed camera placement and lens magnification), if the optical setup is modified.
EWorldShape computes appropriate calibration coefficients and transforms measurement gauges
that are tied to it.
It can set world-to-sensor transform parameters, perform conversions from and to either
coordinate system, determine unknown calibration parameters, and save the parameters of a
given transform for later reuse.

After calibration EWorldShape can perform coordinate transform for arbitrary points using
SensorToWorld and WorldToSensor to:

□ measure non-square pixels and rotated coordinate axis.
□ correct perspective and optical distortion, with no performance loss.

There are several ways to obtain the calibration coefficients:

Open eVision User Guide PART III Matching and Measurement
Tools

eworldshape-class.htm
eworldshape-class.htm
eworldshape-sensortoworld.htm
eworldshape-worldtosensor.htm

158

Estimate (feasible if no distortion correction is required and accuracy
requirements are low)

To estimate the calibration coefficients either locate the limits of the field of view and divide the
image resolution by the field of view size, or use the following procedure:

1. Take a picture of the part to be inspected or a calibration target (e.g. rectangle).

2. Locate feature points such as corners in the image (by the eye) and determine their
coordinates in pixel units —let (i,j).

3. Use the euclidean distance formula to derive the calibration coefficient:
where C is a calibration coefficient, in pixels per unit, and D is the world distance between the
corresponding points, in units.

4. For non-square pixels repeat this operation for pairs of horizontal and vertical points.

To estimate a skew angle, apply this formula to two points on the X-axis in the world system:

Estimating scale factors and skew angle

When the calibration coefficients are available, use SetSensor to adjust them and set the
calibration mode, or set them individually using: SetSensorSize, SetFieldSize, SetResolution,
SetCenter, SetAngle.

Pass a set of reference points (landmarks) to a calibration function

Locate at least 4 landmarks and obtain their coordinates in sensor (using image processing) and
world coordinate systems (actual measurements). More landmarks give more accurate
calibration.

The resulting pixels aspect ratio (X resolution / Y resolution) must be in the range [-4/3, -3/4] (or
[3/4, 4/3]).

Use the method EWorldShape::AddLandmark to add reference points, then use
EWorldShape::AutoCalibrateLandmarks to calculate the calibration.

Analyze a Calibration target

A calibration target can be automatically analyzed to get an appropriate set of landmarks. It is
an easy way to achieve automatic calibration, provided an appropriate procedure is available to
extract the desired landmark point coordinates.

Open eVision relies on the use of a specific target holding a rectangular grid of symmetrical dots
(of any shape) with no other object on the grid.

Open eVision User Guide PART III Matching and Measurement
Tools

eworldshape-addlandmark.htm
eworldshape-autocalibratelandmarks.htm

159

Dot Grid based calibration example

1. Grab an image of the calibration target in such a way that it covers the whole field of view (or
restricts the image of view to an ROI where only dots are visible).

2. Apply blob analysis to extract the coordinates of the centers of the dots, as can be done by
EasyObject.

3. Pass all points detected to AddPoint (sensor coordinates only).

4. Call RebuildGrid to reconstruct a grid to calibrate a field of view using an iterative algorithm
which computes the world coordinates of each dot.

a. The grid points nearest to the gravity center (g) of grid points are selected (g1 and g2) to
form the first reference oriented segment, of length A.

b. Starting from the extremity of the reference segment (g2), the algorithm determines
3 tolerance areas (white squares in the figure), in perpendicular directions. The tolerance
areas are centered at a distance A (length of the reference segment) from (g2). They are
square, with a side-length of A.
The algorithm searches for 1 neighboring point, in each of the 3 tolerance areas.
The grid will be correctly calibrated if each tolerance area contains a neighboring point.

c. The 3 perpendicular segments are the references of the next iterative searches. The
algorithm goes back to step 2.

5. Call Calibrate.

Open eVision User Guide PART III Matching and Measurement
Tools

eworldshape-addpoint.htm
eworldshape-rebuildgrid.htm

160

If the grid exhibits too much distortion, grid reconstruction does not work as expected. The
following errors could happen:

1. A tolerance area does not contain a neighboring point (red square in the figure).

2. A tolerance area contains more than one neighboring point.

3. The point in the tolerance area is not the correct one. For instance, the point might be
diagonally connected (red point in the figure).

TIP
Use the method EWorldShape::AutoCalibrateDotGrid to automatically
perform the process above.

2.8. Advanced Features

The field-of-view calibration model can be tuned using these parameters:

Sensor width and height

The sensor width and sensor height give the logical image size, in pixels (always integers).

Field-of-view width and height

The field-of-view (f-o-v) width and height give the actual image size, in length units, i.e. the size
of the rectangle corresponding to the image edges in the world space. These values are related
to the pixel resolution by the following equations:

f-o-v width = pixel width * sensor width

f-o-v height = pixel height * sensor height

or

sensor width = f-o-v width * horizontal resolution

sensor height = f-o-v height * vertical resolution

By default pixel height is not specified, the pixels are assumed to be square (pixel width = pixel
height).

Open eVision User Guide PART III Matching and Measurement
Tools

eworldshape-autocalibratedotgrid.htm
eworldshape-sensorwidth.htm
eworldshape-sensorheight.htm
eworldshape-fieldwidth.htm
eworldshape-fieldheight.htm

161

Ratio

Anisotropic aspect ratio

Center abscissa and ordinate

The center abscissa (x) and ordinate (y) indicate the image origin point (world coordinates (0,0)).
Default is the image center.

Skew angle

The skew angle is the angle formed by the real-world reference frame (X-axis) and the image
edge (horizontal). The default is no skew.

Skew angle

NOTE
When the pixels are not square, the EWorldShape object can convert the angle
between the world and sensor spaces.

X and Y tilt angles

The X and Y tilt angles describe the viewing plane direction. They correspond to the required
rotations around X and Y axis that bring the Z axis parallel to the optical axis.

Tilt X and tilt Y angles

Open eVision User Guide PART III Matching and Measurement
Tools

eworldshape-centerx.htm
eworldshape-centery.htm
eworldshape-angle.htm
eworldshape-class.htm
eworldshape-tiltxangle.htm
eworldshape-tiltyangle.htm

162

Perspective strength

The perspective strength gives a relative measure of the perspective effect. The shorter the focal
length, the larger the value.

Weak and strong perspective

Distortion strength

Distortion strength gives a relative measure of radial distortion in the image corners, that is the
ratio of image diagonal length with and without distortion.

Positive and negative distortion

Calibration mode, expressed as a combination of options, can be accessed via CalibrationModes.

Effect of the Calibration Coefficients

No calibration coefficient: All coefficients combined.

2.9. Unwarp an Image

An EWorldShape object manages a field-of-view calibration context. Such an object is able to
represent the relationship between world coordinates (physical units) and sensor coordinates
(pixels), and account for the distortions inherent in the image formation process.

Open eVision User Guide PART III Matching and Measurement
Tools

eworldshape-perspectivestrength.htm
eworldshape-distortionstrength.htm
ecalibrationmode-enum.htm
eworldshape-calibrationmodes.htm

163

Image calibration is an important process in quantitative measurement applications. It
establishes the relation between the location of points in an image (pixel indices) and the actual
positions of those points in the real world, on the inspected item.

Calibration can be setup by providing explicit calibration parameters of the calibration model,
or a set of known points (landmarks), or a calibration target.

The goal of calibration is twofold:

● To gain independence with respect to the viewing conditions (part placement in the field of
view, lens magnification, sensor resolution, ...), letting you describe the inspected item once
for all using absolute measurements.

Single model versus multiple viewing conditions

● To correct some distortion related to the imaging process (perspective effect, optical
aberrations, ...).

Removal of image distortion

The pixel indices in an image are usually integer numbers, but fractional values can occur when
using sub-pixel methods. They are normally obtained by processing an image and locating
known feature points. These values are called sensor coordinates.

Feature point in sensor space

The world coordinates describe the location of points on the inspected item are expressed in an
appropriate length measurement unit.
The world coordinates are actual dimensions, usually gathered from design drawings or by
mechanical measurements.
They require a reference frame to be defined.

Open eVision User Guide PART III Matching and Measurement
Tools

164

Reference frame in world space

Unwarp

Unwarp an image using Unwarp, SetupUnwarp and UnwarpAfterSetup.
Using a lookup table before unwarping may speed up the process.

Distorted vs. Unwarped image

Open eVision User Guide PART III Matching and Measurement
Tools

eworldshape-unwarp.htm
eworldshape-setupunwarp.htm

165

3. EasyFind - Matching Geometric
Patterns

3.1. Introduction

3.2. Purpose and Principles

Purpose

Based on an innovative feature-point technology, EasyFind is a matching tool designed to
rapidly locate one or more instances of a reference model in an image. With an adjustable
accuracy up to sub-pixel level, it reports very precise information about the instances found,
such as their location, rotation angle, scale and matching score.

● EasyFind supports “don't-care” areas, a feature that allows the creation of complex pattern
shapes.

● Fast Processing and Improved Robustness:

EasyFind is based on a new feature-point technology. Instead of comparing the reference
model to the sample image pixel-wise, it carefully selects relevant feature points in the
model. This method allows EasyFind to match only the areas that convey valuable
information, resulting in faster processing and much improved robustness.

● Training on vector patterns:

In this mode, the learning is done on collections of 2D geometrical shapes rather than on
rasterized patterns. The learning model is constructed using the new class EVectorModel
either by loading it from a DXF file or, programmatically, by using Open eVision EShape
objects.

This extension is well- suited to find objects with a known geometry.

Open eVision User Guide PART III Matching and Measurement
Tools

166

Example of a model (left) and 3 found instances (right)

TIP
Compared to EasyMatch, EasyFind is computationally fast, robust against
noise, occlusion, blurring, missing parts and illumination variations.

Edge feature points

● EasyFind uses edge feature points to find instances in a search field:
□ An edge feature point is an abrupt change of gray level between two regions.
□ It indicates that there is an edge at this location in the search field.

● To start the finding function, EasyFind needs either a model image on which it computes the
edge feature points or directly a geometrically-defined feature model.

NOTE: The optimal model depends on the type of pattern that you are searching.

An image model and the computed edge feature points

A vector model and the computed edge feature points

● The point-by-point scores improve the robustness and the computation time of the finding
phase.

● To use this tool:
□ The models must be well contrasted with sharp edges.
□ They should be substantially different from the rest of the expected search fields.
□ They can be scaled or rotated.

Open eVision User Guide PART III Matching and Measurement
Tools

167

● EasyFind is very robust regarding:
□ Blurring
□ Noise
□ Occlusion
□ Illumination variation

Model Rotation Occlusion Blurring

3.3. Workflow

Learn the model from images

Open eVision User Guide PART III Matching and Measurement
Tools

168

Learn the model from vectors

Find instances of the model

Open eVision User Guide PART III Matching and Measurement
Tools

169

3.4. Using EasyFind

3.5. Learn the Model from Images

Learning

EasyFind detects in images the instances of a reference model.

● The reference model is a set of all the feature points that EasyFind computes during the
learning process:
□ EasyFind can extract these points from a bitmap representation of the pattern as

described below.
□ Or it can use the feature points that are directly given by geometrical shapes (see "Learn

the Model from Vectors" on page 172).

Process

To learn a model in an image with EasyFind:

1. Create an EPatternFinder instance for the model and an EFoundPattern vector for the results.

Code

EPatternFinder finder;
vector<EFoundPattern> foundPattern;

Studio

In the main menu:
1. EasyFind > New EasyFind Tool > name your tool.

Open eVision User Guide PART III Matching and Measurement
Tools

170

2. Load the image with your model.

Code

EImageBW8 image;
image.Load("Fiducial 1.tif");

Studio

In the tool window, in the Model tab:
1. Open your Source Image.
2. Select your image in the browse dialog (Fiducial 1.tif).

3. Attach an ROI to your image.

Code

EROIBW8 pattern;
pattern.Attach(&image, 520, 390, 130, 120);

Studio

In the image window:
1. Right-click > New ROI > move and resize in the image > Close.

4. According to your application and needs, adjust the "Learning Parameters" on page 180.

5. To adjust the model shape and to improve your find results, you can add "Don't Care Areas".

2 See "Use "Don't Care Areas" in the Model" on page 178.

Open eVision User Guide PART III Matching and Measurement
Tools

171

6. Select the source image and learn the model.

Code

finder.Learn(&pattern);

Studio

In the tool window, in the Model tab:
1. Select the ROI as your Source Image.
2. Learn
3. The result is displayed on the image.

7. If you want to reuse it later, save the new model (.fnd file).

Code

finder.Save("myModel.fnd");

Studio

In the tool window, in the Model tab:
1. In the Model File area > Save As....

► EasyFind creates and save your model.

Use this model to perform:
□ "Find Instances of the Model" on page 174

Open eVision User Guide PART III Matching and Measurement
Tools

172

3.6. Learn the Model from Vectors

Learning

EasyFind detects in images the instances of a reference model.

● The reference model is a set of all the feature points that EasyFind computes during the
learning process:
□ EasyFind can extract these points from a bitmap representation of the pattern (see

"Learn the Model from Images" on page 169).
□ Or it can use the feature points that are directly given by geometrical shapes as described

below.

● To learn a model from geometrical shapes:
□ Use the class EVectorModel to hold a collection of shapes as a vector model.
□ Load the EVectorModel from an external DXF file or use the Open eVision API to define it.

Process using an EPolygonShape

NOTE
- This feature is not available in Open eVision Studio.
- You can also use the sample program EasyFindVectorLearn.

To learn a model from geometrical shapes with EasyFind:

1. Create an EPatternFinder instance for the model.

Code

// EPatternFinder constructor
EPatternFinder finder;

2. Create your vector model and get its root shape.

Code

// EVectorModel constructor
EVectorModel myModel;
// Get the root EFrameShape of the model
EFrameShape& shapeMother = myModel.GetRoot();

Open eVision User Guide PART III Matching and Measurement
Tools

../../../../../Content/05 Resources/07 Sample Programs/03 Matching and Measurement/EasyFindVectorLearn.htm

173

3. Create your polygon.

Code

// EPolygonShape constructor
EPolygonShape polygon;
// Define the vertices of a polygon
std::vector<EPoint> vertices = { {0.f, 0.f}, {1.f, 0.f}, {1.f, 1.f}, {0.f, 1.f} };
// Define the EPolygonShape
polygon.SetPolygon(EPolygon(vertices, true));

4. Attach the polygon to the root shape and adjust its parameters according to your application
and needs.

2 See "Vector Model Parameters" on page 193.

Code

// Attach the EPolygonShape to the root EFrameShape
polygon.Attach(&shapeMother);
// Sets the polarity of the EPolygonShape
polygon.SetProperty("polarity", "direct");

5. Learn the model.

Code

finder.Learn(&pattern);

6. If you want to reuse it later, save the new model (.fnd file).

Code

finder.Save("myModel.fnd");

► EasyFind creates and save your model.

Use this model to perform:
□ "Find Instances of the Model" on page 174

Process using a DXF file

NOTE
This feature is not available in Open eVision Studio.

● Alternatively to define the geometrical shapes of your model, you can load an EVectorModel
from an external DXF file.

Once loaded, the EVectorModel:
□ Holds a collection of shapes.
□ Holds a center position depending on the method used for the definition of the DXF.

1. Create an EPatternFinder instance for the model.

Code

// EPatternFinder constructor
EPatternFinder finder;

Open eVision User Guide PART III Matching and Measurement
Tools

evectormodel-class.htm
evectormodel-class.htm

174

2. Create your vector model.

Code

// EVectorModel constructor
EVectorModel myModel;

3. Load the model from the DXF file.

Code

// Load the model from a dxf file
myModel.LoadDXF("myModel.dxf");

4. The scale and polarity attributes are not part of the DXF file. If necessary, add them to the
EVectorModel.

2 See "Vector Model Parameters" on page 193.

5. Learn the model.

Code

finder.Learn(&pattern);

6. If you want to reuse it later, save the new model (.fnd file).

Code

finder.Save("myModel.fnd");

► EasyFind creates and save your model.

Use this model to perform:
□ "Find Instances of the Model" on page 174

3.7. Find Instances of the Model

Finding

EasyFind detects the instances of your reference model in your images.

These instances can be highly-degraded due to noise, blur, occlusion, missing parts or unstable
illumination conditions. To optimize the finding process, adjust the search parameters and
check what EasyFind has found in the result information.

TIP
To speed up the search process, you can also use multicore processing. This
is especially interesting when you use EasyFind with angle and scale
tolerances.

Open eVision User Guide PART III Matching and Measurement
Tools

evectormodel-class.htm

175

Process

2 Create your model as described in "Learn the Model from Images" on page 169 or "Learn the
Model from Vectors" on page 172.

● In Open eVision Studio, if you just created a model following "Learn the Model from Images"
on page 169, go directly to step 3.

1. Create an EPatternFinder instance for the model and an EFoundPattern vector for the results.

Code

EPatternFinder finder;
std::vector<EFoundPattern> foundPattern;

Studio

In the main menu:
1. EasyFind > New EasyFind Tool > name your tool.

2. Open an existing model saved in a .fnd file:

Code

finder.Load("myModel.fnd");

Studio

In the tool window, in the Model tab:
1. In the Model File area > Load....

Open eVision User Guide PART III Matching and Measurement
Tools

176

3. According to your application and needs, adjust the following parameters:
□ SetAngleBias and SetAngleTolerance: search for instances in this angle range.
□ SetScaleBias and SetScaleTolerance: search for instances in this scale range.

2 see "Finding Parameters" on page 185 for more details.

Code

finder.SetAngleBias(45.00f);
finder.SetAngleTolerance(90.00f);
finder.SetScaleBias(1.20f);
finder.SetScaleTolerance(0.30f);

Studio

In the Allowances tab:
1. In the Angle (Deg) area, set the Bias and the Tolerance on the angle.
2. In the Scale (%) area, set the Bias and the Tolerance on the scale.

4. Load your image(s).

Code

EImageBW8 srcImage;
srcImage.Load("...\\Sample Images\\EasyFind\\Fiducial 2 (Skewed).tif");

Studio

In the tool window, in the Search Field tab:
1. Open your Source Image.
2. Select one or several images in the browse dialog (Fiducial 2->8 xxx.tif).
3. Name your image set.
4. In the Drawing area, check all settings to display them on the found instances.

Open eVision User Guide PART III Matching and Measurement
Tools

eocr2-charsheight.htm
eocr2-charsheight.htm
eocr2-textpolarity.htm
eocr2-charsheight.htm

177

5. Find the instances in your image set.

Code

foundPattern = finder.Find(&srcImage);

Studio

In the Search Field tab:
1. Find

6. Display the results.

Code

float score= foundPattern[0].Score;
float centerX= foundPattern[0].Center.X;
float centerY= foundPattern[0].Center.Y;

Studio

In the tool window, in the Search Field tab:
1. The instance location and feature points are highlighted in the current source image.
2. Use the Load Previous File and Load Next File to browse the images of your set.
3. Click on Results to open the result windows.
4. The result windows displays the score and the center coordinates of the found instance(s).

Open eVision User Guide PART III Matching and Measurement
Tools

178

3.8. Open eVision Studio Tools

3.9. Use "Don't Care Areas" in the Model

NOTE
The "don't care areas" are deprecated:
- Instead, use an ERegion (see "Arbitrarily Shaped ROI (ERegion)" on page
35).
- As ERegions are not supported in Open eVision Studio, you can still use
"don't care areas" as described below to improve the finding results.

Don't care areas

● Use "don't care areas" in geometric pattern matching to define in the image the meaningful
features only.

● Create a "don't care areas" mask image to remove from the search process the areas that
may change from image to image, such as text and numbers:
□ "0" values indicate ignored areas.
□ "255" values indicate areas taken into account.

2 For more details about the mask, see "Flexible Masks" on page 57.

Open eVision User Guide PART III Matching and Measurement
Tools

179

Process

2 Create your model as described in "Learn the Model from Images" on page 169.

This example is based on the file Solder Pad 1.tif with:
□ An ROI positioned at (200, 130, 190, 130)
□ Max Instances = 4

(1) Model - (2) Instances

1. Add a Don't Care Area to improve your model.

Studio

In the tool window, in the Don't Care Areas tab:
1. Blacken Inside > Rectangle.
2. Draw a rectangle over the central number to remove this part from the model.

Open eVision User Guide PART III Matching and Measurement
Tools

180

2. Learn the model.

Studio

In the tool window, in any tab:
1. Learn
2. The result is displayed on the image.

► In the example, the find results are better with the don't care area than without as follows:

Results without (left) and with (right) don't care areas

► EasyFind creates your model.

Use this model to perform:
□ "Find Instances of the Model" on page 174

3.10. Setting the Parameters

3.11. Learning Parameters

2 The following parameters are set and used in the process: "Learn the Model from Images" on
page 169.

Open eVision User Guide PART III Matching and Measurement
Tools

181

TIP
These parameter settings are saved together with your model in the model
file.

Pattern type

● Use the parameter SetPatternType to set the pattern type as consistent edges (default) or
thin structures.

EasyFind supports 2 pattern types:

● Use Consistent edges when:
□ Your model is well contrasted with sharp edges.
□ Your model is substantially different from the rest of the expected search fields.

● Use Thin structures when:
□ The edges of your model are consistent between thin elements and regions.
□ The contrast is the same for each thin element.

Examples of thin structures

Code

finder.SetPatternType(PatternType_ConsistentEdges);

Open eVision User Guide PART III Matching and Measurement
Tools

epatternfinder-patterntype.htm

182

Studio

In the Model tab:
1. Select the Pattern Type.
2. Learn

Light Balance

● Use the parameter SetLightBalance to adjust the gray-level threshold of the model so that it
fits the useful parts of the pattern.
□ In Open eVision Studio, the preview of the model is automatically updated when you

adjust the light balance.
□ Once you have the correct light balance, learn your model again.

► Example of the computed feature points for different light balance values:

Open eVision User Guide PART III Matching and Measurement
Tools

epatternfinder-lightbalance.htm

183

Code

finder.SetLightBalance(0.50f);

Studio

In the Model tab:
1. Set the Light Balance and click Learn.

Or
2. Move the Light Balance slider. The result is immediately displayed on your model.

Thin structure mode (advanced)

If the Pattern Type is Thin Structure:

● Use the parameter SetThinStructureMode to adjust the gray-level threshold of the model so
that it fits the useful parts of the pattern:
□ Auto: EasyFind chooses automatically the best contrast for thin elements.
□ Dark: EasyFind selects thin elements darker than their neighborhood.
□ Bright: EasyFind selects thin elements brighter than their neighborhood.

Code

finder.SetThinStructureMode(ThinStructureMode_Auto);

Open eVision User Guide PART III Matching and Measurement
Tools

epatternfinder-thinstructuremode.htm
ethinstructuremode-enum.htm
ethinstructuremode-enum.htm
ethinstructuremode-enum.htm

184

Studio

If the Pattern Type is Thin Structure in the Model tab:

In the Advanced tab:
1. Select the Thin Structure Mode.
2. Learn

Number of feature points and reduction strength (advanced)

&
More feature points lead to a finer matching and a better positioning accuracy but also to a
longer processing time.

● Use the parameters SetMinFeaturePoints and SetMaxFeaturePoints to adjust the number of
feature points used to match the patterns.
□ By default, this number is computed automatically (between 8 and 1024).

● Use the parameter SetReductionMode to select the reduction mode:
□ Auto (default): the reduction strength is computed automatically.
□ Manual: use the parameter SetReductionStrength to set the reduction strength from more

accuracy (0.0) to more speed (1.0).

Code

finder.SetMinFeaturePoints(8);
finder.SetMaxFeaturePoints(1024);
finder.SetReductionMode(EReductionMode_Manual);
finder.SetReductionStrength(0.80f);

Open eVision User Guide PART III Matching and Measurement
Tools

epatternfinder-minfeaturepoints.htm
epatternfinder-maxfeaturepoints.htm
epatternfinder-reductionmode.htm
ereductionmode-enum.htm
ereductionmode-enum.htm
epatternfinder-reductionstrength.htm

185

Studio

In the Advanced tab:
1. Set the Minimum Feature Points and the Maximum Feature Points.
2. Reduction Strength:

- Check Auto for automatic computation.
Or
- Uncheck Auto.
- Set the Reduction Strength or move the slider between Max Accuracy and Max Speed.

3. Learn

3.12. Finding Parameters

2 The following parameters are set and used in the process: "Find Instances of the Model" on
page 174.

Open eVision User Guide PART III Matching and Measurement
Tools

186

Maximum number of expected instances

● Use the parameter SetMaxInstances to set the maximum number of instances that EasyFind
returns.

► In this example the number was 3:

Code

finder.SetMaxInstances(3);

Studio

In the Search Field tab:
1. Set the Max Instances.

Open eVision User Guide PART III Matching and Measurement
Tools

epatternfinder-maxinstances.htm

187

Minimum score and contrast

If the Pattern Type is Thin Structure:

&
The score depends on the Contrast:

● Normal: the score is normalized between -1 and 1:
□ 1 means a perfect match with the same contrast as the model.
□ 0 means no match.
□ -1 means a perfect match but with the inverted contrast compared to the model.

● Inverse: the score is normalized between -1 and 1:
□ 1 means a perfect match with the inverted contrast compared to the model.
□ 0 means no match.
□ -1 means a perfect match but with the same contrast as the model.

● Any: the score is normalized between 0 and 1:
□ 1 means a perfect match with the same contrast or the inverted contrast compared to

the model.
□ 0 means no match.

&
Global vs point by point contrast:

● Global: the score is computed as the normalized sum of the correlation of each point.

► The feature points with a high gradient have more weight.

► Global gives higher score on incomplete instances.

● Point by point: the score is computed as the mean of the normalized correlation of each
point.

► Each feature point has the same weight.

► Point by point gives higher score on images with irregular lighting and instances with
variable contrast.

● Use the parameter SetMinScore to set the minimum score for an instance to be accepted and
returned.
□ The default value is -1.0 (no score filtering).

● If the Pattern Type is Consistent Edges, use the parameter SetContrastMode to select the
contrast mode.
□ The default value is Normal.

Code

finder.SetMinScore(0.90f);
finder.SetContrastMode(EFindContrastMode_Normal);

Open eVision User Guide PART III Matching and Measurement
Tools

epatternfinder-minscore.htm
epatternfinder-contrastmode.htm

188

Studio

In the Search Field tab:
1. Set the Min Score.
2. Select the Contrast.

Maximum overlap

EasyFind can filter out instances that completely or partially overlap with each other.

● Use the parameter SetMaxOverlap to defined the allowed overlap.
□ The maximum overlap is defined as the area of both instances intersection divided by the

area of the smallest instance.
□ Set the parameter between 0.0 (no overlap allowed) and 1.0 (complete overlap allowed).
□ The default value is 1.0 (complete overlap allowed).

Code

finder.SetMaxOverlap(0.50f);

Open eVision User Guide PART III Matching and Measurement
Tools

epatternfinder-maxoverlap.htm

189

Studio

In the Search Field tab:
1. Set the Max Overlap.

Angle and scale

The angle and scale ranges are defined by a bias and a tolerance:
□ For example, with an angle bias of 20° and an angle tolerance of 5°, EasyFind returns

instances with an angle between 15° and 25° with respect to the learned model
(20° ± 5°).

□ The default values are 100.0 for the scale bias and 0.0 for the other parameters. That
means EasyFind returns only patterns with no rotation nor scaling.

● Use the parameters SetAngleBias and to SetAngleTolerance to set the angle range.

● Use the parameters SetScaleBias and to SetScaleTolerance to set the scale range.

Code

finder.SetAngleBias(20.00f);
finder.SetAngleTolerance(5.00f);
finder.SetScaleBias(100.00f);
finder.SetScaleTolerance(20.00f);

Open eVision User Guide PART III Matching and Measurement
Tools

epatternfinder-anglebias.htm
epatternfinder-angletolerance.htm
epatternfinder-scalebias.htm
epatternfinder-scaletolerance.htm

190

Studio

In the Allowances tab:
1. In the Angle (Deg) area, set the Bias and the Tolerance.
2. In the Scale (%) area, set the Bias and the Tolerance.

Find partial patterns

● Use the parameter SetFindExtension to extend the search area (in pixels) and locate
instances of thin structures and consistent edges that are partially out of the search field.

Code

finder.SetFindExtension(10);

Studio

In the Allowances tab:
1. In the Search Area area, set the Extension.

Open eVision User Guide PART III Matching and Measurement
Tools

epatternfinder-findextension.htm

191

Local search mode (advanced)

&
In the multistage approach:

□ At the coarsest stage, EasyFind finds the pattern occurrence candidates.
□ At each of the following stages, their position and score are refined until the last and

finest one. This refining is achieved by searching for better candidates in the
neighborhood of each of the ones found in the previous stage.

● Use the parameter SetLocalSearchMode to set the extent of the neighborhood in which the
better candidates are searched.
□ Basic: the default local search neighborhood

Search extend: Angle and Scale = 3; X and Y = 3
□ ExtendedTranslation: the local search neighborhood is extended along the translation

degrees of freedom.
Search extend: Angle and Scale = 3; X and Y = 5

□ ExtendedAll: the local search neighborhood is extended along all the degrees of freedom.
Search extend: Angle and Scale = 5; X and Y = 5

□ ExtendedMore: same as ExtendedAll but with a larger extension.
Search extend: Angle and Scale = 7; X and Y = 9

□ Custom: manually define the search extend:
Use AngleSearchExtent to set the Angle and ScaleSearchExtent to set the Scale
Use XSearchExtent and YSearchExtent to set the translation along X and Y

Code

finder.SetLocalSearchMode(LocalSearchMode_Basic);

Open eVision User Guide PART III Matching and Measurement
Tools

epatternfinder-localsearchmode.htm
elocalsearchmode-enum.htm
elocalsearchmode-enum.htm
elocalsearchmode-enum.htm
elocalsearchmode-enum.htm
elocalsearchmode-enum.htm
elocalsearchmode-enum.htm
epatternfinder-anglesearchextent.htm
epatternfinder-scalesearchextent.htm
epatternfinder-xsearchextent.htm
epatternfinder-ysearchextent.htm

192

Studio

In the Advanced tab:
1. In the Search Field area, select the Local Search Mode.
2. If you select the Custom mode, set the Angle and the Scale.

Maximum initial candidates (advanced)

&
During the search for matching patterns, EasyFind considers a set of candidates and
progressively refines it:

□ A large number of initial candidates can enable finding difficult or partial matches but at
the cost of increasing the processing time.

□ A small number of initial candidates can speed up the find process.

● Use the parameter SetMaxInitialCandidates to set the maximum number of initial candidates
that EasyFind considers.
□ This number must be greater than or equal to the number of instances to be found.
□ By default, the value is chosen internally.

Code

finder.SetMaxInitialCandidates(8);

Open eVision User Guide PART III Matching and Measurement
Tools

epatternfinder-maxinitialcandidates.htm

193

Studio

In the Advanced tab:
1. In the Search Field area, set the Maximum initial candidates.

3.13. Vector Model Parameters

2 The following parameters are set and used in the process: "Learn the Model from Vectors" on
page 172.

Open eVision User Guide PART III Matching and Measurement
Tools

194

Scaling the vector model

● Use the parameter Scale to set the scale of your vector model.
□ The scale represents the size of the instances in the search field (in pixels) divided by their

size in the EVectorModel.

Code

myModel.SetScale(10.0f);

Centering the vector model

● Use the parameter Center to set or get the center of your vector model.
□ The center is the anchor point in the EVectorModel coordinate system.
□ After the Find, you can retrieve its position in the search field coordinates as illustrated

below.

Code

myModel.SetCenter({2.0f, 2.0.f});

Open eVision User Guide PART III Matching and Measurement
Tools

evectormodel-scale.htm
evectormodel-class.htm
evectormodel-center.htm
evectormodel-class.htm

195

Orienting the transitions in the vector model

● To search for light to dark or dark to light transitions, set the polarity attribute for the vector
model in the EVectorModel.

Code

// Sets the polarity of the EPolygonShape
polygon.SetProperty("polarity", "direct");

Open eVision User Guide PART III Matching and Measurement
Tools

evectormodel-class.htm

196

4. EasyMatch - Matching Area Patterns

4.1. Workflow

EasyMatch

Reference

EasyMatch learns a pattern and finds exact matches:

1. The pattern is learned by defining an ROI that contains the object to be matched.
This ROI is created after iteratively learning from several images which contain the object.

2. The parameters are tuned to ensure the pattern is found reliably.

3. Images can now be searched for one or more occurrences of the pattern, which may be
translated, rotated or scaled.

Learning and Matching a pattern

Open eVision User Guide PART III Matching and Measurement
Tools

easymatch-library.htm
easymatch-library.htm

197

Learning workflow

Matching workflow

4.2. Learning Process

Select an image containing the pattern/ROI to be searched for and call LearnPattern. Pass an
arbitrary shaped region of interest (ERegion) to ignore the pixels outside of this region.

Open eVision User Guide PART III Matching and Measurement
Tools

ematcher-learnpattern.htm

198

The resulting pattern can be saved as a model for later use. You can repeat this process to
search for and save multiple patterns.

Best pattern characteristics

● repeatable, you need to know if it can translate or rotate or scale.

● represent the object to be located.

It should:
□ Keep the same appearance whatever the lighting conditions.
□ Remain at a fixed location with respect to the part.
□ Be rigid and not change shape.

● exhibit good contrast in small and large scale. It should be distinctly visible from a distance,
and on a reduced image.

● not be invariant under the degrees of freedom to be measured. For instance, a pattern of
black and white horizontal stripes cannot detect horizontal translation; a cog wheel cannot
help measure large rotations.

● have a neutral background. If objects around the pattern in the ROI may change, this area
should be neutralized by means of "don't care" pixels or a mask.

● have contrasted margin around the objects so that foreground and background intensities
are seen.

Customize Parameters

Parameters can be tuned to minimize processing time, but it still takes longer than EasyFind as
the entire selected area is matched.

● DontCareThreshold: If don't care areas are required, the corresponding pixels must hold a
value below the DontCareThreshold.
If all the background can be ignored, merely adjusting the DontCareThreshold to the right
thresholding value can do.
Otherwise, when the don't care area is unrelated to the threshold pattern image, the
DontCareThreshold should be set to 1 and all pixels belonging to the don't care area should
be set to black (value 0).

Alternatively, pass an arbitrary shaped region of interest (ERegion) to ignore the pixels
outside of this region. It is equivalent to setting all pixels outside of the region to black and
having a DontCareThreshold set to 1.

● MinReducedArea: To improve time performance, EasyMatch sub-samples the pattern. This
parameter stipulates the minimum size of the pattern (as its area in pixels) during sub-
sampling. The smaller the value, the faster the matching process, but, set too low, it
decreases the matching process reliability.
The value of MinReducedArea is computed automatically if AdvancedLearning is enabled
(default behavior). Setting explicitly MinReducedArea will disable AdvancedLearning. A value of
64 is usually a good compromise.

● AdvancedLearning: If the pattern is defined as a ROI of an image, AdvancedLearning optimizes
learning parameters, such as MinReducedArea, by using the whole image context.
AdvancedLearning is enabled by default, as it leads to better results in case of tiled or periodic
images. If MinReducedArea is set explicitly, AdvancedLearning is disabled. Please note that as
AdvancedLearning changes the number of pixels in the pattern, it can have a significant
impact on the matching process duration.

Open eVision User Guide PART III Matching and Measurement
Tools

ematcher-dontcarethreshold.htm
ematcher-dontcarethreshold.htm
ematcher-dontcarethreshold.htm
ematcher-dontcarethreshold.htm
ematcher-minreducedarea.htm
ematcher-minreducedarea.htm
ematcher-advancedlearning.htm
ematcher-minreducedarea.htm
ematcher-advancedlearning.htm
ematcher-advancedlearning.htm
ematcher-advancedlearning.htm
ematcher-minreducedarea.htm
ematcher-advancedlearning.htm
ematcher-minreducedarea.htm
ematcher-advancedlearning.htm
ematcher-advancedlearning.htm

199

● FilteringMode: If the image has sharp gray-level transitions, it is better to choose a low-pass
kernel instead of the usual uniform kernel.

Learning a pattern

4.3. Matching Process

For each new image, one or more occurrences of the pattern is searched for, allowing it to
translate, rotate or scale, using a single function call:

□ Match: receives the target image/ROI as its argument and locates the desired occurrences
of the pattern. You can pass an arbitrary shaped region of interest (ERegion) to ignore the
pixels located outside of this region.

You can set these parameters:
□ Rotation range: MinAngle, MaxAngle.
□ Scaling range: MinScale, MaxScale.
□ Anisotropic scaling range: MinScaleX, MaxScaleX, MinScaleY, MaxScaleY.

The following functions return the result of the matching:
□ NumPositions returns the number of good matches found. A good match is defined as

having a score higher than prescribed value (the MinScore threshold value).
□ GetPosition returns the coordinates of the N-th good match. The positions are sorted by

decreasing score.

If you want to match several patterns against the same image, create an EMatcher object for
each pattern.

Matching a pattern

Open eVision User Guide PART III Matching and Measurement
Tools

ematcher-filteringmode.htm
ematcher-match.htm
ematcher-minangle.htm
ematcher-maxangle.htm
ematcher-minscale.htm
ematcher-maxscale.htm
ematcher-minscalex.htm
ematcher-maxscalex.htm
ematcher-minscaley.htm
ematcher-maxscaley.htm
ematcher-numpositions.htm
ematcher-minscore.htm
ematcher-getposition.htm
ematcher-class.htm

200

4.4. Advanced Features

The best way to speed up this process is to minimize rotation and scaling, and limit the number
of occurrences searched for.

● Learning time:
□ Optimize number of searches: Searching all positions takes too long, so a sequence of

searches is performed at various scales (reductions). The coarsest reduction is quick and
approximate. Subsequent reductions work in a close neighborhood to improve location,
drastically reducing the number of positions to be tried. The location accuracy is given by
2K, where K is the reduction number.

□ MinReducedArea. Indicates how small the pattern can be made for rough location.

● Matching time:
□ Correlation mode (way to compare the pattern and the image): CorrelationMode. Can be

standard, offset-normalized, gain-normalized and fully normalized: the correlation is
computed on continuous tone values. Normalization copes with variable light conditions,
automatically adjusting the contrast and/or intensity of the pattern before comparison.

□ Contrast mode (way to deal with contrast inversions): ContrastMode. Lighting effects can
cause an object to appear with inverted contrast, you can choose whether to keep
inverted instances or not, and whether to match positive occurrences only, negative
occurrences only or both.

□ Maximum positions (expected number of matches): MaxPositions, MaxInitialPositions.
You can compel EasyMatch to consider more instances than needed at the coarse stage
using the MaxInitialPositions parameter (this number is progressively reduced to reach
MaxPositions in the final stage).

□ Minimum score (under which match is considered as false and is discarded): MinScore,
InitialMinScore.

□ Sub-pixel accuracy: Interpolate. The accuracy with which the pattern is measured can be
chosen (the less accurate, the faster). By default, the position parameters for each degree
of freedom are computed with a precision of a pixel. Lower precision can be enforced.
One tenth-of-a-pixel accuracy can be achieved.

□ Number of reduction steps: FinalReduction. Can speed up matching when coarse location
is sufficient, range [0...NumReductions-1].

□ Non-square pixels: GetPixelDimensions, SetPixelDimensions. When images are acquired
with non-square pixels, rotated objects appear skewed. Taking the pixel aspect ratio into
account can compensate for this effect.

□ "Don't care" pixels (ignored for correlation score) below the DontCareThreshold value.
When the pattern is inscribed in a rectangular ROI, some parts of the ROI can be ignored
by setting the pixels values below a threshold level. The same feature can be used if parts
of the template change from sample to sample.
Another way of specifying these ignored pixels is to use the region argument of the
method LearnPattern. The advantage of using the ERegion is that it is compatible with the
AdvancedLearning feature, while DontCareThreshold isn’t.
Our code snippet “Pattern Learning with ERegion” illustrates this.

Open eVision User Guide PART III Matching and Measurement
Tools

ematcher-minreducedarea.htm
ematcher-correlationmode.htm
ematcher-contrastmode.htm
ematcher-maxpositions.htm
ematcher-maxinitialpositions.htm
ematcher-maxinitialpositions.htm
ematcher-maxpositions.htm
ematcher-minscore.htm
ematcher-initialminscore.htm
ematcher-interpolate.htm
ematcher-finalreduction.htm
ematcher-numreductions.htm
ematcher-getpixeldimensions.htm
ematcher-setpixeldimensions.htm
ematcher-dontcarethreshold.htm
ematcher-learnpattern.htm
eregion-class.htm
ematcher-advancedlearning.htm
ematcher-dontcarethreshold.htm

201

● Overlapping:
□ EasyMatch can filter out instances that completely or partially overlap with each other in

the search results if the parameter MaxOverlap is set to less than 1.0.
The overlap is defined as the area of the intersection of the two instances divided by the
area of the smallest instance.
The maximum allowed overlap can take any value between 0 (no overlap allowed) and 1
(complete overlap allowed).

● Extension:
□ EasyMatch can match patterns that are partially outside of the matching ROI. While this

feature is disabled by default, it can be tuned with the Extension parameter. Use this
parameter to set the maximum number of pixels of a found pattern occurrence that may
be outside the matching ROI.

Open eVision User Guide PART III Matching and Measurement
Tools

ematcher-maxoverlap.htm
ematcher-setextension.htm

202

5. EChecker2 - Validating Golden
Templates

5.1. EChecker2

● EChecker2 is a tool that allows to inspect an image using a Golden Template validation.

It works in 2 steps:

a. The Model Creation involves pre-processing a set of reference images to compute a
model.
You can create the model once and archive the results in a Golden Template model for
later use.

b. The Inspection involves processing an image and checking its quality using the previously
computed model.

These 2 operations are totally independent and can even be programmed in separate
applications.

● EChecker2 is part of the EasyObject library.

● The following sections present the relevant API functions for use in the training and
inspection steps.

EChecker2 vs. EChecker

● EChecker2 supersedes the original EChecker:
□ It expands EChecker with an up-to-date API.
□ It adds the possibility to use geometrical pattern matching and a flexible number of

fiducials.
□ It works with the newer ECodedImage2.
□ It only requires the EasyObject license.

● For all these reasons, the original EChecker is now considered legacy and deprecated.

5.2. Creating a Model

During the model creation phase, the good images are processed to build the model that is
used in the inspection phase. The model includes the pixel acceptance ranges, in the form of 2
threshold images, as well as the information needed to realign and normalize the images.

To create a model, 2 operations are performed: initialization and training.

Open eVision User Guide PART III Matching and Measurement
Tools

203

Initialization

● The initialization of the model creation process is done on a specific image, called the
reference.

● On this reference, the following information are defined or computed:
□ The global gray level metrics are computed as reference for the normalization process.

It is thus very important that the reference image is well lit and contrasted.
□ One or more ERegions are placed to define the location patterns (fiducial marks or

landmarks).
The location of these patterns is used as reference in the realignment process.

TIP
- If you use only 1 pattern, the only transformation handled is the
translation.
- With 2 or more patterns, the scaling and the rotation are also processed.

NOTE
- As per Open eVision 2.15, you can only use either 1 or 2 regions.
- The possibility to use more regions will be added in the future.

□ An ERegion is defined to delimit the area to be inspected.
This area should only include pixels of the rigid part (that moves with the fiducial marks),
and not the background.

● To perform the initialization, use the method EChecker2::Initialize.

Initialization: the fiducial regions and tolerances (green) and the inspection region (blue)

Training

● After the initialization, the main training phase begins.
□ All the training images are processed and are averaged using statistical training (see

below).
□ The training uses realignment to deal with displacement of the inspected part in the field

of view.
□ The training uses gray-level normalization to deal with global illumination changes.

● Ideally, use 16 images or more in training to create the low and high threshold images that
serve as the basis of the inspection process.

Open eVision User Guide PART III Matching and Measurement
Tools

eregion-class.htm
eregion-class.htm
echecker2-initialize.htm

204

● To perform the training:
□ Use the method EChecker2::Train with class instances.
□ Use the method EChecker2::TrainFromImageFiles with a list of image files.

Statistical training

● Use several training images to optimize the assessment of normal gray-level variations and
acceptance intervals:
□ Consecutive images of the same part without any change (static test) generates a gray-

level distribution that corresponds to the noise distribution.
□ Consecutive images of different defect-free parts reveal variations due to the parts

themselves (as opposed to defects).

Accepted gray-level ranges

Model creation parameters

● Choose the TrainingMode to fit your needs:
□ Quick for a quick training process and simpler cases (well defined defects and stable

illumination).
□ Precise for more difficult cases.
□ Default: Precise mode.

● Set NormalizationMode to select the type of normalization used by EChecker2:
□ Moments: linear.
□ Threshold: non-linear.
□ NoNormalization: if your acquisition process already produces consistently lit images.
□ Default: Moments.

● Choose the FiducialMatchingMode to define the search of the fiducials inside the processed
images:
□ Geometric for well-defined fiducials that can potentially suffer from occlusion.
□ Area for less-well defined fiducials.
□ Default: Geometric.

Open eVision User Guide PART III Matching and Measurement
Tools

echecker2-train.htm
echecker2-trainfromimagefiles.htm
echecker2-trainingmode.htm
echecker2-normalizationmode.htm
echecker2-fiducialmatchingmode.htm

205

● Set FiducialHorizontalTolerance and FiducialVerticalTolerance to adjust the search
distance for the fiducials from the reference position (after realignment).
□ Default: 30 pixels.

● Set InspectionTolerance to adjust the acceptance ranges during the inspection.
□ Use higher values to make the inspection process more tolerant to noise and/or texture.

NOTE
All these parameters have an influence on how the model is built, and, as
such, if any of these parameters is changed, you must restart the model
creation.

Model serialization

● After the training, use the methods EChecker2::Save and EChecker2::Load you can save the
created model in a single file including all the relevant information and to retrieved it.

5.3. Inspecting an Image

● Use the inspection on an image to assess it towards the trained model.

The process is straightforward:

a. The sample image is realigned with the model.

b. The gray-level is normalized.

c. This gray-level is combined with the high and low threshold images to populate an
ECodedImage2.

d. The computed blobs are made of pixels that fall out of the range defined by the threshold
images and thus represent potential defects.

The realigned Image

The low and high threshold images

Open eVision User Guide PART III Matching and Measurement
Tools

echecker2-fiducialhorizontaltolerance.htm
echecker2-fiducialverticaltolerance.htm
echecker2-inspectiontolerance.htm
echecker2-save.htm
echecker2-load.htm

206

Detected defects after inspection

● When the inspection is done, you can discard the smaller defects (usually noise), as well as
measure the geometric characteristics (location, size, orientation...) using the standard
EasyObject processes.

● To perform the inspection, use the method EChecker2::Inspect.

Open eVision User Guide PART III Matching and Measurement
Tools

echecker2-inspect.htm

207

Open eVision User Guide

PART IV
TEXT AND CODE READING

TOOLS

208

1. List of Supported Codes

Linear bar codes (1D)

● License: EasyBarCode

● Class: EBarCodeReader

Symbology Variants Checksum Error
correction

Multiple
codes
reader

Support of
grading Sample

Code 128 — ✓ — ✓ ✓

Ean 8 — ✓ — ✓ —

Ean 13 — ✓ — ✓ ✓

GS1-128 — ✓ — ✓ ✓

Code 39 Extended and
Reduced Optional — ✓ —

Code 93 Extended ✓ — ✓ —

GS1 DataBar
Omnidirectional RSS14 ✓ ✓ ✓ —

GS1 DataBar Limited RSS14 Limited ✓ ✓ ✓ —

GS1 DataBar Expanded RSS14 Expanded ✓ ✓ ✓ —

PharmaCode One Track — — — ✓ —

Codabar — Optional — ✓ —

Code 2 of 5 Interleaved — Optional — ✓ —

MSI — ✓ — ✓ —

UPC-A — ✓ — ✓ —

UPC-E — ✓ — ✓ —

ADS Anker — ✓ — ✓ —

BC 412 — ✓ — ✓ —

Open eVision User Guide PART IV Text and Code Reading Tools

ebarcode2reader-class.htm

209

Symbology Variants Checksum Error
correction

Multiple
codes
reader

Support of
grading Sample

Code 11 — Optional — ✓ —

Code 13 — ✓ — ✓ — —

Code 2 of 5

Datalogic,
Matrix,
IATA, Industry,
Compressed
and Inverted

Optional — ✓ —

Code 32 — ✓ — ✓ —

Code BCD Matrix — ✓ — ✓ —

Code CIP — ✓ — ✓ — —

IBM Delta Distance A — ✓ — ✓ — —

Plessey — ✓ — ✓ —

Telepen — ✓ — ✓ —

STK Code — — — ✓ — —

Binary Code — — — ✓ —

Mail bar codes (1D)

● License: EasyBarCode

● Class: EMailBarcodeReader

Symbology Variants Checksum Error
correction

Multiple
codes
reader

Support of
grading Sample

Intelligent Mail Barcode — ✓ — ✓ —

Japan Post 4-state
Barcode — ✓ — ✓ —

POSTNET POSTNET 5, 6, 9
and 11 ✓ — ✓ —

PLANET — ✓ — ✓ —

Open eVision User Guide PART IV Text and Code Reading Tools

emailbarcodereader-class.htm

210

Matrix codes (2D)

● License: EasyMatrixCode

● Class: EMatrixCodeReader

Symbology Variants Error
correction

Multiple
codes
reader

Support of
grading Sample

Datamatrix ECC000 — — ✓ ✓

Datamatrix ECC050 — ✓ ✓ ✓

Datamatrix ECC080 — ✓ ✓ ✓

Datamatrix ECC100 — ✓ ✓ ✓

Datamatrix ECC140 — ✓ ✓ ✓

Datamatrix ECC200 DMRE ✓ ✓ ✓

QR codes (2D)

● License: EasyQRCode

● Class: EQRCodeReader

Symbology Variants Error
correction

Multiple
codes reader

Support of
grading Sample

QRCode MicroQR — ✓ ✓ ✓

QRCode Model 1 — ✓ ✓ ✓

QRCode Model 2 — ✓ ✓ ✓

Open eVision User Guide PART IV Text and Code Reading Tools

ematrixcode2reader-class.htm
eqrcodereader-class.htm

211

2. ECodeReader - Unified Interface

2.1. Reading Codes

ECodeReader integrates the functionality of EasyBarCode2, EasyMatrixCode2 and EasyQRCode
in a single unified interface.

In a single Read operation, ECodeReader locates and decodes the 3 kinds of codes supported by
Open eVision, namely bar codes, QR codes and data matrix codes.

For more information about these codes and the associated support, please refer to the
EasyBarCode2, EasyMatrixCode2 and EasyQRCode user guides.

The 3 supported codes in a single image

Reading codes

Use the method ECodeReader.Read to locate and read all the codes in an image.

● By default, ECodeReader searches for all supported types of code in the image.
□ Use the property ECodeReader.EnableCodeTypes if you want to disable (or enable) specific

code types.

● Read returns a vector of ECode, one for each code detected in the image.
□ Use the property ECodeReader.MaxNumCodesPerType to set the maximum number of codes to

search for each type.

● Use the property DecodedString property of ECode to retrieve the contents of a code.
□ Use the property CodeType if you need to know the specific type of the code.

Open eVision User Guide PART IV Text and Code Reading Tools

ecodereader-read.htm
ecodereader-read.htm
ecodereader-class.htm
ecodereader-enabledcodetypes.htm
ecodereader-read.htm
ecode-class.htm
ecodereader-maxnumcodespertype.htm
ecode-decodedstring.htm
ecode-class.htm
ecode-codetype.htm

212

Code specific results

Use the following properties to retrieve the information specific to a given type of code from an
ECode instance:

● ECode.BarCode returns an EasyBarCode2.EBarCode object.

2 For more information, refer to the documentation of EBarCode2.

● ECode.MatrixCode returns a EasyMatrixCode2.EMatrixCode object.

2 For more information, refer to the documentation of EMatrixCode2.

● ECode.QRCode returns an EQRCode object.

2 For more information, refer to the documentation of EQRCode.

NOTE: Depending on the effective type of the code, only one of the properties returns a value.
The others throw an exception. To know the property to call, use ECode.CodeType.

Drawing codes

Use the method DrawPosition of the ECode instance to draw the position of a code.

Code type specific settings

Use the following properties to set the settings specific to one of the supported types of code:

● ECodeReader.BarCodeReader retrieves the underlying instance EasyBarCode2.EBarCodeReader.

2 For more information about the relevant settings, refer to the documentation of
EBarCode2.

● ECodeReader.MatrixCodeReader retrieves the underlying instance
EasyMatrixCode2.EMatrixCodeReader.

2 For more information about the relevant settings, refer to the documentation of
EMatrixCode2.

● ECodeReader.QrCodeReader retrieves the underlying instance EQRCodeReader.

2 For more information about the relevant settings, refer to the documentation of
EQRCode.

Multithreading

ECodeReader always parallelizes the location and the decoding of the different types of code.

● Easy.MaxNumberOfProcessingThreads has no effect on this behavior.

● However, Easy.MaxNumberOfProcessingThreads has the intended effect on the underlying code
readers and speeds up the whole process.

Open eVision User Guide PART IV Text and Code Reading Tools

ecode-class.htm
ecode-barcode.htm
ebarcode2-ebarcode.htm
ecode-matrixcode.htm
ematrixcode2-ematrixcode.htm
ecode-qrcode.htm
eqrcode-eqrcode.htm
ecode-codetype.htm
ecode-drawposition.htm
ecode-class.htm
ecodereader-barcodereader.htm
ebarcode2reader-class.htm
ecodereader-matrixcodereader.htm
ematrixcode2reader-class.htm
ecodereader-qrcodereader.htm
eqrcodereader-class.htm
easy-maxnumberofprocessingthreads.htm
easy-maxnumberofprocessingthreads.htm

213

Time-out

Use the property TimeOut to set a time-out to the ECodeReader.Read process.

● The time-out is set for each of the underlying code readers that run in parallel. And so it also
limits the total Read processing time.

● If one of the supported types of code is not present in the image, it is recommended to
disable that type. Otherwise the corresponding reader runs and may reach its time-out,
slowing the whole process.

2.2. Reading Using a Grid

If the codes in the images are arranged in a regular grid-like fashion:

● Use the dedicated method overloads ECodeReader.Read that return ECodeGrid objects to
improve the reliability and the speed of the reading.

● Use the methods ECodeGrid.SetEnableCell, ECodeGrid.SetEnableRow,
ECodeGrid.SetEnableColumn or ECodeGrid.SetEnableAll to disable the processing of cells that
you know do not contain any code.

● Use the method GetResults of the returned ECodeGrid object to retrieve the codes read in
each cell of the defined grid.

Reading of codes arranged in a grid

Open eVision User Guide PART IV Text and Code Reading Tools

ecodereader-timeout.htm
ecodereader-read.htm
ecodereader-read.htm
ecodereader-read.htm
ecodegrid-class.htm
ecodegrid-setenablecell.htm
ecodegrid-setenablerow.htm
ecodegrid-setenablecolumn.htm
ecodegrid-enableall.htm
ecodegrid-getresults.htm
ecodegrid-class.htm

214

3. EasyBarCode - Reading Bar Codes

3.1. Reading Bar Codes

Reference | Code Snippets

Bar code (EAN 13 symbology)

EasyBarCode can locate and read bar codes automatically.
Location can be performed manually for prototyping or when automatic mode results are
unsatisfactory.

Open eVision User Guide PART IV Text and Code Reading Tools

easybarcode-library.htm
easybarcode.htm
easybarcode-library.htm

215

Workflow

Bar code definition

A bar code is a 2D pattern of parallel bars and spaces of varying thickness that represents a
character string. It is arranged according to an encoding convention (symbology) that specifies
the character set and encoding rules.

l The bar code may be black ink on white background or inversely white ink on black
background.

l The bar code should be preceded and followed by a quiet zone of at least ten times the
module width (smallest bar or space thickness).

l Bars should be surrounded below and above by a quiet zone of a few pixels.
l Bars and spaces widths must be greater than or equal to 2 pixels.

Open eVision User Guide PART IV Text and Code Reading Tools

216

Symbologies

A symbology defines the way a bar code is encoded.

Symbologies can be enabled in StandardSymbologies or AdditionalSymbologies parameters.

The standard symbologies are enabled by default:

l Code 39
l Code 128
l Code 2/5 5 Interleaved
l Codabar
l EAN 13*
l EAN 128
l MSI
l UPC A*
l UPC E

NOTE
* EAN 13 and UPC A only differ by the layout of surrounding digits.

Additional symbologies that are supported:

l ADS Anker
l Binary code
l Code 11
l Code 13
l Code 32
l Code 39 Extended (a super-set of Code 39)
l Code 39 Reduced (a subset of Code 39)
l Code 93
l Code 93 Extended
l Code 412 SEMI
l Code 2/5 3 Bars Datalogic
l Code 2/5 3 Bars Matrix
l Code 2/5 5 Bars IATA
l Code 2/5 5 Bars Industry
l Code 2/5 5 Compressed
l Code 2/5 5 Inverted
l Code BCD Matrix
l Code C.I.P
l Code STK
l EAN 8
l IBM Delta Distance A
l Plessey
l Telepen

Checksum

A checksum character enables the reader to check the bar code validity depending on the
symbology:

l The checksum may be mandatory and must be checked by the reader.
l The checksum may be mandatory but may not need to be checked.
l The checksum and its verification may both be optional.

VerifyChecksum enables or disables (default) checksum verification.

Open eVision User Guide PART IV Text and Code Reading Tools

ebarcode-standardsymbologies.htm
ebarcode-additionalsymbologies.htm
ebarcode-verifychecksum.htm

217

Bar code structure (Code 39)

Read a bar code

The Automatic mode reading algorithm locates a bar code in the field of view and Reads it.
If several bar codes are present, only one is located, like a straightforward hand-held bar code
reader.

Before reading, the decoding symbologies must be specified in the StandardSymbologies, or
AdditionalSymbologies properties.

Mono-symbology mode reads the bar code using the expected symbology type(s) and reports
the encoded information (if readable) or the reason for failure (if not readable). There is only
one interpretation for the character string.

Decoded bar code

Note: When the bar code contains \0x00 characters, the std.string.c_str method should not be
used (since C-strings are terminated by the \0x00 character). An iterator over the characters
should be used instead of a C-string.

Advanced features

Locate and Read bar code manually

If automatic localization fails or for prototyping purposes, the user can provide the bar code
position and reading area to manually locate the code.

l Bar code position can be provided graphically by a bounding box around the bar code or
by its parameters. If several symbols appear in the image, they can be processed one
after the other.

l The reading area of the bar code is the area that is read. It should be wider than the bar
code bounding box width, and less high than the bar code bounding box height. It may
also be rotated relative to the bar code bounding box, to take into account slanting bars
(Advanced mode!).

Open eVision User Guide PART IV Text and Code Reading Tools

ebarcode-read.htm

218

Bounding box — graphical appearance
(manual location)

Reading area — graphical appearance (manual
location)

Read all interpretations (multi-symbology mode)

Use Detect to report the number of possible symbologies in the NumEnabledSymbologies property,
and list the data contents by decreasing likeliness.

Then call the Decode method in a loop, using GetDecodedSymbology to walk through the list of
successful symbologies in decreasing order of likelihood.

3.2. Reading Mail Bar Codes

Reference | Code Snippets

Mail bar code example

Specifications

The Mail Bar code Reader:
□ Detects and decodes postal 4-state bar codes.
□ Supports multiple mail bar codes in an image.
□ Supports various symbologies.
□ Supports the 4 main bar code orientations, with a tolerance of 3°.
□ Detects bars that are at least 3 pixels wide.

Open eVision User Guide PART IV Text and Code Reading Tools

ebarcode-detect.htm
ebarcode-numenabledsymbologies.htm
ebarcode-decode.htm
ebarcode-getdecodedsymbology.htm
easybarcode-library.htm
Reading a Mail Bar Code.htm

219

Workflow

4-state bar codes

A 4-state bar code is a special kind of bar code where data is encoded on the height and
position of the bars rather than their width.

Each bar can have one of 4 possible states:
□ Short and centered
□ Medium and elevated
□ Medium and lowered
□ Full height

Mail bar code symbologies

The symbology of a mail bar code specifies how to decode the bar code and how to interpret its
contents.

Every country uses its own flavor of mail bar code, or symbology. Some countries, like the US,
even use multiple symbologies.

As of now, the Open eVision Mail Bar code Reader supports the following symbologies:
□ US: PLANET, POSTNET and Intelligent Mail
□ Japan: Japan Post

Mail bar code orientation

The Open eVision Mail Bar code Reader is designed to be used in mail-handling machines. As
such it is optimized to handle the 4 main orientations you encounter in such machines:

□ No Rotation: The mail bar code is horizontal and read from left to right
□ Rotated 90° to the right: The mail bar code is vertical and read from top to bottom

Open eVision User Guide PART IV Text and Code Reading Tools

220

□ Rotated 90° to the left: The mail bar code is vertical and read from bottom to top
□ Rotated 180°: The mail bar code is upside down, horizontal, and read from right to left.

For each of these orientations, an additional rotation of -3 to 3 degrees is allowed.

Checksum

Some symbologies specify the presence of a checksum in the bar code data.

This checksum is an additional character computed from all others encoded characters. It
enables the reader to check the decoded character string coherence.

● The Mail Bar code Reader allows the user to verify or not the checksum for all enabled
symbologies.

● By default, checksum is not controlled.

● To enable or disable checksum verification for all enabled symbologies, set the
ValidateChecksum property.

Reading the mail bar codes in an image

To read all the mail barcodes in a given image:

1. Create an EMailBarcodeReader object.

2. Optionally, select the relevant symbologies using the ExpectedSymbologies property.

By default, Mail Bar code Reader will consider all supported symbologies.

3. Optionally, select the relevant orientations using the ExpectedOrientations property.

By default, Mail Bar code Reader will test all supported orientations.

4. Call Read on the source image or ROI.

Each mail bar code detected is returned as an EMailBarcode object.

5. Each EMailBarcode objects contains the following information:
□ The decoded string, using the Text property.
□ The decoded string, split up in semantic parts, using the ComponentStrings property.
□ The bar code orientation, using the Orientation property.
□ The bar code position, using the Position property.

Open eVision User Guide PART IV Text and Code Reading Tools

221

US Intelligent Mail bar code with highlighted position and decoded information

Advanced parameters

The advanced parameters of the EMailBarcodeReader object are:

● EnableDottedBarcodes activates the support for dotted barcodes (barcodes whose bars are
printed with dots).

By default, this property is set to false.

Dotted Mail Barcode

● EnableClutteredBarcodes activates the support for cluttered barcodes (barcodes in which
some bars are connected).

By default, this property is set to true.

Cluttered Mail Barcode

● ValidateChecksum activates the validation of the bar codes checksums, if present.

By default, this property is set to false.

Open eVision User Guide PART IV Text and Code Reading Tools

222

4. EasyBarCode2 - Reading Bar Codes
(Improved)

4.1. EasyBarCode2 vs EasyBarCode

● As EasyBarCode, EasyBarCode2 locates and reads bar codes automatically.

● Compared to EasyBarCode, EasyBarCode2 has the following advantages:
□ A faster and more reliable detection of bar codes.
□ The ability to read multiple bar codes at once (with or without grid).
□ The ability to use an ERegion to restrict the search domain.
□ The ability to set a timeout.
□ A better support for many symbologies.
□ A more flexible support of checksums.

● The EasyBarCode2 classes and methods are defined into the EasyBarCode2 namespace.

● The following examples illustrate bar codes read by EasyBarCode2 that cannot be read by
EasyBarCode.

Occluded bar code (left) and a quiet zone that is too small at the top (right)

Open eVision User Guide PART IV Text and Code Reading Tools

223

Blurry bar codes

4.2. Reading Bar Codes

Reference | Code Snippets

Bar code definition

A bar code is a 2D pattern of parallel bars and spaces of varying thickness that represents a
character string.

These bars and spaces are arranged according to a convention named symbology (see below),
that specifies the character set and the encoding rules.

Reading bar codes

● Use the method EBarCode2Reader.Read to locate the bar codes as EBarCode objects in an
image and decode them.

● This method returns a vector of EBarCode objects for each bar code in the field of view, up to
the maximum set with EBarCode2Reader.MaxNumCodes. By default, this maximum is set to 1 to
optimize the process in the prevalent single-code cases.

● Use GetDecodedString to retrieve the contents of an EBarCode object.

2 Refer to the following code snippet as an example: "Reading a Bar Code" on page 1

Symbologies

As stated above, a symbology defines how a bar code is encoded using its bars and spaces.

● In EasyBarCode2, the following symbologies are enabled by default:
□ Code 128 (incl. Latin-1 chars)
□ Ean 8
□ Ean 13
□ GS1 128
□ Code 39
□ Code 39 Extended

□ Code 39 Reduced
□ Code 93
□ Code 93 Extended
□ GS1 DataBar Omnidirectional
□ GS1 DataBar Limited
□ GS1 DataBar Expanded

Open eVision User Guide PART IV Text and Code Reading Tools

EasyBarCode2-library.htm
EasyBarCode2.htm
ebarcode2reader-read.htm
ebarcode-class.htm
ebarcode-class.htm
ebarcode2reader-maxnumcodes.htm
ebarcode2-getdecodedstring.htm
ebarcode-class.htm
../../../../../Content/05 Resources/02 Code Snippets/11b EasyBarCode2/Reading a Bar Code.htm

224

● The following symbologies are also supported:
□ Codabar
□ MSI
□ UPC A
□ UPC E
□ ADS Anker
□ BC412
□ Code 11
□ Code 13
□ Code 25 Datalogic
□ Code 25 Matrix
□ Code 25 Iata
□ Code 25 Industry
□ Code 25 Compressed
□ Code 25 Inverted

□ Code 25 Interleaved
□ Code 32
□ Code BCD Matrix
□ Code CIP
□ Code STK
□ IBM Delta Distance A
□ Plessey
□ Telepen
□ Binary Code
□ Pharmacode (one track)
□ RSS14
□ RSS14 Limited
□ RSS14 Expanded

● To setup the symbologies to consider during the reading operation, use the following
methods of the EBarCode2Reader class:
□ EnableSymbology
□ EnableSymbologies
□ EnableAllSymbologies
□ EnableDefaultSymbologies
□ DisableAllSymbologies

● Use GetEnabledSymbologies to check the enabled symbologies.

NOTE
EnableAllSymbologies does not enable the Code STK, the Binary Code and the
Pharmacode symbologies as these very permissive symbologies can generate
a large amount of false positives.
You must use EnableSymbology explicitly to enable the Code STK, the Binary
Code and the Pharmacode symbologies.

● Because some symbologies are similar, a given bar code can be detected as corresponding
to more than one. Use EBarCode2.Symbologies to retrieve all compatible symbologies, in order
of decreasing confidence.

● Use GetDecodedString with its optional symbology parameter to retrieve the decoded string
as decoded given the symbology passed as parameter. If you omit this parameter, the
decoded string will be decoded using the most likely symbology.

● For the GS1-128 and GS1 DataBar Omnidirectional / Limited / Expanded symbologies:
□ Use GetDecodedString to get the machine-readable code (for ex.:]C11118011215190101).
□ Use EGs1Translator.GetHumanReadableCode to get the human-readable version (for ex.:

(11)180112(15)190101).

Open eVision User Guide PART IV Text and Code Reading Tools

ebarcode2reader-class.htm
ebarcode2reader-enablesymbology.htm
ebarcode2reader-enablesymbologies.htm
ebarcode2reader-enableallsymbologies.htm
ebarcode2reader-enabledefaultsymbologies.htm
ebarcode2reader-disableallsymbologies.htm
ebarcode2reader-enabledsymbologies.htm
ebarcode2reader-enableallsymbologies.htm
ebarcodesymbologies-enum.htm
ebarcodesymbologies-enum.htm
ebarcodesymbologies-enum.htm
ebarcode2reader-enablesymbology.htm
ebarcodesymbologies-enum.htm
ebarcodesymbologies-enum.htm
ebarcodesymbologies-enum.htm
ebarcodesymbologies-enum.htm
ebarcode2-symbologies.htm
ebarcode2-getdecodedstring.htm
ebarcode2-getdecodedstring.htm
egs1translator-gethumanreadablecode.htm

225

Checksum and validation

The checksum of a bar code enables the reader to validate the bar code contents.

● By default, EasyBarCode2 checks the checksum validity when required by the symbology
specifications.
□ The symbologies Code39 (and variants), Codabar, Code 11 and Code 25 (and variants) define

but do not enforce a checksum. We call their checksum optional. By opposition, the
checksums that are always present are called mandatory. When the checksum is optional,
there is no way to know if the barcode contains one from the image alone and no
checksum validation is performed by default.

□ For the Pharmacode (one track) symbology, by default, no checksum is computed but
additional validations are performed on the bar code vertical uniformity to rule out false
positives.

● To reject bar codes if they fail mandatory or optional checksum validation or Pharmacode
validation, respectively use the properties EBarCode2Reader.ValidateMandatoryChecksum,
EBarCode2Reader.ValidateOptionalChecksum and EBarCode2Reader.ValidatePharmaCode.
□ Set the property to true, to not return bar codes failing the corresponding validation.
□ By default, ValidateMandatoryChecksum and ValidatePharmaCode are set to true and

ValidateOptionalChecksum is set to false.

● Read the property GetChecksumOK to check the checksum status of the returned EBarCode2
object.

● By default, the checksum characters are included into the string returned by
GetDecodedString.
□ Set the optional parameter includeChecksum to false to remove these checksum

characters from the returned string,

NOTE
As mentioned above, some symbologies, such as Code 39, have optional
checksum characters. In those cases, determining their presence
automatically is usually not possible. Thus, setting includeChecksum to false
might crop parts of the decoded string.

2 Refer to the following code snippet as an example: "Reading a Bar Code of a Specific
Symbology" on page 1

4.3. Grading Bar Codes

Reference | Code Snippets

To compute the print quality indicators as defined by the ISO 15416 standard:

1. Set the parameter ComputeGrading to True.

2. The print quality of the bar codes is computed during the Read operation.

3. Retrieve the grades with the accessor GetGradingParameters of the class EBarCode.

► This will retrieve an object EBarCodeGradingParameters.

Open eVision User Guide PART IV Text and Code Reading Tools

ebarcode2reader-validatemandatorychecksum.htm
ebarcode2reader-validateoptionalchecksum.htm
ebarcode2reader-validatepharmacode.htm
ebarcode2reader-validatemandatorychecksum.htm
ebarcode2reader-validatepharmacode.htm
ebarcode2reader-validateoptionalchecksum.htm
ebarcode2-getchecksumok.htm
ebarcode2-class.htm
ebarcode2-getdecodedstring.htm
ebarcodesymbologies-enum.htm
../../../../../Content/05 Resources/02 Code Snippets/11b EasyBarCode2/Reading a Bar Code of a Specific Symbology.htm
../../../../../Content/05 Resources/02 Code Snippets/11b EasyBarCode2/Reading a Bar Code of a Specific Symbology.htm
EasyBarCode2-library.htm
EasyBarCode2.htm
ebarcode2reader-computegrading.htm
ebarcode2reader-read.htm
ebarcode2-gradingparameters.htm
ebarcode2-class.htm
ebarcodegradingparameters-struct.htm

226

4. Retrieve the numeric grades (0 to 40) directly from the object.

5. Use the method ConvertToAlphabeticGrade to convert the numeric grades to alphabetic
grades (F to A).

NOTE: At the moment, the grading is only supported for the Ean 13, Code 128 and GS1 128
symbologies. Don’t hesitate to contact the support if you need the grading of other
symbologies.

2 Refer to the following code snippet as an example: "Grading a Bar Code" on page 1

4.4. Advanced Features

Retrieving the position of a bar code

● Use EBarCode2::GetPosition to retrieve the position of a detected bar code.

● This method returns an EQuadrangle object representing the detected position of the bar
code in the image.

Reading using an ERegion

● Use Read(EROIBW8 field, ERegion region), the Read overload with an ERegion, to restrict the
domain on which the EBarCode2Reader detects and reads the bar codes .

Open eVision User Guide PART IV Text and Code Reading Tools

ebarcodegradingparameters-converttoalphabeticgrade.htm
../../../../../Content/05 Resources/02 Code Snippets/11b EasyBarCode2/Grading a Bar Code.htm
ebarcode2-position.htm
equadrangle-class.htm
ebarcode2reader-read.htm
eregion-class.htm
ebarcode2reader-class.htm

227

Reading using a grid

If the codes in the images are arranged in a regular grid-like fashion:

● Use the dedicated method EBarCodeReader.Read overloads that return EBarCodeGrid objects to
improve the reliability and the speed of the reading.

● Use the methods EBarCodeGrid.SetEnableCell, EBarCodeGrid.SetEnableRow,
EBarCodeGrid.SetEnableColumn or EBarCodeGrid.SetEnableAll to disable the processing of cells
that you know do not contain any code.

● Use the method GetResults of the returned EBarCodeGrid object to retrieve the codes read in
each cell of the defined grid.

2 For an example, see "Reading a Grid of Bar Codes" on page 1.

Reading of bar codes arranged in a grid

Using a timeout

If you have a defined time constraint:

● Use SetTimeout to define a timeout for the EBarCode2Reader object. This timeout limits the
amount of time available to the Read method and forces it to return early if needed.

Detecting small codes in large images

EasyBarCode2 can fail to detect small codes in large images, because it resizes the image before
trying to detect the bar code.

● To solve this problem:
□ You can specify the approximate size of the smallest module in your bar code to prevent

a too aggressive resizing.
□ This parameter can cause a large increase of the computation times when set to a small

value.

Open eVision User Guide PART IV Text and Code Reading Tools

ebarcode2reader-read.htm
ebarcodegrid-class.htm
ebarcodegrid-setenablecell.htm
ebarcodegrid-setenablerow.htm
ebarcodegrid-setenablecolumn.htm
ebarcodegrid-enableall.htm
ebarcodegrid-getresults.htm
ebarcodegrid-class.htm
../../../../../Content/05 Resources/02 Code Snippets/11b EasyBarCode2/Reading a Grid of Bar Codes.htm
ebarcode2reader-timeout.htm
ebarcode2reader-class.htm
ebarcode2reader-read.htm

228

If you have small codes in large images that you cannot read:

a. Set this parameter to 1.

b. If the reading is successful with a value of 1, try larger values, for example: 1.5, 2, 2.5, 3.

c. The ideal value should be small enough to detect your codes and large enough to not
slow the processing too much.

● In the API:
□ Use the method SetMinModuleSize to specify the size of the smallest module in your bar

code. The input is a floating-point value greater than or equal to 1.
□ Use SetUseMinModuleSize to enable or disable this additional treatment.

NOTE: The value of this parameter can also be set by using the learning feature (see below).

Specifying the orientation of your codes

For most symbologies, a pattern identifies whether the codes must be read from left to right or
right to left.

This is however not the case for the Code STK, Binary Code and Pharmacode symbologies.

For these symbologies, you must know whether to decode the barcode from left to right or from
right to left. Use the method SetReadingOrientation to specify it.

Learning from given images to improve the detection performances

● EasyBarCode2 can fine-tune itself to detect more images.

For example, when

max (barWidth,spaceWidth)≥ 0.08 ×min (imageWidth,imageHeight)

or (with minModuleSize set to 1) when

min (barWidth,spaceWidth)≤ 0.004 ×min (imageWidth,imageHeight)

bar codes can normally not be detected and a learning is necessary.

● The learning automatically tunes 2 parameters to best fit the set of images you gave it:
□ The minModuleSize is set to the highest value that enables reading the maximum number

of codes. It is set to the highest value because the higher the minModuleSize, the faster the
reading.

□ The scales at which you try to find a bar code (an internal parameter not accessible to
the user) are modified to read the maximum number of codes depending on the
parameters of the learn method (see below).

● EBarCode2Reader.Learn has 2 Boolean parameters:
□ keepDefaultScales indicates that the scales used by default should not be disabled by the

learning (True by default).
□ addAllScales indicates that all the scales that allow to detect one code should be

enabled (True by default).

● Tips:
□ If you perform a learning on a few problematic images, set both parameters to True.

Open eVision User Guide PART IV Text and Code Reading Tools

ebarcode2reader-minmodulesize.htm
ebarcode2reader-useminmodulesize.htm
ebarcode2reader-readingorientation.htm
ebarcode2reader-minmodulesize.htm
ebarcode2reader-minmodulesize.htm
ebarcode2reader-minmodulesize.htm
ebarcode2reader-learn.htm
ebarcode2reader-learn.htm
ebarcode2reader-learn.htm

229

□ If you are only interested in tuning minModuleSize or if you perform a learning on a
representative set of problematic images, set keepDefaultScales to True and addAllScales
to False.

□ If you perform a learning on a representative set of all the images you want to read, set
both parameters to False.

□ The only benefit to set either of these parameters to False is the reading speed. In most
cases, the impact should not be important, so you can leave them to True.

2 Refer to the following code snippet as an example: "Learning a Bar Code" on page 1

Open eVision User Guide PART IV Text and Code Reading Tools

../../../../../Content/05 Resources/02 Code Snippets/11b EasyBarCode2/Learning a Bar Code.htm

230

5. EasyMatrixCode - Reading Matrix
Codes

5.1. EasyMatrixCode vs EasyMatrixCode2

Reference | Code Snippets

Starting with release 2.5, Open eVision introduces a new data matrix code reading class, named
EasyMatrixCode2.

Compared to EasyMatrixCode, it offers the following benefits:
□ Ability to read multiple data matrix codes in an image.
□ Support for asynchronous processing.
□ Improved consistency of reading and grading results.
□ Improved consistency of processing time.
□ Improved handling of deformed data matrix codes.

5.2. EasyMatrixCode

Specifications
Reference | Code Snippets

ECC 200, 26x26 cells data matrix code (left) and finder pattern (right)

In a single read operation, EasyMatrixCode locates, unscrambles, decodes, reads and grades the
quality of grayscale 2D data matrix codes of any size, contrast, location and orientation (even
viewed from the back on a transparent medium), providing they meet the following
specifications:

□ Minimum cell (= module) size: 3x3 pixels
□ Maximum stretching ratio (ratio between cell width and height): 2
□ Minimum quiet zone (blank zone around the matrix code) width: 3 pixels

Open eVision User Guide PART IV Text and Code Reading Tools

easymatrixcode-library.htm
easymatrixcode.htm
easymatrixcode-library.htm
easymatrixcode-library.htm
easymatrixcode-library.htm
easymatrixcode.htm
easymatrixcode-library.htm

231

Data Matrix Code Definition

● A data matrix code is a two-dimensional rectangular array of black and white cells which
conveys a string of characters (digits, letters and special characters).
□ It is encoded to achieve maximum packing.
□ Each cell corresponds to a bit of information.
□ Additional redundant bits allow error correction for robust reading of degraded symbols.

● A data matrix code is located using the Finder pattern:
□ The bottom and left edges of a Data Matrix code contain only black cells.
□ The top and right edges have alternating cells.

● A data matrix code is characterized by:
□ Its logical size (number of cells).
□ Its encoding type: ECC 000 (odd symbol sizes, deprecated) or ECC 200 (even symbol

sizes).

NOTE
The data matrix code definition is provided by ISO/IEC and approved as
standard ISO/IEC 16022.

Supported Symbols

ECC other than the ECC200

NOTE: See the ISO/IEC 16022 standard for more information.

● Error correction table

Correctable errors %
ECC000 0
ECC050 2.8
ECC080 5.5
ECC100 12.6
ECC140 25

Open eVision User Guide PART IV Text and Code Reading Tools

ematrixcode-logicalsize.htm

232

● Symbol table

Size
Capacity (numerical | alphanumerical | byte)

ECC000 ECC050 ECC080 ECC100 ECC140
num alph byte num alph byte num alph byte num alph byte num alph byte

9 × 9 6 3 1 n/a n/a n/a n/a
11 × 11 12 8 5 1 1 n/a n/a n/a n/a
13 × 13 24 16 10 10 6 4 4 3 2 1 1 n/a n/a
15 × 15 37 25 16 20 13 9 13 9 6 8 5 3 n/a
17 × 17 53 35 23 32 21 14 24 16 10 16 11 7 2 1 1
19 × 19 72 48 31 46 30 20 36 24 16 25 17 11 6 4 3
21 × 21 92 61 40 61 41 27 50 33 22 36 24 15 12 8 5
23 × 23 115 76 50 78 52 34 65 43 28 47 31 20 17 11 7
25 × 25 140 93 61 97 65 42 82 54 36 60 40 26 24 16 10
27 × 27 168 112 73 118 78 51 100 67 44 73 49 32 30 20 13
29 × 29 197 131 86 140 93 61 120 80 52 88 59 38 38 25 16
31 × 31 229 153 100 164 109 72 141 94 62 104 69 45 46 30 20
33 × 33 264 176 115 190 126 83 164 109 72 121 81 53 54 36 24
35 × 35 300 200 131 217 145 95 188 125 82 140 93 61 64 42 28
37 × 37 339 226 148 246 164 108 214 143 94 159 106 69 73 49 32
39 × 39 380 253 166 277 185 121 242 161 106 180 120 78 84 56 36
41 × 41 424 282 185 310 206 135 270 180 118 201 134 88 94 63 41
43 × 43 469 313 205 344 229 150 301 201 132 224 149 98 106 70 46
45 × 45 500 345 226 380 253 166 333 222 146 248 165 108 118 78 51
47 × 47 560 378 248 418 278 183 366 244 160 273 182 119 130 87 57
49 × 49 596 413 271 457 305 200 402 268 176 300 200 131 144 96 63

ECC200

NOTE: See the ISO/IEC 16022 standard for more information.

Square

● Symbol table

Size
Capacity Correctable

errors %num alpha byte
10 × 10 6 3 1 25
12 × 12 10 6 3 25
14 × 14 16 10 6 28 to 39
16 × 16 24 16 10 25 to 38
18 × 18 36 25 16 22 to 34
20 × 20 44 31 20 23 to 38
22 × 22 60 43 28 20 to 34
24 × 24 72 52 34 20 to 35
26 × 26 88 64 42 19 to 35
32 × 32 124 91 60 18 to 34
36 × 36 172 127 84 16 to 30
40 × 40 228 169 112 15 to 28

Size
Capacity Correctable

errors %num alpha byte
44 × 44 288 214 142 14 to 27
48 × 48 348 259 172 14 to 27
52 × 52 408 304 202 15 to 27
64 × 64 560 418 277 14 to 27
72 × 72 736 550 365 14 to 26
80 × 80 912 682 453 15 to 28
88 × 88 1152 862 573 14 to 27
96 × 96 1392 1042 693 14 to 27

104 × 104 1632 1222 813 15 to 28
120 × 120 2100 1573 1047 14 to 27
132 × 132 2608 1954 1301 14 to 26
144 × 144 3116 2335 1555 14 to 27

Open eVision User Guide PART IV Text and Code Reading Tools

233

Rectangular

● Symbol table

Size
Capacity Correctable

errors %num alpha byte
8 × 18 10 6 3 25
8 × 32 20 13 8 24
12 × 26 32 22 14 23 to 37
12 × 36 44 31 20 23 to 38
16 × 36 64 46 30 21 to 38
16 × 48 98 72 47 18 to 33

Workflow
Reference | Code Snippets

Reading a Matrix Code
Reference | Code Snippets

You can read the matrix code in an image automatically, using the Read method.

This method returns an EMatrixCode instance that contains the following information about the
found data matrix code:

□ Its decoded string,
□ Its position in the image,
□ Its logical size,
□ Its encoding type,
□ Its grading results,
□ Methods to draw the data matrix code on the source image.

Learning a Matrix Code
Reference | Code Snippets

Open eVision User Guide PART IV Text and Code Reading Tools

easymatrixcode-library.htm
easymatrixcode.htm
easymatrixcode-library.htm
easymatrixcode.htm
ematrixcodereader-read.htm
ematrixcode-class.htm
easymatrixcode-library.htm
easymatrixcode.htm

234

To search for specific features and speed up your processing, learn a Matrix code model.

Workflow

1. Load the image of the matrix code you want to learn.

2. Learn the model:
□ Use the Learn method with Contrast, Family, Flipping, Logical Size parameters.
□ If you need to learn several matrix codes, use LearnMore and pass additional sample

images.
□ Call Learn to replace EMatrixCodeReader parameters (calling Learn several times does not

accumulate results, while LearnMore does).

3. Tune search parameters to be efficient and either:
□ Read only matrix codes that match a sample matrix code,
□ Or read only matrix codes that have the same properties (Contrast, Family, Flipping,

Logical Size) as the learned one,
□ Or disregard a search parameter of the learned matrix code SetLearnMaskElement, for

example to read only unflipped matrix codes. Just remove the default parameters, then
add new ones.

4. Ask EMatrixCodeReader to decode the supplied image.

5. Display the decoded string.

6. Save the state of the reader object using Save.

Open eVision User Guide PART IV Text and Code Reading Tools

ematrixcodereader-learn.htm
ematrixcode-contrast.htm
ematrixcode-family.htm
ematrixcode-flipping.htm
ematrixcode-logicalsize.htm
ematrixcodereader-learnmore.htm
ematrixcodereader-learn.htm
ematrixcodereader-class.htm
ematrixcodereader-learn.htm
ematrixcodereader-learnmore.htm
esearchparamstype-class.htm
ematrixcode-contrast.htm
ematrixcode-family.htm
ematrixcode-flipping.htm
ematrixcode-logicalsize.htm
ematrixcodereader-setlearnmaskelement.htm
ematrixcodereader-class.htm
ematrixcode-decodedstring.htm
ematrixcodereader-save.htm

235

Restoring the state of an EMatrixCodeReader

To restore the state of an EMatrixCodeReader and use it to read a matrix code:

1. Load an image.

2. Restore the reader state from the given file using Load.

3. Read the image.

4. Display the decoded string.

Computing the Print Quality
Reference | Code Snippets

To compute the print quality indicators as defined by BC11, ISO 15415, ISO/IEC TR 29158
(formerly known as AIM DPM-1-2006) and SEMI T10-0701 standards, retrieve the grades with the
GetIso15415GradingParameters, GetIso29158GradingParameters and GetSemiT10GradingParameters
accessors of the EMatrixCode class.

NOTE
The print quality of the matrix codes is computed during the Read operation,
only if the ComputeGrading parameter is set to true.

Using GS1 Data Matrix Codes
Reference | Code Snippets

EasyMatrixCode is able to find and decode GS1-compliant data matrix codes.

The GS1 standard adds semantic identifiers to the contents of a data matrix code. These
identifiers are interpreted in an easy and consistent way.

The structure of GS1-compliant content is as follows:

]d2[GS1]{Id1}{Value1}[GS1]{Id2}{Value2}…

where:
□ "]d2" is the string identifying a GS1-compliant stream,
□ [GS1] is the GS1 escape character (0x1d),
□ {Id} is an application identifier,
□ {Value} is the value associated with that identifier.

Open eVision User Guide PART IV Text and Code Reading Tools

ematrixcodereader-class.htm
ematrixcode-load.htm
ematrixcodereader-load.htm
ematrixcodereader-read.htm
ematrixcode-decodedstring.htm
easymatrixcode-library.htm
easymatrixcode.htm
ematrixcode-iso15415gradingparameters.htm
ematrixcode-iso29158gradingparameters.htm
ematrixcode-semit10gradingparameters.htm
ematrixcode-class.htm
ematrixcodereader-read.htm
ematrixcodereader-computegrading.htm
easymatrixcode-library.htm
easymatrixcode.htm

236

Example

The string:

]d2[GS1]11180112[GS1]15190101

is interpreted as follows:
□ It contains two GS1 parts: 11180112 and 15190101.
□ The first (11180112) is composed of the identifier 11 and the value 180112, meaning that

the product has a production date (the meaning of identifier 11) of January 12th, 2018.
□ The second (15190101) is composed of the identifier 15 and the value 190101, meaning

that the product has a best before date (the meaning of identifier 15) of January 1st,
2019.

TIP
For more information, see https://www.gs1.org/

5.3. EasyMatrixCode2

Specifications
Reference | Code Snippets

Open eVision User Guide PART IV Text and Code Reading Tools

https://www.gs1.org/
easymatrixcode-library.htm
easymatrixcode.htm

237

ECC 200, 26x26 cells data matrix code (left) and finder pattern (right)

In a single read operation, EasyMatrixCode2 locates, unscrambles, decodes, reads and grades the
quality of grayscale 2D data matrix codes of any size, contrast, location and orientation (even
viewed from the back on a transparent medium), providing they meet the following
specifications:

□ Minimum cell (= module) size: 3x3 pixels
□ Minimum quiet zone (blank zone around the matrix code) width: 1 pixel

All the functionality of EasyMatrixCode2 is available for testing in Open eVision Studio, except for
the StopProcess method (for asynchronous processing).

NOTE
The relevant classes of the EasyMatrixCode2 library are stored in the name
space “EasyMatrixCode2”.

Data Matrix Code Definition

● A data matrix code is a two-dimensional rectangular array of black and white cells which
conveys a string of characters (digits, letters and special characters).
□ It is encoded to achieve maximum packing.
□ Each cell corresponds to a bit of information.
□ Additional redundant bits allow error correction for robust reading of degraded symbols.

● A data matrix code is located using the Finder pattern:
□ The bottom and left edges of a Data Matrix code contain only black cells.
□ The top and right edges have alternating cells.

Open eVision User Guide PART IV Text and Code Reading Tools

easymatrixcode-library.htm
easymatrixcode-library.htm
ematrixcode2reader-stopprocess.htm
easymatrixcode-library.htm

238

● A data matrix code is characterized by:
□ Its logical size (number of cells).
□ Its encoding type: ECC 000 (odd symbol sizes, deprecated) or ECC 200 (even symbol

sizes).

NOTE
The data matrix code definition is provided by ISO/IEC and approved as
standard ISO/IEC 16022.

Supported Symbols

ECC other than the ECC200

NOTE: See the ISO/IEC 16022 standard for more information.

● Error correction table

Correctable errors %
ECC000 0
ECC050 2.8
ECC080 5.5
ECC100 12.6
ECC140 25

● Symbol table

Size
Capacity (numerical | alphanumerical | byte)

ECC000 ECC050 ECC080 ECC100 ECC140
num alph byte num alph byte num alph byte num alph byte num alph byte

9 × 9 6 3 1 n/a n/a n/a n/a
11 × 11 12 8 5 1 1 n/a n/a n/a n/a
13 × 13 24 16 10 10 6 4 4 3 2 1 1 n/a n/a
15 × 15 37 25 16 20 13 9 13 9 6 8 5 3 n/a
17 × 17 53 35 23 32 21 14 24 16 10 16 11 7 2 1 1
19 × 19 72 48 31 46 30 20 36 24 16 25 17 11 6 4 3
21 × 21 92 61 40 61 41 27 50 33 22 36 24 15 12 8 5
23 × 23 115 76 50 78 52 34 65 43 28 47 31 20 17 11 7
25 × 25 140 93 61 97 65 42 82 54 36 60 40 26 24 16 10
27 × 27 168 112 73 118 78 51 100 67 44 73 49 32 30 20 13
29 × 29 197 131 86 140 93 61 120 80 52 88 59 38 38 25 16
31 × 31 229 153 100 164 109 72 141 94 62 104 69 45 46 30 20
33 × 33 264 176 115 190 126 83 164 109 72 121 81 53 54 36 24
35 × 35 300 200 131 217 145 95 188 125 82 140 93 61 64 42 28
37 × 37 339 226 148 246 164 108 214 143 94 159 106 69 73 49 32
39 × 39 380 253 166 277 185 121 242 161 106 180 120 78 84 56 36
41 × 41 424 282 185 310 206 135 270 180 118 201 134 88 94 63 41
43 × 43 469 313 205 344 229 150 301 201 132 224 149 98 106 70 46
45 × 45 500 345 226 380 253 166 333 222 146 248 165 108 118 78 51
47 × 47 560 378 248 418 278 183 366 244 160 273 182 119 130 87 57
49 × 49 596 413 271 457 305 200 402 268 176 300 200 131 144 96 63

Open eVision User Guide PART IV Text and Code Reading Tools

ematrixcode-logicalsize.htm

239

ECC200

NOTE: See the ISO/IEC 16022 standard for more information.

Square

● Symbol table

Size
Capacity Correctable

errors %num alpha byte
10 × 10 6 3 1 25
12 × 12 10 6 3 25
14 × 14 16 10 6 28 to 39
16 × 16 24 16 10 25 to 38
18 × 18 36 25 16 22 to 34
20 × 20 44 31 20 23 to 38
22 × 22 60 43 28 20 to 34
24 × 24 72 52 34 20 to 35
26 × 26 88 64 42 19 to 35
32 × 32 124 91 60 18 to 34
36 × 36 172 127 84 16 to 30
40 × 40 228 169 112 15 to 28

Size
Capacity Correctable

errors %num alpha byte
44 × 44 288 214 142 14 to 27
48 × 48 348 259 172 14 to 27
52 × 52 408 304 202 15 to 27
64 × 64 560 418 277 14 to 27
72 × 72 736 550 365 14 to 26
80 × 80 912 682 453 15 to 28
88 × 88 1152 862 573 14 to 27
96 × 96 1392 1042 693 14 to 27

104 × 104 1632 1222 813 15 to 28
120 × 120 2100 1573 1047 14 to 27
132 × 132 2608 1954 1301 14 to 26
144 × 144 3116 2335 1555 14 to 27

Rectangular

● Symbol table

Size
Capacity Correctable

errors %num alpha byte
8 × 18 10 6 3 25
8 × 32 20 13 8 24
12 × 26 32 22 14 23 to 37
12 × 36 44 31 20 23 to 38
16 × 36 64 46 30 21 to 38
16 × 48 98 72 47 18 to 33

Open eVision User Guide PART IV Text and Code Reading Tools

240

Extended rectangular data matrix DMRE

NOTE: See the ISO/IEC 21471 standard for more information.

● Symbol table

Size
Capacity Correctable

errors %num alpha byte
8 x 48 36 25 16 21 to 36
8 x 64 48 34 22 21 to 36
8 x 80 64 46 30 20 to 35
8 x 96 76 55 36 21 to 38
8 x 120 98 72 47 20 to 36
8 x 144 126 93 61 18 to 33
12 x 64 86 63 41 19 to 34
12 x 88 128 94 62 18 to 33
16 x 64 124 91 60 18 to 34

Size
Capacity Correctable

errors %num alpha byte
20 x 36 88 64 42 19 to 35
20 x 44 112 82 54 19 to 34
20 x 64 186 124 82 17 to 31
22 x 48 144 106 70 17 to 32
24 x 48 160 118 78 17 to 31
24 x 64 216 160 106 15 to 28
26 x 40 140 103 68 18 to 32
26 x 48 180 133 88 16 to 30
26 x 64 236 175 116 15 to 28

Workflow
Reference | Code Snippets

1. Load the image.

2. Read the data matrix codes in the image using EMatrixCodeReader.Read().

3. Loop on found data matrix codes.

4. Display the decoded text.

Reading a Matrix Code
Reference | Code Snippets | dedicated code snippet: Reading Matrix Codes from an Image

Open eVision User Guide PART IV Text and Code Reading Tools

easymatrixcode-library.htm
easymatrixcode.htm
ematrixcodereader-read.htm
easymatrixcode-library.htm
EasyMatrixCode2.htm
../../../../../Content/05 Resources/02 Code Snippets/13 EasyMatrixCode2/Reading Data Matrix Codes.htm

241

You can read the matrix code in an image automatically as follows:

a. Create an EMatrixCodeReader object.

b. Call the Read method to return a vector containing the detected and decoded matrix
codes in the image.

The Read method provides the following overloads:
□ One overload that takes an ERegion object as an additional parameter to specify more

precisely the search area.
□ One overload to specify a search grid when your matrix codes are placed in a regular

fashion.

The EMatrixCode2.EMatrixCode instances contain the following information for each found data
matrix code:

□ Its decoded string,
□ Its position in the image,
□ Its logical size,
□ Its encoding type,
□ Its grading results,
□ Methods to draw the data matrix code on the source image.

Learning a Matrix Code
Reference | Code Snippets | dedicated code snippet: Reading with Prior Learning

To improve the processing times and to read small codes, learn a matrix code model from
representative images as follows:

1. Load the image of the matrix code you want to learn from.

2. Call the Learn method to learn from the image.

3. Repeat with additional images if necessary.

4. Save the EMatrixCodeReader state to the disk with the Save method.

By default, the Learn method explores the full range of the EMatrixCodeReader internal
parameters to search for data matrices in any type of context.

● If the learning process finds valid data matrices, the internal parameters that were necessary
to find them are enabled, set and ordered in a way meant to improve both reading speed
and capability in similar contexts.

● The user-defined advanced parameters (MaxNumCodes, Timeout, ReadMode and ComputeGrading)
are not affected by the Learn method.

● After setting MatrixCodeDimensionsRange, a call to Read or Learn restricts the processing
around that range. This can dramatically improve the speed of the process.

NOTE: However, if you set the property after the learning, the learning is reset and must be
redone.

Open eVision User Guide PART IV Text and Code Reading Tools

ematrixcode2reader-class.htm
ematrixcode2reader-read.htm
ematrixcode2reader-read.htm
ematrixcode2-ematrixcode.htm
easymatrixcode-library.htm
EasyMatrixCode2.htm
../../../../../Content/05 Resources/02 Code Snippets/13 EasyMatrixCode2/Learning a Data Matrix Code.htm
ematrixcode2reader-learn.htm
ematrixcode2reader-class.htm
ematrixcode2reader-save.htm
ematrixcode2reader-learn.htm
ematrixcode2reader-class.htm
ematrixcode2reader-maxnumcodes.htm
ematrixcode2reader-timeout.htm
ematrixcode2reader-readmode.htm
ematrixcode2reader-computegrading.htm
ematrixcode2reader-learn.htm
ematrixcode2reader-matrixcodedimensionsrange.htm
ematrixcode2reader-read.htm
ematrixcode2reader-learn.htm

242

● If the Learn method is not able to detect any code in the image, it throws an exception.

NOTE: The internal processing structure is not affected in this situation.

● If the Learn method has been called, all the subsequent images read or learned must have
the same dimensions as the one used in the first learn call, otherwise an exception is thrown.

Restoring the state of an EMatrixCodeReader

● To restore a previously saved EMatrixCodeReader state, call the Load method.

● To restore the default state of an EMatrixCodeReader instance, call the ResetLearning method.

Computing the Print Quality
Reference | Code Snippets | dedicated code snippet: Inspecting Print Quality Grades

To compute the print quality indicators as defined by BC11, ISO 15415, ISO/IEC TR 29158
(formerly known as AIM DPM-1-2006) and SEMI T10-0701 standards, retrieve the grades with the
GetIso15415GradingParameters, GetIso29158GradingParameters and GetSemiT10GradingParameters
accessors of the EMatrixCode2.EMatrixCode class.

NOTE
The print quality of the matrix codes is computed during the Read operation,
only if the ComputeGrading parameter is set to true.

Using GS1 Data Matrix Codes
Reference | Code Snippets

EasyMatrixCode2 is able to find and decode GS1-compliant data matrix codes.

The GS1 standard adds semantic identifiers to the contents of a data matrix code. These
identifiers are interpreted in an easy and consistent way.

The structure of GS1-compliant content is as follows:

]d2[GS1]{Id1}{Value1}[GS1?]{Id2}{Value2}…

where:
□ “]d2” is the string identifying a GS1-compliant stream,
□ [GS1] is the GS1 escape character (0x1d),
□ [GS1?] means that the [GS1] escape character is present there if the previous application

identifier has a variable size value,
□ {Id} is an application identifier,
□ {Value} is the value associated with that identifier.

Open eVision User Guide PART IV Text and Code Reading Tools

ematrixcode2reader-learn.htm
ematrixcode2reader-learn.htm
ematrixcode2reader-class.htm
ematrixcode2reader-load.htm
ematrixcode2reader-class.htm
ematrixcode2reader-resetlearning.htm
easymatrixcode-library.htm
EasyMatrixCode2.htm
../../../../../Content/05 Resources/02 Code Snippets/13 EasyMatrixCode2/Grading a Data Matrix Code.htm
ematrixcode2-iso15415gradingparameters.htm
ematrixcode2-iso29158gradingparameters.htm
ematrixcode2-semit10gradingparameters.htm
ematrixcode2-ematrixcode.htm
ematrixcode2reader-read.htm
ematrixcode2reader-computegrading.htm
easymatrixcode-library.htm
easymatrixcode.htm

243

Example

The string:

]d2[GS1]10GR-1-GNU[GS1]11180112151901012112345

is interpreted as follows:

]d2 [GS1] 10 GR-1-GNU [GS1] 11 180112 15 190101 21 12345
Id1 Value1 Id2 Value2 Id3 Value3 Id4 Value4

● The first Id is 10, this means the first value is the batch / lot number whose size is at most 20
chars.
□ Thus, the product has a batch / lot number of GR-1-GNU.
□ As batch / lot numbers are of a variable size, a separator is required after GR-1-GNU.

● The second Id is 11, this means the second value is the production date which always
consists of 6 digits.
□ The product has a production date of 180112 (12 of January 2018).
□ As production dates have a fixed size, no group separator is required after it.

● The third Id is 15, this means the third value is the “best before date” which always consists
of 6 digits.
□ The product has a “best before date” of 190101 (1st of January 2019).
□ As “best before dates” have a fixed size, no group separator is required after it.

● The fourth Id is 21, this means the fourth value is the serial number whose size is at most 20
chars.
□ The product has a serial number of 12345.
□ Altough serial numbers are of variable size, 12345 is the last part of the decoded string, so

there is no group separator after it.

2 For more information, see https://www.gs1.org/

● Use EGs1Translator::GetHumanReadableCode to get the human-readable version:

(10)GR-1-GNU(11)180112(15)190101(21)12345

Asynchronous Processing
Reference | Code Snippets

EasyMatrixCode2 supports asynchronous processing. This means that you can launch multiple
processing threads in parallel, each reading the matrix codes in its own image.

From the main thread, to manually stop the Read method in any of these processing threads at
any time, use the StopProcess method.

When you manually stop the Read method:
□ The search for matrix codes stops immediately, whether it has found matrix codes in the

image or not.
□ To retrieve all matrix codes found before the manual stop, use the GetReadResults

accessor.

Open eVision User Guide PART IV Text and Code Reading Tools

https://www.gs1.org/
egs1translator-gethumanreadablecode.htm
easymatrixcode-library.htm
easymatrixcode.htm
ematrixcode2reader-read.htm
ematrixcode2reader-stopprocess.htm
ematrixcode2reader-read.htm
ematrixcode2reader-readresults.htm

244

Reading Using a Grid
If the codes in the images are arranged in a regular grid-like fashion:

● Use the dedicated method EMatrixCodeReader.Read overloads that return EMatrixCodeGrid
objects to improve the reliability and the speed of the reading.

● Use the methods EMatrixCodeGrid.SetEnableCell, EMatrixCodeGrid.SetEnableRow,
EMatrixCodeGrid.SetEnableColumn or EMatrixCodeGrid.SetEnableAll to disable the processing
of cells that you know do not contain any code.

● Use the method GetResults of the returned EMatrixCodeGrid object to retrieve the codes read
in each cell of the defined grid.

2 For an example, see "Reading a Grid of Matrix Codes" on page 1.

Reading of data matrices arranged in a grid

Open eVision User Guide PART IV Text and Code Reading Tools

ematrixcode2reader-read.htm
ematrixcodegrid-class.htm
ematrixcodegrid-setenablecell.htm
ematrixcodegrid-setenablerow.htm
ematrixcodegrid-setenablecolumn.htm
ematrixcodegrid-enableall.htm
ematrixcodegrid-getresults.htm
ematrixcodegrid-class.htm
../../../../../Content/05 Resources/02 Code Snippets/13 EasyMatrixCode2/Reading a Grid of Matrix Codes.htm

245

Returning Unreadable Codes
Some codes may have their data part so damaged that they cannot be decoded.

● However, you can set EnableReturnUnreliableCodes to True to return them all the same.
□ These codes are placed at the end of the return vector.
□ Calling EMatrixCode::GetIsReliable on them returns False.

● Use the usual methods to retrieve the estimated logical size as well as the position of the
unreliable codes detected.

Top: input images
Bottom: read results with unreliable detections depicted in red

● Since the data part is no longer a rejection criterion, the likelihood that a false positive
unreliable code is returned increases.
□ To filter out these false positive detections, use the value returned by

EMatrixCode::GetReliabilityScore as a filtering threshold. This score translates as a
confidence that the detected object is an actual data matrix code.

Advanced Parameters
Reference | Code Snippets

Tune the following parameters to optimize the performance of EasyMatrixCode2.

● The MaxNumCodes parameter:
□ Tells the EMatrixCode2Reader the number of codes that can be in the image.
□ Affects the computational time of the Read method.

Open eVision User Guide PART IV Text and Code Reading Tools

ematrixcode2reader-enablereturnunreliablecodes.htm
ematrixcode2-isreliable.htm
ematrixcode2-reliabilityscore.htm
easymatrixcode-library.htm
easymatrixcode.htm
ematrixcode2reader-maxnumcodes.htm
ematrixcode2reader-class.htm
ematrixcode2reader-read.htm

246

● The Timeout parameter:
□ Limits the amount of time that the Read and Learn methods may take to process a single

image.
□ Is defined in microseconds.
□ Is set, by default, to a value that exceeds one hour.

● The ReadMode parameter affects the behavior of the Read method:
□ The setting EReadMode_Speed results in the shortest processing times and the Read method

stops as soon as one of the following is true:
- The method has found MaxNumCodes codes.
- The method reaches the Timeout time limit.
- The Read process is completely finished.

□ The setting EReadMode_Quality results in the best grading results and the Read method
keeps trying to improve its detection until one of the following is true:
- The method reaches the Timeout time limit.
- The Read process is completely finished.

● The ComputeGrading parameter:
□ Determines if the Read method computes the grading properties of the

EMatrixCode2.EMatrixCode object.
□ Is set to False by default.

● The MatrixCodeDimensionsRange parameter:
□ Sets the range of valid lengths in pixels that the sides of the data matrices must satisfy to

be detected.
□ You can also use this parameter to extend the reading capability to codes relatively small

compared to the input image.

After the tuning:
□ Use the Save method to store the state of the EMatrixCode2Reader on the disk.
□ Use the Load method, at any time, to restore the saved state.

TIP
The Save and Load methods also store the effects of Learning.

Open eVision User Guide PART IV Text and Code Reading Tools

ematrixcode2reader-timeout.htm
ematrixcode2reader-read.htm
ematrixcode2reader-learn.htm
ematrixcode2reader-readmode.htm
ematrixcode2reader-read.htm
ematrixcode2reader-readmode.htm
ematrixcode2reader-read.htm
ematrixcode2reader-maxnumcodes.htm
ematrixcode2reader-timeout.htm
ematrixcode2reader-read.htm
ematrixcode2reader-readmode.htm
ematrixcode2reader-read.htm
ematrixcode2reader-timeout.htm
ematrixcode2reader-read.htm
ematrixcode2reader-computegrading.htm
ematrixcode2reader-read.htm
ematrixcode2-ematrixcode.htm
ematrixcode2reader-matrixcodedimensionsrange.htm
ematrixcode2reader-save.htm
ematrixcode2reader-class.htm
ematrixcode2reader-load.htm
ematrixcode2reader-save.htm
ematrixcode2reader-load.htm
ematrixcode2reader-learn.htm

247

6. EasyQRCode - Reading QR Codes

6.1. Workflow

EasyQRCode

EasyQRCode detects QR (Quick Response) codes in an image, decodes them, and returns their
data.

Error detection and correction algorithms ensure that poorly-printed or distorted QR codes can
still be read correctly.

Workflow

Open eVision User Guide PART IV Text and Code Reading Tools

easyqrcode-library.htm

248

6.2. QR Codes Specifications

QR code definition

A QR code is a square array of dark and light dots. One dot (or "module") represents one bit of
information.

QR codes contain various types of data and can be different models, versions, and levels. They
always contain a message, metadata about alignment, size, format, and error correction bits.
They comply with the international standard ISO/IEC 18004 (1, 2 and 2005).

QR code structure

The QR code symbol consists of an encoding region, containing data and error correction
codewords, and of function patterns, containing symbol metadata and position data.

A QR code must be structured with the following elements:
□ Quiet zone: blank margin around the QR code
□ Finder patterns: recognizable zones identifying a QR code
□ Extension patterns: markers for the alignment of the QR code (model 1)
□ Alignment patterns: markers for the alignment of the QR code (models 2 and 2005)
□ Timing Patterns: data giving the module size (in pixels)
□ Format information: zones providing the QR code level
□ Version information: data giving the QR code size, for instance 25 x 25 modules (models 2

and 2005)
□ Data contents and error correction codewords: the primary information carried by the

symbol, with additional information for error correction

Variants of this structure exist, according to the model, format, or version of the QR code. For
instance, model 1 QR codes do not feature alignment patterns but extension patterns. Micro QR
codes include only one finder pattern, and no alignment pattern.

Structure of a model 1 QR code symbol

Open eVision User Guide PART IV Text and Code Reading Tools

249

Structure of a QR code 2005 symbol

Structure of a Micro QR code symbol

QR code subtypes

A QR code can be one of the following subtypes:
□ Basic: the default subtype.
□ ECI (Extended Channel Interpretation): the ECI subtype provides a consistent method to

embed interpretation information of data in the QR code. The ECI protocol is defined in
the AIM Inc. International Technical Specification. (ECI is not available for Micro QR code
symbols.)

□ GS1: the data contained in the QR code are formatted in accordance with the GS1 General
Specification.

□ AIM: the data contained in the QR code are formatted in accordance with a specific
industry application previously agreed with AIM Inc. The application indicator value is
embedded in the QR code data.

Data types

The QR code data can be any mix of these types:
□ Numeric data (0-9)
□ Alphanumeric data (0-9, A-Z, /,$, %...)
□ Byte data (possibly ECI-encoded)
□ Kanji characters

Open eVision User Guide PART IV Text and Code Reading Tools

250

Byte data interpretation

In a QR code, the byte data can represent any information. Their interpretation depends on the
subtype of the QR code:

● Basic subtype:
□ If some byte data are present in the QR code, you need to know how to interpret them.
□ Use the EByteInterpretationMode enum to select the corresponding byte interpretation

mode (see the retrieving decoded data section in "Reading QR Codes" on page 252 for
more details).

● ECI-encoded byte data:
□ The ECI subtype provides an ECI table indicator.
□ This indicator defines the character set to use to interpret the byte data.
□ EasyQRCode currently supports the UTF8 conversion table (ECI table indicator 26).

Models (Standards)
□ Model 1: original QR code international standard, with versions ranging from 1 to 14.

Note that the "version" of a QR code is the symbol size (in number of modules). It does
not relate to the version of the standard, which is called the "model".

□ Model 2: improvement of model 1. It provides versions from 1 to 40. It defines alignment
patterns to improve reading of distorted QR codes, or QR codes printed on curved
surfaces.

□ Model 2005: improvement of model 2, including white-on-black QR codes, and mirror
symbol orientation.

□ Micro QR codes: smaller QR codes, from version M1 to version M4. They have been
introduced to save printing space.

Versions (Symbol Size)
□ QR codes: from version 1 (21 x 21 modules) to version 40 (177 x 177 modules), with an

increment of +4 x +4 modules (version 2: 25 x 25 modules, version 3: 29 x 29 modules, ...,
version 39: 173 x 173 modules).

□ Micro QR codes: version M1 (11 x 11 modules), version M2 (13 x 13 modules), version M3
(15 x 15 modules), version M4 (17 x 17 modules).

Examples of QR codes
From left to right:

Micro QR code, version M3, 15 x 15 modules,
Model 2 QR code, version 4, 33 x 33 modules, 67-114 characters,

Model 2 QR code, version 40, 177 x 177 modules, 1852-4296 characters

Open eVision User Guide PART IV Text and Code Reading Tools

ebyteinterpretationmode-enum.htm

251

Levels (Error Correction)

QR codes contain error correction data. The standard offers the following levels of error
correction:

□ L: (low) about 7% of codewords can be restored
□ M: (medium) 15%
□ Q: (quality) 25%
□ H: (high) 30% (not available for Micro QR codes)

For Micro QR code symbols, the available error correction levels depend on the version:
□ M1 has only error detection
□ M2 and M3 support L and M levels
□ M4 supports L, M and Q levels

QR code geometry

When the QR code reader finds an array of dots that could match a QR code, it returns the
"geometry" of this QR code candidate.

A QR code geometry is a set of points:
□ It contains the coordinates of the corners of the QR code quadrangle (bottom left, top left,

top right, bottom right).
□ It contains the coordinates of the finder pattern centers (bottom left, top left, top right).
□ For a Micro QR code symbol, the coordinates for a single finder pattern center (link) are

returned.

EasyQRCode uses a float coordinate system and the origin (0.0, 0.0) is the top left corner of the
top left pixel of the image.

QR code geometry

Read a QR code

Reading a QR code returns information about every QR codes found in the given search field (see
"Reading QR Codes" on page 252).

Open eVision User Guide PART IV Text and Code Reading Tools

eqrcode-geometry.htm
equadrangle-corners.htm
equadrangle-class.htm
eqrcodegeometry-finderpatterncenters.htm
eqrcodegeometry-finderpatterncenters.htm
eqrcode-class.htm

252

6.3. Reading QR Codes

Read a QR code

1. Set a search field on an EROIBW8 image.
□ To restrict the field further, use an optional ERegion.
□ To read multiple QR codes placed in a regular fashion, use a specific overload of Read to

use a grid.

2. If needed, tune the parameters to restrict the number of operations to process.

3. The QR code reader scans the image and searches for 3 finder patterns that could match a
QR code, with the following requirements:
□ Minimum quiet zone (blank zone around the QR code) width: 3 pixels.
□ Minimum module size: 3 x 3 pixels.
□ Minimum isotropy: 0.5.
□ Maximum corner deformation: 15° (corner angles can range from 75° to 105°).

4. The QR code reader uses the gravity center of the QR code geometries to sort the QR code
candidates in line then columns order starting from the top left corner of the image.

5. The QR code reader decodes the QR candidates and returns the QR code: model, version,
level, geometry and the decoded data as described below.

6. The reader can report the amount of unused error correction.
□ Close to 1, very few errors were corrected when decoding the data. The decoding is highly

reliable, and the QR code is of good quality.
□ Close to 0, many errors were corrected when decoding the data. The decoding is reliable,

but the QR code quality is poor.
□ -1, error correction failed. Decoding was not performed.

Tune the search parameters

● Scan precision: You can change the scan precision to scan the search field with:
□ A fine precision (recommended for small QR codes)
□ A coarse precision (recommended for medium to large QR codes)

● Minimum score: The QR code reader searches for this QR code finder pattern:

□ A perfect match returns a pattern finder score of 1.
□ Less accurate matches return lower scores.
□ The minimum score allowed by default is 0.65 - you can tune this.

Open eVision User Guide PART IV Text and Code Reading Tools

eqrcodereader-searchfield.htm
eroibw8-class.htm
eqrcodereader-read.htm
equadrangle-gravitycenter.htm
eqrcodegeometry-class.htm
eqrcode-class.htm
eqrcode-model.htm
eqrcode-version.htm
eqrcode-level.htm
eqrcode-geometry.htm
eqrcodedecodedstreampart-decodeddata.htm
eqrcode-unusederrorcorrection.htm
eqrcodereader-scanprecision.htm
eqrcodereader-minimumscore.htm

253

● Minimum isotropy: The isotropy of a QR code represents its rectangular deformation.
□ Perfectly square QR codes have an isotropy of 1 (short side divided by long side, whether

the rectangle is vertical or horizontal).
□ EasyQRCode can detect rectangle QR codes with an isotropy down to 0.5.
□ The default minimum isotropy is 0.8, it can be tuned from 0 to 1.

Square and rectangular QR codes (isotropy = 1, 0.5, and 0.5 from left to right)

● Model and Version: By default, the QR code reader searches for QR codes of model 1 and 2,
and all versions.
□ You can shorten the process by specifying the QR code model(s) and a range of versions

(from 1 (minimum) to 40 (maximum)) to search for.
□ By default, the QR code reader does not search for Micro QR code symbols.

Retrieve the decoded data

Retrieving methods

To retrieve the decoded data, you can (in growing complexity order):

1. Use the GetDecodedString method of an EQRCode object.
□ This method returns an UTF-8 formatted string that contains the concatenated data of

the QR code.
□ It can take an EByteInterpretationMode as argument.
□ For the GS1 QR codes:

- Use GetDecodedString to get the machine-readable code (for ex.:]Q31118011215190101).
- Use EGs1Translator::GetHumanReadableCode to get the human-readable version (for ex.:
(11)180112(15)190101).

2. Use the GetDecodedString method of the EQRCodeDecodedStreamPart objects.
□ This method is called on a part and returns an UTF-8 formatted string that contains the

data of this part.
□ It can take an EByteInterpretationMode as argument.
□ Concatenate the decoded string of each part.

3. Use the GetDecodedData method of the EQRCodeDecodedStreamPart objects.
□ This method is called on a part and returns a vector of bytes that contains the data of this

part.
□ Interpret the data according to the coding mode of the QR code and the encoding of each

part.
□ Concatenate the interpreted data of each part.

Open eVision User Guide PART IV Text and Code Reading Tools

eqrcodereader-minimumisotropy.htm
eqrcodereader-minimumisotropy.htm
eqrcode-model.htm
eqrcode-version.htm
eqrcodereader-searchedmodels.htm
eqrcodereader-minimumversion.htm
eqrcodereader-maximumversion.htm
eqrcode-getdecodedstring.htm
eqrcode-class.htm
ebyteinterpretationmode-enum.htm
ebarcode2-getdecodedstring.htm
egs1translator-gethumanreadablecode.htm
eqrcode-getdecodedstring.htm
eqrcodedecodedstreampart-eqrcodedecodedstreampart.htm
ebyteinterpretationmode-enum.htm
eqrcodedecodedstreampart-decodeddata.htm
eqrcodedecodedstreampart-eqrcodedecodedstreampart.htm
eqrcodedecodedstream-codingmode.htm
eqrcodedecodedstreampart-encoding.htm

254

Interpreting the encoded data

The QR code data can be encoded in either alphanumeric, numeric or byte modes. If a QR code
contains bytes, the interpretation mode of these bytes can be embedded in the QR code
through the ECI protocol or you must specify or know it.

Use the dedicated EByteInterpretationMode for this purpose:

● EByteInterpretationMode_Hexadecimal
□ Converts all bytes to their hexadecimal values (2 characters per byte).
□ The escape character 0xEFBFBD surrounds the converted byte parts.
□ This mode overrides the ECI table indicator if it is present.

● EByteInterpretationMode_UTF8
□ Converts all bytes to UTF-8 if possible.
□ The GetDecodedString method throws an EException if the data are not UTF-8 compatible.

● EByteInterpretationMode_Auto
□ Converts all bytes in the best possible way following the ECI protocol.

The decoded string returns the concatenated data of the QR code in UTF-8 format:
□ If bytes are present in the QR code data without ECI, specify the byte interpretation mode

when you call the GetDecodedString method.
□ If bytes are present in the QR code data with ECI encoding, use the corresponding byte

interpretation table (currently, only table ECI 26: UTF-8 is available).
□ The hexadecimal byte interpretation mode does not throw an exception and returns all

bytes parts present in the data in their hexadecimal form (2 characters per byte)
surrounded by the 0xEFBFBD escape character.

□ See the code snippet Retrieving Information of a QR Code.

The decoded stream class consists of:
□ A coding mode (basic, ECI, FNC1/GS1 or FNC1/AIM).
□ An application indicator (if the coding mode is FNC1/AIM, otherwise 0).

The decoded data:
□ Is accessible from each part of the decoded stream.
□ Is interpreted according to its encoding (numeric, alphanumeric, byte or Kanji) and the

ECI table indicator (if the coding mode is ECI, otherwise -1).
□ Can be the raw bit stream (the bit data after unmasking and error correction, but before

decoding as a vector of bytes).
□ Can be the corresponding decoded string (specify a byte interpretation mode if the

encoding is byte without ECI coding mode or if the ECI table is not supported).
□ See also the code snippet Retrieving the Decoded Data (Advanced).

Computing the print quality

● The print quality indicators as defined by ISO 15415 and ISO/IEC TR 29158 (formerly known
as AIM DPM-1-2006) are computed during the Read operation, but only if
EQRCodeReader::ComputeGrading is set to TRUE.
□ The print quality is not yet supported for Micro QR code models.

● Use the EQRCode::GetIso15415GradingParameters and EQRCode::GetIso29158GradingParameters
methods to retrieve the grades.

Open eVision User Guide PART IV Text and Code Reading Tools

ebyteinterpretationmode-enum.htm
ebyteinterpretationmode-enum.htm
ebyteinterpretationmode-enum.htm
eqrcode-decodedstream.htm
eexception-class.htm
ebyteinterpretationmode-enum.htm
eqrcodedecodedstreampart-getdecodedstring.htm
ebyteinterpretationmode-enum.htm
eqrcode-decodedstream.htm
ebyteinterpretationmode-enum.htm
../../../../../Content/05 Resources/02 Code Snippets/14 EasyQRCode/Retrieving Information of a QR Code.htm
eqrcodedecodedstream-class.htm
eqrcodedecodedstreampart-decodeddata.htm
eqrcodedecodedstreampart-ecitableindicator.htm
eqrcodedecodedstreampart-getdecodedstring.htm
ebyteinterpretationmode-enum.htm
../../../../../Content/05 Resources/02 Code Snippets/14 EasyQRCode/Retrieving the Decoded Data (Advanced).htm
eqrcodereader-computegrading.htm
eqrcode-iso15415gradingparameters.htm
eqrcode-iso29158gradingparameters.htm

255

● Using the grading:
□ For more accurate results, it requires modules to be at least 10 pixels in width.
□ It requires a 1-module quiet zone for grading.
□ It evaluates the Fixed Pattern Damage with a 4-module quiet zone around the finder

patterns. If this condition is not met, the Fixed Pattern Parameter Grade is returned as -1.
This result affects the overall symbol grade.

□ The Version Additional Parameter is returned as -1 when it is not applicable. In this case,
this result is ignored in the overall symbol grade.

□ The implementation follows closely the standard but the grades also depend on the
decoding algorithm. So the results may slightly differ according to the Open eVision
version.

● The print quality computation is not yet available for Micro QR codes.

Multithreading

The Read method supports multithreading.

● Multithreading splits the load between the detection methods (such as AdaptiveThreshold
and Gradient) and decodes multiple candidates in parallel. This is useful when there are
several codes in the image.

Reading Using a Grid

If the codes in the images are arranged in a regular grid-like fashion:

● Use the dedicated method EQRCodeReader.Read overloads that return EQRCodeGrid objects to
improve the reliability and the speed of the reading.

● Use the methods EQRCodeGrid.SetEnableCell, EQRCodeGrid.SetEnableRow,
EQRCodeGrid.SetEnableColumn or EQRCodeGrid.SetEnableAll to disable the processing of cells
that you know do not contain any code.

● Use the method GetResults of the returned EQRCodeGrid object to retrieve the codes read in
each cell of the defined grid.

2 For an example, see "Reading a Grid of QR Codes" on page 1.

Reading of QR codes arranged in a grid

Open eVision User Guide PART IV Text and Code Reading Tools

eqrcodereader-read.htm
eqrdetectionmethod-enum.htm
eqrdetectionmethod-enum.htm
eqrcodereader-read.htm
eqrcodegrid-class.htm
eqrcodegrid-setenablecell.htm
eqrcodegrid-setenablerow.htm
eqrcodegrid-setenablecolumn.htm
eqrcodegrid-enableall.htm
eqrcodegrid-getresults.htm
eqrcodegrid-class.htm
../../../../../Content/05 Resources/02 Code Snippets/14 EasyQRCode/Reading a Grid of QR Codes.htm

256

7. EasyOCR - Reading Texts

7.1. Workflow

Reference | Code Snippets

EasyOCR

EasyOCR optical character recognition library reads short texts (such as serial numbers, part
numbers and dates).

It uses font files (pre-defined OCR-A, OCR-B and Semi standard fonts, or other learned fonts)
with a template matching algorithm that can recognize even badly printed, broken or
connected characters of any size.

There are 4 steps to recognizing characters:

1. Raw image 2. Object
segmentation 3. Character isolation 4. Character

recognition

Open eVision User Guide PART IV Text and Code Reading Tools

easyocr-library.htm
recognizing-characters.htm
eocr-class.htm

257

Workflow

7.2. Learning Process

You can learn characters to create a font file if required.
Characters are presented one by one to EasyOCR which analyzes them and builds a database of
characters called a font. Each character has a numeric code (usually its ASCII code) and belongs
to a character class (which may be used in the recognition process).

Font files are created as follows:

1. NewFont clears the current font.

2. LearnPattern or LearnPatterns adds the patterns from the source image to the font.
Patterns are ordered by their index value, as assigned by the FindAllChars process.
The patterns in a font are stored as a small array of pixels, by default 5 pixels wide and 9
pixels high. This size can be changed before learning, using parameters PatternWidthand
PatternHeight.

3. RemovePattern removes unwanted patterns (optional).

4. Save writes the contents of the font to a disk file with parameter values: NoiseArea,
MaxCharWidth, MaxCharHeight, MinCharWidth, MinCharHeight, CharSpacing, TextColor.

Open eVision User Guide PART IV Text and Code Reading Tools

eocrclass-enum.htm
eocr-newfont.htm
eocr-learnpattern.htm
eocr-learnpatterns.htm
eocr-findallchars.htm
eocr-patternwidth.htm
eocr-patternheight.htm
eocr-removepattern.htm
eocr-save.htm
eocr-noisearea.htm
eocr-maxcharwidth.htm
eocr-maxcharheight.htm
eocr-mincharwidth.htm
eocr-mincharheight.htm
eocr-charspacing.htm
eocr-textcolor.htm

258

7.3. Segmenting

Segmenting

1. EasyOCR analyses the blobs to locate the characters and their bounding box, using one of
two segmentation modes:
□ keep objects mode: one blob corresponds to one character.
□ repaste objects mode: the blobs are grouped into characters of a nominal size. This is

useful when characters are broken or made up of several parts. When a blob is too large
to be considered a single character, it can be split automatically using CutLargeChars.

Character segmentation by blob grouping

2. Filters remove very large and very small unwanted features.

3. EasyOCR processes the character image to normalize the size into a bounding box, extracts
relevant features, and stores them in the font file. The patterns in a font are stored as arrays
of pixels defined by PatternWidth and PatternHeight (by default 5 pixels wide and 9 pixels
high).

Segmentation parameters

Segmentation parameters must be the same during learning and recognition. Good
segmentation improves recognition.

● The Threshold parameter helps separate the text from the background.
A too high value thickens black characters on white background and may cause merging, a
too small value makes parts disappear.
If the lighting conditions are very variable, automatic thresholding is a good choice.

Too high threshold value (left), Threshold adjustment (middle), Too low threshold value (right)

● NoiseArea: Blob areas smaller than this value are discarded. Make sure small character
features are preserved (i.e., the dot over an "i" letter).

● MaxCharWidth, MaxCharHeight: Maximum character size. If a blob does not fit in a rectangle
with these dimensions, it is discarded or split into several parts using vertical cutting lines. If
several blobs fit in a rectangle with these dimensions, they are grouped together.

● MinCharWidth, MinCharHeight: Minimum character size. If a blob or a group of blobs fits in a
rectangle with these dimensions, it is discarded.

Open eVision User Guide PART IV Text and Code Reading Tools

eocr-segmentationmode.htm
eocr-cutlargechars.htm
eocr-patternwidth.htm
eocr-patternheight.htm
eocr-threshold.htm
eocr-noisearea.htm
eocr-maxcharwidth.htm
eocr-maxcharheight.htm
eocr-mincharwidth.htm
eocr-mincharheight.htm

259

● CharSpacing: The width of the smallest gap between adjacent letters. If it is larger than
MaxCharWidth it has no effect.
If the gap between two characters is wider than this, they are treated as different characters.
This stops thin characters being incorrectly grouped together.

● RemoveBorder: Blobs near image/ROI edges cannot normally be exploited for character
recognition. By default, they are discarded.

7.4. Recognition

Recognition

The characters are compared to a set of patterns, called a font. A character is recognized by
finding the best match between a character and a pattern in the font. After the character has
been located, it is normalized in size (stretched to fit in a predefined rectangle) for matching.
The normalized character is compared to each normalized template in the font database and
the best matches are returned.

1. Load: reads a pre-recorded font from a disk file.

2. BuildObjects: The image is segmented into objects or blobs (connected components) which
help find the characters. This step can be bypassed if the exact position of the characters is
known. If the character isolation process is bypassed, you must specify the known locations
of the characters: AddChar and EmptyChars.

3. FindAllChars: selects the objects considered as characters and sorts them from top to
bottom then left to right.

4. ReadText: performs the matching and filters characters if the marking structure is fixed or a
character set filter was provided.
Character recognition: The characters are compared to a set of patterns, called a font.
The best match is stretched to fit in a predefined rectangle and compared to each
normalized template in the font database.
A Character set filter can improve recognition reliability and run time by restricting the range
of characters to be compared. For instance, if a marking always consists of two uppercase
letters followed by five digits, the last of which is always even, it is possible to assign each
character a class (maximum 32 classes) then set the character filter to allow the following
classes at recognition time: two uppercase, four even or odd digits, one even digit.

Steps 2 to 4 can be repeated at will to process other images or ROIs. The Recognize method can
be used as well.

Additional information, such as the geometric position of the detected characters, can be
obtained using: CharGetOrgX, CharGetOrgY, CharGetWidth, CharGetHeight, ...

CompareAspectRatio makes character and font comparison sensitive to the difference between
narrow and wide characters. It improves recognition when characters look like each other after
size normalization.

Open eVision User Guide PART IV Text and Code Reading Tools

eocr-charspacing.htm
eocr-maxcharwidth.htm
eocr-removeborder.htm
eocr-load.htm
eocr-buildobjects.htm
eocr-addchar.htm
eocr-emptychars.htm
eocr-findallchars.htm
eocr-readtext.htm
eocr-recognize.htm
eocr-chargetorgx.htm
eocr-chargetorgy.htm
eocr-chargetwidth.htm
eocr-chargetheight.htm
eocr-compareaspectratio.htm

260

Recognition parameters

● MaxCharWidth, MaxCharHeight: if a blob does not fit within a rectangle with these dimensions, it
is not considered as a possible character (too large) and is discarded. Furthermore, if several
blobs fit in a rectangle with these dimensions, they are grouped together, forming a single
character. The outer rectangle size should be chosen such that it can contain the largest
character from the font, enlarged by a small safety margin.

● MinCharWidth, MinCharHeight: if a blob or a group of blobs does fit in a rectangle with these
dimensions, it is not considered as a possible character (too small) and is discarded. The
inner rectangle size should be chosen such that it is contained in the smallest character from
the font, shrunk by a small safety margin.

● RemoveNarrowOrFlat: Small characters are discarded if they are narrow or flat. By default they
are discarded when they are both narrow and flat.

● CharSpacing: if two blobs are separated by a vertical gap wider than this value, they are
considered to belong to different characters. This feature is useful to avoid the grouping of
thin characters that would fit in the outer rectangle. Its value should be set to the width of
the smallest gap between adjacent letters. If it is set to a large value (larger than
MaxCharWidth), it has no effect.

● CutLargeChars: when a blob or grouping of blobs is larger than MaxCharWidth, it is discarded.
When enabled, the blob is split into as many parts as necessary to fit and the amount of
white space to be inserted between the split blobs is set by RelativeSpacing. This is an
attempt to separate touching characters.

● RelativeSpacing: when the CutLargeChars mode is enabled, setting this value allows
specifying the amount of white space that should be inserted between the split parts of the
blobs.

Invalid recognition settings

Advanced tuning

These recognition parameters can be tuned to optimize recognition:

● CompareAspectRatio: when this setting is on, EasyOCR is less tolerant of size and takes into
account the measured aspect ratio. Using this mode improves the recognition when
characters look similar after size normalization as it enforces the difference between narrow
and wide characters.

● Filtering the characters (in the ReadText method), can be used if the marking structure is
fixed.

● When objects are larger than the MaxCharWidth property, they can be split into as many parts
as needed, using vertical cutting lines.

● ESegmentationMode, character isolation mode defines how characters are isolated:

Open eVision User Guide PART IV Text and Code Reading Tools

eocr-maxcharwidth.htm
eocr-maxcharheight.htm
eocr-mincharwidth.htm
eocr-mincharheight.htm
eocr-removenarroworflat.htm
eocr-charspacing.htm
eocr-maxcharwidth.htm
eocr-cutlargechars.htm
eocr-maxcharwidth.htm
eocr-relativespacing.htm
eocr-relativespacing.htm
eocr-cutlargechars.htm
eocr-compareaspectratio.htm
eocr-readtext.htm
eocr-maxcharwidth.htm
esegmentationmode-enum.htm
esegmentationmode-enum.htm

261

□ Keep objects mode: a character is a blob; no attempt is made to group blobs, thus
damaged characters cannot be handled and small features such as accents and dots may
be discarded by the minimum character size criterion.

□ Repaste objects mode: blobs are grouped to form distinct characters if they fit in the
maximum character size and are not separated by a vertical gap, thus preserving accents
and dots.

● By default, EasyOCR considers two characters to be on a different line if their bottom lines
are too different (around 30% of the character height). Use the property LineSpacingMode to
change that behavior.

Open eVision User Guide PART IV Text and Code Reading Tools

eocr-linespacingmode.htm

262

8. EasyOCR2 - Reading Texts (Improved)

8.1. Introduction

8.2. Purpose and Principles

EasyOCR2 is an optical recognition tool designed to read short texts such as serial numbers,
expiry dates or lot codes printed on labels or on parts.

Source image

It uses an innovative segmentation method to detect the blobs in an image, then it places
textboxes over the detected blobs following a user-defined topology.

Image segmentation (left) and textboxes fitting (right)

The topology specifies the number of lines, words and characters in the text. You can also
specify a character type (letter, digit and/or symbol) for each character in the text, to improve
the recognition rate and speed.

EasyOCR2 supports the rotation of the text up to 360 degrees, handles non-uniform illumination
and textured backgrounds as well as dot-printed or fragmented characters.

To recognize characters, EasyOCR2 uses a pretrained classifier, powered by Deep Learning
technologies, or a classifier that you trained on your character database.

Open eVision User Guide PART IV Text and Code Reading Tools

263

For each input character:
□ The classifier calculates a score for all candidate outputs.
□ It returns the candidate with the highest score as the recognition result.

Text recognition

8.3. Workflow

Learning mode

Open eVision User Guide PART IV Text and Code Reading Tools

264

Production mode

8.4. EasyOCR2 vs EasyOCR

EasyOCR2 gives better results than EasyOCR when dealing with:
□ Unknown text rotation.
□ Dotted or fragmented characters.
□ Non-uniform illumination or textured backgrounds.
□ Complex text topologies.

● When you have the TrueType font files that match the text, you can use these font files
directly with EasyOCR2 for the recognition, while you cannot do it with EasyOCR.

● Using the provided pretrained classifiers, EasyOCR2 can perform the recognition without any
preliminary training.

8.5. Using EasyOCR2

8.6. Detect the Characters

See also: code snippet: Detecting Characters

Detection

EasyOCR2 uses an innovative segmentation method to detect the blobs in an image. Then it
places textboxes over the detected blobs following a user-defined topology specifying the
number of lines, words and characters in the text (see "Set the Topology" on page 269).

You can specify a character type (letter, digit and/or symbol) for each character in the text, to
improve the recognition rate and speed.

Open eVision User Guide PART IV Text and Code Reading Tools

../../../../../Content/05 Resources/02 Code Snippets/09 EasyOCR2/Detecting Characters.htm

265

Process

To find characters in an image with EasyOCR2:

1. Load your image.

Code

EImageBW8 image;
image.Load("image.tif");

Studio

In the main menu:
1. Image > Open > select your image (EasyOcr3.tif).

2. Attach an ROI to your image.

Code

EROIBW8 roi;
roi.Attach(&image, 50, 224, 340, 96);

Studio

In the image window:
1. Right-click > New ROI > move and resize in the image > Close.

Open eVision User Guide PART IV Text and Code Reading Tools

266

3. Create an EOCR2 instance.

Code

EOCR2 ocr2;

Studio

In the main menu:
1. EasyOCR2 > New OCR2 Tool > name your tool.

In the tool window, in the Settings tab:
2. Select your Source Image.

4. Enable or disable the topology.

Code

ocr2.SetEnabledTopology(true);

Studio

In the Settings tab:
1. Check or uncheck Enable Topology.

5. If you are using a topology, configure it as detailed in "Set the Topology" on page 269.

Open eVision User Guide PART IV Text and Code Reading Tools

267

6. Set the following mandatory parameters:
□ CharsWidthRange: search for characters with a width in this range.
□ CharsHeight: search for characters with this height.
□ TextPolarity: search for light characters on a dark background or vice versa.

Code

ocr2.SetCharsWidthRange(EIntegerRange(25,25));
ocr2.SetCharsHeight(37);
ocr2.SetTextPolarity(EasyOCR2TextPolarity_WhiteOnBlack);

Studio

In the Settings tab:
1. Set the Character width Max and the Character width Min.
2. Set the Character height.
3. Select the Text polarity.

7. According to your application and needs, adjust the additional parameters:
□ "Segmentation Parameters" on page 281.
□ "Detection Parameters" on page 284.
□ If you do not use a topology: "No Topology Parameters" on page 288

Open eVision User Guide PART IV Text and Code Reading Tools

eocr2-charswidthrange.htm
eocr2-charsheight.htm
eocr2-textpolarity.htm

268

8. EasyOCR2 segments the image, finding blobs that represent (parts of) the characters.

► Blobs that are too large or too small to be considered as parts of a character are filtered
out.

► EasyOCR2 fits character boxes to the detected blobs according to a given topology and
detectionMethod.

► The detection returns an EOCR2Text structure that contains a textbox and a bitmap image
for each character, hierarchically stored in EOCR2Line -> EOCR2Word -> EOCR2Char structures.

Code

EOCR2Text text = ocr2.Detect(roi);

Studio

In any tab:
1. Detect

► EasyOCR2 extracts the pixels inside each character box from the image.

Use the resulting character-images to perform:
□ "Learn the Characters" on page 272
□ "Recognize the Characters" on page 276

Open eVision User Guide PART IV Text and Code Reading Tools

eocr2-topology.htm
eocr2-detectionmethod.htm
eocr2text-eocr2text.htm
eocr2line-eocr2line.htm
eocr2word-eocr2word.htm
eocr2char-eocr2char.htm

269

8.7. Set the Topology

2 The following parameters are set and used in the process: "Detect the Characters" on page
264.

Topology

&
The parameter Topology specifies the structure of the text (number of lines, words and
characters) as well as the type of characters in the text.

The box-fitting method uses this parameter to structure the textboxes it fits to the detected
blobs. And the recognition method limits the number of candidates for each character based
on the information of the topology.

● The topology uses the following modified regular expression (Regex) wildcards:
□ “.” (dot) represents any character (not including a space).
□ “L” represents an alphabetic character:

 - “Lu” represents an uppercase alphabetic character.
 - “Ll” represents a lowercase alphabetic character.

□ “N” represents a digit.
□ “P” represents a punctuation character among: ! “ # % & ‘ () * , - . / : ; < > ? @ [\] _ { | } ~
□ “S” represents a symbol among: $ + - < = > | ~
□ “\n” represents a line break.
□ “ ” (space) represents a space between two words.

● You can combine these wildcards.
□ For example: [LN] represents an alphanumeric character.

● To specify multiple characters:
□ Add {n} at the end for n characters.
□ If the amount of characters is uncertain, specify {n,m} for a minimum of n characters and

a maximum of m characters.

Pretrained classifiers

● Currently, when you use pretrained classifiers, not all types of character are recognized:
□ Only "Lu", "N" and "P" are supported.
□ Using "." in your topology only results in a character that is either a uppercase letter, a

number or a punctuation character.
□ Using "L" only results in an uppercase letter.
□ Using another character type throws an exception.

Open eVision User Guide PART IV Text and Code Reading Tools

eocr2-topology.htm

270

Examples

● [LuN]{3,5}PN{4} \n .{5} LL represents a text comprised of 2 lines:
□ The first line has 1 word:

- The word has 3 to 5 uppercase alphanumeric characters followed by a punctuation
character and 4 digits.

□ The second line has 2 words:
- The first word has 5 characters (of any type).
- The second word has 2 letters (upper- or lowercase).

● L{3}P N{6} \n L{3}P NNPN{4} represents a text with 2 lines:
□ The first line has 2 words:

- The first word has 3 uppercase letters followed by a punctuation mark.
- The second word has 6 digits.

□ The second line also has two words:
- The first word has 3 uppercase letters followed by a punctuation mark.
- The second word has 2 digits, followed by a punctuation mark and 4 digits.

● .{10} \n .{7} \n .{5} .{5} \n .{5} .{7} represents a text with 4 lines:
□ The first line contains 1 word of 10 characters (of any type).
□ The second line contains 1 word of 7 characters
□ The third line contains 2 words, each of 5 characters.
□ The fourth line contains 2 words of 5 and 7 characters respectively.

Process

2 Detect the characters in your image as described in "Detect the Characters" on page 264.

1. Set the topology either as text.

Code

ocr2.SetEnabledTopology(true);
ocr2.SetTopology(".{10}\n.{3} .{4}");

Open eVision User Guide PART IV Text and Code Reading Tools

271

Studio

In the Settings tab:
1. Check Enable Topology.
2. ... to open the topology editor

3. Enter the topology.
4. Apply to update the wizard view.
5. OK

2. Or using the wizard.

Open eVision User Guide PART IV Text and Code Reading Tools

272

Studio

In the Settings tab:
1. Check Enable Topology.
2. ... to open the topology editor

3. Use [+] and [-] to add or remove a line, a word or a character.
4. Click the corner to select the character type(s).
5. OK

8.8. Learn the Characters

See also: Learning Characters

Learning

In order to recognize characters, EasyOCR2 can use a database of known reference characters.
You can generate this character database from images and/or from TrueType system fonts.

Open eVision User Guide PART IV Text and Code Reading Tools

../../../../../Content/05 Resources/02 Code Snippets/09 EasyOCR2/Learning Characters.htm

273

Process

2 Detect the characters in your image as described in "Detect the Characters" on page 264.

1. Set the correct values of the text.

Code

text.SetText("Bt121KPJ80\n786 9512");

Studio

In the Learning tab:
1. Select an element (character, word, line or text) in the image (see "View Elements in Open eVision

Studio" on page 279).
2. Enter the correct corresponding text.

2. Add the detected characters and their correct value to the current character database.

Code

ocr2.Learn(text);

Studio

In the Learning tab:
1. Learn

Open eVision User Guide PART IV Text and Code Reading Tools

274

3. Save the current character database.

Code

ocr2.SaveCharacterDatabase("myDB.o2d");

Studio

In the Settings tab:
1. Save Database > enter the name of your database (.o2d file).

Open eVision User Guide PART IV Text and Code Reading Tools

275

4. Alternatively, save the model file, including the detection parameters and the created
character database.

Code

ocr2.Save("myModel.o2m");

Studio

In the Settings tab:
1. Save > enter the name of your model (.o2m file).

Learn characters from a True Type font

● Use AddCharactersToDatabase with the path to the True Type font to learn its characters.

Code

ocr2.AddCharactersToDatabase("C:\Windows\Fonts\Arial.ttf");

Open eVision User Guide PART IV Text and Code Reading Tools

eocr2-addcharacterstodatabase.htm

276

Clear the database

● Use ClearCharacterDatabase to clear the current character database of any existing learning.

Code

ocr2.ClearCharacterDatabase();

Studio

In the Settings tab:
1. Clear Database

8.9. Recognize the Characters

See also: code snippets: Reading Using TrueType Fonts, Reading Using EOCR2 Character
Database, Reading Using EOCR2 Model File

Recognition

&
To recognize characters, EasyOCR2 uses a pretrained classifier or a classifier that you trained
on your character database.

For each input character:
□ The classifier calculates a score for all candidate outputs.
□ It returns the candidate with the highest score as the recognition result.

Use the topology to pass information to the classifier about each character. This reduces the
number of candidates and improves the recognition rate (see "Set the Topology" on page 269).

Open eVision User Guide PART IV Text and Code Reading Tools

eocr2-clearcharacterdatabase.htm
../../../../../Content/05 Resources/02 Code Snippets/09 EasyOCR2/Reading Using TrueType Fonts.htm
../../../../../Content/05 Resources/02 Code Snippets/09 EasyOCR2/Reading Using EOCR2 Character Database.htm
../../../../../Content/05 Resources/02 Code Snippets/09 EasyOCR2/Reading Using EOCR2 Character Database.htm
../../../../../Content/05 Resources/02 Code Snippets/09 EasyOCR2/Reading Using EOCR2 Model File.htm

277

&
● Use the method Read or Recognize to retrieve a string with the recognition results.

□ Call Read to detect and recognize the characters in one step.
□ Call Detect to extract the text from the image then Recognize to recognize the extracted

text. This allows you to modify elements of the detected text before the recognition.

● To access more information about the results, use the method ReadText that returns an
EOCR2Text structure with:
□ The coordinates and the size of each textbox,
□ A bitmap image of each textbox,
□ A list of the recognition scores for each character.

Process

2 Detect the characters in your image as described in "Detect the Characters" on page 264.

1. Select the Classifier used by EOCR2 for recognition.

By default:
□ EOCR2Classifier_DatabaseClassifier: EOCR2 uses the current character database.

Pretrained classifiers used in different contexts:
□ EOCR2Classifier_Industrial_A_Z_0_9_P for characters used in an industrial context without

a specific font.
□ EOCR2Classifier_OCRA_A_Z_0_9_P for characters using the OCR-A font.
□ EOCR2Classifier_SEMI_A_Z_0_9_P for characters using the SEMI-OCR font.

Code

ocr2.SetClassifier(EOCR2Classifier_Database);

Studio

In the Settings tab:
1. Select a Recognition Classifier.

Open eVision User Guide PART IV Text and Code Reading Tools

eocr2-read.htm
eocr2-recognize.htm
eocr2-read.htm
eocr2-detect.htm
eocr2-recognize.htm
eocr2-readtext.htm
eocr2text-eocr2text.htm
eocr2-classifier.htm
eocr2-class.htm
eocr2classifier-enum.htm
eocr2-class.htm
eocr2classifier-enum.htm
eocr2classifier-enum.htm
eocr2classifier-enum.htm

278

2. Recognize or read the decoded text.

Code

EOCR2Text text = ocr2.Detect(roi);
std::string result = ocr2.Recognize(EOCR2Text);

or

std::string result = ocr2.Read(roi);

Studio

In any tab:
1. Recognize
2. The results are displayed on the image.

Read a model file

● Use Load to read the model (.o2m) file from your disk.

The model file contains:
□ All the detection parameters,
□ The topology,
□ The reference character database.

Overriding the classifier

● Use SetClassifier with a symbol and a classifier to override the current classifier and assign
another classifier (EOCR2Classifier) to a specific symbol or a combination.

NOTE: Currently you can override only the EOCR2Classifier_DatabaseClassifier.

Open eVision User Guide PART IV Text and Code Reading Tools

eocr2-load.htm
eocr2-classifier.htm
eocr2-classifier.htm
eocr2classifier-enum.htm

279

Accelerate the recognition

A character is expected to be recognized in 4 ms, half of this with multithreading and even less
with a GPU.

Multithreading

● With pretrained classifiers, use Easy::GetMaxNumberOfProcessingThreads to multithread the
recognition and to determine how many threads you can use for the recognition.

GPU acceleration

● You can also use a compatible GPU to accelerate even more the recognition.
□ Use Easy::IsGPUAvailable to determine if there is a compatible GPU available.
□ Use EOCR2:SetEnableGPU(true) to enable the GPU-recognition.

8.10. Open eVision Studio Tools

8.11. View Elements in Open eVision Studio

Drawing

In Open eVision Studio, you can display the elements you want on your image (blobs,
characters, words, lines, text and results). You can also choose a color for each element and
configure the display of the results.

TIP
Enable the drawing of the elements that you need to select during the
learning process ("Learn the Characters" on page 272).

Process

1. In Open eVision Studio, display the elements you want in the chosen drawing color.

Studio

In the Drawing tab:
1. In the Segmentation area > check to display the blobs > ... to choose the color.
2. In the Detection area > check to display the elements > ... to choose the color.
3. In the Recognition area > check to display the results > configure the display.

Open eVision User Guide PART IV Text and Code Reading Tools

easy-maxnumberofprocessingthreads.htm
easy-isgpuavailable.htm
eocr2-enablegpu.htm

280

8.12. View Results in Open eVision Studio

Drawing

In Open eVision Studio, you can display the results of a character reading including the
matching score for all possible candidates. The list of candidates depends on the topology.

Process

1. In Open eVision Studio, display the results for the selected character.

Studio

In the image:
1. Select a character in your image.

In the Result tab:
2. The table lists the score for each candidate.
3. The character with the higher score is selected as recognized.

Open eVision User Guide PART IV Text and Code Reading Tools

281

8.13. Setting the Parameters

8.14. Segmentation Parameters

2 The following parameters are set and used in the process: "Detect the Characters" on page
264.

Select the segmentation method

● Use the parameter SegmentationMethod to select the algorithm used for segmentation:
□ EOCR2SegmentationMethod_Global: the global segmentation uses a simple threshold. It is

faster and best suited for a clear background.
□ EOCR2SegmentationMethod_Local (default): the local segmentation is more complex and is

best suited for a non uniform background.

Configure the global segmentation

● Use the parameter GlobalSegmentationThresholdMode to set the threshold computation
method for the segmentation. This parameter is a EThresholdMode.

● Use the parameter EnableSecondPassGlobalSegmentation to perform the segmentation twice
during the first pass to have more accurate results when the text background is not just
plain.
□ This functionality is only available when GlobalSegmentationThresholdMode is set to the

minimum residue (MinResidue).

Code

ocr2.SetSegmentationMethod(EOCR2SegmentationMethod_Global);
ocr2.SetGlobalSegmentationThresholdMode(MinResidue);
ocr2.SetEnableSecondPassGlobalSegmentation(True);

Open eVision User Guide PART IV Text and Code Reading Tools

eocr2-segmentationmethod.htm
eocr2segmentationmethod-enum.htm
eocr2segmentationmethod-enum.htm
eocr2-globalsegmentationthresholdmode.htm
ethresholdmode-enum.htm
eocr2-enablesecondpassglobalsegmentation.htm
eocr2-globalsegmentationthresholdmode.htm
ethresholdmode-enum.htm

282

Studio

In the Advanced tab:
1. Set the Segmentation Method to Global.
2. Global Segmentation Method > ... to select the threshold.
3. Select a threshold mode.
4. Check Second Pass Segmentation.

Configure the local segmentation

● Use the parameter MaxVariation to define how stable a blob in the image should be in order
to be considered a potential character. A region with clearly defined edges is generally
considered stable while a blurry region is not.
□ Set this parameter between 0 and 1 (the default setting is 0.25).
□ A low setting allows only very stable blobs.
□ A high setting allows detection of blobs that are more unstable.

● Use the parameter DetectionDelta to set the range of grayscale values used to determine the
stability of a blob.
□ Set this parameter between 1 and 127 (the default setting is 12).
□ With a low setting, the algorithm is more sensitive to noise.
□ With a high setting, the algorithm is insensitive to blobs that have a low contrast with the

background.

Code

ocr2.SetSegmentationMethod(EOCR2SegmentationMethod_Local);
ocr2.SetMaxVariation(0.5);
ocr2.SetDetectionDelta(12);

Open eVision User Guide PART IV Text and Code Reading Tools

eocr2-maxvariation.htm
eocr2-detectiondelta.htm

283

Studio

In the Advanced tab:
1. Set the Segmentation Method to Local.
2. Set the Maximum variation.
3. Select the Detection delta.

Adjust the fragmentation

● Use the parameter CharsMaxFragmentation to set how small a blob can be for the
segmentation algorithm to consider it as (part of) a character.
□ Set this parameter between 0 and 1 (the default setting is 0.1).
□ The minimum allowed area of a blob is given by:

minArea = CharsMaxFragmentation ×CharsHeight ×min(CharsWidthRange)

Left: CharsMaxFragmentation = 0.1 (default) leads to incomplete segmentation results
Right: CharsMaxFragmentation = 0.01 gives better results

Code

ocr2.SetCharsMaxFragmentation(0.1);

Open eVision User Guide PART IV Text and Code Reading Tools

eocr2-charsmaxfragmentation.htm
eocr2-charsmaxfragmentation.htm
eocr2-charsheight.htm
eocr2-charswidthrange.htm
eocr2-charsmaxfragmentation.htm
eocr2-charsmaxfragmentation.htm

284

Studio

In the Advanced tab:
1. Set the Character maximum fragmentation.

8.15. Detection Parameters

2 The following parameters are set and used in the process: "Detect the Characters" on page
264.

Select the detection method

● If the topology is required, use the parameter DetectionMethod to select the algorithm used
for fitting.
□ EOCR2DetectionMethod_FixedWidth (default) is optimized for texts using a fixed-width font

(including dotted text).

A fixed-width font, processed with EOCR2DetectionMethod_FixedWidth

□ EOCR2DetectionMethod_Proportional is optimized for texts using a proportional font.

A proportional font, processed with the EOCR2DetectionMethod_Proportional

&
● With the fixed-width method, all the character boxes have the same width and they do not

necessarily fit tightly around the characters.

● With the proportional method, the character boxes fit tightly around the characters. If any
character falls outside the range of allowed widths, the detection fails.

Open eVision User Guide PART IV Text and Code Reading Tools

eocr2-detectionmethod.htm
eocr2detectionmethod-enum.htm
eocr2detectionmethod-enum.htm
eocr2detectionmethod-enum.htm
eocr2detectionmethod-enum.htm

285

Configure the fixed-width font detection

● Use the parameter RelativeSpacesWidthRange to specify how wide the spaces between the
words may be.

The box-fitting method tests the following range of spaces:

min (RelativeSpacesWidthRange) × min (charsWidthRange)
≤ space ≤

max (RelativeSpacesWidthRange) × max (charsWidthRange)

NOTE: The lower bound of this parameter is also used when the topology is not required.

● The parameter CharsWidthBias biases the optimization toward wider or narrower character
boxes.

● The parameter CharsSpacingBias biases the optimization toward smaller or larger spacing
between character boxes.

Code

ocr2.SetDetectionMethod(EOCR2DetectionMethod_FixedWidth);
ocr2.SetRelativeSpacesWidthRange(0.90f, 1.10f);
ocr2.SetCharsWidthBias(Neutral);
ocr2.SetCharsSpacingBias(Neutral);

Studio

In the Advanced tab:
1. In the Detection Method, check FixedWidth.
2. Enter Space Width Range Max and Space Width Range Min as float.
3. Select the Character width bias.
4. Select the Character spacing bias.

Configure the proportional font detection

● Set the parameter EnableCutLargeCharacter if you want that the detection tries to split
segmented blobs that are too wide into different characters.

NOTE: This parameter is also used when the topology is not required.

Open eVision User Guide PART IV Text and Code Reading Tools

eocr2-relativespaceswidthrange.htm
eocr2-relativespaceswidthrange.htm
eocr2-charswidthrange.htm
eocr2-relativespaceswidthrange.htm
eocr2-charswidthrange.htm
eocr2-charswidthbias.htm
eocr2-charsspacingbias.htm
eocr2-enablecutlargecharacter.htm

286

Code

ocr2.SetDetectionMethod(EOCR2DetectionMethod_Proportional);
ocr2.SetEnableCutLargeCharacter(true);

Studio

In the Advanced tab:
1. In the Detection Method, check Proportional.
2. Check Cut Large Characters.

Set the text rotation angle

● Use the parameter TextAngleRange to specify how the text in the image may be oriented.

The box-fitting method tests the following range of rotation angles:

min(TextAngleRange)≤ angle ≤max(TextAngleRange)

□ The angles are defined with respect to the horizontal.
□ To set the unit for the angles (degrees, radians, revolutions or grades), use

easy.SetAngleUnit.
□ The default setting is [-20, 20] degrees.

Code

ocr2.SetTextAngleRange(-25.00f, 25.00f);

Open eVision User Guide PART IV Text and Code Reading Tools

eocr2-textanglerange.htm
eocr2-textanglerange.htm
eocr2-textanglerange.htm
easy-angleunit.htm

287

Studio

In the Advanced tab:
1. Enter Text Base Range Max(Deg) and Text Base Range Min(Deg) as float.

Set a second detection pass

● Use the parameter NumDetectionPasses to configure a second pass for the fitting of textboxes.
□ The first pass fits textboxes to all detected blobs.
□ The second pass selects only the blobs that are covered by the textboxes from the first

pass. It fitts textboxes to that subset of blobs, possibly resulting in a more optimal fit.
□ Set this parameter to either 1 or 2.
□ The default setting is 1.

Left: NumDetectionPasses = 1 and the text angle estimate is slightly off
Right: NumDetectionPasses = 2 and the text angle estimate is better

Code

ocr2.SetDetectionPasses(2);

Open eVision User Guide PART IV Text and Code Reading Tools

eocr2-numdetectionpasses.htm
eocr2-numdetectionpasses.htm
eocr2-numdetectionpasses.htm

288

Studio

In the Advanced tab:
1. Set the Detection Passes to 1 or 2.

8.16. No Topology Parameters

2 The following parameters are set and used in the process: "Detect the Characters" on page
264.

If you do not use a topology, EasyOCR2 fits boxes to the detected blobs as best as it can.

Detection parameters

You can use the following parameters that are described in "Detection Parameters" on page
284:

□ In the section "Configure the proportional font detection": EnableCutLargeCharacter.
□ In the section "Configure the fixed-width font detection": RelativeSpacesWidthRange.
□ In the section "Set the text rotation angle": TextAngleRange.

Detect characters that are out of the size range

● Use the parameter EnableOffSizeCharacter to allow the detection of characters whose size
(width and height) is out of the size range but that are in the vicinity of characters in the
valid size range.

Code

ocr2.SetEnableOffSizeCharacter(true);

Open eVision User Guide PART IV Text and Code Reading Tools

eocr2-enablecutlargecharacter.htm
eocr2-relativespaceswidthrange.htm
eocr2-textanglerange.htm
eocr2-enableoffsizecharacter.htm

289

Studio

In the Advanced tab:
1. Check NoTopology Off-SizeCharacter.

Group blobs of a same character

● Use the parameter RepasteObjects to group the blobs that the detection considers as
belonging to the same character.
□ This can improve the detection when you have a clean segmentation and the characters

are close to each other.
□ The default setting is True and the detection tries to merge the blobs.

Code

ocr2.SetRepasteObjects(true);

Studio

In the Advanced tab:
1. Check Repaste Objects.

Open eVision User Guide PART IV Text and Code Reading Tools

eocr2-repasteobjects.htm

290

9. Code Grading

9.1. What Is Grading?

The "code grading", or "code quality verification", is a process that assesses the quality of a
printed or engraved code.

● Different grading standards exist, each pertaining to one or more code types, that specify
several grading parameters and how to compute them. In addition to these parameters, a
global grade is often computed to summarize the overall quality of the code.

● When a code receives a failing grade, identifying which grade(s) caused the failure can help
to locate the physical problem.

● The grades are generally returned:
□ As letters, from A (best) to F (worst).
□ As numbers: from 4.0 (best) to 0.0 (worst).

● While grading is meant to assess the print quality of a code, it also requires specific capture
conditions to give accurate results. However, if these conditions are not met, the grading
results might give insight on how you can improve your acquisition setup for better results.

● The grading standards currently implemented within Open eVision are:
□ ISO/IEC 15416 for 1D bar codes
□ ISO/IEC 15415 for data matrix codes and QR codes
□ ISO/IEC 29158 for data matrix codes and QR codes
□ SEMI T10-0701 for data matrix codes

9.2. How to Compute the Grading with Open
eVision

Read the grades in Open eVision Studio

In Open eVision Studio:

1. Open an image.

2. Check Compute Grading in the first tab of the tool.

3. Read a bar code, a matrix code or a QR code.

4. Open the tab(s) named Grading or after the standard name.

► The tables list the grades (both as numbers and as letters) and the measurement values.

Open eVision User Guide PART IV Text and Code Reading Tools

291

The ISO 15416 grades in EasyBarCode2

The ISO 15415 grades and values in EasyMatrixCode2

Open eVision User Guide PART IV Text and Code Reading Tools

292

The ISO 15415 grades and values in EasyQRCode

Compute the grades in the API

In Open eVision, each type of code is handled by a specific reader class:
□ 1D Barcode: EasyBarCode2::EBarCodeReader
□ QR Codes: EQRCodeReader
□ Data Matrix Codes: EasyMatrixCode2::EMatrixCodeReader

While the reader classes are different, the way to compute and retrieve the grading results is the
same:

1. Instantiate the relevant reader class.

2. Use SetComputeGrading(true) to enable the grading computation.

3. For ISO 29158 only, use SetIso29158CalibrationParameters to set up the calibration
parameters (see "ISO/IEC 29158 for Data Matrix and QR Codes" on page 302).

4. Use Read on an image containing a code to read and grade the code.

5. Use the corresponding accessor(s) to retrieve the calibration results for the relevant grade(s):
□ For ISO 15415: GetIso15415GradingParameters
□ For ISO 15416: GetIso15415GradingParameters
□ For ISO 29158: GetIso29158GradingParameters
□ For SEMI T10-0701: GetSemiT10GradingParameters

Open eVision User Guide PART IV Text and Code Reading Tools

293

9.3. ISO/IEC 15416 for 1D Bar Codes

ISO 15416 is a standard that establishes the guidelines on how to assess the print quality of
linear (1D) bar code symbols.

It provides a set of quality indicators that give insight on specific areas of the bar code quality.
You can use these indicators to compute an overall grade for the inspected bar code.

NOTE
In Open eVision 23.12, ISO 15416 grading is only available for the Ean13, Code128
and Gs1-128 symbologies.
You can find more information on these symbologies on the ISO website (must be
purchased) and on the GS1 website (for free).

The scan lines

Each grade is computed on 10 horizontal scan lines:

1. A margin of 10% is removed at the top and at the bottom of the bar code.

2. The 10 scan lines are distributed evenly on the remaining bar code.

3. A grade between 4.0 and 0.0 is computed for each line.

4. The global grade is the average of the grades for each line.

The decoding

For each scan line, a global threshold is computed:

1. All pixels above the threshold belong to a space and all pixels below to a bar.

2. Open eVision computes the exact bar / space widths with sub-pixel interpolation.

3. Open eVision decodes the scan line with the reference decoding algorithm of the symbology.

NOTE
This decoding process is imposed by ISO 15416.
Open eVision uses a different and more robust algorithm (based on gradients instead
of thresholds) to locate the bars and the spaces of a bar code. Thus, Open eVision
can recognize and read bar codes that are otherwise not decoded by this simpler ISO
15416 process (for example when the illumination is not uniform along the bar code).

Open eVision User Guide PART IV Text and Code Reading Tools

https://www.iso.org/fr/standard/43896.html
https://www.gs1.org/standards/barcodes-epcrfid-id-keys/gs1-general-specifications

294

The grade values

Each grade is represented by a number from 4.0 to 0.0 with 0.1 steps or by letters from A to F.
□ In this document, we use the numbers notation.
□ Open eVision returns integers from 40 to 0 instead of float values from 4.0 to 0.0 to avoid

any rounding issue.

Numeric grade Alphabetic grade
4.0 to 3.5 A
3.4 to 2.5 B
2.4 to 1.5 C
1.4 to 0.5 D
0.4 to 0.0 F

The ISO 15416 quality indicators

The decode grade

● For each scan line, the decode grade is set to 4.0 if the decoding succeeds and 0.0 otherwise.

Symbol Contrast grade

● The symbol contrast grade indicates the fraction of the total image contrast used by the bar
code for each scan line.

► If the printing contrast is too weak, if the lighting is not bright enough or if the camera
exposure time or gain is too small, the grade is low.

The bars and the spaces are too close on the gray scale

The minimum reflectance grade

● For each scan line, the minimum reflectance grade is set to 4.0 if the lowest gray value is less
than half of the highest gray value and 0.0 otherwise.

► If the printed barcode or lighting is too bright or if the camera exposure or gain is too high,
the grade is low.

Open eVision User Guide PART IV Text and Code Reading Tools

295

The minimum edge contrast grade

● The minimum edge contrast grade indicates the smallest contrast between two adjacent bar
and space (including the quiet zones). For each scan line, this grade is 4.0 if the minimum
edge contrast is at least 15% (38 gray values) and 0.0 otherwise.

► A dirty background can result in a low grade.

One space is too dark

The modulation grade

● The modulation grade indicates the importance of the minimum edge contrast relative to
the symbol contrast.

► A dirty background can result in a low grade.

There is a light defect in the bar

The defects grade

● The defects grade indicates the importance of the irregularities found within the elements
and the quiet zones.
□ Damaged or dirty bars or spaces can result in a low grade.

Open eVision User Guide PART IV Text and Code Reading Tools

296

The decodability grade

● The decodability grade indicates the importance of the differences between the distances
measured and expected.

► If the distances measured are far from those expected, the grade is low.

● Bad measured distances can have several causes:
□ The code is badly printed.
□ The image acquired by the camera is blurry / noisy.
□ The image acquired by the camera has a resolution that is too small.

The bar is 1 px too large and the space is 1 px too thin

The additional requirements grade

● The additional requirements grade indicates a requirement that is specific to a symbology.

► Code128, Gs1_128 and Ean13 grade the size of the quiet zone of the bar code. If the quiet
zone is too small for a line, the associated grade is 0.0.

The global grade

● For each line, the global grade is the smallest of all the other grades.

► If two scan lines yield different decoded strings, the global grade is set to 0.0, irrespective of
the other scan lines.

9.4. ISO/IEC 15415 for Data Matrix and QR Codes

ISO 15415 is a standard that establishes the guidelines on how to assess the print quality of 2D
bar code symbols, either multirow bar codes or two-dimensional matrix symbologies such as
data matrix and QR codes.

It provides a set of quality indicators that give insight on specific areas of the bar code quality.
You can use these indicators to compute an overall grade for the inspected bar code.

Open eVision User Guide PART IV Text and Code Reading Tools

297

The ISO 15415 as a print quality assessment tool

To be used as a print quality assessment tool as intended, the ISO 15415 standard requires very
specific acquisition conditions.

These conditions might include, but are not limited to:
□ A camera perpendicular to the plane of the code to be assessed.
□ 4 light sources, placed at the 4 cardinal points around the code and providing specific

illumination at a 45° angle.
□ An 8-bit gray-scale digitization.
□ A 1:1 magnification lens.
□ At least 5 pixels per module on the produced image.
□ A symbol centered in the image.

For more information about those conditions, please refer to chapter 7 of the standard.

The ISO 15415 as a symbol and/or setup quality assessment tool

Obviously, the conditions above are difficult to meet. However, the ISO 15415 standard is still
useful as an assessment tool of your symbol and/or setup quality even if all those conditions are
not met.

In the following paragraphs, we will give you insights on how to use the returned grades to that
effect.

NOTE
As Open eVision assesses one image at a time, it provides, according to the
standard, a scan grade.
To compute an ISO 15415 overall grade, you need to make a total of
5 acquisitions with different symbol rotations, grade each of these
acquisitions using Open eVision and then average the results.

The ISO 15415 quality indicators

The decode grade

● The decode grade indicates if the symbol is readable (if it can be correctly decoded) by the
symbology reference decoding algorithm.

Open eVision User Guide PART IV Text and Code Reading Tools

298

The symbol contrast grade

● The symbol contrast grade is a measure of the relative difference of reflectance between the
brightest and the darkest module in the symbol.

► If this grade is low, the detection and the digitization are more difficult as it is difficult to
separate the code from the background.

A data matrix with a low contrast

The modulation grade

● The modulation grade is a measure of the uniformity of the reflectance of the dark and light
modules.

► If this grade is low, the digitization is more difficult, as the variations prevent finding an easy
way to separate white from black.

A data matrix with a low modulation grade

Open eVision User Guide PART IV Text and Code Reading Tools

299

The reflectance margin grade

● The reflectance margin grade is a measure of how the modules colors are distinguishable
relative to the global threshold. This global threhold is the mean reflectance of the brightest
and the darkest module.

► If this grade is low, the digitization is less reliable. As the cells are too close to the separation
limit, the light and dark cells can be confused.

A data matrix with a low modulation grade

The fixed pattern damage grade

● The fixed patterns of the symbols characterize the symbols as such. The fixed pattern
damage grade indicates the likelihood that the symbol is correctly located and identified in
the image.

The areas relevant for this grade

The axial nonuniformity grade

● The axial nonuniformity grade is a measure of the isotropy of the principal axis of the symbol
relative to its corresponding ideal symbol geometry.

► Usually, a low grade here only causes issues if a column or a row becomes too small to be
accurately sized during the gridding.

A data matrix stretched along its horizontal axis

Open eVision User Guide PART IV Text and Code Reading Tools

300

The grid nonuniformity grade

● The nonuniformity grade is a measure of the maximum relative deviation of the intersection
of the lines of the estimated grid from to its corresponding intersection in an ideal grid.

► The lower the grade, the less uniform the shapes of the modules of the symbol are. However,
this grade relies on a maximum deviation. It is thus quite unstable and its practical usage is
limited.

On the left, the grid is computed from a data matrix in which the vertical and horizontal lines comprise
one specific module and it had been stretched

On the right, the green dots correspond to the expected positions of the corners of the modules if the
grid had been uniform

The unused error correction grade

● The unused error correction grade indicates the extent to which the error correction
algorithm capacity was used to decode the symbol.

► A low grade is a sign that any further degradation of the acquisition conditions will lead to a
decoding failure.

A data matrix with damaged modules that requires the use of error correction

Open eVision User Guide PART IV Text and Code Reading Tools

301

The format information grade (QR codes and micro QR codes)

● The format information grade indicates the readability of the format information blocks.

► The lower the grade, the more errors must be corrected to recover the error correction level
and the masking pattern that are necessary to reliably decode the symbol.

The areas relevant for this grade

The version information grade (QR codes)

● The version information grade indicates the readability of the version information blocks.

► The lower the grade, the more errors must be corrected to recover the version of the symbol.

NOTE: This is relevant only for versions ≥ 7.

The areas relevant for this grade

The scan grade

● The scan grade is the lowest grade value of all the grade indicators. It is a measure of the
overall quality of the code in the image.

Open eVision User Guide PART IV Text and Code Reading Tools

302

9.5. ISO/IEC 29158 for Data Matrix and QR Codes

The ISO 29158 standard is a modification and an extension to the ISO 15415 standard designed
to be more adapted to the grading of DPM (Direct Part Mark) codes.

● It specifies a new acquisition methodology as well as new quality indicators specifically
aimed at DPM symbols.

● Compared to ISO 15415, the new acquisition methodology simplifies the acquisition setup at
the cost of calibrating of this setup and providing the resulting calibration parameters to the
grading process.

Calibrating an ISO 29158 setup

To perform the calibration, you must record the image of an "ideal" (perfect) code on the setup.

To have a successful calibration:

1. Set up the Illumination and acquisition parameters (gain, exposure...) so that the Mean Light
(ML, the mean value of the pixels of the center of the light cells) is in the range considered
valid by the standard (70%~86% of the maximum gray level).

NOTE: To compute the Mean Light with Open eVision, grade the symbol with the default
calibration parameters and retrieve it from the structure returned by
GetIso29158CalibrationParameters.

2. Record the ML as MLCal.

Compute the other calibration parameters:

3. RCal, the calibration reflectance, is the maximum reflectance of the calibration symbol, that
is the gray level of the lightest cell.
□ This gray level is computed as the mean gray level on the aperture.
□ The aperture is a circle of a radius 50% or 80% of the cell width and centered on the

middle of the cell.

4. SRCal, the calibration system response, represents the parameters used to set the brightness
of the image at the calibration time.
□ It can be the gain, the exposure, the global illumination due to the lighting angle or even

a combination of those.
□ Its nature does not matter as long as the same measure is used for SRCal and SRTarget.

NOTE: SRTarget is the same measure as SRCal but taken at the grading time. Since it is part
of the calibration parameters, it should be computed at grading time and passed
along the other parameters using SetIso29158CalibrationParameters just before
calling Read.

Open eVision User Guide PART IV Text and Code Reading Tools

303

ISO 291528 Quality Indicators

The cell contrast grade

● The cell contrast grade is a measure of the relative difference between the mean reflectance
of the brightest and of the darkest modules in the symbol.

► If the grade is low, the digitization is more difficult as it is difficult to separate the dark from
the light cells.

The cell modulation grade

● The cell modulation grade is a measure of the variability and the reliability of cell colors. In
essence, it is a combination of the modulation grade and reflectance margin grade of
ISO 15415. It is thus a composite grade.

► If this grade is low, the digitization is more difficult, as the variations prevent finding an easy
way to separate the white from the black. It is also less reliable, as the cells might be too
close from the threshold for a clear dark/light classification.

The fixed pattern damage grade

The fixed patterns of the symbols are what characterize the symbols as such.

● The fixed pattern damage grade is a measure of the likelihood that the symbol is correctly
located and identified in the image.

► If this grade is low, the detection and the grid determination are more difficult.
□ Finder pattern damages can prevent the recognition of a candidate as a valid code.
□ Timing pattern damages can prevent the correct computation of the grid.

The areas relevant for this grade

The minimum reflectance grade

● The minimum reflectance grade represents the difference between the calibration conditions
and the acquisition conditions.

► It is set to 0.0 if the difference is too big for the grading results to be accurate and 4.0
otherwise.

Open eVision User Guide PART IV Text and Code Reading Tools

304

9.6. SEMI T10-0701 for Data Matrix Codes

SEMI T10-0701 is a grading standard intended to provide quality indicators for DPM (Direct Part
Mark) Data Matrix codes. It does not provide guidelines for paper-printed ones.

● SEMI T10-0701 does not provide grades as defined by the other standards. It does not give
ratings (A to F or 4.0 to 0.0) but only numerical values.

● The interpretation of these numerical values is left to the application and can depend on the
application context.

NOTE: SEMI T10-0701 is pixel-based, in contrast to the other standards. As such, it can be more
suited to computer vision purposes, as the specifications are designed with computer
processing in mind.

SEMI T10-0701 quality indicators

The symbol contrast

● The symbol contrast measures the relative distinctiveness between the light and the dark
parts of the code.

● The closer the symbol contrast is to 100%, the more the marks and the spaces are color-
separated and the code easier to read.

● A mark is defined as a cell of the data matrix that is modified by the marking process (where
the substrate is altered, usually resulting in a darker color) while a space, conversely, is left
untouched.

► A low contrast score can indicate either a bad printing quality, a bad image contrast or an
incorrect code illumination. The detection and the digitization are more difficult as it is
difficult to separate the code from the background.

A low contrast data matrix

The symbol contrast SNR

● The symbol contrast SNR (Signal to Noise Ratio) measures the relative strength of the noise
in the code. You can also see it as the ratio of the useful dynamic (symbol contrast) used to
separate white from black.

● The higher this value, the less noise is present in the image of the code.

Open eVision User Guide PART IV Text and Code Reading Tools

305

► If this grade is low, the digitization is more difficult as it is difficult to separate light from
dark.

A noisy data matrix

The mark growth

● The mark growth is the measure of the relative size of a mark compared to a space.
□ A value around 50% is ideal, as it means that the marks and the spaces are about the

same size.
□ A value over 50% means that the marks cells are bigger than the spaces, hinting at

overmarking.
□ A value under 50% hints at undermarking.

● The mark growth is computed as 2 separate values: the horizontal mark growth and the
vertical mark growth.

► If the mark growth deviates from the ideal value (50%), the digitization is more difficult as
some cells eat up part of the neighboring cells.

.

A data matrix showing mark growth

The data matrix mark misplacement

● The data matrix mark misplacement is the measure of the relative distance between the
ideal position of a mark and its real position in the data matrix. The center of the mark is
used as its position.

● The bigger this value, the more the data matrix is potentially deformed.

● The data matrix mark misplacement is computed as 2 separate values: The horizontal data
matrix mark misplacement and the vertical data matrix mark misplacement.

Open eVision User Guide PART IV Text and Code Reading Tools

306

► This grade is just an indicator of the cell position errors. Unless extreme, it should not hinder
the processing.

Data matrices showing vertical (left) and horizontal (right) mark misplacement

The cell defects

● If the data matrix can be decoded, the correct placement of the marks and the spaces can be
determined, and the cell defects value can be computed.

● The cell defects value is the measure of the ratio of incorrect pixels (pixels that have the
wrong color) to the total number of pixels in the data matrix code.

► A high cell defects value hints at mark damage, space pollution, difficulties to separate the
marks from the spaces or that there is a lot of noise in the image. This can hinder the reading
of the code.

A data matrix showing cell defects

The finder pattern defects

● The finder pattern defects is the same kind of measure as cell defects but computed only on
the cells of the finder pattern of the data matrix code.

► A high Finder Pattern Defects value hints at damage to the Finder Pattern, especially if the
Cell Defect is otherwise markedly lower. Finder pattern damage might prevent the
recognition of a candidate as a valid code.

A data matrix showing finder pattern defects

Open eVision User Guide PART IV Text and Code Reading Tools

307

The unused error correction

● The unused error correction is the measure of how much of the error correction capability of
the data matrix code was not used.

● The closer this value is to 0, the more error correction was applied to read the code.

► A low unused error correction can hint at errors in the code itself, difficulties to correctly
determine the color of a cell or damage in the marks. It is also a sign that any further
degradation of the acquisition conditions will lead to a decoding failure.

The data matrix cell size

● The data matrix cell size is the mean size, in pixels, of a cell in the data matrix.

● The data matrix cell size is computed as 2 separate values: the data matrix cell width
(horizontal) and the data matrix cell height (vertical).

► You can use these values to compute the code anisotropy.

9.7. Implementation Specifics and Limitations

General limitations of the grading process

● Open eVision is an image processing software, and, as such, its inputs are arrays of pixels.
Most standards discussed in this document provide guidelines based not on pixels, but on
continuous surfaces presenting a continuous reflectance.

● Most standards also impose constraints on lighting and camera placement that Open eVision
cannot check or enforce.

● All standards also make the hypothesis that the position of the code is perfectly known.
That, in practice, is usually not true, especially for 1D bar codes.

► So, there is no guarantee that Open eVision returns exactly the same grade as other software
tools (assuming there is no error in those), as choices made to alleviate or circumvent the
previous points can differ.

● If you face important differences in grades for the same image or are unsure why some of
your images are graded the way they are, feel free to contact Euresys’ technical support.

Implementation specifics

● Given the pretty strict scope and requirements of the grading standards, it can be difficult, if
not impossible, to grade some codes when the acquisition conditions are not perfect.

► Because of this, Open eVision sometimes implements some of the grading processes in a
manner slightly different than the canonical one to allow a little more leeway in these
conditions.

● These adaptations, however, are made in such a way that if the grading process is made
within the requirements of the standard, it yields the required grades as values, as verified
by the usage of tools such as conformance calibration test cards.

Open eVision User Guide PART IV Text and Code Reading Tools

308

9.8. References

● ISO/IEC 15415 - Bar code symbol print quality test specification – Two dimensional symbols:
https://www.iso.org/standard/54716.html

● ISO/IEC 15416 - Bar code symbol print quality test specification – Linear symbols:
https://www.iso.org/standard/65577.html

● ISO/IEC 15417 - Code 128 bar code symbology specification:
https://www.iso.org/standard/43896.html

● ISO/IEC 16022 - Data Matrix bar code symbology specification:
https://www.iso.org/standard/44230.html

● ISO/IEC 18004 - QR Code bar code symbology specification:
https://www.iso.org/standard/62021.html

● ISO/IEC 29158 - Direct Part Mark (DPM) Quality Guideline:
https://www.iso.org/standard/69411.html

● SEMI T10-0701 - Test Method for the Assessment of 2D Data Matrix Direct Mark Quality:
https://store-us.semi.org/products/t01000-semi-t10-test-method-for-the-assessment-of-2d-
data-matrix-direct-mark-quality

● GS1 General Specifications: https://www.gs1.org/standards/barcodes-epcrfid-id-keys/gs1-
general-specifications

Open eVision User Guide PART IV Text and Code Reading Tools

https://www.iso.org/standard/54716.html
https://www.iso.org/standard/65577.html
https://www.iso.org/standard/43896.html
https://www.iso.org/standard/44230.html
https://www.iso.org/standard/62021.html
https://www.iso.org/standard/69411.html
https://store-us.semi.org/products/t01000-semi-t10-test-method-for-the-assessment-of-2d-data-matrix-direct-mark-quality
https://store-us.semi.org/products/t01000-semi-t10-test-method-for-the-assessment-of-2d-data-matrix-direct-mark-quality
https://www.gs1.org/standards/barcodes-epcrfid-id-keys/gs1-general-specifications
https://www.gs1.org/standards/barcodes-epcrfid-id-keys/gs1-general-specifications

309

Open eVision User Guide

PART V
DEEP LEARNING INSPECTION

TOOLS

310

1. Deep Learning Tools - Inspecting
Images with Deep Learning

1.1. Purpose and Workflow

Tools

The deep learning tools are based on deep convolutional neural networks (CNNs):

● EasyClassify classifies images into a predefined set of classes. Use this tool to identify a
product in an image or to detect if the product is good or defective.

● EasySegment Supervised segments defects and/or various elements in images. In the
supervised mode, the training images must be precisely annotated with their expected
segmentation (also called the ground truth).

● EasySegment Unsupervised detects and segments defects in images. This tool works in an
unsupervised way. This means that it is trained on good products only.

As you build only a model of what a good product is and not a model of what a defective
product is:
□ The advantages are that the tool can detect and segment defects that are not in your

dataset or that are unexpected and that it doesn’t require to annotate the images with
their expected segmentation (this can be very time consuming).

□ The drawback is that the type of defects that the tool can detect and segment is more
limited than when you build an explicit model of the defects.

□ You can use EasySegment Unsupervised to produce a rough annotation of the images
required by EasySegment Supervised.

● EasyLocate locates objects and/or defects in images. The neural network predicts the
location and the label of the object and/or defect.
□ EasyLocate has two modes:

- With EasyLocate Axis Aligned Bounding Box, the location of the object is represented by
its bounding box.
- With EasyLocate Interest Point, the location of the object is represented by its position
only.

□ EasyLocate works well with partially occulted objects.
□ You can use it for defect detection, package verification and counting applications.
□ Compared to EasySegment, it detects two objects or defects with the same label and that

are overlapping or touching each other as two different objects or defects and not as a
single blob.

By opposition to traditional machine vision techniques, the deep learning tools do not require
an explicit model of what to recognize and/or segment inside an image. Instead, they learn this
model from a set of example images. Thus the deep learning tools can solve machine vision
problems where an explicit model is too complex to build.

Open eVision User Guide PART V Deep Learning Inspection Tools

311

Specifications

EasyClassify EasySegment
Unsupervised

EasySegment
Supervised EasyLocate

Minimum image
size 128 × 128 64 × 64 128 × 128

Maximum image
size 1024 × 1024 10 000 × 10 000

500 000 pixels
(for ex.

707 × 707 for
square image)

Best image size 256 × 256 -
600 × 600 n.a. n.a.

Number of
channels 1 or 3 (grayscale and color images)

Bit depth 8 bits, 16 bits
Number of labels 2 - 1000 2 (good and

defective) 2 - 64

Minimum
number of
images per label

2

1 for the good
label

0 for the defective
label

1

Supported
formats bmp, png, jpeg, j2k, tiff

TIP
To accelerate computations, we strongly recommend running the deep
learning tools on a recent NVIDIA GPU. Refer to the section "Engines and
Hardware Support (CPU/GPU)" on page 317 for installing the required
NVIDIA CUDA and deep learning library.

Workflow

Open eVision User Guide PART V Deep Learning Inspection Tools

312

To create an application based on the deep learning tools:

1. Capture a dataset of images representative of the problem you want to solve.
□ The capture conditions must be as close as possible to the production conditions.
□ Preferably, all images should have the same resolution.
□ The number of images needed to obtain a good performance depends on the complexity

of the task and the tool used.
□ With EasyClassify, you can use the training with as few as 10 images per label.

Nevertheless, complex tasks may require more than 100 images per label.
□ With EasySegment Unsupervised, you can use less than 10 “good” images. Nevertheless,

complex tasks may require more than 100 “good” images.
□ With EasySegment Supervised, the required number of images depends on the size and

the number of elements to segment in each image. You can use as few as 10 elements per
label. Nevertheless, complex tasks may require more than 100 elements per label.

□ With EasyLocate, the number of images depends on the number of objects/defects in the
images. You can use as few as 10 objects per label. Nevertheless, complex tasks may
require more than 100 objects per label.

□ Please refer to the specifications of each tool for the constraints on the resolution and the
number of images.

2. Manually label the images in the dataset with the different categories you want to recognize.

These categories depend on the tool:
□ EasyClassify:

- Each image must correspond to one and only one category.
- There must be at least 2 categories.

□ EasySegment Unsupervised:
- A single category for images of good samples.
- As many categories as you want (including none) for images of defective samples.

□ EasySegment Supervised:
- You must annotate the pixels of the images with a ground truth segmentation
- There must be at least one segmentation label in addition to the Background label.

□ EasyLocate:
- For EasyLocate Axis Aligned Bounding Box, you must annotate the defects or the
objects with a bounding box and a label.
- For EasyLocate Interest Point, you must annotate the defects or the objects with their
position and a label.

Use the class EClassificationDataset to compile your labeled images.

3. Choose the deep learning tool that suits your needs.

All deep learning tools are child classes of the class EDeepLearningTool:
□ EasyClassify: class EClassifier.
□ EasySegment: classes EUnsupervisedSegmenter and ESupervisedSegmenter.
□ EasyLocate: classes ELocator and EInterestPointLocator.

4. Train the deep learning tool on the dataset.

5. Apply the trained tool in production.

Each tool returns a specific object.

Open eVision User Guide PART V Deep Learning Inspection Tools

eclassificationdataset-class.htm
edeeplearningtool-class.htm
eclassifier-class.htm
eunsupervisedsegmenter-class.htm
esupervisedsegmenter-class.htm
elocator-class.htm
einterestpointlocator-class.htm

313

1.2. Deep Learning Studio and Additional
Resources

Deep Learning Studio

Deep Learning Studio is a graphical user interface that you can use to create datasets and train
your deep learning tools,

Deep Learning Studio is organized around the concept of projects.

A project consists in:
□ A tool type.
□ A dataset (images and their annotations).
□ Several dataset splits.
□ The data augmentation settings.
□ The tools that you can train on the dataset.
□ The results and metrics for each tool to analyze their performance.

The project is stored as a folder containing:
□ The project file with the .edlproject extension.
□ The Images folder with the imported images.
□ A dedicated folder for each tool.

By default, the projects are stored in the folder named Euresys Deep Learning Studio Projects
located in your Documents folder. After loading a project, the project file is automatically locked
when it is used. This means that when a program opens a Deep Learning project file, this
project file is inaccessible by other programs as long as the initial program doesn’t explicitly
close the project.

Here are the various file extension used within a project:
□ .edlproject: the project file containing the dataset, the splits, the list of tools and the

data augmentation settings.
□ .edlsettings (previously .ecl): the settings for a tool.
□ .edlmodel (previously .ecl): a deep learning model for the tool.

- The training model is the model obtained after the last training iteration.
- The inference model is the model that is applied to images. It is the model that gave the
best performances during the training.

□ .edltool (previously .ecl): a complete usable tool (obtained by exporting the tool from
Deep Learning Studio).

□ .edlmetrics (previously .edl): the metrics for the tools.
□ .edlresult: a result for a given image and tool.
□ .edldataset (previously .eds): a dataset (obtained by exporting the dataset from the

project).

TIP
The Deep Learning Studio is available in the installation folder of Open
eVision.

Open eVision User Guide PART V Deep Learning Inspection Tools

314

Deep Learning Studio workflow illustration

1. Load or create a project.

● Quickly go back to your work with the recent project lists.
□ Open existing projects or create new projects.

● Create a new project.
□ Specify the name and the type of the project.
□ If necessary, change the path to save the project.

2. Import images in the project dataset and annotate the images.

Open eVision User Guide PART V Deep Learning Inspection Tools

315

3. Split your dataset into training, validation, and test images (for more details, refer to
"Managing the Dataset Splits" on page 334).

4. Configure and view the data augmentation settings (for more details, refer to "Using Data
Augmentation" on page 337).

5. Create, configure, and train your tools

Open eVision User Guide PART V Deep Learning Inspection Tools

316

6. Analyze the performance and the results of the trained tools.

7. Benchmark your tools to optimize the execution settings and maximize the inference speed
on your hardware.

2 See "Benchmarking a Deep Learning Tool" on page 344.

Resources and code snippets

● The Deep Learning Additional Resources package, separate from the Open eVision installer,
provide several sample datasets as well as Deep Learning Studio projects containing a
trained tool for these datasets:
□ For EasyClassify: the MiniWaffle, Stone Tiles and CopperSilverTape datasets.
□ For EasySegment Unsupervised: the Fabric dataset.
□ For EasySegment Supervised: the Coffee dataset.
□ For EasyLocate Axis Aligned Bounding Box: the ElectronicComponentsBag dataset.
□ For EasyLocate Interest Point: the CeramicCapacitor dataset.

● Some sample programs in the folder Sample Programs show how to train and use a deep
learning tool.

● Some code snippets are also available for illustration and reference.

Open eVision User Guide PART V Deep Learning Inspection Tools

Deep Learning Tools.htm

317

1.3. Engines and Hardware Support (CPU/GPU)

Engines

● Starting with Open eVision 23.04, running (inference) or training a Deep Learning tool is
done through an engine. The engines are specified through their names.
□ To set an engine for a tool, use EDeepLearningTool.Engine
□ To list the available engines, use EDeepLearningTool.AvailableEngines

● An engine can support different devices:
□ To list the detected devices for the current engine, use

EDeepLearningTool.AvailableDevices
□ To list the detected devices for another engine, use

EDeepLearningTool.GetAvailableDevicesForEngine. Note that this actually loads the engine
in memory.

□ The devices are represented by the class EDeepLearningDevice or directly through their
name (EDeepLearningDevice.Name) that are guaranteed to be unique for a given engine.

□ To set a device, use EDeepLearningTool.ActiveDevices or
EDeepLearningTool.ActiveDevicesByName. You can pass multiple devices for multi-GPU
training for example.

□ To know if a device supports inference and/or training, use
EDeepLeanringDevice.HasInferenceCapability and
EDeepLearningDevice.HasTrainingCapability. Check the matrix below for each engine and
device type support.

● A device or an engine can support various inference precision (FLOAT32 or FLOAT16).
□ By default, the precision is FLOAT32.
□ Use EDeepLearningTool.InferencePrecision to set or retrieve the current precision.
□ A lower precision (for example FLOAT16 instead of FLOAT32) can improve the speed.

● The main engine is named default:
□ It is always available and always supports the CPU of the computer on which it is running.
□ It always supports both inference and training.

● The other engines:
□ They are mainly used to increase the inference speed.
□ The other engines and the support for a GPU are provided by the package named deep-

learning-redist (previously cuda-redist).

Open eVision User Guide PART V Deep Learning Inspection Tools

edeeplearningtool-engine.htm
edeeplearningtool-availableengines.htm
edeeplearningtool-availabledevices.htm
edeeplearningtool-getavailabledevicesforengine.htm
edeeplearningdevice-class.htm
edeeplearningdevice-name.htm
edeeplearningtool-activedevices.htm
edeeplearningtool-activedevicebyname.htm
edeeplearningdevice-hasinferencecapability.htm
edeeplearningdevice-hastrainingcapability.htm
edeeplearningtool-inferenceprecision.htm

318

Engine name Supported
devices

Supported
platforms Training Inference Inference

precision

default CPU NVIDIA
GPU * All ** Yes Yes FLOAT32

EasyDeepLearningEngine_
OpenVINO *

CPU Intel
GPU

Windows
64-bit No Yes FLOAT16

FLOAT32

EasyDeepLearningEngine_
TensorRT * NVIDIA GPU

Windows
64-bit

Linux x64
Linux

aarch64

No Yes FLOAT16
FLOAT32

* Requires the deep-learning-redist package

** The Windows 32-bit support is only for CPU and the limitation to 2 GB of the application
memory can be a problem for the training or the inference on large images.

In Deep Learning Studio

● In the Execution settings panel, select the Engine, Device and Precision that you want to use
for inference.

Legacy API for selecting CPU and GPU

● The API calls EDeepLearningTool.EnableGPU and EDeepLearningTool.GPUIndexes are deprecated.

● They can only be used with the default engine, otherwise, an exception is thrown.

Additional consideration for NVIDIA CUDA® GPU

TIP
Using a recent NVIDIA GPU greatly accelerates the processing speeds. Refer
to the benchmarks for each tool type to compare the GPU and CPU speeds.

To use an NVIDIA GPU with the Deep Learning tools, install the deep-learning-redist package
for your operating system. It is not recommended to use a system-wide installation of the CUDA
libraries for GPU support.

1. To use an NVIDIA GPU with the Deep Learning tools, install the deep-learning-redist
package for your operating system.

NOTE: It is not recommended to use a system-wide installation of the CUDA libraries for the
GPU support.

Open eVision User Guide PART V Deep Learning Inspection Tools

edeeplearningtool-enablegpu.htm
edeeplearningtool-gpuindexes.htm

319

In this version of Open eVision, the GPU acceleration is based on:
□ For Windows and Linux Intel x64:

- NVIDIA CUDA® Toolkit version v11.8
- NVIDIA CUDA® Deep Neural Network library (cuDNN) v8.6

□ For Linux ARM (aarch64 Jetson platforms):
- The CUDA and cuDNN packages distributed with the platforms.

NOTE: The following versions have been tested:
- JetPack 4.6 (L4T 32.6.1)
- JetPack 5.0 (L4T 34.1)
- JetPack 5.1.2 (L4T 35.4.1)

2. Check that you have or install the up-to-date NVIDIA drivers.

2 Refer to your GPU documentation to install recent drivers for your operating system.

3. For Linux ARM (aarch64 Jetson platforms), install the NVIDIA JetPack SDK 4.6 minimum that
includes the NVIDIA Jetson Linux Driver Package (L4T) 32.6.

Starting from NVIDIA JetPack SDK 4.3, it is possible to upgrade without flashing the device to
the version 32.6 of the NVIDIA Jetson Linux Driver Package:
□ Edit the file /etc/apt/sources.list.d/nvidia-l4t-apt-source.list so that its content is:

 deb https://repo.download.nvidia.com/jetson/common r32.6 main
 deb https://repo.download.nvidia.com/jetson/t194 r32.6 main

□ Upgrade the system using apt:
$ sudo apt update
$ sudo apt upgrade

4. Use the engine default for training and inference or the engine EasyDeepLearningEngine_
TensorRT for inference only.

TIP
For recent NVIDIA GPUs or Jetson Orin boards (NVIDIA GPUs with a compute
capability higher than 8.0 on Intel x64 and 7.2 on aarch64), using Deep
Learning triggers a long initialization (over a minute).

To avoid this initialization each time you use Deep Learning, we recommend
to increase the CUDA cache max size to 1024 MB:

● On Linux, set the environment variable CUDA_CACHE_MAXSIZE to 1073741824
before launching Deep Learning Studio or your program.

In a terminal, this means executing:

$ CUDA_CACHE_MAXSIZE=1073741824 /path/to/your/program

● On Windows, launch the Advanced System settings, go to the Environment
variables dialog and add or modify the CUDA_CACHE_MAXSIZE variable with
the value 1073741824.

Open eVision User Guide PART V Deep Learning Inspection Tools

320

Using multiple GPUs

You can use multiple NVIDIA GPUs with the default engine for the training and the batch
classification by specifying multiple NVIDIA GPUs devices with EDeepLearningTool.ActiveDevices.

NOTE: Be careful to only set multiple GPUs that have similar performances: the performances
are limited by the slowest device.

NOTE
● Using multiple GPUs increases the training and batch classification speed

only if these GPUs are Quadro or Tesla models with the TCC driver model

2 see https://docs.nvidia.com/gameworks/content/developertools/
desktop/nsight/tesla_compute_cluster.htm

● Using multiple GeForce GPUs does not yield the same performance gain.

● In Deep Learning Studio, to choose the training devices, check all the devices that you want
to use for training.

● You can configure these execution profiles to match your needs.

● GPU processing is not possible with 32-bit applications.

Image cache

The image cache is the part of the memory reserved for storing images during training.

● The default size is 1 GB.

● The training speed is higher when the image cache is big enough to hold all the images of
your dataset.

● With dataset too big to fit in the image cache, we recommend using a SSD drive to hold your
images and project files as a SSD drive improves the training speed.

Open eVision User Guide PART V Deep Learning Inspection Tools

edeeplearningtool-activedevices.htm
https://docs.nvidia.com/gameworks/content/developertools/desktop/nsight/tesla_compute_cluster.htm

321

To specify the cache size in bytes:

● In the API, use the EDeepLearningTool::SetImageCacheSize method.

● In Deep Learning Studio, click on the Hardware settings button in the Execution settings
panel and select Image cache in the menu.

● When there is enough memory to increase the image cache so that it can hold all the images
in the dataset, Deep Learning Studio displays a recommendation next to the training button.
□ Click on the recommendation to change the image cache size and improve the training

speed.

Open eVision User Guide PART V Deep Learning Inspection Tools

edeeplearningtool-imagecachesize.htm

322

Multicore processing

The deep learning tools support multicore processing with the engines default and
EasyDeepLeanringEngine_OpenVINO (see "Multicore Processing" on page 507):

● In the API, use the multicore processing helper function from Open eVision (that is
Easy.MaxNumberOfProcessingThreads with a value greater than 1).

● In Deep Learning Studio, click on the Configure button below the Execution profile control
and select CPU Settings in the menu.

1.4. Managing the Dataset and the Annotations

Images and Labels

Images

● In the API, a dataset is represented by an object of the EClassificationDataset type.

● The supported image file types are:
□ PNG
□ TIFF
□ JPEG
□ BMP
□ J2K

● The supported Open eVision image object types are:
□ EImageType_BW8
□ EImageType_BW16
□ EImageType_C24

Open eVision User Guide PART V Deep Learning Inspection Tools

easy-maxnumberofprocessingthreads.htm
eclassificationdataset-eclassificationdataset.htm
eimagetype-enum.htm
eimagetype-enum.htm
eimagetype-enum.htm

323

● The supported image size depends on the type of the deep learning tool.
□ EasyClassify and EasyLocate require that all images have the same size. Images that do

not have the size configured for the tool are automatically resized before being processed
by the neural network.

□ EasySegment splits images into patches. As such, the tools can process images of
different size and the images are processed at their native resolution.

□ In all cases, your dataset should cover the variability of sizes that you want to process in
production.

File formats

The supported standard file formats for the dataset and image annotation are:

● The COCO Json for EasySegment Supervised and EasyLocate Axis Aligned Bounding Box
annotations.
□ A COCO json file contains the annotation for a dataset (several images).
□ In Deep Learning Studio, use the Import feature to import COCO datasets.

2 See https://cocodataset.org/#format-data for a description of the COCO Json dataset
format.

● The YOLO TXT annotation format for EasyLocate Axis Aligned Bounding Box annotations.
□ For each image, the annotations are in a file with the same filename as the image and the

.txt extension.
□ In Deep Learning Studio, if the annotation files are located in the same folder as their

corresponding images, use the Add images feature to import the images and their
annotations.

2 See https://pjreddie.com/darknet/yolo for the original YOLO source code.

● PASCAL VOC XML annotation for EasyLocate Axis Aligned Bounding Box annotations.
□ For each image, the annotations are in a file with the same filename as the image and the

.xml extension.
□ In Deep Learning Studio, if the annotation files are located in the same folder as their

corresponding images, use the Add images feature to import the images and their
annotations.

2 See http://host.robots.ox.ac.uk/pascal/VOC for resources on the PASCAL VOC XML
annotations.

Labels

● There are 3 types of labels:
□ The image labels represent a characteristic of an image and its content. Use them to

annotate images for EasyClassify or EasySegment Unsupervised.
□ The segmentation labels represent a characteristics of pixels. Use them to annotate

image pixels for EasySegment Supervised.
□ The object labels represent a characteristic of a region of an image delimited by a

bounding box. Use them to annotate images for EasyLocate.

NOTE: Deep Learning Studio only displays the labels for the tool type of the project.

Open eVision User Guide PART V Deep Learning Inspection Tools

https://cocodataset.org/#format-data
https://pjreddie.com/darknet/yolo
http://host.robots.ox.ac.uk/pascal/VOC

324

● Images have the following labeling states:
□ Labeled or Unlabeled if the image is or is not associated with an image label.

- Only labeled images are used to train an EasyClassify or an EasySegment Unsupervised
tool.
- In the API, use EClassificationDataset::HasLabel(imageIndex).

□ With or without segmentation if the image has or has not a ground truth segmentation.
- Only images with segmentation are used to train an EasySegment Supervised tool.
- In the API, use EClassificationDataset::HasSegmenation(imageIndex).

□ With or without object labeling if the image has or has not a ground truth object labeling.
- Only images with object labeling are used to train an EasyLocate tool.
- In the API, use EClassificationDataset::HasObjectLabeling(imageIndex).

● The ground truth segmentation of an image has the following state:
□ Background when all the pixels of the image are associated with the Background

segmentation label.
- In defect detection applications, a background segmentation means that the image
contains no defect.

□ With foreground blobs when the segmentation contains at least one pixel associated with
a segmentation label different from Background.
- In defect detection applications, a segmentation with foreground blobs means that the
image contains defects.
- In the API, use EClassificationDataset::HasForegroundSegments(imageIndex).

● The ground truth object labeling of an image has the following state:
□ No objects when there is no object in the image.

- In defect detection applications, an image with no object means that the image contains
no defect.

□ With objects when there is at least one object in the image.
- In defect detection applications, an image with objects means that the image contains
defects.
- In the API, use EClassificationDataset::GetImageNumObjects(imageIndex) to determine if
the image has objects or not.

● In Deep Learning Studio, the icons (visible) and (hidden) represent the visibility state
of the images with the corresponding state and/or image label in the image list.
□ Click on these icons to toggle the visibility state.

Open eVision User Guide PART V Deep Learning Inspection Tools

eclassificationdataset-haslabel.htm
eclassificationdataset-hassegmentation.htm
eclassificationdataset-hasobjectlabeling.htm
eclassificationdataset-hasforegroundsegments.htm
eclassificationdataset-getimagenumobjects.htm

325

Adding Images
● In Deep Learning Studio, add image files (PNG, TIFF, JPEG, BMP and J2K types) to your datasets

in one of the following ways:
□ Click on the Add images button to add images without any label nor segmentation.

□ Right-click on an image label and click Add images to label or Add folder to label to
directly associate these images to the label.

Open eVision User Guide PART V Deep Learning Inspection Tools

326

□ Drag and drop your files directly on an image label to directly associate these images to
the label.

TIP
If there is an .txt or .xml file with the same filename as the image next to it,
Deep Learning Studio tries to load these files as YOLO TXT or PASCAL VOC XML
annotations.

● Add a single image to a EClassificationDataset, in one of the following ways:
□ EClassificationDataset::AddImage(path[, label]) for an image file,
□ EClassificationDataset::AddImage(img[, label]) for an Open eVision image object.
□ You can specify a label to immediately associate the image with the label. Otherwise, the

image is unlabeled.

● Add several images with the EClassificationDataset::AddImages(filter[, label]) method.

filter is a glob pattern with the wildcard characters:
□ * means "zero or more characters"
□ ? means "a single character"

For example, EClassificationDataset::AddImages("*good*.png", "good") adds all PNG image
files that contain “good” in their filename.

● Import YOLO TXT and PASCAL VOC XML annotations with
EClassificationDataset::ImportYOLOTXTAnnotations(imgId) or
EClassificationDataset::ImportPascalVOCXMLAnnotations(imgId).
□ Check the available annotations for a file with

EClassificationDataset::GetAvailableImageAnnotationFormat(filepath).

TIP
The EClassificationDataset class automatically generates the set of labels
from the labels of the images that you add to the dataset.

NOTE
By default, all images are unlabeled and have no ground truth segmentation.

Open eVision User Guide PART V Deep Learning Inspection Tools

eclassificationdataset-eclassificationdataset.htm
eclassificationdataset-addimage.htm
eclassificationdataset-addimage.htm
eclassificationdataset-addimages.htm
eclassificationdataset-addimages.htm
eclassificationdataset-importyolotxtannotations.htm
eclassificationdataset-importpascalvocxmlannotations.htm
eclassificationdataset-getavailableimageannotationformat.htm
eclassificationdataset-class.htm

327

Editing the Label of an Image
In Deep Learning Studio:

● To change the label of images:

a. Select one or more images in the image list.

b. Right click on the selection.

c. Click on Set label and select the new label.

● To change the label of a single image:

a. Click on the image in the list to open the image in the viewer.

b. In the Ground truth tab on the right, select the new label.

c. Or use the keyboard keys F1 ... F10 to assign the 1st ... 10th label to the image.

Open eVision User Guide PART V Deep Learning Inspection Tools

328

Editing the Segmentation of an Image
In Deep Learning Studio:

● To initialize or reset the segmentation of an image to all Background pixels:

a. Select one or more images in the image list.

b. Right click on the selection.

c. Click on Enable/Reset segmentation.

● To edit the segmentation:

a. Double click on the image to open it in the image editor.

b. Click on the Segmentation button (ALT + S).

c. To enable or unset the segmentation, check or uncheck the Segmentation checkbox
(CTRL + S).

Open eVision User Guide PART V Deep Learning Inspection Tools

329

d. Select a segmentation label, a drawing tool and enclose the segmentation.

e. Change the segmentation label of a blob by right-clicking on it

● The following drawing tools are available:

□ Rectangle: click and drag to create a rectangle.

□ Ellipse: click and drag to create an ellipse.

□ Polygon: click to create new vertices and double-click to close the polygon. When the
polygon is closed, double click on an edge ton add a new vertex.

□ Assisted segmentation: click and drag to draw a rectangle around the zone you want
to segment. To refine the segmentation, mark the pixels (click and drag) to include in the
segmentation.

□ Lines: click and drag to draw a line with a pen of the specified width.

□ Free-form drawing: click and draw any shape with a pen of the specified width.
□ Eraser: same as free-form drawing but it assigns a background label instead of the

selected segmentation label.

□ Shrink: shrinks the blobs of the selected segmentation label.
□ Grow: grows the blobs of the selected segmentation label.
► Except for the eraser tool, all the tools operate on the label specified in the segmentation

tool bar.

Editing the Objects of an Image
In Deep Learning Studio:

● To initialize or reset the object labeling of an image:

Open eVision User Guide PART V Deep Learning Inspection Tools

330

a. Select one or more images in the image list.

b. Right click on the selection.

c. Click on Reset object labeling.

● To edit the objects:

a. Double click on the image to open it in the image editor.

b. Click on the Objects button (ALT + O).

c. To reset or unset the object labeling, uncheck the Object labeling checkbox (CTRL + L).

d. Click on the Add objects button to add new objects with the label indicated next to the
button.

Open eVision User Guide PART V Deep Learning Inspection Tools

331

e. Click on the Edit objects button to modify the label of an object and the bounding box or
the position, according to the EasyLocate mode.

ROI and Mask

Setting a ROI

Use an ROI (region of interest) to crop an image or a whole dataset to a rectangular area aligned
with the axis.

In the API:

● To define an ROI for an image:
□ Specify the ROI when you add the image to the dataset.
□ Or use EClassificationDataset::SetRegionOfInterest.

In Deep Learning Studio:

● To change the ROI:

a. Select an image from the dataset.

b. Click on the ROI button (ALT+I).

Open eVision User Guide PART V Deep Learning Inspection Tools

eclassificationdataset-setregionofinterest.htm

332

c. Drag the ROI green box, or directly set the ROI origin (x and y), Width and Height.

● To set the same ROI for all the images of the dataset:

a. Set the ROI for one of the image.

b. Click on the Apply to All Images button (CTRL+SHIFT+A).

● To visualize the ROI within its parent image:

a. Click on the button.

Open eVision User Guide PART V Deep Learning Inspection Tools

333

Setting a mask

Set a mask on an image in a dataset to remove the pixels in the mask area from any
computation. The mask works as a “don’t care area”.

In the API:

● To define a mask for an image:
□ Specify the mask when you add the image to the dataset.
□ Or use EClassificationDataset::SetMask.

In Deep Learning Studio:

● To change the mask:

a. Select an image from the dataset.

b. Click on the Mask button (ALT+M).

c. Select a drawing tool to draw the mask.

d. Draw the mask.

TIP
Click on the Open mask button to use an image to specify a mask. All the
pixels of the image (such as an EROIBW8) that are over 127 are considered as
part of the mask.

Open eVision User Guide PART V Deep Learning Inspection Tools

eclassificationdataset-setmask.htm

334

● To set the same mask for all the images of the dataset:

a. Specify the mask for one of the images.

b. Click on the Apply to All Images button (CTRL+SHIFT+A).

1.5. Managing the Dataset Splits

It is important to split the dataset into 3 sets:
□ The training set contains the images that are used during training to update and optimize

the deep learning model.
□ The validation set contains the images that are used during training to select the model

that gives the best performance.
□ The test set contains images that are not used during training and that are used to

evaluate the final performance of your classifier.

The following picture shows how and when each set is used.

WARNING
These sets MAY NOT contain:
- Images of the other sets.
- Images of an object for which there are other images in other sets.

Why is it important?

Deep learning techniques can suffer from overfitting; this means that the trained classifier is too
focused on the specific images present in the training set and it is not able to learn a general
model of your data. For example, an overfitted model can learn to recognize the exact images
present in the training set and not the underlying defects that you want to detect. Such tools
perform poorly in production.

The validation set is used during training to prevent and know when overfitting occurs. This
keeps the tool in a state that gives the best performance on the validation set. Without the
validation set, it is impossible to know if a tool that performs well on its training set can also
perform well in production.

Open eVision User Guide PART V Deep Learning Inspection Tools

335

Thus, a tool that gives high performance on the training set but much lower performance on the
validation set has overfitted.

The training algorithm is designed to avoid overfitting by keeping the model at the iteration that
gives the highest performance on the validation set.

To minimize overfitting and increase the performances:
□ You can add more images to your dataset.
□ Or, in some cases, you can use data augmentation.

TIP
Data augmentation generates random transformations of the images in the
training dataset to make the tool robust to geometric, luminosity or noise
differences that are not present in the original training dataset.

Splitting the dataset in Deep Learning Studio

In Deep Learning Studio, open the Dataset split tab:

1. To create new dataset splits, click on New.
□ A new split is created randomly according to the specified proportion or number of

images.
□ The default proportion of images is 70% of training images, 20% of validation images and

10% of test images.
□ Images without a proper annotation must be in the test set.

Open eVision User Guide PART V Deep Learning Inspection Tools

336

2. The dataset splits can be locked or unlocked . A dataset split is locked when it was
used to train a tool. When a dataset split is locked:
□ You cannot move images out of the training or validation sets.
□ You can only move images from the test set to either the training set or the validation set.

3. Select a dataset split to display the set of the images.
□ Use the icons or to filter the image list according to the set type.

□ If an image is unlocked , you can move it to another split by clicking on its split or by
right-clicking on the image and selecting the set.

4. Double-click on a split to change its name.

NOTE
Images added to the dataset after you have created a split are automatically
assigned to the test set of that split.

TIP
We recommend to experiment with several different splits to see how the
training behaves with different training sets.

Open eVision User Guide PART V Deep Learning Inspection Tools

337

Splitting the dataset in the API

● Create directly EClassificationDataset objects for your training, validation and test sets.

● Randomly split an EClassificationDataset dataset into a training set and a validation set
with the methods:
□ For EasyClassify and EasySegment Unsupervised:

EClassificationDataset::SplitDataset(trainingDataset, validationDataset,
trainingProportion)

□ For EasySegment Supervised:
EClassificationDataset::SplitDatasetForSegmentation(trainingDataset,
validationDataset, trainingProportion)

□ For Easylocate:
EClassificationDataset::SplitDatasetForLocator(trainingDataset, validationDataset,
trainingProportion)

● Or randomly split an EClassificationDataset dataset using EClassificationDataset::GetSplit
to get a EDatasetSplit object.
□ Use EClassificationDataset::ExtractSplit with the EDatasetSplit object to get a

EClassificationDataset object containing only the images of a given type

1.6. Using Data Augmentation

Data augmentation performs random transformations on images given to a deep learning tool
(EClassifier, EUnsupervisedSegmenter or ESupervisedSegmenter object) during the training.

● Experiment different settings to choose the best parameters for your data augmentation.

● Configure data augmentation according to your problem. However, flips, shifts (20 - 40 px),
brightness (5%), contrast (0.95 to 1.05) or salt and pepper noise (2%) can be useful on many
datasets.

● Check that the transformations do not change the label of an image (for example a defect
that disappears because of a rotation or a contrast change).

NOTE
With EasyLocate, we do not recommend to use rotation and shear data
augmentation as it is not possible to compute the minimal bounding box
surrounding the object after these geometric transformations.

Open eVision User Guide PART V Deep Learning Inspection Tools

eclassificationdataset-eclassificationdataset.htm
eclassificationdataset-eclassificationdataset.htm
eclassificationdataset-splitdataset.htm
eclassificationdataset-splitdataset.htm
eclassificationdataset-splitdatasetforsegmentation.htm
eclassificationdataset-splitdatasetforsegmentation.htm
eclassificationdataset-splitdatasetforlocator.htm
eclassificationdataset-splitdatasetforlocator.htm
eclassificationdataset-eclassificationdataset.htm
eclassificationdataset-getsplit.htm
edatasetsplit-class.htm
eclassificationdataset-extractsplit.htm
edatasetsplit-class.htm
eclassificationdataset-class.htm
eclassifier-class.htm
eunsupervisedsegmenter-class.htm
esupervisedsegmenter-class.htm

338

In Deep Learning Studio

● Create and configure the data augmentation settings in the Data augmentation tab.

● Display and review the data augmented images with the minimum settings (Lower limits
augmentation), the maximum settings (Upper limits augmentation) or the random settings
(Random augmentation).

In the API

Use EClassificationDataset::SetEnableDataAugmentation(true/false) to enable or disable these
transformations or directly use an object EDataAugmentation that you give to the method
EDeepLearningTool::Train.

The transformations

Geometric transformations

● Horizontal and vertical flips (enabled with EClassificationDataset::SetEnableHorizontalFlip
and EClassificationDataset::SetEnableVerticalFlip)

● Scaling (between a minimum and maximum value defined with
EClassificationDataset::SetMinScale and EClassificationDataset::SetMaxScale)

● Horizontal and vertical shifts (between –maxValue and maxValue defined with
EClassificationDataset::SetMaxHorizontalShift(maxValue) and
EClassificationDataset::SetMaxVerticalShift(maxValue))

Open eVision User Guide PART V Deep Learning Inspection Tools

eclassificationdataset-enabledataaugmentation.htm
edataaugmentation-class.htm
edeeplearningtool-train.htm
eclassificationdataset-enablehorizontalflip.htm
eclassificationdataset-enableverticalflip.htm
eclassificationdataset-minscale.htm
eclassificationdataset-maxscale.htm
eclassificationdataset-maxhorizontalshift.htm
eclassificationdataset-maxverticalshift.htm

339

● Rotations (between 0 and a maximum value defined with
EClassificationDataset::SetMaxRotationAngle)

● Horizontal and vertical shear (between –maxValue and maxValue defined with
EClassificationDataset::SetMaxHorizontalShear and
EClassificationDataset::SetMaxVerticalShear)

Color and luminosity transformations

● Brightness offset (between –maxValue and maxValue defined with
EClassificationDataset::SetMaxBrightnessOffset)

● Contrast gain (between a minimum and maximum value defined with
EClassificationDataset::SetMinContrastGain and
EClassificationDataset::SetMaxContrastGain)

● Gamma corrections (between a minimum and maximum value defined with
EClassificationDataset::SetMinGamma and EClassificationDataset::SetMaxGamma)

● Hue offset (between –maxValue and maxValue defined with
EClassificationDataset::SetMaxHueOffset)

● Saturation gain (between a minimum and maximum value defined with
EClassificationDataset::SetMinSaturationGain and
EClassificationDataset::SetMaxSaturationGain)

Noise transformations

Open eVision User Guide PART V Deep Learning Inspection Tools

eclassificationdataset-maxrotationangle.htm
eclassificationdataset-maxhorizontalshear.htm
eclassificationdataset-maxverticalshear.htm
eclassificationdataset-maxbrightnessoffset.htm
eclassificationdataset-mincontrastgain.htm
eclassificationdataset-maxcontrastgain.htm
eclassificationdataset-mingamma.htm
eclassificationdataset-maxgamma.htm
eclassificationdataset-maxhueoffset.htm
eclassificationdataset-minsaturationgain.htm
eclassificationdataset-maxsaturationgain.htm

340

TIP
The standard deviation is expressed as a percentage of the maximum pixel
value.

● Gaussian noise, also called additive white noise, generated with a standard deviation
(between a minimum and maximum value defined with
EClassificationDataset::SetGaussianNoiseMinimumStandardDeviation and
EClassificationDataset::SetGaussianNoiseMaximumStandardDeviation)

● Speckle noise, a multiplicative noise, generated from a Gamma distribution with a mean of 1
and a standard deviation (between a minimum and a maximum value defined with
EClassificationDataset::SetSpeckleNoiseMinimumStandardDeviation and
EClassificationDataset::GetSpeckleNoiseMinimumStandardDeviation).

● Salt and pepper noise generated from a pixel density (between a minimum and a maximum
value defined with EClassificationDataset:: SetSaltAndPepperNoiseMinimumDensity and
EClassificationDataset::SetSaltAndPepperNoiseMaximumDensity).

1.7. Training a Deep Learning Tool

In Deep Learning Studio

1. Create a new tool.

2. Configure the tool settings.

3. Select the dataset split to use for this tool.

4. Configure the training settings and click on Train.

In the API

In the API, to train a deep learning tool, call the method EDeepLearningTool::Train
(trainingDataset, validationDataset, numberOfIterations).

Open eVision User Guide PART V Deep Learning Inspection Tools

eclassificationdataset-gaussiannoiseminimumstandarddeviation.htm
eclassificationdataset-gaussiannoisemaximumstandarddeviation.htm
eclassificationdataset-specklenoiseminimumstandarddeviation.htm
eclassificationdataset-specklenoisemaximumstandarddeviation.htm
eclassificationdataset-saltandpeppernoiseminimumdensity.htm
eclassificationdataset-saltandpeppernoisemaximumdensity.htm
edeeplearningtool-train.htm
edeeplearningtool-train.htm

341

The training settings

● The Number of iterations. An Iteration corresponds to going through all the images in the
training set once.
□ The training process requires a large number of iterations to obtain good results.
□ The larger the number of iterations, the longer the training is and the better the results

you obtain.
□ The default number of iterations is 50.

TIP
We recommend to use more iterations than the default value:

□ For EasyClassify without pretraining, EasyLocate and EasySegment.
□ For smaller dataset because the training is harder (for example, 100

iterations for a dataset with 100 images, 200 iterations for a dataset
with 50 images, 400 iterations for a dataset with 25 images...).

● The Batch size corresponds to the number of image patches that are processed together.
□ The training is influenced by the batch size.
□ A large batch size increases the processing speed of a single iteration on a GPU but

requires more memory.
□ The training process is not able to learn a good model with too small batch sizes.
□ By default, the batch size is determined automatically during the training to optimize the

training speed with respect to the available memory.
- Use EDeepLearningTool::SetOptimizeBatchSize(false) to disable this behavior.
- Use EDeepLearningTool::SetBatchSize to change the size of your batch.

□ EDeepLearningTool::GetBatchSizeForMaximumInferenceSpeed gets the batch size that
maximizes the batch classification speed on a GPU according to the available memory.

□ It is common to choose powers of 2 as the batch size for performance reasons.

● The Data augmentation.

● Whether to use Deterministic training or not.
□ The deterministic training allows to reproduce the exact same results when all the

settings are the same (tool settings, dataset split and training settings).
□ The deterministic training fixes random seeds used in the training algorithm and uses

deterministic algorithms.
□ The deterministic training is usually slower than a non-deterministic training.

Open eVision User Guide PART V Deep Learning Inspection Tools

edeeplearningtool-optimizebatchsize.htm
edeeplearningtool-batchsize.htm
edeeplearningtool-batchsizeformaximuminferencespeed.htm

342

□ In Deep Learning Studio, the option to use deterministic training and the random seed
are available in the advanced parameters.

□ In the API, use EDeepLearningTool::EnableDeterministicTraining. and
EDeepLearningTool::DeterministicTrainingRandomSeed.

Continue the training

You can continue to train a tool that is already trained.

In Deep Learning Studio, the dataset split associated with a trained tool is locked.
□ You can only continue training a tool with the same dataset split.
□ You can still add new training or validation images to the split by moving test images to

the training set or the validation set of that split.

Asynchronous training

The training process is asynchronous and performed in the background.

● In Deep Learning Studio:
□ The training processes are queued.
□ They are automatically executed one after the other.
□ You can manually reorder the training in the processing queue.

Open eVision User Guide PART V Deep Learning Inspection Tools

edeeplearningtool-enabledeterministictraining.htm
edeeplearningtool-deterministictrainingrandomseed.htm

343

● In the API:
□ EDeepLearningTool::Train launches a new thread that does the training in the

background.
□ EDeepLearningTool::WaitForTrainingCompletion suspends the program until the whole

training is completed.
□ EDeepLearningTool::WaitForIterationCompletion suspends the program until the current

iteration is completed.
□ During the training, EDeepLearningTool::GetCurrentTrainingProgression shows the

progression of the training.

1.8. Using a Deep Learning Tool

In the API

● The API to use a Deep Learning tool on a new image or on a set of images is different for
each tool:
□ EasyClassify > "Classifying New Images" on page 355
□ EasySegment > Unsupervised > "Applying the Tool to New Images" on page 369
□ EasySegment > Supervised > "Using the Supervised Segmenter" on page 375
□ EasyLocate > "Locating Objects" on page 391

● You can apply each tool to individual images or to sets of images.
□ With a set of images and with GPU processing enabled, the tool processes

EDeepLearningTool::BatchSize at the same time.
□ EasySegment can automatically split individual images in sub-images according to the

patch size, the scaling and the sampling density parameters. These sub-images are
processed by batch.

NOTE: The processing of the first prediction after loading a model, changing the batch size or
with a different number of images (smaller than the batch size), is slower than the
previous one because the tool must perform various initializations that can be very
slow.

□ Use the methods EDeepLearningTool::InitializeInference with an image or a set of
images to perform these initializations before actually using the tool.

Open eVision User Guide PART V Deep Learning Inspection Tools

edeeplearningtool-train.htm
edeeplearningtool-waitfortrainingcompletion.htm
edeeplearningtool-waitforiterationcompletion.htm
edeeplearningtool-currenttrainingprogression.htm
edeeplearningtool-batchsize.htm
edeeplearningtool-initializeinference.htm

344

1.9. Benchmarking a Deep Learning Tool

In Deep Learning Studio, if you have a Deep Learning license, you can benchmark your trained
tools to measure their speed according to various execution parameters.

1. Open the Benchmark tab.

2. To add a benchmark, click on the Add benchmark button.

Open eVision User Guide PART V Deep Learning Inspection Tools

345

In the Add benchmark window:

3. Select the Tool that you want to benchmark. Only trained tool appear in the list.

4. Name your benchmark.

5. Set the Number of images/iterations to perform in the benchmark. The more images, the
better the precision.

6. In the Execution settings tab, set the parameters that control how the neural network runs:
□ The engine, device and inference precision.
□ The threading parameters.

&

Use the threading parameters when running the neural network on the CPU:
□ The internal threading can improve the processing speed for a single image. It also

improves both the throughput (number of images processed by seconds) and the latency
(time taken to process one image).

□ The external threading involves using the same tools in different threads on different
images. This can greatly improve the throughput but it decreases the latency (it means
that the number of images processed each seconds increases but the time to process a
single image is longer on average).

□ Check the code samples referenced in the dialog for how to implement internal and
external multithreading.

Open eVision User Guide PART V Deep Learning Inspection Tools

346

7. In the Image settings tab, set the the parameters that control how the images are
preprocessed and given to the neural network:
□ Simulate camera framerate: When checked, the benchmark does not try to perform

inference at the maximum speed. Instead, images are produced at the specified frame
rate.
Use this setting to check if your execution settings can match the speed of your camera.
Simulating a camera frame rate also gives you an estimation of the time spent between
the acquisition of an image and the moment the result is available.

□ Batch size: Increasing the batch size can greatly improve the throughput, especially for
GPU processing. However, it also increases the latency.

□ Image size: By default, when applying a tool on an image that has a size different from
the input size of the tool, the image is automatically resized by the tool. The time spent
performing this resizing is part of the inference time.
Check Avoid internal resize to avoid the resizing performed during inference and
slightly accelerate the tool.
In a real application, you can configure your camera to capture images directly of the
input size of the tool to avoid this automatic resizing step.

Benchmark results

The following benchmark results are available:

● In the Summary tab:
□ The settings of the benchmark.
□ The troughput (number of images processed by seconds).
□ The minimum/ mean / maximum inference time per image.

Open eVision User Guide PART V Deep Learning Inspection Tools

347

● In the Processing time per inference call:
□ A table and a graph with the processing times.

NOTE: An inference call means calling the inference API with a batch of images (see batch
size setting).

● In addition in the Summary tab, if you are simulating a camera frame rate:

□ Whether all images could be processed in time.
□ The number of images that were dropped because the frame rate was too fast compared

to the inference speed.
□ The minimum/ mean / maximum latency (the time between the acquisition of the image

and the moment the result for this image is available).
□ The camera simulation details tab that contains a table showing the various timings for

each image (acquisition time, inference start time, inference end / latency, inference
time).

Open eVision User Guide PART V Deep Learning Inspection Tools

348

Open eVision User Guide PART V Deep Learning Inspection Tools

349

2. EasyClassify - Classifying Images

2.1. Tool and Images

EasyClassify is the deep learning classification library of Open eVision (EClassifier class).

Deep Learning Studio

To create an EasyClassify project in Deep Learning Studio:

1. Start Deep Learning Studio.

2. Create a new project and select EasyClassify in the New deep learning project dialog.

Tool properties

Open eVision User Guide PART V Deep Learning Inspection Tools

eclassifier-class.htm

350

Capacity

● The Capacity of the neural network (default: Normal) represents the quantity of information
that it is capable of learning.
□ We recommend you to first train a Normal network on your dataset.

► If the learning is working:
□ Try to use the Small or the Large network to get the performance (inference speed and

accuracy) that best matches your application.

► If the learning does not work it means either that:
□ Your dataset image resolution is too small (below 128 × 128): try to use the Extra Small

network that specifically targets such cases.
□ Your dataset is complex and difficult: try to use the Extra Large network that specifically

targets such cases.

● In the API:
□ Use the string parameter EClassifier::ModelType to select the model capacity.
□ Use EClassifier::SetModelType to set the capacity of your tool.
□ Use EClassifier::GetAvailableModelTypes to list the available models for training.

Use pretrained model

● A pretrained model should give faster convergence time and better accuracy for all the
datasets except for extremely large datasets (> 10 000 images).

● A pretrained model works by initializing the neural network with the weights learned on a
large and complex dataset.
□ This allows to transfer the knowledge of some universal features (such as edges,

corners...) learned on this dataset to your dataset.
□ If you do not use a pretrained model, the neural network is initialized randomly.

● In the API, use EClassifier::SetUsePretrainedModel(false) to disable the user of pretrained
models.

NOTE: You cannot use the histogram equalization with pretrained weights as it would lead to
poor training results.

Compute the heatmap

● If this option is checked, the tool computes the heatmap along with each result.
□ The heatmap is available with EClassificationResult::GetHeatmap or with

EClassificationResult::GetHeatmap.

► Note that this option makes the computation of the results a bit slower but twice faster
than computing the result and then computing the heatmap separately.

● In the API, use EClassifier::SetComputeHeatmapWithResult to enable or disable this option.

● If this option is disabled, use the method EClassifier::GetHeatmap to get the heatmap for an
image.

Open eVision User Guide PART V Deep Learning Inspection Tools

eclassifier-modeltype.htm
eclassifier-modeltype.htm
eclassifier-getavailablemodeltypes.htm
eclassifier-usepretrainedmodel.htm
eclassificationresult-heatmap.htm
eclassificationresult-heatmap.htm
eclassifier-computeheatmapwithresult.htm
eclassifier-getheatmap.htm

351

Image format and normalization

Width, Height, Image type and Enable automatic image reformat

● The input image format must have the width, height and number of channels corresponding
to the input of the neural network.

● By default, a classifier uses the image format of the first image inserted in the training
dataset:
□ All other images are automatically reformatted (anisotropic rescaling and conversion

between color and grayscale).
□ If EClassifier::SetEnableAutomaticImageReformat(false) is called, the classifier throws an

exception when attempting to train or classify an image that does not have the correct
image format.

TIP
It is recommended to use a width and heigh of at least 224 × 224, as the
performances may start to deteriorate if the height or/and the width are
smaller.

● In Deep Learning Studio, you can set the input image format in the Classifier properties of
the tools that you create in the Tools tab.

● In the API, you can also set manually the input image format with the methods SetWidth,
SetHeight and SetChannels (1 channel for grayscale images and 3 channels for color images).

Image resolution

The input image format must have a resolution of at least 128 x 128 for the normal and the large
capacity or 64 x 64 for the small capacity and at most 1024 x 1024.

For the best processing speed, use the lowest resolution at which your "objects of interest" are
still recognizable.

● If your original images are smaller than the minimum resolution, upscale them to a
resolution higher or equal to 128 x 128.

● If your original images are larger than the maximum resolution, lower the resolution:
□ If the "objects of interest" are still recognizable, explicitly set the input image format of

the classifier to this lower resolution.
□ If the "objects of interest" are not recognizable, divide your original images into sub-

windows and use these sub-windows to train the classifier and make predictions. This
presents the additional advantage of localizing the "object of interest" inside the original
image.

Open eVision User Guide PART V Deep Learning Inspection Tools

eclassifier-enableautomaticimagereformat.htm
eclassifier-width.htm
eclassifier-height.htm
eclassifier-channels.htm

352

Enable histogram equalization

The classifier can also apply an histogram equalization to every input image:
□ In Deep Learning Studio, activate it in the image format controls in the Image properties

and augmentation tab.
□ In the API, use EClassifier::SetEnableHistogramEqualization(true) to activate it.

NOTE: You cannot use the histogram equalization with pretrained weights as it would lead to
poor training results.

Training

To train your tool, see "Training a Deep Learning Tool" on page 340.

Open eVision User Guide PART V Deep Learning Inspection Tools

eclassifier-enablehistogramequalization.htm

353

2.2. Validating the Results

In Deep Learning Studio:

● The metrics are always computed without applying data augmentation on the images.

● In the Tools tab, the metrics Best validation error and Best validation accuracy are
computed during the training using the label weights. The evolution of several metrics
during the training is also available.

● In the Validation and results tab, there are 3 metrics displayed:
□ The weighted error and the weighted accuracy (normalized with respect to the label

weights instead of being dependent of the number of images for each label).
□ The dataset accuracy (it does not use the label weights).

TIP
If your dataset has a very different number of images for each of the labels,
it is called unbalanced. In this case, the dataset accuracy is biased towards
the labels containing the most images (the dataset accuracy mainly reflects
the accuracy of these labels).

Open eVision User Guide PART V Deep Learning Inspection Tools

354

● In the Validation and results tab, the confusion matrix shows the number of images
according to their true labels and their label predicted by the classifier.
□ The diagonal elements of the matrix shown in green are the correctly classified images.
□ All the other elements of the matrix are badly classified images.
□ Select one or more elements of the matrix to show the corresponding images.

● In the Validation and results tab, you can export the results using the 2 buttons below the
metrics and confusion matrix.
□ The Export heatmaps button exports the heatmap for each image of your dataset.

- The heatmaps are saved in the PNG format under the name ImageName_ToolName_
heatmap_UniqueId.png.
- This feature requires a Deep Learning license.

□ The Export results to CSV button exports the results for each image of your dataset as
rows of a CSV file.
- Each record contains the image filename, the ground truth label, the predicted label, the
prediction probability and the probabilities for all the labels recognized by the tool.

Open eVision User Guide PART V Deep Learning Inspection Tools

355

In the API:

● After the completion of each iteration, EasyClassify automatically computes several
performance metrics about the training and validation dataset:
□ Call the methods EClassifier::GetTrainingMetrics(iteration) and

EClassifier::GetValidationMetrics(iteration) to read these metrics.
□ The iterations are indexed between 0 and EDeepLearningTool::GetNumTrainedIterations()-

1.
□ Call EDeepLearningTool::GetBestIteration() to retrieve the iteration that produced the

best performance.
□ After the training, the classifier is back in the state corresponding to this best iteration.

● The metrics are represented by an EClassificationMetrics object that contains the following
performance metrics:
□ The classification error (EClassificationMetrics::GetError()), also called the cross-

entropy loss: the quantity that is minimized during the training. It is computed from the
probabilities computed by the classifier.
- The error for a single image is the negative of the logarithm of the probability
corresponding to the true label of the image. So, if this probability is low, the error for the
image is high.
- The error of the dataset is the average of the errors of each image in the dataset.

□ The classification accuracy (EClassificationMetrics::GetAccuracy()): the number of
images correctly classified divided by the total number of images in the dataset.

□ The confusion matrix (EClassificationMetrics::GetConfusion(groundtruthLabel,
predictedLabel)): the number of images labeled as groundtruthLabel that are classified as
predictedLabel.

TIP
Call EClassifier::Evaluate to evaluate a dataset independently of the
training.

2.3. Classifying New Images

● In Deep Learning Studio:
□ Add new images to the dataset and refresh the results.

□ Open the Inference tests tab to classify the new images and display the detailed results
for these images.

□ You can also export the results to CSV or export the heatmap from this tab.

Open eVision User Guide PART V Deep Learning Inspection Tools

eclassifier-gettrainingmetrics.htm
eclassifier-getvalidationmetrics.htm
edeeplearningtool-numtrainediterations.htm
edeeplearningtool-bestiteration.htm
eclassificationmetrics-eclassificationmetrics.htm
eclassificationmetrics-error.htm
eclassificationmetrics-accuracy.htm
eclassificationmetrics-getconfusion.htm
eclassificationmetrics-getconfusion.htm
eclassifier-evaluate.htm

356

□ In the image viewer, you can enable or disable the heatmap visualization and configure
how the heatmap is displayed (color map and transparency).

● Once the classifier is trained, call EClassifier::Classify to classify an Open eVision image.

This method returns a EClassificationResult object:
□ EClassificationResult::GetBestLabel() returns the most probable label for the image.
□ EClassificationResult::GetBestProbability() returns the probability associated with the

most probable label.
□ EClassificationResult::GetProbability(label) returns the probability associated with the

given label.
□ EClassificationResult::GetRanking(label) returns the ranking of the given label. The

ranking goes from 1 (most probable) to EClassifier::GetNumLabels() (least probable).
□ EClassificationResult::GetHeatmap and EClassificationResult::GetColorizedHeatmap

return a heatmap highlighting the pixels that have contributed the most to get the most
probable label.
- The heatmap is only available when the classifier property
EClassifier::ComputeHeatmapWithResult is set to True.
- Use EClassificationResult::HasHeatmap to check if the result contains a heatmap.

Open eVision User Guide PART V Deep Learning Inspection Tools

eclassifier-classify.htm
eclassificationresult-eclassificationresult.htm
eclassificationresult-bestlabel.htm
eclassificationresult-bestprobability.htm
eclassificationresult-getprobability.htm
eclassificationresult-getranking.htm
../../../reference/eclassifier-numlabels.htm
eclassificationresult-heatmap.htm
../../../reference/eclassificationresult-colorizedheatmap.htm
eclassifier-computeheatmapwithresult.htm
eclassificationresult-hasheatmap.htm

357

● You can also do batch classification or directly classify a vector of Open eVision images:
□ Images are processed together in groups determined by the batch size.
□ On a GPU, it is usually much faster to classify a group of images than a single image.
□ On a CPU, implement a multithread approach to accelerate the classification. In that

case, each thread must have its own instance of EClassifier (see code snippets).

TIP
The batch classification has a tradeoff between the throughput (the number
of images classified per second) and the latency (the time needed to obtain
the result of an image): on a GPU, the higher the batch size, the higher the
throughput and the latency. So, use batch classification to improve the
classification speed at the cost of a longer time before obtaining the
classification result of an image.

● Use EClassifier::GetHeatmap(img, label) to obtain a heatmap highlighting the pixels that
contribute the most to a label.
□ In some cases, this heatmap can provide a rough localization of the object corresponding

to the label.
□ The heatmap is colored, and the important parts are displayed in red.

TIP
Since large memory allocations take a lot of time, a classification does not
release its memory and the next classifications can reuse it as long as the
width, height, batch size and computation device remain the same. As such,
the first classification is always slower due to the memory allocations.

Open eVision User Guide PART V Deep Learning Inspection Tools

eclassifier-class.htm
Deep Learning Tools.htm
eclassifier-getheatmap.htm

358

2.4. Benchmarks for EasyClassify

Test conditions
□ These numbers are only indicative and represent only the memory required for the neural

network.
□ Your actual memory requirements may be bigger or lower according to your GPU model.
□ The GPU must have more memory than the indicated amount to work because storing

images and results may require additional GPU memory and because of memory
fragmentation.

□ The training time is approximately twice the inference time per image. An iteration is
equivalent to a loop over all the images in the dataset.

□ The GPU memory requirements indicated below are approximate and can vary according
to the GPU model.
- These values were obtained for a NVIDIA GeForce 3080 Ti on Windows 11.
- The GPU inference can be 10 to 50% faster on Linux for GeForce GPUs.

□ On Windows:
- When using the WDDM driver mode (always on for a GeForce GPU), the inference times
can vary quite a lot.
- When using the TCC mode on a Quadro GPU, the inference times are more stable.

□ In the tables below 'n/a' means that the value could not be computed for this specific
configuration (for example because there is not enough memory).

□ In the tables below, a '=' means that the value is equal to the one above it.

Capacity Extra Small

Image size Batch

Inference time / image (ms)
GPU

NVIDIA
GeForce 3080Ti

CPU
Intel Core i9

7900X

GPU
NVIDIA Jetson
Xavier NX (ARM)

CPU
Raspberry Pi 4

Model B

128 × 128

1 2.72 1.42 15.14 19.58
4 0.97 = 2.38 =
16 0.72 = 1.69 =
64 0.55 = 0.96 =

256 × 256

1 5.36 3.95 8.29 65.00
4 2.58 = 5.27 =
16 1.91 = 3.26 =
64 0.54 = 2.24 =

512 × 512

1 5.10 19.20 19.76 311.00
4 7.52 = 12.11 =
16 2.01 = 7.49 =
64 2.73 = 7.40 =

Open eVision User Guide PART V Deep Learning Inspection Tools

359

Image size Batch GPU memory
for inference (MB)

GPU memory
for training (MB)

128 × 128

1 132 n/a
4 139 159
16 166 242
64 276 571

256 × 256

1 139 n/a
4 166 241
16 275 569
64 712 1 879

512 × 512

1 166 n/a
4 275 568
16 711 1 877
64 2 455 7 114

Capacity Small

Image size Batch

Inference time / image (ms)
GPU

NVIDIA
GeForce 3080Ti

CPU
Intel Core i9

7900X

GPU
NVIDIA Jetson
Xavier NX (ARM)

CPU
Raspberry Pi 4

Model B

128 × 128

1 3.26 2.65 22.99 33.00
4 1.67 = 3.81 =
16 0.88 = 2.02 =
64 0.53 = 1.38 =

256 × 256

1 3.89 7.40 11.85 108.00
4 3.00 = 7.95 =
16 1.59 = 3.80 =
64 0.59 = 3.35 =

512 × 512

1 6.58 34.50 27.94 521.00
4 5.84 = 14.47 =
16 2.19 = 10.82 =
64 2.79 = 10.02 =

Image size Batch GPU memory
for inference (MB)

GPU memory
for training (MB)

128 × 128

1 137 n/a
4 147 180
16 188 304
64 350 799

256 × 256

1 147 n/a
4 187 303
16 349 796
64 996 2 766

Open eVision User Guide PART V Deep Learning Inspection Tools

360

Image size Batch GPU memory
for inference (MB)

GPU memory
for training (MB)

512 × 512

1 187 n/a
4 349 795
16 995 2 763
64 3 579 10 635

Capacity Normal

Image size Batch

Inference time / image (ms)
GPU

NVIDIA
GeForce 3080Ti

CPU
Intel Core i9

7900X

GPU
NVIDIA Jetson
Xavier NX (ARM)

CPU
Raspberry Pi 4

Model B

128 × 128

1 5.61 4.65 15.26 47.30
4 4.01 = 4.45 =
16 1.55 = 2.27 =
64 0.52 = 1.23 =

256 × 256

1 5.74 14.40 36.33 179.00
4 5.87 = 8.73 =
16 2.11 = 4.54 =
64 0.67 = 3.74 =

512 × 512

1 7.75 60.00 49.12 760.00
4 7.63 = 17.72 =
16 2.74 = 15.28 =
64 2.97 = 14.44 =

Image size Batch GPU memory
for inference (MB)

GPU memory
for training (MB)

128 × 128

1 142 n/a
4 153 201
16 199 357
64 383 983

256 × 256

1 153 n/a
4 199 357
16 381 980
64 1 110 3 473

512 × 512

1 199 n/a
4 381 979
16 1 109 3 470
64 4 021 13 433

Open eVision User Guide PART V Deep Learning Inspection Tools

361

Capacity Large

Image size Batch

Inference time / image (ms)
GPU

NVIDIA
GeForce 3080Ti

CPU
Intel Core i9

7900X

GPU
NVIDIA Jetson
Xavier NX (ARM)

CPU
Raspberry Pi 4

Model B

128 × 128

1 3.75 8.50 40.42 94.00
4 2.44 = 6.49 =
16 1.64 = 2.61 =
64 0.29 = 2.26 =

256 × 256

1 4.25 25.60 55.36 367.00
4 5.45 = 8.80 =
16 0.84 = 6.46 =
64 0.89 = 6.53 =

512 × 512

1 6.06 128.00 32.07 1 630.00
4 3.12 = 23.61 =
16 3.17 = 21.72 =
64 3.25 = 20.43 =

Image size Batch GPU memory
for inference (MB)

GPU memory
for training (MB)

128 × 128

1 152 n/a
4 178 272
16 281 611
64 695 1 965

256 × 256

1 178 n/a
4 281 610
16 693 1 960
64 2 341 7 360

512 × 512

1 281 n/a
4 692 1 959
16 2 338 7 355
64 9 075 29 094

Capacity Extra Large

Image size Batch

Inference time / image (ms)
GPU

NVIDIA
GeForce 3080Ti

CPU
Intel Core i9

7900X

GPU
NVIDIA Jetson
Xavier NX (ARM)

CPU
Raspberry Pi 4

Model B

128 × 128

1 6.05 13.30 37.56 181.50
4 3.78 = 8.91 =
16 1.71 = 3.42 =
64 0.40 = 3.80 =

Open eVision User Guide PART V Deep Learning Inspection Tools

362

Image size Batch

Inference time / image (ms)
GPU

NVIDIA
GeForce 3080Ti

CPU
Intel Core i9

7900X

GPU
NVIDIA Jetson
Xavier NX (ARM)

CPU
Raspberry Pi 4

Model B

256 × 256

1 6.81 50.00 28.23 726.00
4 6.07 = 12.64 =
16 1.25 = 10.76 =
64 1.57 = 11.17 =

512 × 512

1 10.24 244.00 50.34 3 233.00
4 4.76 = 42.70 =
16 5.88 = 39.70 =
64 – = – =

Image size Batch GPU memory
for inference (MB)

GPU memory
for training (MB)

128 × 128

1 170 n/a
4 251 442
16 577 1 295
64 1 879 4 705

256 × 256

1 251 n/a
4 576 1 293
16 1 875 4 698
64 7 074 18 333

512 × 512

1 576 n/a
4 1 874 4 696
16 7 070 18 326
64 28 004 73 212

Open eVision User Guide PART V Deep Learning Inspection Tools

363

3. EasySegment - Detecting and
Segmenting Defects

3.1. Unsupervised vs Supervised Modes

EasySegment is the deep learning segmentation library of Open eVision.

It contains 2 different modes:

● The unsupervised mode:
□ The tool is trained only with good images (EUnsupervisedSegmenter class).
□ This mode does not require a ground truth segmentation and the creation of the dataset

is thus much quicker than for the supervised mode.
□ This mode can detect unexpected defects while the supervised mode is only capable of

detecting defects similar to those in the dataset.

● The supervised mode:
□ The tool is trained using the ground truth segmentation defined for the images

(ESupervisedSegmenter class).
□ This mode can detect and segment more types of defects with better accuracy than the

unsupervised mode. It directly builds a model for the defects while the unsupervised
mode builds a model of the good images and tries to detect variations from this model.

□ You can also use this mode to segment other types of objects than defects.

Open eVision User Guide PART V Deep Learning Inspection Tools

eunsupervisedsegmenter-class.htm
esupervisedsegmenter-class.htm

364

3.2. EasySegment Unsupervised

Tool and Configuration
EasySegment Unsupervised is the deep learning tool part of the EasySegment segmentation
library of Open eVision. It detects and segments defects in images.

This tool trains in an unsupervised way. This means that it is trained only with good images. So
it does not require any ground truth segmentation of the defects.

Deep Learning Studio

To create an EasySegment Unsupervised project in Deep Learning Studio:

1. Start Deep Learning Studio.

2. Create a new project and select EasySegment Unsupervised in the New deep learning project
dialog.

Open eVision User Guide PART V Deep Learning Inspection Tools

365

The following dialog is displayed when clicking on New in the Open a project dialog displayed at
the start of Deep Learning Studio or when you click on New in the toolbar.

Configuration

Open eVision User Guide PART V Deep Learning Inspection Tools

366

The unsupervised segmenter tool has 6 parameters:

1. The Good label is the name of the class that contains the good images.

In Deep Learning Studio, the Good label is a project property that you must select in the
Dataset and annotations tab below the list of labels.

2. The Capacity of the neural network (default: Normal) represents the quantity of information it
is capable of learning. A larger capacity makes the tool slower.

In the API:
□ The capacity is represented by the enumerate type EUnsupervisedSegmenterCapacity.
□ EUnsupevisedSegmenter::Capacity sets the capacity of the tool.

3. The Image type (default: Monochrome (1 channel)):

In the API:
□ To use monochrome (grayscale, 1 channel) images, set

EUnsupervisedSegmenter::ForceGrayscale to true.
□ To use color (3 channels) images, set EUnsupervisedSegmenter::ForceGrayscale to false.

4. The Sampling density (EUnsupervisedSegmenter::SamplingDensity) is the parameter of the
sliding window algorithm used to process whole images using patches of size
(EUnsupervisedSegmenter::PatchSize).
□ It indicates how much overlap there is between the image patches:

100 - 100 / SamplingDensity (%)
□ In practice, the stride between 2 consecutive patches is:

PatchSize / SampleDensity (pixels)

Open eVision User Guide PART V Deep Learning Inspection Tools

eunsupervisedsegmentercapacity-enum.htm
eunsupervisedsegmenter-capacity.htm
eunsupervisedsegmenter-forcegrayscale.htm
eunsupervisedsegmenter-forcegrayscale.htm
eunsupervisedsegmenter-samplingdensity.htm
eunsupervisedsegmenter-patchsize.htm

367

5. The Patch size (EUnsupervisedSegmenter::PatchSize) is the size of the patches processed by
the neural network.
□ By default, the patch size is determined automatically from the images in the training

dataset.
□ You can also select the resolution of the patch size from the drop down list.

6. Use the Scale (EUnsupervisedSegmenter::Scale) to automatically resize your images to a lower
resolution and accelerate the processing.

In Deep Learning Studio:
□ If the dataset contains images with different resolutions, the Input width and the Input

height indicate the range of the resolutions with the given scale.
□ If all the images in the dataset have the same resolution, set either the Input width or the

Input height to change the scale.

Training

To train your tool, see "Training a Deep Learning Tool" on page 340.

Validating the Results
There are 2 types of metric for the unsupervised segmentation tool:

□ Unsupervised metric only uses the results of the tool on good images. There is only one
unsupervised metric: the error.

□ Supervised metrics require both good and defective images. The supervised metrics are
the AUC (Area Under ROC Curve), the ROC curve, the accuracy, the good detection rate
(also called the true negative rate), the defect detection rate (also called the true positive
rate).

The unsupervised segmentation tool computes a score for each image (see
EUnsupervisedSegmenterResult::ClassificationScore). The label of a result is obtained by
thresholding this score with the segmenter classification threshold
(EUnsupervisedSegmenter::ClassificationThreshold). So, the supervised metrics also depends on
the value of this classification threshold.

The ROC curve (Receiver Operating Characteristic) is the plot of the defect detection rate (the
true positive rate) against the rate of good images classified as defective (also called the false
positive rate). It is obtained by varying the classification threshold. The ROC curve shows the
possible tradeoffs between the good detection rate and the defect detection rate.

The area under the ROC curve (AUC) is independent of the chosen classification threshold and
represents the overall performance of the tool. Its value is between 0 (bad performance) and 1
(perfect performance).

Open eVision User Guide PART V Deep Learning Inspection Tools

eunsupervisedsegmenter-patchsize.htm
eunsupervisedsegmenter-scale.htm
eunsupervisedsegmenterresult-classificationscore.htm
eunsupervisedsegmenter-classificationthreshold.htm

368

In Deep Learning Studio:

● In the Tools tab, the metrics Best validation error and Best validation AUC are computed
during the training on the validation dataset without using data augmentation. The
validation error, the training error and the validation AUC are plotted for each iteration.

● In the Validation and results tab, various metrics, the confusion matrix, a cumulative score
histogram, and the ROC curve are displayed. You can also change the classification threshold
directly in this tab.
□ The cumulative score histogram shows the cumulative proportion of good (in green) and

defective (in red) images with respect to the scores of the image.
□ You can change the classification threshold in 3 ways : direct input, dragging the

threshold line in the score histogram and selecting a point on the ROC curve.

In the API:

● The metrics are represented by an EUnsupervisedSegmenterMetrics object that contains the
following performance metrics:
□ The error on good image (EUnsupervisedSegmenterMetrics::GetError)
□ The confusion matrix (EDeepLearningDefectDetectionMetrics::GetConfusion)
□ If the results for bad images are included in the metrics,

EUnsupervisedSegmenterMetrics::IsTotallyUnsupervised is false and the following metrics
are also be accessible:
- The accuracy (EDeepLearningDefectDetectionMetrics::GetAccuracy)
- The Area under ROC curve
(EDeepLearningDefectDetectionMetrics::GetAreaUnderROCCurve)
- The ROC point corresponding to the classification threshold
(EDeepLearningDefectDetectionMetrics::GetROCPoint)

Open eVision User Guide PART V Deep Learning Inspection Tools

eunsupervisedsegmentermetrics-class.htm
eunsupervisedsegmentermetrics-error.htm
edeeplearningdefectdetectionmetrics-getconfusion.htm
eunsupervisedsegmentermetrics-istotallyunsupervised.htm
edeeplearningdefectdetectionmetrics-getaccuracy.htm
edeeplearningdefectdetectionmetrics-areaunderroccurve.htm
edeeplearningdefectdetectionmetrics-getrocpoint.htm

369

Applying the Tool to New Images

In Deep Learning Studio:

● Add new images to the dataset and refresh the results.

● Open the Inference tests tab to apply the segmenter to new images and display detailed
results for these images.

● Once the unsupervised segmenter is trained, call EUnsupervisedSegmenter::Apply to detect
and segment defects in an Open eVision image.

This method returns a EUnsupervisedSegmenterResult object:
□ EUnsupervisedSegmenterResult::IsGood and EUnsupervisedSegmenterResult::IsDefective

returns whether the tool has decided that the image is good or defective according to the
EUnsupervisedSegmenterResult::ClassificationScore and the
EUnsupervisedSegmenter::ClassificationThreshold.

□ EUnsupervisedSegmenterResult::GetSegmentationMap returns an EImageBW8 image where all
pixels with a value different than 0 are defective pixels.
The value of a defective pixel is proportional to the importance of the defect at that
position.

□ EUnsupervisedSegmenterResult::GetRegion returns an ERegion object corresponding to the
segmented region of the image (all the pixels of
EUnsupervisedSegmenterResult::GetSegmentationMap that have a value strictly higher than
0).

□ EUnsupervisedSegmenterResult::Draw draws the segmentation mask.

Open eVision User Guide PART V Deep Learning Inspection Tools

eunsupervisedsegmenterresult-class.htm
eunsupervisedsegmenterresult-isgood.htm
eunsupervisedsegmenterresult-isdefective.htm
eunsupervisedsegmenterresult-classificationscore.htm
eunsupervisedsegmenter-classificationthreshold.htm
eunsupervisedsegmenterresult-segmentationmap.htm
eimagebw8-class.htm
eunsupervisedsegmenterresult-region.htm
eunsupervisedsegmenterresult-segmentationmap.htm
eunsupervisedsegmenterresult-draw.htm

370

Benchmarks for EasySegment Unsupervised

Test conditions
□ These numbers are only indicative and represent only the memory required for the neural

network.
□ Your actual memory requirements may be bigger or lower according to your GPU model.
□ The GPU must have more memory than the indicated amount to work because storing

images and results may require additional GPU memory and because of memory
fragmentation.

□ The training time is approximately twice the inference time per image. An iteration is
equivalent to a loop over all the images in the dataset.

□ The GPU memory requirements indicated below are approximate and can vary according
to the GPU model.
- These values were obtained for a NVIDIA GeForce 3080 Ti on Windows 11.
- The GPU inference can be 10 to 50% faster on Linux for GeForce GPUs.

□ On Windows:
- When using the WDDM driver mode (always on for a GeForce GPU), the inference times
can vary quite a lot.
- When using the TCC mode on a Quadro GPU, the inference times are more stable.

□ In the tables below 'n/a' means that the value could not be computed for this specific
configuration (for example because there is not enough memory).

□ In the tables below, a '=' means that the value is equal to the one above it.

Image size
□ The inference times are reported for 1024 × 1024 RGB images with all other settings at

their default values.
□ The inference times increase linearly with the width and height of the image. The

inference times of a 512 × 512 image will be approximately 25% of the time reported
below.

Capacity Small

Patch size Batch

Inference time / image (ms)
GPU

NVIDIA
GeForce 3080Ti

CPU
Intel Core i9

7900X

GPU
NVIDIA Jetson
Xavier NX (ARM)

CPU
Raspberry Pi 4

Model B

64 × 64

1 722.34 1 280 949.36 9 314
4 237.25 = 344.92 =
16 97.55 = 221.60 =
64 68.11 = 191.46 =

128 × 128

1 289.34 1 472 619.84 6 946
4 96.46 = 286.99 =
16 51.83 = 201.88 =
64 40.60 = 167.90 =

Open eVision User Guide PART V Deep Learning Inspection Tools

371

Patch size Batch

Inference time / image (ms)
GPU

NVIDIA
GeForce 3080Ti

CPU
Intel Core i9

7900X

GPU
NVIDIA Jetson
Xavier NX (ARM)

CPU
Raspberry Pi 4

Model B

256 × 256

1 92.99 896 325.74 6 509
4 48.62 = 214.72 =
16 34.67 = 164.97 =
64 38.92 = 150.79 =

Patch size Batch GPU memory
for inference (MB)

GPU memory
for training (MB)

64 × 64

1 5 n/a
4 8 11
16 13 26
64 52 101

128 × 128

1 12 n/a
4 23 41
16 60 117
64 221 430

256 × 256

1 44 n/a
4 80 151
16 233 454
64 869 1 690

Capacity Normal

Patch size Batch

Inference time / image (ms)
GPU

NVIDIA
GeForce 3080Ti

CPU
Intel Core i9

7900X

GPU
NVIDIA Jetson
Xavier NX (ARM)

CPU
Raspberry Pi 4

Model B

64 × 64

1 851.08 2 533 1 379.48 18 734
4 245.62 = 532.91 =
16 106.22 = 357.82 =
64 70.44 = 271.87 =

128 × 128

1 312.90 3 216 1 095.83 17 763
4 104.09 = 557.38 =
16 55.60 = 369.82 =
64 42.79 = 275.37 =

256 × 256

1 103.61 2 246 740.05 13 881
4 53.91 = 421.52 =
16 38.22 = 309.25 =
64 46.27 = 257.49 =

Open eVision User Guide PART V Deep Learning Inspection Tools

372

Patch size Batch GPU memory
for inference (MB)

GPU memory
for training (MB)

64 × 64

1 3 n/a
4 8 15
16 26 50
64 102 192

128 × 128

1 37 n/a
4 53 98
16 126 240
64 441 834

256 × 256

1 145 n/a
4 211 386
16 487 935
64 1 588 3 128

Capacity Large

Patch size Batch

Inference time / image (ms)
GPU

NVIDIA
GeForce 3080Ti

CPU
Intel Core i9

7900X

GPU
NVIDIA Jetson
Xavier NX (ARM)

CPU
Raspberry Pi 4

Model B

64 × 64

1 965.58 6 178 2 183.06 40 833
4 278.08 = 938.51 =
16 117.13 = 622.66 =
64 75.41 = 387.08 =

128 × 128

1 361.31 8 882 2 824.60 57 329
4 129.73 = 1 394.44 =
16 66.03 = 798.73 =
64 53.80 = 470.68 =

256 × 256

1 187.35 7 254 2 969.24 38 020
4 79.50 = 1 461.80 =
16 51.84 = 667.86 =
64 67.15 = 544.54 =

Patch size Batch GPU memory
for inference (MB)

GPU memory
for training (MB)

64 × 64

1 11 n/a
4 20 36
16 56 103
64 209 383

128 × 128

1 133 n/a
4 164 293
16 300 561
64 840 1 632

Open eVision User Guide PART V Deep Learning Inspection Tools

373

Patch size Batch GPU memory
for inference (MB)

GPU memory
for training (MB)

256 × 256

1 523 n/a
4 654 1 163
16 1 180 2 208
64 3 664 6 768

3.3. EasySegment Supervised

Tool and Configuration

Deep Learning Studio

To create an EasySegment Supervised project in Deep Learning Studio:

1. Start Deep Learning Studio.

2. Create a new project and select EasySegment Supervised in the New deep learning project
dialog. .

Open eVision User Guide PART V Deep Learning Inspection Tools

374

The following dialog is displayed when clicking on New in the Open a project dialog displayed at
the start of Deep Learning Studio or when you click on New in the toolbar.

Configuration

The supervised segmenter tool has 5 parameters:

1. The Capacity of the neural network (default: Normal) represents the quantity of information it
is capable of learning. A larger capacity makes the tool slower.

In the API:
□ The capacity is represented by the enumerate type ESupervisedSegmenterCapacity.
□ ESupevisedSegmenter::Capacity sets the capacity of the tool.

2. The Image type (default: Monochrome (1 channel)):

In the API:
□ To use monochrome (grayscale, 1 channel) images, set

ESupervisedSegmenter::ForceGrayscale to true.
□ To use color (3 channels) images, set EUnsupervisedSegmenter::ForceGrayscale to false.

Open eVision User Guide PART V Deep Learning Inspection Tools

esupervisedsegmentercapacity-enum.htm
esupervisedsegmenter-capacity.htm
esupervisedsegmenter-forcegrayscale.htm
esupervisedsegmenter-forcegrayscale.htm

375

3. The Sampling density (ESupervisedSegmenter::SamplingDensity) is the parameter of the
sliding window algorithm used to process whole images using patches of size
(ESupervisedSegmenter::PatchSize).
□ It indicates how much overlap there is between the image patches:

100 - 100 / SamplingDensity (%)
□ In practice, the stride between 2 consecutive patches is:

PatchSize / SampleDensity (pixels)

4. The Patch size (ESupervisedSegmenter::PatchSize) is the size of the patches processed by the
neural network.
□ By default, the patch size is determined automatically from the images in the training

dataset.
□ You can also select the resolution of the patch size from the drop down list.

5. Use the Scale (ESupervisedSegmenter::Scale) to automatically resize your images to a lower
resolution and accelerate the processing.

In Deep Learning Studio:
□ If the dataset contains images with different resolutions, the Input width and the Input

height indicate the range of the resolutions with the given scale.
□ If all the images in the dataset have the same resolution, set either the Input width or the

Input height to change the scale.

Training

To train your tool, see "Training a Deep Learning Tool" on page 340.

Using the Supervised Segmenter
To get the result, a supervised segmenter follows these steps:

1. For each pixel, the supervised segmenter tool computes the probabilities that it belongs to
each of the segmentation labels.

2. From these probabilities, it extracts a set of potential foreground blobs (groups of
contiguous pixels for which the highest probability corresponds to the same foreground
segmentation label).

3. For each one of these potential foreground blobs:
□ It computes a score.
□ It removes, from the predicted segmentation map, the blobs with a score that is below or

equal to the threshold of the supervised segmenter tool.

Open eVision User Guide PART V Deep Learning Inspection Tools

esupervisedsegmenter-samplingdensity.htm
esupervisedsegmenter-patchsize.htm
esupervisedsegmenter-patchsize.htm
esupervisedsegmenter-scale.htm

376

4. The score of an image is the maximum among the scores of the potential foreground blobs.

NOTE
In the context of defect detection, an image is considered to be without
defect when its score is below or equal to the threshold of the supervised
segmenter tool.

In Deep Learning Studio:

● Add new images to the dataset and refresh the results.

● Open the Inference tests tab to apply the segmenter to new images and display detailed
results for these images.

● To visualize the segmentation of an image, check the Predicted segmentation option
(CTRL + P) in the Result menu (ALT + R) of the image viewer.

● If the image has a ground truth, check the Ground truth segmentation option (CTRL + G) to
display it. It appears with a green pattern drawn over it.

Ground truth (left) and prediction on top of ground truth (right)

Open eVision User Guide PART V Deep Learning Inspection Tools

377

● To accept the whole predicted segmentation as ground truth, click on the Use prediction as
ground truth button (CTRL + U).

● To accept a single predicted blob as ground truth, right click on the blob and select Accept
into ground truth in the menu.

● A list of blobs with various characteristics is available in the Results tab of the image viewer.

In the API:

● To apply the supervised segmenter to an image use ESupervisedSegmenter::Apply. This
method returns a ESupervisedSegmenterResult object.
□ Use ESupervisedSegmenterResult::GetProbabilityMap to retrieve the probability map for a

given label. The probability map pixels contain the index of the predicted label.
□ Use ESupervisedSegmenterResult::Draw to draw the segmentation with the segmentation

label colors of the dataset used for training.
□ Use ESupervisedSegmenterResult::GetBlobs to retrieve the filtered list of blobs.
□ Use e ESupervisedSegmenterResult::Score to retrieve the score of an image.
□ Use ESupervisedSegmenterResult::GetRegionForLabel to obtain an ERegion object

containing the pixels of the specified label.

Open eVision User Guide PART V Deep Learning Inspection Tools

esupervisedsegmenter-apply.htm
esupervisedsegmenterresult-class.htm
esupervisedsegmenterresult-getprobabilitymap.htm
esupervisedsegmenterresult-draw.htm
esupervisedsegmenterresult-getblobs.htm
esupervisedsegmenterresult-score.htm
esupervisedsegmenterresult-getregionforlabel.htm

378

Evaluating the Results
There are 3 types of metrics for the supervised segmentation tool:

□ The pixel-based metrics that quantify the performance of the tool at the pixel level.
□ The blob-based metrics that quantify the performance of the tool at the blob level. A blob

is a contiguous region of pixels that have the same foreground segmentation label. By
definition, there is no background blob.

□ The image-based metrics that quantify the performance of the tool at the image level.
These metrics are related to the capacity of the tool to correctly detect background
images (images with no blobs) and foreground images (images with blobs).

● In Deep Learning Studio:
□ The metrics are available in the Dataset results tab.
□ Most metrics depends on the value of the Classification threshold.

● In the API:
□ The metrics are represented by an ESupervisedSegmenterMetrics object.

The pixel-based metrics

● The pixel-based metrics are:
□ The weighted Intersection over Union (IoU) that is the weighted average of the IoU over

all the labels (see per-label metrics).
□ The weighted pixel accuracy that is the weighted average of the accuracy over all the

labels (see per-label metrics).
□ The pixel confusion matrix that shows the number of pixels from a given label that are

predicted to belong to another label.

Open eVision User Guide PART V Deep Learning Inspection Tools

esupervisedsegmentermetrics-class.htm

379

● The per label metrics are:
□ The Intersection over Union (IoU) that is the ratio of the intersection between the ground

truth and the prediction for the label to the union of the ground truth and prediction for
the label.

□ The accuracy that is the proportion of the pixels of the label that are correctly predicted.

The blob-based metrics

● The metrics related to the correct prediction of blobs are:
□ The recall that is the ratio of the correctly predicted blobs to the total number of ground

truth blobs.
□ The precision that is the ratio of correctly predicted blobs to the total number of

predicted blobs.
□ The F1-Score that is the harmonic mean of the recall and the precision.
□ The average precision that is the average of the precision for different threshold weighted

by the recall values.
□ The best achievable F1-Score that is the maximum F1-Score achievable by selecting an

appropriate threshold.

Open eVision User Guide PART V Deep Learning Inspection Tools

380

● The confusion matrix:
□ It shows the number of blobs of a given true label that are predicted to be of the

corresponding predicted label.
□ The image list of the Dataset results tab only shows the images containing the blobs

corresponding to the selected cells of the matrix.
□ Each matrix element shows the number of ground truth blob and the number of

corresponding predicted blobs separated by a "/" as a ground truth blob can correspond
to one or more blobs in the prediction and inversely.
A dash (-) indicates that blobs are not defined for this category.

□ For example, in the screenshot below, there are:
- 3 predicted blobs of the label Defect that correspond to the Background.
- 1 ground truth blob of the label Defect that does not correspond to any predicted blob.
- 12 predicted blobs of the label Defect that correspond to 12 ground truth blob of the
same label.

● The metrics for each individual foreground label are:
□ Recall
□ Precision
□ F1-Score

The image-based metrics

● The metrics related to the correct detection of the class of the images (background /
foreground or good / defective in the context of defect detection):
□ The image detection accuracy that is the proportion of image correctly predicted to have

foreground blobs or not.
□ The foreground image detection rate that is the proportion of correctly predicted images

with foreground blobs.
□ The background image detection rate that is the proportion of correctly predicted images

with no foreground blobs.

Open eVision User Guide PART V Deep Learning Inspection Tools

381

□ The image detection AUC (Area under the ROC Curve, see ROC Curve below).
□ The best achievable image detection accuracy that is the maximum image detection

accuracy obtained by changing the threshold.

● The confusion matrix:
□ It shows the number of images of a given true label that are predicted to be of the

corresponding predicted label.
□ The image list of the Dataset results tab only shows the images corresponding to the

selected cells of the matrix.

● The 2 available graphics are:
□ The ROC curve that plots the true positive rate (foreground image detection rate) versus

the false positive rate (1 minus the background image detection rate) for various
threshold values.
Click on a point on the plot to set the threshold at the corresponding value.

□ The score histogram that plots:
- In green: the cumulative histogram of the scores of the background images.
- In orange: the cumulative histogram of the scores of the foreground images.
- The blue line corresponds to the current value of the threshold.

Open eVision User Guide PART V Deep Learning Inspection Tools

382

Benchmarks for EasySegment Supervised

Test conditions
□ These numbers are only indicative and represent only the memory required for the neural

network.
□ Your actual memory requirements may be bigger or lower according to your GPU model.
□ The GPU must have more memory than the indicated amount to work because storing

images and results may require additional GPU memory and because of memory
fragmentation.

□ The training time is approximately twice the inference time per image. An iteration is
equivalent to a loop over all the images in the dataset.

□ The GPU memory requirements indicated below are approximate and can vary according
to the GPU model.
- These values were obtained for a NVIDIA GeForce 3080 Ti on Windows 11.
- The GPU inference can be 10 to 50% faster on Linux for GeForce GPUs.

□ On Windows:
- When using the WDDM driver mode (always on for a GeForce GPU), the inference times
can vary quite a lot.
- When using the TCC mode on a Quadro GPU, the inference times are more stable.

□ In the tables below 'n/a' means that the value could not be computed for this specific
configuration (for example because there is not enough memory).

□ In the tables below, a '=' means that the value is equal to the one above it.

Image size
□ The inference times are reported for 1024 × 1024 RGB images with all other settings at

their default values.
□ The inference times increase linearly with the width and height of the image. The

inference times of a 512 × 512 image will be approximately 25% of the time reported
below.

Capacity Small

Patch size Batch

Inference time / image (ms)
GPU

NVIDIA
GeForce 3080Ti

CPU
Intel Core i9

7900X

GPU
NVIDIA Jetson
Xavier NX (ARM)

CPU
Raspberry Pi 4

Model B

64 × 64

1 583 2 008 669 32 443
4 196 = 418 =
16 90 = 354 =
64 71 = 325 =

128 × 128

1 216 2 122 444 28 278
4 92 = 359 =
16 65 = 331 =
64 64 = 358 =

Open eVision User Guide PART V Deep Learning Inspection Tools

383

Patch size Batch

Inference time / image (ms)
GPU

NVIDIA
GeForce 3080Ti

CPU
Intel Core i9

7900X

GPU
NVIDIA Jetson
Xavier NX (ARM)

CPU
Raspberry Pi 4

Model B

256 × 256

1 105 2 435 435 28 811
4 74 = 390 =
16 66 = 365 =
64 94 = 470 =

Patch size Batch GPU memory
for inference (MB)

GPU memory
for training (MB)

64 × 64

1 7 n/a
4 22 41
16 85 154
64 288 560

128 × 128

1 33 n/a
4 85 164
16 310 604
64 1 217 2 371

256 × 256

1 119 n/a
4 344 669
16 1 257 2 466
64 5 770 10 516

Capacity Normal

Patch size Batch

Inference time / image (ms)
GPU

NVIDIA
GeForce 3080Ti

CPU
Intel Core i9

7900X

GPU
NVIDIA Jetson
Xavier NX (ARM)

CPU
Raspberry Pi 4

Model B

64 × 64

1 651 5 771 1 080 67 544
4 212 = 768 =
16 104 = 661 =
64 90 = 599 =

128 × 128

1 246 6 390 1 039 73 102
4 113 = 862 =
16 90 = 737 =
64 89 = 815 =

256 × 256

1 125 8 120 1 127 86 212
4 104 = 990 =
16 95 = 873 =
64 135 = 1 068 =

Open eVision User Guide PART V Deep Learning Inspection Tools

384

Patch size Batch GPU memory
for inference (MB)

GPU memory
for training (MB)

64 × 64

1 143 n/a
4 168 209
16 157 297
64 604 1 145

128 × 128

1 193 n/a
4 191 362
16 644 1 240
64 2 486 4 780

256 × 256

1 304 n/a
4 750 1 453
16 2 642 5 092
64 10 208 19 648

Capacity Large

Patch size Batch

Inference time / image (ms)
GPU

NVIDIA
GeForce 3080Ti

CPU
Intel Core i9

7900X

GPU
NVIDIA Jetson
Xavier NX (ARM)

CPU
Raspberry Pi 4

Model B

64 × 64

1 703 17 220 3 025 191 224
4 263 = 2 367 =
16 174 = 1 857 =
64 164 = 1 694 =

128 × 128

1 321 22 050 3 392 264 352
4 219 = 2 839 =
16 188 = 2 158 =
64 176 = 2 125 =

256 × 256

1 273 28 420 4 188 312 504
4 219 = 3 459 =
16 203 = 2 569 =
64 – = – =

Patch size Batch GPU memory
for inference (MB)

GPU memory
for training (MB)

64 × 64

1 57 n/a
4 223 319
16 422 716
64 1 281 2 369

128 × 128

1 229 n/a
4 528 929
16 1 437 2 681
64 5 388 10 007

Open eVision User Guide PART V Deep Learning Inspection Tools

385

Patch size Batch GPU memory
for inference (MB)

GPU memory
for training (MB)

256 × 256

1 915 n/a
4 1 830 3 467
16 5 880 10 991
64 20 545 39 553

Open eVision User Guide PART V Deep Learning Inspection Tools

386

4. EasyLocate - Locating Objects and
Defects

4.1. Tool and Configuration

Deep Learning Studio

To create an EasyLocate tool in Deep Learning Studio:

1. Start Deep Learning Studio.

2. Create a new project and select EasyLocate Axis Aligned Bounding Box or EasyLocate
Interest Point in the New deep learning project dialog.

Open eVision User Guide PART V Deep Learning Inspection Tools

387

The following dialog is displayed when clicking on New in the Open a project dialog displayed at
the start of Deep Learning Studio or when you click on New in the toolbar.

Configuration (main parameters)

The EasyLocate tool has 3 main parameters:

1. The Capacity of the neural network (default: Normal) represents the quantity of information it
is capable of learning. A larger capacity makes the tool slower.

In the API:
□ The capacity is represented by the enumerate type ELocatorCapacity.
□ ELocator::Capacity sets the capacity of the tool.

2. The Image type (default: Monochrome (1 channel) if the dataset contains only grayscale
images, otherwise color (3 channels)):

In the API:
□ To use monochrome (grayscale, 1 channel) images, set ELocatorBase::Channels to 1.
□ To use color (3 channels) images, set ELocatorBase::Channels to 3.

Open eVision User Guide PART V Deep Learning Inspection Tools

../../../reference/elocator-capacity.htm
../../../reference/elocator-capacity.htm
elocatorbase-channels.htm
elocatorbase-channels.htm

388

3. The size of the images (Width and Height). You must configure EasyLocate for a specific
image size.
□ The image must contain less than 500 000 pixels (about 707 × 707 pixels for a square

image).
□ The width and the height must be at least 128 pixels.
□ The images are automatically resized to the specified size before EasyLocate processes

them.
□ The lower the image size, the faster EasyLocate is.
□ EasyLocate works best with objects equal to or bigger than 16 × 16 pixels.

In Deep Learning Studio:
□ Use the Width and Height controls to change the size of the images.
□ Uncheck Keep aspect ratio if you want to control the width and height independently of

each other.
□ By default, the width and height are set to the size of the images in the dataset. or, when

they are bigger than 500 000 pixels, to the maximum possible size so that the aspect ratio
of the image is kept and it contains at most 500 000 pixels.

□ A warning is displayed when the selected size makes the ground truth objects smaller
than 16 × 16 pixels.

In the API:
□ Use ELocatorBase::Width and ELocatorBase::Height to specify the image size.

EasyLocate Axis Aligned Bounding Box configuration (advanced parameters)

The EasyLocate Axis Aligned Bounding Box tool has 4 advanced parameters linked to
EasyLocate neural network design.

● The EasyLocate neural network works as an image pyramid where the size of the input
image is halved at each level. EasyLocate attempts to detect objects using one or more
pyramid levels depending on the size of the objects to detect.

● To do so, EasyLocate uses a set of typical object size, called anchors, that are assigned to
pyramid levels according to their surface. Then, for each pixel and anchor of a pyramid level,
EasyLocate predicts whether there is an object or not located around that pixel and whose
size approximately matches the anchor.

● EasyLocate then performs a post-processing on the prediction of the neural network. Indeed,
the neural network can predict the same object several times using different levels of the
pyramid, different anchors or neighboring positions in the image. EasyLocate keeps only the
prediction with the highest probability and removes duplicates based on the overlap
between objects.

Open eVision User Guide PART V Deep Learning Inspection Tools

elocatorbase-width.htm
elocatorbase-height.htm

389

The advanced parameters are:

1. The Anchors. By default, the anchors are determined automatically from the objects in your
dataset. The set of anchors must reflect the variety of object sizes that must be detected.

To check or manually edit the anchors, click on See/edit anchors to open the following
dialog:

The dialog lists the current anchors and enables the following operations:
□ To edit an existing anchor, double-click on its width or on its heightin the list.
□ To add or remove an anchor, click on the corresponding button.
□ To generate a new set of anchors, specify the number of subscales, the minimum and the

maximum dimensions of the anchors and one or more aspect ratios.

► The dimension of an anchor is the square root of its surface and determines the pyramid
level assigned to the anchor. The number of subscales represent the number of
dimensions to generate for each pyramid level. For each of those dimensions, the anchors
with the specified aspect ratios are generated.

TIP
The anchors must be defined with respect to the width and height of the
current tool. Thus, when specifying the anchors manually, the width and
height parameters are locked.

In the API:
□ Use ELocator::SetPredictionAnchors and ELocator::GenerateAnchors.

2. The Maximum number of objects in an image. By default the value is 100. A lower value can
speed up the post-processing of the results.

In the API:
□ Use ELocatorBase::MaxNumberOfObjects.

3. The Same label maximum overlap is the maximum overlap between objects with the same
label. By default the value is 0.5.

In the API:
□ Use ELocator::SameLabelMaxOverlap.

Open eVision User Guide PART V Deep Learning Inspection Tools

../../../reference/elocator-predictionanchors.htm
elocator-generateanchors.htm
elocatorbase-maxnumberofobjects.htm
elocator-samelabelmaxoverlap.htm

390

4. The Absolute maximum overlap is the maximum overlap between objects, regardless of their
label. By default the value is 1 and it means that the tool can predict two objects with
different labels but with the exact same bounding box.

In the API:
□ Use ELocator::SameLabelMaxOverlap.

The overlap between two objects is their intersection over union (IoU), defined as the ratio
between the surface of the intersection of their bounding boxes and the surface of the union of
their bounding boxes.

EasyLocate Interest Point configuration (advanced parameters)

The EasyLocate Interest Point tool has 4 advanced parameters.

1. The Object size is the size of the objects that you want to detect in the image.
□ By default, the value of this parameter is the object size specified for the dataset.
□ The object size has the same role as the anchors for EasyLocate Axis Aligned Bounding

Box.
□ The object size is defined with respect to the size of the images in the dataset. When

training a tool with a different input resolution, the object size parameters should not
change (they are internally adapted according to the resolution of the training images
and the width and height set for the tool).

In the API:
□ Use EInterestPointLocator::ObjectSize

2. The Maximum number of objects in an image.
□ By default the value is 100.
□ A lower value can speed up the post-processing of the results.

In the API:
□ Use ELocatorBase::MaxNumberOfObjects.

Open eVision User Guide PART V Deep Learning Inspection Tools

elocator-samelabelmaxoverlap.htm
einterestpointlocator-objectsize.htm
elocatorbase-maxnumberofobjects.htm

391

3. The Same label minimum distance is the minimum distance between objects with the same
label.
□ By default the value is a third of the object size.

In the API:
□ Use EInterestPointLocator::SameLabelMinDistance

4. The Absolute minimum distance is the minimum distance between objects, regardless of their
label.
□ By default the value is 0 and it means that the tool can predict two objects with different

labels but with the exact same position.

In the API:
□ Use EInterestPointLocator::AbsoluteMinDistance

Training

To train your tool, see "Training a Deep Learning Tool" on page 340.

4.2. Locating Objects

In Deep Learning Studio:

● To apply EasyLocate to new images:
□ Add new images to the dataset and refresh the results.

□ Open the Inference tests tab to apply the tool to new images and display detailed results
for these images.

Open eVision User Guide PART V Deep Learning Inspection Tools

einterestpointlocator-samelabelmindistance.htm
einterestpointlocator-absolutemindistance.htm

392

● To visualize the predicted objects of an image:

a. Open the Results menu (ALT + R) of the image viewer.

b. Check the Predicted objects option (CTRL + P).

● If the image has a ground truth, check the Missing ground truth object option (CTRL + G) to
display missing objects. They appear with a yellow pattern drawn over it.

● In the Results tab on the right side:
□ The list of detected objects shows their label, their score, whether they are matched to a

ground truth object and their predicted bounding box or position.
□ To see how close a predicted object is to a ground truth object, select the object in the

list on the right side of the image.
For EasyLocate Axis Aligned Bounding Box, the ground truth object is displayed on top of
the predicted object with the following color code:

● To accept all the predicted objects as ground truth:
□ Click on the Use prediction as ground truth button (CTRL + U).
□ Note that it removes any previous ground truth object already present in the image.

Open eVision User Guide PART V Deep Learning Inspection Tools

393

● To accept a single predicted object as ground truth:

a. Right click on the object.

b. Select Accept into ground truth in the menu.

In the API

● To apply EasyLocate to an image, use ELocatorBase::Apply.

This method returns an object ELocatorResult.

● Use ELocatorResult::GetDetectedObjects to retrieve the predicted objects as an array of
ELocatorPredictedObject.

● Use ELocatorResult::Draw to draw all the predicted objects.

● Use ELocatorResult::LocatorFeatures to check if the result was computed by EasyLocate Axis
Aligned Bounding Box or EasyLocate Interest Point.

The value of ELocatorResult::LocatorFeatures is a combination (using the binary OR (|)
operator) of one or more ELocatorFeature values. It indicates the type of information
predicted by the tool:
□ For EasyLocate Interest Point: ELocatorFeature_Position.
□ For EasyLocate Axis Aligned Bounding Box: ELocatorFeature_Position | ELocatorFeature_

Size.

● With EasyLocate Interest Point, for each predicted object, use:
□ ELocatorObject::PositionX to get the X coordinate of the object.
□ ELocatorObject::PositionY to get the Y coordinate of the object.
□ ELocatorObject::Label to get its label.
□ ELocatorPredictedObject::Probability to get its predicted probability.

● With EasyLocate Axis Aligned Bounding Box, for each predicted object, use:
□ ELocatorObject::PositionX to get the X coordinate of the center of the bounding box.
□ ELocatorObject::PositionY to get the Y coordinate of the center of the bounding box.
□ ELocatorObject::OrgX to get the X coordinate of the top left origin of the bounding box.

Open eVision User Guide PART V Deep Learning Inspection Tools

elocatorbase-apply.htm
elocatorresult-class.htm
elocatorresult-detectedobjects.htm
elocatorpredictedobject-class.htm
elocatorresult-draw.htm
elocatorresult-locatorfeatures.htm
elocatorresult-locatorfeatures.htm
elocatorfeature-enum.htm
elocatorfeature-enum.htm
elocatorfeature-enum.htm
elocatorfeature-enum.htm
elocatorfeature-enum.htm
elocatorobject-positionx.htm
elocatorobject-positiony.htm
elocatorobject-label.htm
elocatorpredictedobject-probability.htm
elocatorobject-positionx.htm
elocatorobject-positiony.htm
elocatorobject-orgx.htm

394

□ ELocatorObject::OrgY to get the Y coordinate of the top left origin of the bounding box.
□ ELocatorObject::Width to get its width.
□ ELocatorObject::Height to get its height.
□ ELocatorObject::Label to get its label.
□ ELocatorPredictedObject::Probability to get its predicted probability.

4.3. Validating the Results

The EasyLocate tool exposes 2 types of metrics. These object-based metrics quantify the
performance of the tool :

□ At the object level.
□ At the image level. These metrics are related to the tool ability to correctly detect images

without object and images with objects.

In Deep Learning Studio:

● The metrics are available in the Dataset results tab.

● Most metrics depends on the value of the Detection threshold.

In the API:

● The metrics are represented by an object ELocatorMetrics.

Open eVision User Guide PART V Deep Learning Inspection Tools

elocatorobject-orgy.htm
elocatorobject-width.htm
elocatorobject-height.htm
elocatorobject-label.htm
elocatorpredictedobject-probability.htm
elocatormetrics-class.htm

395

The object-based metrics

The object-based metrics are computed by matching actual, ground truth objects to detected
objects.

A ground truth object and a detected object are matched together if:

● They have the same label.

● With EasyLocate Axis Aligned Bounding Box:
□ Their overlap ("Intersection over Union") is higher or equal to the Same label maximum

overlap parameter of the tool.
□ There is no other ground truth that has a higher overlap with the detected object and

there is no other detected object that has a higher overlap with the ground truth object.

● With EasyLocate Interest Point:
□ Their distance is lower than the Same label minimum overlap parameter of the tool
□ There is no other ground truth that has a smaller distance with the detected object and

there is no other detected object that has a smaller distance with the ground truth object.

The object-based metrics are:

● The Average precision (AP) is the average of the precision (proportion of detected objects
that are matched to a ground truth objects) for different values of recall (true positive rate,
proportion of ground truth objects that are matched to detected objects) obtained by
varying the Detection threshold.
□ Its value is between 0 (bad detector) and 1 (good detector).
□ It is a standard metric for evaluating object detector.

● The recall, also called the "true positive rate", is the proportion of ground truth objects
matched with a predicted object.

● The weighted recall is the weighted average of the recall for each label.

● The precision, also called the "positive predicted value", is the proportion of predicted
objects matched with a ground truth object.

● The weighted precision is the weighted average of the precision for each label.

● The F-Score is the harmonic mean of the recall and the precision.

● The weighted F-Score is the weighted average of the F-Score for each label.

● The Per label metrics table shows various metrics of the objects of each label. The columns
starting with a “#” indicate the number of objects in the corresponding category.
□ Selecting one or more cells from these columns filters the image list to show only the

images that have objects falling in the corresponding categories.
□ If there is no selection, all the images are listed.
□ Use CTRL + Left Click to add cells to the current selection.

Open eVision User Guide PART V Deep Learning Inspection Tools

396

The image-based metrics

The metrics related to the correct detection of the class of the images (background / with object
or good / defective in the context of defect detection) are:

● The image detection accuracy is the proportion of images correctly predicted to have objects
or not.

● A Confusion matrix listing the number of images in each category.
□ Selecting one or more cells of the confusion matrix filters the image list to show only the

images in the corresponding categories.

4.4. Benchmarks for EasyLocate

Test conditions
□ These numbers are only indicative and represent only the memory required for the neural

network.
□ Your actual memory requirements may be bigger or lower according to your GPU model.
□ The GPU must have more memory than the indicated amount to work because storing

images and results may require additional GPU memory and because of memory
fragmentation.

□ The training time is approximately twice the inference time per image. An iteration is
equivalent to a loop over all the images in the dataset.

□ The GPU memory requirements indicated below are approximate and can vary according
to the GPU model.
- These values were obtained for a NVIDIA GeForce 3080 Ti on Windows 11.
- The GPU inference can be 10 to 50% faster on Linux for GeForce GPUs.

□ On Windows:
- When using the WDDM driver mode (always on for a GeForce GPU), the inference times
can vary quite a lot.
- When using the TCC mode on a Quadro GPU, the inference times are more stable.

□ In the tables below 'n/a' means that the value could not be computed for this specific
configuration (for example because there is not enough memory).

□ In the tables below, a '=' means that the value is equal to the one above it.

□ The benchmarks were obtained using EasyLocate Axis Aligned Bounding Box.

Open eVision User Guide PART V Deep Learning Inspection Tools

397

□ For EasyLocate Interest Point, the training and inference speeds are approximately the
same. The small variations (a few percent slower or faster) in the processing speed
depend on the parameters of the tool.

Capacity Small

Image size Batch

Inference time / image (ms)
GPU

NVIDIA
GeForce 3080Ti

CPU
Intel Core i9

7900X

GPU
NVIDIA Jetson
Xavier NX (ARM)

CPU
Raspberry Pi 4

Model B

128 × 128

1 4.19 30.13 18.55 504
4 4.44 = 7.43 =
16 1.81 = 4.16 =
64 0.41 = 3.45 =

256 × 256

1 4.85 84 32.02 1 959
4 6.88 = 16.74 =
16 1.45 = 13.51 =
64 1.37 = 14.19 =

512 × 512

1 11.32 341 66.10 9 314
4 5.70 = 60.85 =
16 5.38 = 53.89 =
64 – = 56.28 =

Image size Batch GPU memory
for inference (MB)

GPU memory
for training (MB)

128 × 128

1 175 n/a
4 241 354
16 503 879
64 1 553 2 979

256 × 256

1 241 n/a
4 503 879
16 1 553 2 979
64 5 884 11 511

512 × 512

1 503 n/a
4 1 553 2 979
16 5 884 11 511
64 23 455 45 885

Open eVision User Guide PART V Deep Learning Inspection Tools

398

Capacity Normal

Image size Batch

Inference time / image (ms)
GPU

NVIDIA
GeForce 3080Ti

CPU
Intel Core i9

7900X

GPU
NVIDIA Jetson
Xavier NX (ARM)

CPU
Raspberry Pi 4

Model B

128 × 128

1 3.75 32 19.03 645
4 2.43 = 8.14 =
16 1.90 = 4.48 =
64 0.42 = 3.69 =

256 × 256

1 7.00 91 32.36 2 717
4 6.83 = 18.14 =
16 1.59 = 14.88 =
64 1.54 = 15.47 =

512 × 512

1 8.93 391 71.63 12 646
4 5.62 = 66.94 =
16 5.39 = 58.83 =
64 – = 61.78 =

Image size Batch GPU memory
for inference (MB)

GPU memory
for training (MB)

128 × 128

1 178 n/a
4 248 369
16 528 929
64 1 648 3 168

256 × 256

1 248 n/a
4 528 929
16 1 648 3 168
64 6 256 12 255

512 × 512

1 528 n/a
4 1 648 3 168
16 6 256 12 255
64 24 937 48 849

Capacity Large

Image size Batch

Inference time / image (ms)
GPU

NVIDIA
GeForce 3080Ti

CPU
Intel Core i9

7900X

GPU
NVIDIA Jetson
Xavier NX (ARM)

CPU
Raspberry Pi 4

Model B

128 × 128

1 6.31 76 48.57 1 194
4 4.99 = 14.32 =
16 1.08 = 10.05 =
64 0.85 = 7.34 =

Open eVision User Guide PART V Deep Learning Inspection Tools

399

Image size Batch

Inference time / image (ms)
GPU

NVIDIA
GeForce 3080Ti

CPU
Intel Core i9

7900X

GPU
NVIDIA Jetson
Xavier NX (ARM)

CPU
Raspberry Pi 4

Model B

256 × 256

1 8.80 205 65.37 5 694
4 3.46 = 38.04 =
16 2.25 = 30.14 =
64 2.32 = 29.54 =

512 × 512

1 25.93 866 168.90 26 320
4 9.11 = 128.96 =
16 8.52 = 115.15 =
64 – = – =

Image size Batch GPU memory
for inference (MB)

GPU memory
for training (MB)

128 × 128

1 288 n/a
4 421 714
16 952 1 776
64 3 075 6 023

256 × 256

1 421 n/a
4 952 1 776
16 3 075 6 023
64 11 701 23 144

512 × 512

1 952 n/a
4 3 075 6 023
16 11 701 23 144
64 46 450 91 874

Open eVision User Guide PART V Deep Learning Inspection Tools

400

Open eVision User Guide

PART VI
3D PROCESSING TOOLS

401

1. Easy3D - Using 3D Toolset

1.1. Basic Concepts

Easy3D

● Easy3D is a set of tools for solving computer vision problems using 3D acquisition and
processing.

● Easy3D introduces the depth map, the ZMap, the point cloud and the mesh representations
to Open eVision.

● Easy3D offers many operators to manipulate these 3D representations, including loading and
saving in several standard formats. Additional classes, like 3D box, 3D plane or 3D sphere, are
available in Easy3D and are used in the high level tools Easy3DObject and Easy3DMatch.
Finally, an interactive 3D viewer, E3DViewer, is part of Easy3D.

● All the Easy3D tools are placed in the Easy3D namespace.

3D representation

Open eVision uses a right-handed cartesian 3D coordinate system. In this system, each 3D point
is represented by its 3 coordinates X, Y and Z.

Open eVision provides different containers to store 3D objects.

E3DPoint

In Open eVision, the 3D points are represented by a container called E3DPoint. E3DPoints are the
basic containers for the data processing in a 3D space.

□ A E3DPoint is defined by its X, Y and Z coordinates.
□ Use the function DistanceTo to compute distances between points
□ You can combine points to form point clouds (see below).

Open eVision User Guide PART VI 3D Processing Tools

e3dpoint-struct.htm
e3dpoint-struct.htm
e3dpoint-struct.htm
e3dpoint-distanceto.htm

402

E3DLine

To represent lines in a 3D space, Open eVision offers the object E3DLine.
□ An E3DLine is defined by two points.

E3DPlane

To represent planes in a 3D space, Open eVision offers the object E3DPlane.
□ An E3DPlane is defined by its normal vector and the signed distance to the origin of the

axes.
□ Use the function DistanceTo to compute the distance to any point.
□ Use the function ProjectPoint to project points onto planes.
□ Use the function Transform with transformation matrices to rotate and translate planes.

E3DSphere

To represent spheres in a 3D space, Open eVision offers the object E3DSphere.
□ An E3DSphere is defined by its center point and its radius.
□ Use the function DistanceTo to compute the distance to any point.
□ Use the function Transform with transformation matrices to rotate and translate spheres.

E3DBox

E3DBoxes are rectangular parallelepipeds in a 3D space. They can have any orientation and be
centered on any point in the 3D space.

□ An E3DBox is defined by a center point, 3 axes and the extension of the box along each
axis.

□ Use the function Transform with transformation matrices to rotate and translate boxes.

E3DObject

In Open eVision, an E3DObject is a geometric representation of a set of 3D points.
□ Use the E3DObject to get the characteristics such as the extend along the 3 axes, the area,

the total volume and the average position of the set of points.
□ Use the function BasePlane to get the fitted plane of the set of points.
□ Use the function BoundingBox to get the bounding box, represented by a E3DBox enclosing

the set of points.

Open eVision User Guide PART VI 3D Processing Tools

e3dline-class.htm
e3dline-class.htm
e3dplane-class.htm
e3dplane-class.htm
e3dplane-distanceto.htm
e3dplane-projectpoint.htm
e3dplane-transform.htm
e3dsphere-class.htm
e3dsphere-class.htm
e3dsphere-distanceto.htm
e3dsphere-transform.htm
e3dbox-class.htm
e3dbox-class.htm
e3dbox-transform.htm
e3dobject-class.htm
e3dobject-class.htm
e3dobject-baseplane.htm
e3dobject-boundingbox.htm
e3dbox-class.htm

403

Depth map

A depth map is a way to represent a 3D object using a 2D grayscale image where each pixel
(u, v) in the image contains a third coordinate as its gray value.

The grayscale values of a depth map do not necessarily represent a Z metric coordinate. In the
context of a laser triangulation setup, these values represent the displacement of the laser line
profile, which is not the physical height of the 3D surface.

A depth map contains a gray scale image coded on 8, 16 or 32 bits per pixel.
□ One specific gray value, called the undefined value, is reserved for the representation of

invalid pixels.
□ By default, this value is 0 for integer depth map types (EDepthMap8 and EDepthMap16).
□ By default, this value is the lowest float value (-3.402823 e+38) for the 32 bits floating

point depth map types (EDepthMap32f).

The calibration process aims to convert the depth map representation to real, metric 3D
representations such as point clouds or meshes.

TIP
Depth maps are gray scale images where each pixel represents a
displacement in the third dimension. Because of the acquisition procedure,
they are usually not dimensionally correct. So, while Open eVision 2D image
operators are compatible with depth maps, you should not use them for
processes requiring precise measurements.

Open eVision User Guide PART VI 3D Processing Tools

edepthmap8-class.htm
edepthmap16-class.htm
edepthmap32f-class.htm

404

Point cloud

A point cloud is a set of 3D points (x, y and z coordinates) representing the scanned object in the
world metric space.

In addition to the calibration process included in Easy3D, point clouds can be produced using
various 3D acquisition techniques, like stereo reconstruction or time of flight cameras.

Mesh

A Mesh is a geometric representation of a 3D surface, a set of connected 3D points.

In an EMesh object, 3 points are connected to define a triangle.

TIP
This kind of 3D representation is also called a "triangle mesh".

A point cloud and the corresponding mesh (displayed with Open eVision E3DViewer)

An EMesh object contains a point cloud and the indexes of the vertices of all mesh triangles.

EMesh uses a metric space representation that can be generated from a depth map and that can
be used to produce a ZMap.

Open eVision User Guide PART VI 3D Processing Tools

405

ZMap

ZMaps are another representation for 3D data.
□ They are grayscale images like depth maps but represent metric and corrected 3D points.
□ They are convenient representations for measurement and matching.
□ They are compatible with most of the 2D processing functions.

ZMaps are generated by the orthogonal projection of a point cloud or a mesh onto an arbitrary
3D reference plane.

A depth map and the corresponding ZMap

A ZMap contains an image in which each pixel value represents a positive distance from the
reference plane.

TIP
Use the method AsEImage() to obtain a reference to the contained image.

A ZMap also contains the following information:
□ The transformation from the World coordinates to the ZMap coordinates.
□ The size of a pixel, called the "resolution".

TIP
Like in a depth map, a specific pixel value is reserved to represent undefined
pixels. To get this pixel value, use the method GetUndefinedValue().

Open eVision User Guide PART VI 3D Processing Tools

406

1.2. Static Methods

EFilters class

The EFilters class contains static methods used to apply filters to ZMaps or depth maps.

RemoveNoise

The RemoveNoise method removes outliers from a depth map or a ZMap.

● It takes a depth map or a ZMap as input and generates a depth map or a ZMap respectively.

The undefined points are not taken into account.

● It is based on a square moving kernel. The size of the kernel is (2 x halfKernelSize + 1) where
halfKernelSize is a parameter of the method.

● The threshold parameter is scaled with regard to the Z resolution of the filtered depth map
or ZMap.

● There are 3 variations of this filter, depending on the method parameter:
□ ENoiseRemovalMethod_AbsoluteDifferenceFromMean removes a point when it deviates from

the average in the neighborhood, including itself. The threshold is an absolute difference.
□ ENoiseRemovalMethod_RelativeDifferenceFromMean removes a point when it deviates from

the average in the neighborhood, including itself. The threshold is a multiple of the
standard deviation.

□ ENoiseRemovalMethod_HighStandardDeviation removes a point when the standard deviation
in the neighborhood, including itself, is higher than a defined threshold.

Example: Removing points showing a high standard deviation

Open eVision User Guide PART VI 3D Processing Tools

efilters-class.htm
efilters-removenoise.htm
efilters-removenoise.htm
efilters-removenoise.htm
efilters-removenoise.htm
enoiseremovalmethod-enum.htm
enoiseremovalmethod-enum.htm
enoiseremovalmethod-enum.htm

407

The code below removes pixels with a standard deviation higher than a defined threshold.

// Load the ZMap data
EZMap16 zmap = new EZMap16(); zmap.Load("...");

// Compute the filtered ZMap. The new ZMap is called filteredZmap
// The size of the kernel is 7x7, the threshold is 30.0
EZMap16 filteredZmap = new EZMap16();
filteredZmap.SetSize(zmap);
EFilters.RemoveNoise(zmap, filteredZmap, ENoiseRemovalMethod.HighStandardDeviation, 3, 30.0F, 0.0F); .

Median

The Median method removes the outliers from a depth map or a ZMap.

● It takes a depth map or a ZMap as input and generates a depth map or a ZMap respectively.
□ The undefined points are not taken into account.

● There are options for this method:
□ You can adjust the width and the height of the median filter.
□ The function can ignore the undefined pixels or take them into account (as the lowest

possible value) when computing the medians.
- Taking the undefined pixels into account removes spickles in the middle of undefined
pixels and smoothens the edges between defined and undefined pixels.
- Ignoring them does not. It can also be much slower.

EStatistics class

The EStatistics class contains static methods used to compute statistics on ZMaps or depth
maps.

ComputeAverageMap

The ComputeAverageMap method computes the local average map.

● You can use this method as a low-pass filter.

● Undefined points are not taken into account.

● This method is based on a square moving kernel. The size of the kernel is (2 x halfKernelSize
+ 1) where halfKernelSize is a parameter of the method.

ComputeStandardDeviationMap

The ComputeStandardDeviationMap() method computes a map of the local standard deviation.

● You can use this method to visually determine the threshold value to use with the
RemoveNoise method when using the ENoiseRemovalMethod_HighStandardDeviation setting.

NOTE
Be aware, however, that in the generated map, a pixel with the value 0 can
either be undefined or have a standard deviation equal to zero.

Open eVision User Guide PART VI 3D Processing Tools

efilters-median.htm
estatistics-class.htm
estatistics-computeaveragemap.htm
estatistics-computeaveragemap.htm
estatistics-computeaveragemap.htm
estatistics-computestandarddeviationmap.htm
efilters-removenoise.htm
enoiseremovalmethod-enum.htm

408

Example: Using a low pass filter on a ZMap, then removing points showing a deviation
larger than a defined threshold

The code below first applies a low pass filter, then removes from the result the pixels showing a
deviation from the neighborhood larger than the defined threshold.

// Load the ZMap data
EZMap16 zmap = new EZMap16();
zmap.Load("...");

// Compute the filtered ZMap. The new ZMap is called averagedZMap
// The size of the kernel is 7x7, the threshold is 30.0
EZMap16 averagedZMap = new EZMap16();
averagedZMap.SetSize(zmap);
EStatistics.ComputeAverageMap(zmap, averagedZMap, 3, 0.2F);

// Compute the filtered ZMap. From averagedZMap, compute filteredZMap
// The size of the kernel is 31x31, the threshold is 20.0
EZMap16 filteredZMap = new EZMap16();
filteredZMap.SetSize(zmap);
EFilters.RemoveNoise(averagedZMap, filteredZMap, ENoiseRemovalMethod.AbsoluteDifferenceFromMean, 15, 20.0F,
0.2F);

ComputePixelStatistics

The ComputePixelStatistics method returns basic statistical information about pixel values:
□ Minimum
□ Maximum
□ Average
□ Standard deviation
□ Number of valid (not undefined) pixels).

Use an ERegion object to specify the region of the ZMap or depth map used to compute the
statistics.

Open eVision User Guide PART VI 3D Processing Tools

estatistics-computepixelstatistics.htm
eregion-eregion.htm

409

ComputeStatistics

The ComputeStatistics method returns the same information as the ComputePixelStatistics
method, but scaled with respect to the Z resolution.

Use an ERegion object to specify the region of the ZMap or depth map used to compute the
statistics.

1.3. Point Cloud

Mapping Attributes
● In addition to the (x, y, z) coordinates, you can store other components in an EPointCloud

such as normals, colors, intensities, textures, indexes, confidences, distances, curvatures and
other custom attributes.

● When you use additional components, a mapping exists between each 3D point and an
attribute and the different operations performed on the point cloud conserve this mapping.

● To add components to an EPointCloud, use the methods FillAttributeBuffer or
AddCustomAttributeBuffer.
□ To retrieve the attribute, use the method GetAttributeBuffer.
□ To allocate the attribute, use the methods AllocateAttributeBuffer and

AllocateCustomAttributeBuffer.
□ You can also save and load these attributes from point cloud files.
□ Several file formats are supported, but we recommend the formats PCD and PLY for

handling additional components.

These methods are showcased in the following code snippets:
□ "Add an Attribute to an EPointCloud with Initial Data" on page 1
□ "Add an Attribute to an EPointCloud without Initial Data" on page 1
□ "Retrieve an Attribute from an EPointCloud" on page 1

Normals and Curvatures
● Use the function EPointCloud::ComputeNormalsAndCurvatures to compute the normals and,

optionally, the curvatures of all of the points in the point cloud:
□ The normals are stored in the Normal attribute buffer.
□ The curvatures are stored in the Curvature attribute buffer.

Coordinates Transformations

Geometric transformations

Transforms allow you to reposition the point cloud inside the 3D space.

Open eVision provides you with the following basic transformations:

Open eVision User Guide PART VI 3D Processing Tools

estatistics-computestatistics.htm
estatistics-computepixelstatistics.htm
eregion-eregion.htm
epointcloud-class.htm
epointcloud-class.htm
epointcloud-fillattributebuffer.htm
epointcloud-addcustomattributebuffer.htm
epointcloud-getattributebuffer.htm
epointcloud-allocateattributebuffer.htm
epointcloud-allocatecustomattributebuffer.htm
http://pointclouds.org/documentation/tutorials/pcd_file_format.html
http://paulbourke.net/dataformats/ply/
../../../../../Content/05 Resources/02 Code Snippets/15 Easy3D/Add an Attribute to an EPointCloud with Initial Data.htm
../../../../../Content/05 Resources/02 Code Snippets/15 Easy3D/Add an Attribute to an EPointCloud without Initial Data.htm
../../../../../Content/05 Resources/02 Code Snippets/15 Easy3D/Retrieve an Attribute from an EPointCloud.htm
epointcloud-computenormalsandcurvatures.htm

410

□ Rotation around the X, Y or Z axis
□ Translation along the X, Y and/or Z axis
□ Scaling, around the origin, and either isotropic (the same in all directions) or anisotropic

(different along the different axis)

It also provides you with projection transformations, both orthographic and perspective:
□ An orthographic projection transforms a volume of space in the shape of a rectangular

parallelepiped (and the points it contains) into the canonical view (a cubic space of size 2
and centered on the origin).

□ A perspective projection transforms a volume of space in the shape of a frustum (basically
a truncated pyramid) into the canonical view. This projection allows you to simulate the
perspective effect given by an eye or a camera.

□ Use the class E3DTransformMatrix to create the geometric transformations. The class
EAffineTransformer applies a transformation defined by a E3DTransformMatrix to a point
cloud.

Reducing a Point Cloud

Cropping

Cropping allows you to exclude points from the point cloud based on geometrical
considerations.

Open eVision provides the following cropping functions:
□ ESimpleCropper: simple cropping on the X, Y and/or Z coordinates (aligned rectangle 3D

region)
□ ERectangularCropper: cropping the points outside (or inside) an oriented rectangular

parallelepiped
□ ESphericalCropper: cropping the points outside (or inside) a sphere.
□ EPlaneCropper: cropping the points depending on their position with respect to a plane

These classes produce a new point cloud with the selected points.

Decimation

● Open eVision offers 2 capabilities to decimate an EPointCloud:
□ ERandomDecimator decimates the cloud by copying a specified number of points, randomly

selected, to a new point cloud.

Open eVision User Guide PART VI 3D Processing Tools

e3dtransformmatrix-class.htm
eaffinetransformer-class.htm
e3dtransformmatrix-class.htm
esimplecropper-class.htm
erectangularcropper-class.htm
esphericalcropper-class.htm
eplanecropper-class.htm
epointcloud-class.htm
erandomdecimator-class.htm

411

□ EGridDecimator splits the space using a grid of given size; the new cloud is created by
averaging the points of every grid together, resulting in a regularly sampled cloud.

● To use ERandomDecimator, specify the number of points to keep as a parameter of the
constructor.

EPointCloud pc = new EPointCloud();
pc.Load("c:\\images\\data.pcd");

// Explicitly decimate the point cloud

ERandomDecimator decimator = new ERandomDecimator(5000);
EPointCloud pcDecimated = new EPointCloud();

decimator.Decimate(pc, pcDecimated);
pcDecimated.SavePCD("c:\\images\\decimatedData.pcd");

● To use EGridDecimator, specify the cell size, either as a E3DPoint or as a float if cell is cubic.

EPointCloud pc = new EPointCloud();
pc.Load("c:\\images\\data.pcd");

// Explicitly decimate the point cloud

EGridDecimator decimator = new EGridDecimator(10.0F);
EPointCloud pcDecimated = new EPointCloud();

decimator.Decimate(pc, pcDecimated);
pcDecimated.SavePCD("c:\\images\\decimatedData.pcd");

Filtering out noise

The EPointCloudFilter class filters a point cloud in the same way EFilters::RemoveNoise filters a
depth map or ZMap.

A criterion based on the neighborhood of each point is computed. The points that have a
criterion score above the threshold are removed.

● Select between the following criterions:
□ The average distance of the point from its neighborhood. It may remove some points at

the borders of a noiseless surface.
□ The standard derivation within the point neighborhood. It is more likely to remove

noiseless points that are close to noisy points.

● You can set the size of the neighborhood.

● The threshold is defined as:

“the mean of the criterion over the cloud”+

“the standard derivation of the criterion over the cloud”×“a factor provided by the user”

□ The default value for the factor is 1, as it is a good value in most cases.

● You can replace the noisy points by the average of their neighborhood instead of removing
them.

Open eVision User Guide PART VI 3D Processing Tools

egriddecimator-class.htm
erandomdecimator-class.htm
egriddecimator-class.htm
e3dpoint-struct.htm
epointcloudfilter-class.htm
efilters-removenoise.htm

412

Managing Planes

E3DPlane

A plane can be represented as an E3DPlane object.

This plane is characterized by:
□ Its normal which is a vector of norm 1, perpendicular to the plane.
□ Its signed distance from the origin, which is the smallest distance from the origin to the

plane. The signed distance is positive when the vector binding the origin to the closest
point on the plane has the same direction as the normal and is negative when it has the
opposite direction.

Once a plane is defined, you can measure the signed distance between this plane and any point
in the space (using the method DistanceTo()):

□ A positive distance means that the vector connecting the plane to the point has the same
direction as the normal.

□ A negative distance means that the vector has the opposite direction.

Open eVision User Guide PART VI 3D Processing Tools

e3dplane-class.htm
e3dplane-distanceto.htm

413

EPlaneFinder

You can search for a plane in a point cloud using the object EPlaneFinder object.

The main parameters of this object are:
□ The maximum distance between the searched plane and a point that belongs to this

plane.
□ The expected ratio between the numbers of inliers and the total number of points in the

point cloud.
- An inlier is a point that belongs to a plane (closer than this maximum distance).
- An outlier is a point that is not an inlier.

The picture below illustrates how points of the space are classified as inliers (in green) and
outliers (in red) according to their distance to the searched plane.

● A EPlaneFinder object produces a E3DPlane object.
□ The algorithm searches for a plane containing as many inliers as possible.
□ This plane is the biggest plane if the samples are evenly distributed.

● The maximum distance between the plane and the inliers is a mandatory parameter.
□ It should include the deviation due to the noise.
□ It should also take the warpage into account.

● The parameter that specifies the ratio of inliers with respect to the total number of points
has a default value of 0.3. This means that we estimate that about 30% of the points belong
to the plane.
□ This parameter is not as critical as the maximum distance.
□ It affects the maximum time that the algorithm spends to search a plane and its

robustness.

● For more fine-grained control, you can specify the ratio of inliers as a range.
□ The min of the range is the minimum ratio of inliers for a plane to be considered as valid.
□ The algorithm stops searching for a plane when it finds one with the max of the range

inliers.
□ The bigger the min of the range and the smaller the max, the faster the algorithm is.
□ Specifyng the range as a single value x is equivalent to setting a range of [x/2, x].

Open eVision User Guide PART VI 3D Processing Tools

eplanefinder-class.htm
eplanefinder-class.htm
e3dplane-class.htm

414

● You can specify the expected normal vector to the searched plane.
□ Specify also an angular tolerance with respect to this direction.
□ The algorithm only searches for a plane that satisfies the condition.
□ Set this condition may speed up the plane search.

● You can specify 1 or 2 points contained in the searched plane.
□ These points are not specified as inliers (points closer to the plane than its maximum

distance) but as points exactly contained in the main plane.
□ They may not be exactly in the final plane after the final fitting step detailed below.
□ The algorithm only searches for a plane that satisfies the condition.
□ Set this condition may speed up the plane search.

Once the main plane is found, a fit is done on all the inliers points and the result is returned (see
EPlaneFitter below).

Decimation

By default, the EPlaneFinder decimates the input point cloud to accelerate the search.

● The default decimator reduces the input point cloud to 10,000 points.

● You can disable this decimation.

● You can change the number of points the cloud is reduced to.

● You can decimate a point cloud explicitly.
□ Use an ERandomDecimator object.
□ Use the decimated point cloud as input for the EPlaneFinder.
□ Disable the default decimator.

EPlaneFitter

The EPlaneFitter operator computes a fit on all the points of a point cloud and returns a
E3DPlane object. The “average” plane, that minimizes the orthogonal distance of the points to
the plane, is returned.

Open eVision User Guide PART VI 3D Processing Tools

eplanefitter-class.htm
eplanefinder-class.htm
erandomdecimator-class.htm
eplanefinder-class.htm
eplanefitter-class.htm
e3dplane-class.htm

415

Aligning

EPrincipalAxisExtractor

The EPrincipalAxisExtractor computes the “principal axis” of an object from a point cloud
(EPointCloud) and returns a E3DTranformMatrix containing a solid transformation that defines a
new orthogonal basis.

This new orthogonal basis has the following characteristics:
□ The center is the center of gravity of the point cloud.
□ The axes are oriented along the “principal axis” of the object. This is the result of the

“PCA” calculation (principal axis analysis).
□ The directions of the axes are selected so that the new basis is as close as possible of the

basis defined by the reference transformation.

The next figure illustrates the orientation of the principal axes of an object.

The principal axes extraction is done using the Extract() method that takes a EPointCloud as
input and returns an E3DTransformMatrix. Optionally, you can pass 3 other output parameters by
reference to retrieve the value of the standard deviation along the 3 principal axes.

You can use the returned E3DTranformMatrix object to transform the 3D coordinates of a point.
For example, apply the transformation matrix to the origin (0, 0, 0) to return the center of
gravity of the object.

Open eVision User Guide PART VI 3D Processing Tools

eprincipalaxisextractor-class.htm
epointcloud-class.htm
e3dtransformmatrix-class.htm
eprincipalaxisextractor-extract.htm
epointcloud-class.htm
e3dtransformmatrix-class.htm
e3dtransformmatrix-class.htm

416

Specification of a reference transformation

The reference transformation is an optional parameter of the EPrincipalAxisExtractor object. It
defines a reference basis used to select an orthogonal basis out of the principal axes. The
selected basis will be the closest to the reference basis.

TIP
If no reference transformation was supplied, the default reference basis is
((0, 0, 1), (0, 1, 0), (0, 0, 1)), that corresponds to the identity transformation.
On the figure below, the default reference basis determines the direction of
the axes ex, ey and ez.

EFeaturesAligner

A EFeaturesAligner object finds the best transformation that maps a list of points to another list
of points.

● The first list of points is called the "model". It is stored in the EFeaturesAligner object.

● The second list of points is called "measured points". It is passed as a parameter to the
Compute() method. If successful, the result of this method is a E3DTransformMatrix object.

● The 2 lists should form matching pairs. In other words, the first point of the first list matches
the first point of the second list, the second point of the first list matches the second point of
the second list, and so on…

With the Polarity parameter, you can define which transformation is returned. It can be either:
□ The one that moves one point from the first list (the model) to the second list of points

(the measured points) if the polarity parameter is set to EAlignmentPolarity_
ModelToMeasured (default).

□ The one that moves a point from the second list (the measured points) to the first list (the
model) if the polarity parameter is set to EAlignmentPolarity_MeasuredToModel.

Open eVision User Guide PART VI 3D Processing Tools

eprincipalaxisextractor-class.htm
efeaturesaligner-class.htm
efeaturesaligner-class.htm
efeaturesaligner-compute.htm
e3dtransformmatrix-class.htm
efeaturesaligner-polaritytransform.htm
ealignmentpolarity-enum.htm
ealignmentpolarity-enum.htm
ealignmentpolarity-enum.htm

417

The figure below illustrates the computation of the alignment transformation. In this example a
model is aligned to an object using the coordinates of their corners.

Once the transformation is computed, use the method GetOrthoBasis of the E3DTransformMatrix
object to get the basis (ex, ey, ez) and the center point t that defines the new basis.

You can also apply the computed transformation on any 3D point as illustrated in the code
below.

EFeaturesAligner alignTool = new EFeaturesAligner();
E3DTransformMatrix alignBase = new E3DTransformMatrix();
E3DPoint ex = new E3DPoint(), ey = new E3DPoint(), ez = new E3DPoint(), t = new E3DPoint();
E3DPoint[] model3d = new E3DPoint[...];
E3DPoint[] points3d = new E3DPoint[...];

// add points to model3d and points3d
// ...
alignTool.ModelPoints = model3d;
alignBase = alignTool.Compute(points3d);

// Get the orthogonal basis and store it in ex, ey, ez and t
alignBase.GetOrthoBasis(ref ex, ref ey, ref ez, ref t);

// Applying the transformation on point P1, results in point P1b
E3DPoint P1 = new E3DPoint();
E3DPoint P1b = alignBase*P1;

As you can see, the application of the transformation on a point is simply done by multiplying
the transformation matrix by the point (as done in the example above).

On the other hand, if you need to transform a point cloud or a list of points, it is more efficient
to use the ApplyTransform() method of an EAffineTransformer object.

Open eVision User Guide PART VI 3D Processing Tools

e3dtransformmatrix-getorthobasis.htm
e3dtransformmatrix-class.htm
eaffinetransformer-applytransform.htm
eaffinetransformer-class.htm

418

Using Spheres

E3DSphere

Use an object E3DSphere to represent a sphere characterized by:
□ Its center as a E3DPoint.
□ Its radius.

Once a sphere is defined, use the method DistanceTo to measure the distance between the
sphere and any point in the space, defined as the distance to the nearest point of the sphere.

ESphereFitter

The operator ESphereFitter computes a fit on all the points of a point cloud and returns the
object E3DSphere that minimizes the distance between the point cloud and the sphere
(calculated according to the least squares).

1.4. Mesh

A mesh is a geometric representation of a 3D surface. The surface is defined by a triangle mesh
connecting the 3D points and each of these triangles has an associated normal.

● Like a point cloud, a mesh is expressed in the metric space.

● Like a point cloud, you can generate a mesh from a depth map or a ZMap and use it to
produce a ZMap.

Generation from a depth map

● An EMesh object is generated from a depth map using the class EDepthMapToMeshConverter.

● Like EDepthMapToPointCloudConverter, this class uses a calibration model to transform the
depth map pixels to 3D world positions. In addition, the depth map pixel connectivity is used
to build the triangle mesh. Adjacent pixels produce surface triangles.

● Use the method SetCalibrationModel to select a calibration model and the method Convert to
generate an EMesh from an 8 bits or 16 bits depth map.

Generation from a ZMap

● An EMesh object is generated from a ZMap using the class EZMapToMeshConverter.

● Use the method SetMaxEdgeLength to filter out the large triangles from the mesh. These large
triangles occur when the colors of two neighboring pixels are very far apart.

Open eVision User Guide PART VI 3D Processing Tools

e3dsphere-class.htm
e3dpoint-struct.htm
e3dsphere-distanceto.htm
espherefitter-class.htm
e3dsphere-class.htm
emesh-emesh.htm
edepthmaptomeshconverter-class.htm
edepthmaptopointcloudconverter-class.htm
edepthmaptomeshconverter-calibrationmodel.htm
edepthmaptomeshconverter-convert.htm
emesh-emesh.htm
emesh-emesh.htm
ezmaptomeshconverter-class.htm
ezmaptomeshconverter-maxedgelength.htm

419

Generation from a point cloud

● An EMesh object is generated from a point cloud using the class EPointCloudToMeshConverter.
□ The EPointCloud is first converted to a ZMap that is then converted to an EMesh.

● Use the method SetProjectionPlane to set the projection plane.

● Use the method SetResolution to specify the size of the triangles of the mesh.

● Use the method SetMaxEdgeLength to filter out the large triangles from the mesh.

2 This functionality is illustrated in a C++ and a C# MFC sample application called
Easy3DPointCloudToMesh.

Access and usage

● In an EMesh object the 3D world positions are stored as an EPointCloud (accessible through
the method GetPointCloud()). The triangle mesh is stored as an array of point indexes, where
3 consecutive indexes define a triangle.
□ The method GetTriangleIndexes() provides a read-only access to the triangle mesh.
□ The normals are stored as an array of E3DPoints readable through the GetNormals method.

● You can use either the Open eVision proprietary format to save and load EMesh objects using
the Save() and Load() methods, or use the STL standard file format
(https://en.wikipedia.org/wiki/STL_(file_format)) using the SaveSTL() and LoadSTL() methods
which respectively write to and read from ASCII or binary STL files.

● You can use an EMesh to produce a ZMap (see "Generating a ZMap" on page 420). Because an
EMesh represents a surface, the so generated ZMap can show better continuity and less
undefined pixels.

Open eVision User Guide PART VI 3D Processing Tools

emesh-emesh.htm
epointcloudtomeshconverter-class.htm
epointcloud-class.htm
emesh-emesh.htm
epointcloudtomeshconverter-projectionplane.htm
epointcloudtomeshconverter-resolution.htm
ezmaptomeshconverter-maxedgelength.htm
emesh-emesh.htm
epointcloud-epointcloud.htm
emesh-pointcloud.htm
emesh-triangleindexes.htm
e3dpoint-e3dpoint.htm
emesh-normals.htm
emesh-emesh.htm
emesh-save.htm
emesh-load.htm
emesh-savestl.htm
emesh-loadstl.htm
emesh-emesh.htm
emesh-emesh.htm

420

1.5. ZMap

Generating a ZMap
A ZMap is the projection of a point cloud or a mesh on a reference plane, with the distance
coded as grayscale values:

□ They are grayscale images, compatible with all Open eVision 2D libraries.
□ They are distortion free, with affine transformation from/to metric coordinate system.

A depth map (left) and the corresponding ZMap (right),
with default generation parameters and undefined pixel filling enabled

All Open eVision 2D processing are available on ZMaps: filtering, thresholding, blob extraction,
measuring with EasyGauge, model matching with EasyFind or EasyMatch…

The EPointCloudToZMapConverter class implements the conversion from a point cloud to a ZMap
(EMeshToZMapConverter converts a mesh to a ZMap). With all parameters at default value, the
Convert method automatically chooses the projection plane, the orientation, the map size and
the resolution.

Several methods are available to further control the conversion:

● SetReferencePlane defines a world space projection plane. The values of the ZMap pixels are
the distance of the point cloud to that reference plane.

By default, the reference plane crosses the origin and is perpendicular to the world Z axis.
The plane is defined as a E3DPlane object.

● SetOrientationVector sets a world space vector representing the expected direction of the X
(width) axis of the ZMap.

The orientation vector allows you to “rotate” the object around the normal of the reference
plane.

● SetOrigin specifies the world position that is on the ZMap lower left pixel (0, 0).

● SetMapSize defines the resolution (number of pixels in X and Y axis) of the generated ZMap.

● SetMapXYResolution adjusts the X and Y resolution of the ZMap pixels, in world space unit per
pixel (for example mm/pixel). This value is used to compute the ZMap size (width and
height), depending on the projected size of the point cloud on the reference plane.

Open eVision User Guide PART VI 3D Processing Tools

epointcloudtozmapconverter-class.htm
emeshtozmapconverter-class.htm
epointcloudtozmapconverter-convert.htm
epointcloudtozmapconverter-referenceplane.htm
e3dplane-e3dplane.htm
epointcloudtozmapconverter-orientationvector.htm
epointcloudtozmapconverter-origin.htm
epointcloudtozmapconverter-setmapsize.htm
epointcloudtozmapconverter-setmapxyresolution.htm

421

● SetMapZResolution sets the Z resolution, in world space unit per pixel unit (gray value). The Z
resolution is used to compute the transformation of the distance to the reference plan to the
integer 8, 16 or 32 bits pixel value.

● EnableFillMode and SetFillMode control the options used to fill the "hole" in the ZMap. A hole
exists when no 3D point is projected in the ZMap at a pixel position.

The methods SetReferencePlane, SetOrientationVector and SetOrigin are used to set up the
transformation between the world space and the ZMap space. This transformation is rigid
(distances are kept).

Alternatively, it is possible to directly set that transformation with the method
SetWorldToZMapTransform using a rigid matrix as parameter. In that case, the reference plane, the
orientation vector and the origin parameters are ignored.

The projection of a point cloud on a ZMap,
showing 3 coordinate systems: the world space, the ZMap space and the pixel space.

Open eVision User Guide PART VI 3D Processing Tools

epointcloudtozmapconverter-mapzresolution.htm
epointcloudtozmapconverter-enablefillmode.htm
epointcloudtozmapconverter-setfillmode.htm
epointcloudtozmapconverter-referenceplane.htm
epointcloudtozmapconverter-orientationvector.htm
epointcloudtozmapconverter-origin.htm
epointcloudtozmapconverter-worldtozmaptransform.htm

422

The Convert method performs the effective projection of a point cloud (EPointCloud) or a 3D
object (EMesh) to the 8, 16 or 32 bits ZMap.

When generating a ZMap from a point cloud, only individual points are projected on the ZMap.
Depending on the point cloud density and the ZMap resolution, some regions of the ZMap may
remain “undefined”. To get around this problem, adjust the resolution of the ZMap
(SetMapXYResolution method) to remove “holes” on the ZMap.

By default, the point cloud to ZMap converter performs a filling algorithm. This process tries to
replace undefined pixels with locally interpolated values.

Left: high resolution ZMap, the pixel scale exceeds the point cloud density
Center: the same generator parameters with the filling enabled

Right: a reduced ZMap scale/resolution, without filling

As a mesh defines a surface, its triangles are projected onto the ZMap plane. Thus, the
generated image shows better continuity and less undefined pixels. However, the generation of
a ZMap from an EMesh is slower than from an EPointCloud.

Creating a Point Cloud from a ZMap
To generate a point cloud from a ZMap, use the EZMapToPointCloudConverter class.

The Convert()method takes:

● A ZMap source

● A EPointCloud destination.

● 3 optional parameters:
□ An ERegion that defines the domain of the ZMap to convert.

By default, Open eVision uses all the defined pixels of the ZMap generate the point cloud.
□ A parameter to select the world space (by default) or the ZMap space to store the

resulting positions in the point cloud.
□ Whether to compute the normals of the points of the point cloud during the conversion.

This is not done by default.

Open eVision User Guide PART VI 3D Processing Tools

epointcloudtozmapconverter-convert.htm
epointcloud-epointcloud.htm
emesh-emesh.htm
epointcloudtozmapconverter-setmapxyresolution.htm
emesh-emesh.htm
epointcloud-epointcloud.htm
ezmaptopointcloudconverter-class.htm
ezmaptopointcloudconverter-convert.htm
epointcloud-class.htm
eregion-class.htm

423

Managing the Coordinates

Coordinate systems on a ZMap

A ZMap has multiple coordinate systems:
□ The world space system is the original, metric space from which the ZMap has been

generated. Point clouds and meshes are expressed in the world coordinate system.
□ The ZMap space is defined by a rigid transformation of the world space. The basis linked

to this transformation is attached to the lower left corner of the ZMap.
□ The image space is the system attached to the image representation of the ZMap. Its

origin is the upper left corner of the ZMap and its unit length is one pixel along the X and
Y axis.

The transformations between:
□ The image space and the ZMap space include a scale factor.
□ The ZMap space and the world space are solid transformations.

EZMap

The EZMap object exposes a set of methods to convert coordinates between world, ZMap and
image spaces:

□ ImageToZMap converts a 2D position in the image to ZMap coordinates.
□ ZMapToImage is the reciprocal operation and converts a ZMap position to an image

position.
□ ZMapToWorld is a method to transform positions from the 3D ZMap space to the 3D world

space. The world space is the original point cloud or mesh space.
□ WorldToZMap is the reciprocal operation, converting from world space to ZMap.
□ ImageToWorld and WorldToImage combine the functions above to transform directly from

image space to world space (or the other way).

These methods only perform geometric transformations between the various coordinate
systems and do not access the actual ZMap gray scale values.

Open eVision User Guide PART VI 3D Processing Tools

ezmap-class.htm
ezmap-imagetozmap.htm
ezmap-zmaptoimage.htm
ezmap-zmaptoworld.htm
ezmap-worldtozmap.htm
ezmap-imagetoworld.htm
ezmap-worldtoimage.htm

424

The functions that access the pixel values are:
□ GetWorldPositionFromPixelPosition is a method transforming the actual pixel value at

integer position (u, v) to the original world space. This method queries the ZMap internal
representation to get the pixel value w and transform the pixel space (u, v, w) coordinates
to a world space position.

□ GetPixelPositionFromWorldPosition is a method to get a pixel value from a world position.
The world position is projected on the ZMap and the pixel value is returned. If the world
position is outside the ZMap domain, the method returns FALSE.

□ GetWorldPositionFromMapPosition is a method to get a 3D world position corresponding to
a ZMap 2D coordinate. The world position is in the original point cloud space. If the 2D
coordinate is undefined, an exception is thrown.

1.6. 3D Viewer

The class E3DViewer is an interactive 3D viewer for point clouds, ZMaps, meshes and basic
shapes (lines, planes, boxes and spheres).

□ It features multiple sources display, color ramps, 3D point picking and text label display.
□ It is compatible with Windows and Linux and can be integrated to Win32, MFC and QT

frameworks.

Creating a 3D viewer

● The general constructor of a 3D viewer is:
E3DViewer(EUIAPI uiApi, int orgX, int orgY, int width, int height, void* parent)

● The way to use it depends on the Operating System and the User Interface API.

Windows only

● To create a 3D viewer stand-alone window:
□ Use E3DViewer(EUIAP::EUIAPI_Win32, orgX, orgY, width, height)

● To create a 3D viewer as a part of another window in an MFC application:
□ Use E3DViewer(EUIAP::EUIAPI_Win32, orgX, orgY, width, height, handle to the parent

window)
□ See the MsVc or MsVcs Easy3DViewer sample.

Windows and Linux

● To create a 3D viewer in a Qt application:
□ Use E3DViewer(EUIAP::EUIAPI_Qt, orgX, orgY, width, height)
□ You must instance the class inside a QOpenGLWidget object.
□ See the Easy3DViewer Qt sample.

Open eVision User Guide PART VI 3D Processing Tools

ezmap-getworldpositionfrompixelposition.htm
ezmap8-getpixelpositionfromworldposition.htm
ezmap-getworldpositionfrommapposition.htm
e3dviewer-class.htm

425

Managing the render sources

● A render source is a displayed entity. It can be an EPointCloud, an EZMap, an EMesh, an E3DBox,
an E3DLine, an E3DPlane or and E3DSphere. You can display one or several render sources
simultaneously in the 3D viewer.

A point cloud displayed in gray scale and a mesh in false colors in the 3D viewer

● To manage the list of render sources, use the methods:
□ AddRenderSource to add another render source to the current list. The render source has a

name for further reference.
□ SetRenderSource to change the content of the render source.
□ RemoveRenderSource to remove a render source from the current list.

● The render sources API exposes several display attributes:
□ Visibility (controlled by ShowRenderSource/ HideRenderSource)
□ Color mode (SetRenderSourceColorMode): choose between constant color (the only option

for basic shapes), color ramp or point cloud color attributes.
□ Color (SetRenderSourceConstantColor) for render sources with constant color.
□ Opacity (SetRenderSourceOpacity)
□ Point size (SetRenderSourcePointSize): applies to point clouds and ZMaps only.
□ Wire frame (SetRenderSourceWireFrame): applies to meshes, boxes and planes.

A point cloud displayed with constant color, color ramp or color attributes
(data courtesy of Zivid)

Open eVision User Guide PART VI 3D Processing Tools

epointcloud-class.htm
ezmap8-class.htm
emesh-class.htm
e3dbox-class.htm
e3dline-class.htm
e3dplane-class.htm
e3dsphere-class.htm
e3dviewer-addrendersource.htm
e3dviewer-setrendersource.htm
e3dviewer-removerendersource.htm
e3dviewer-showrendersource.htm
e3dviewer-hiderendersource.htm
e3dviewer-setrendersourcecolormode.htm
e3dviewer-setrendersourceconstantcolor.htm
e3dviewer-setrendersourceopacity.htm
e3dviewer-setrendersourcepointsize.htm
e3dviewer-setrendersourcewireframe.htm

426

A mesh with wireframe and transparency, combined with a point cloud with color ramp

Shading

E3DViewer can shade rendering sources using a custom version of the Eye Dome Lighting (EDL)
technique.

● Use SetEnableEDLShading to enable the shading.

● Use SetEDLShadingFactor to adjust the shading between 0 and 1:
□ 0 means no chasding.
□ 1 means strong shading.and 1, respectively meaning no shading and strong shading.

EDL is a post processing technique. It impacts all opaque render sources all together. With EDL,
pixels that are closer to the camera occlude neighbor pixels that are further away from the
camera.

A mesh without and with EDL enabled

Using a color ramp

● When the color mode of a render source is ESourceColorMode_Ramp, the color of each point is
calculated from the position or the attribute of the point.

● Use SetColorRampMode to choose the color ramp:
□ EColorRampMode_HueFromX/Y/Z computes the colors from respectively X/Y/Z point

coordinates (EColorRampMode_HueFromZ is the default color ramp mode).
□ EColorRampMode_RGBCube computes the colors by mixing X,Y,Z point coordinates.

Open eVision User Guide PART VI 3D Processing Tools

e3dviewer-class.htm
e3dviewer-enableedlshading.htm
e3dviewer-edlshadingfactor.htm
esourcecolormode-enum.htm
e3dviewer-colorrampmode.htm
ecolorrampmode-enum.htm
ecolorrampmode-enum.htm
ecolorrampmode-enum.htm

427

□ EColorRampMode_HueFromIntensity computes the colors from the intensity attribute of the
point.

□ EColorRampMode_HueFromNormal computes the colors from the normal attribute of the point.
□ EColorRampMode_HueFromConfidence computes the colors from the confidence attribute of

the point.
□ EColorRampMode_HueFromDistance computes the colors from the distance attribute of the

point.

Color ramp modes Hue from X/Y/Z and RGB cube

● When a color ramp is defined, you can display a legend at the right side of the window
(default position). To control the color ramp legend aspect, use the methods
Show/HideColorRampLegend, SetColorRampGraduationColor and SetColorRampLocation.

● When the “Smart color ramp” is enabled with the method SetEnableSmartColorRamp, an
outlier filtering processing is applied to remove the noise and spread the colors on the main
part of the object. The outliers are then displayed with constant red or blue colors.

To keep the same color ramp bounds instead of adaptive ones, use SetFixColorRampBounds.

A color ramp EColorRampMode_HueFromZ with outlier removal process:
- The extreme points with Z coordinate between 8.3 and 18.8 are drawn in red

- The Z coordinate of 98% of the points are between -6.7 and 8.3

Open eVision User Guide PART VI 3D Processing Tools

ecolorrampmode-enum.htm
ecolorrampmode-enum.htm
ecolorrampmode-enum.htm
ecolorrampmode-enum.htm
e3dviewer-showcolorramplegend.htm
e3dviewer-hidecolorramplegend.htm
e3dviewer-colorrampgraduationcolor.htm
e3dviewer-setcolorramplocation.htm
e3dviewer-enablesmartcolorramp.htm
e3dviewer-setfixcolorrampbounds.htm

428

Interactive controls

On Windows, the interactive controls are built in the class E3DViewer.

● The following interactions are possible:

Intercation Control
Rotate the view left-click + mouse move
Translate the view right-click + mouse move
Change the view distance mouse wheel
Reset the view r
View along the positive / negative X axis x / Shift+x
View along the positive / negative Y axis y / Shift+y
View along the positive / negative Z axis z / Shift+z
Show / hide the axis a
Enable / disable the wireframe mode w
Increase / decrease the point size plus sign (+) / minus sign (-)

● Use the following methods to implement custom view controls:
□ LockRotationInitialPosition, UpdateRotationPosition and LockRotationFinalPosition

correspond to the sequence click-drag-release to change the viewpoint by rotation.
□ LockTranslationInitialPosition, UpdateTranslationPosition and

LockTranslationFinalPosition correspond to the sequence click-drag-release to change
the viewpoint by translation.

□ UpdateViewDistance changes the view distance, usually controlled by the mouse wheel.
□ ResetView restores the default viewpoint.

See the Qt Easy3DViewer sample for a use case of this view control API.

● You can also directly configure the view position with the methods:
□ SetViewTarget (by default, it is the center of the object).
□ SetViewAngle to choose the orientation of the view.
□ SetViewDistance to choose the distance to the view target.

View parameters

You can customize the 3D view and:
□ Change the field of view with SetFieldOfView.
□ Switch between the perspective and the orthographic view with SetProjectionType.
□ Enable or disable the display of the X, Y and Z axis with SetRenderAxis.
□ Switch the axis origin between the world origin and the object center with SetAxisOrigin.
□ Enable or disable the display of a grid with SetRenderGrid.

Open eVision User Guide PART VI 3D Processing Tools

e3dviewer-class.htm
e3dviewer-lockrotationinitialposition.htm
e3dviewer-updaterotationposition.htm
e3dviewer-locktranslationfinalposition.htm
e3dviewer-locktranslationinitialposition.htm
e3dviewer-updatetranslationposition.htm
e3dviewer-locktranslationfinalposition.htm
e3dviewer-updateviewdistance.htm
e3dviewer-resetview.htm
e3dviewer-setviewtarget.htm
e3dviewer-setviewangle.htm
e3dviewer-viewdistance.htm
e3dviewer-fieldofview.htm
e3dviewer-projectiontype.htm
e3dviewer-renderaxis.htm
e3dviewer-axisorigin.htm
e3dviewer-rendergrid.htm

429

□ Activate an auto rotate animation with SetAutoRotate.
□ Use a decimation level (remove some points to speed up the rendering) with

SetRenderDecimationLevel.

No axis / world centered axis / bounding box axis / axis with grid

Picking a 3D point

● Picking a point means detecting the point closest to the given coordinates in a E3DViewer
window. You can then display the detected 3D point, with attributes, as a text label.

Displayed coordinates and attributes of a picked point on the 3D view

● The distance threshold used to select a picked point is defined by
SetPickingDistanceThreshold. There is no picked point if the point cloud distance to the
picked position is greater than this threshold.

Open eVision User Guide PART VI 3D Processing Tools

e3dviewer-setautorotate.htm
e3dviewer-renderdecimationlevel.htm
e3dviewer-class.htm
e3dviewer-pickingdistancethreshold.htm

430

● On the Win32 interface framework, the built-in control for the picking is Ctrl + mouse button.
□ To control the picking, use the methods Pick3DPoint, GetLastPickedPoint and

ResetPicking.
□ To configure the E3DViewer to call a specified function when you pick a point, use the

method SetPickedPointCallBack.

● To configure the display of the picking label, use SetPickingDisplay, SetPickingLabelSize,
SetPickingLabelColor and SetPickingLabelFixed.

Text labels and 3D objects

● You can add custom text labels and 3D objects to the current view of the 3D viewer.

A screen label in the top left corner and a text label with 3D anchor

● To control the text label display, use:
□ AddTextLabel to add a text label with or without a 3D anchor. AddTextLabel returns an ID

used for further reference.
□ EditTextLabel to change the position, color, size or text of a label.
□ GetTextLabel to get the attributes of a label.
□ RemoveTextLabel to remove a label.
□ ClearTextLabels to remove all labels.

● The class E3DViewer can also display E3DObject over a point cloud, a ZMap or a mesh. Use the
tools Easy3DObject and Easy3DMatch to create the E3DObjects.

Open eVision User Guide PART VI 3D Processing Tools

e3dviewer-pick3dpoint.htm
e3dviewer-lastpickedpoint.htm
e3dviewer-resetpicking.htm
e3dviewer-class.htm
e3dviewer-setpickedpointcallback.htm
e3dviewer-pickingdisplay.htm
e3dviewer-pickinglabelsize.htm
e3dviewer-pickinglabelcolor.htm
e3dviewer-pickinglabelfixed.htm
e3dviewer-addtextlabel.htm
e3dviewer-addtextlabel.htm
e3dviewer-edittextlabel.htm
e3dviewer-gettextlabel.htm
e3dviewer-removetextlabel.htm
e3dviewer-cleartextlabels.htm
e3dviewer-class.htm
e3dobject-class.htm
e3dobject-class.htm

431

● Use the methods Register3DObjects and RemoveCurrent3DObjects to manage the list of
E3DObjects that you want to display.

An E3DObject contains several features (center point, bounding box, base plane…). Use the
methods Show / HideFeatureFor3DObject and Show / HideFeatureForAll3DObjects to select the
displayed features.

See the Easy3DObjectExtract MSCV sample as an example for the display of E3DObjects.

3D objects drawn with a point cloud displaying the bounding boxes and the top positions

1.7. Photometric Stereo

Photometric Stereo and Process

Introduction

The Photometric Stereo is a technique used to estimate the normals at the surface of an object.

Photometric stereo setup
Source: https://www.researchgate.net/figure/Principle-of-photometric-stereo_fig7_222422584

Open eVision User Guide PART VI 3D Processing Tools

e3dviewer-register3dobjects.htm
e3dviewer-removecurrent3dobjects.htm
e3dobject-class.htm
e3dobject-class.htm
e3dviewer-showfeaturefor3dobject.htm
e3dviewer-hidefeaturefor3dobject.htm
e3dviewer-showfeatureforall3dobjects.htm
e3dviewer-hidefeatureforall3dobjects.htm
e3dobject-class.htm

432

● It takes at least 3 images of the same object taken under different known light directions.

Inputs: images with different light directions

● It produces an image containing the fraction of light reflected (called albedo) and the normal
of the surface at each pixel.

Outputs: albedos - normals

● The normals are processed to compute gradients and curvatures, allowing to easily see
bumps and holes. You can also integrate the normals to compute the height map.

Outputs: gradients X - gradients Y - Gaussian curvatures

Outputs: mean curvatures - height map

Open eVision User Guide PART VI 3D Processing Tools

433

Process

You can use the object Easy3D::PhotometricStereoImager in a 4-step process:

1. Calibrate the setup from a sphere or from predefined angles (once per setup).

2. Perform the photometric stereo computation on the object images.

3. Retrieve the results.

4. Use and apply the Open eVision tools on the results.

Photometric stereo process

Resources

● The example described here demonstrates how to perform photometric stereo with Open
eVision 3D libraries and tools.

● A sample application is also distributed with the source code. You can find it in …\Sample
Programs\MsVc samples\3D Processing\Easy3DPhotometricStereo.

● This example and the sample application are based on the following resources:
□ Open eVision 2.15
□ Microsoft Visual Studio 2017

NOTE
The license for Easy3D is necessary to use the photometric stereo tools.

Calibration
● You can perform the calibration either:

□ By setting the calibration angles.
□ By computing the calibration angles from images of a (hemi)sphere.

Open eVision User Guide PART VI 3D Processing Tools

ephotometricstereoimager-class.htm

434

Azimuth and elevation

● To define a light direction, two angles are necessary, the azimuth and the elevation.

● When facing the image, the X-axis points right, Y points top and Z points towards the camera.

● The azimuth angles are oriented trigonometrically around the Z-axis.
□ A light source on the right of the image has an azimuth of 0°.
□ A light source on the top of the image has an azimuth of 90°.

● The elevation is the angle formed by the base plane and the light source.
□ A light source on the horizon has an elevation of 0°.
□ A light source on the camera has an elevation of 90°.

Code snippet

● The following code snippet shows how to perform the calibration from a (hemi)sphere.

EPhotometricStereoImager photometricStereo = new EPhotometricStereoImager();
EImageBW8[] calibrationImages = new EImageBW8[4];

// Load calibration images (Todo)

EROIBW8[] calibrationROIs = new EROIBW8[4];

// Set the calibration ROIs (Todo)

// Calibrate
float score = photometricStereo.CalibrateFromSphere(calibrationROIs);

● If the sphere is not detected, the calibration fails and generates an EException (EError
EError_SphereDetectionFailed).

In that case, you can pass the position of the circle to the method:

ECircle circle = new ECircle();

// Define circle (Todo)

photometricStereo.CalibrateFromSphere(calibrationROIs, circle)

● The method returns a score that indicates the reliability of the calibration.
□ The higher the value, the better the calibration.
□ The score range is [0, 1].
□ The scores above 0.75 are considered as good.
□ The scores below 0.50 are considered as bad.
□ The scores in between are considered as acceptable.
□ The method never fails. A bad score does not mean that you will not get good results on

your images. It means that, if you do not, it is probably due to the calibration.

Open eVision User Guide PART VI 3D Processing Tools

eexception-class.htm
eexception-error.htm
eerror-enum.htm

435

● The score is composed of 2 factors:
□ The lambertian (matte) of your sphere (the more lambertian the better).
□ The plausibility of the detected light directions.

The following figure shows the scores for 2 examples.

2 images from different spheres:
left: a high reflection and a score of 0.70 - right: perfectly lambertian and a score of 0.96

● You can also directly set the calibration angles and retrieve them.

Use Easy::SetAngleUnit to define the angle unit.

Easy.AngleUnit = EAngleUnit.Degrees;

float[] azimuths = new float[4], elevations = new float[4];

// Define the values of the angles (Todo)

photometricStereo.SetCalibrationAngles(azimuths, elevations);

Computation and Results

Computation

● Once the calibration is done, you can perform the photometric stereo computation on the
object images.

EImageBW8[] objectImages = new EImageBW8[4];

// Load object images in the same order than the calibration images/angles (Todo)

EROIBW8[] objectROIs;

// Set the object ROIs (Todo)

// Compute
photometricStereo.Compute(objectROIs);

Open eVision User Guide PART VI 3D Processing Tools

easy-angleunit.htm

436

● You can also use an ERegion.

ECircleRegion circle = new ECircleRegion();

// Define the ERegion (Todo)

// Compute
photometricStereo.Compute(objectROIs, circle);

● The computation time is proportional to the number of pixels in the image.

To reduce this time, you can:
□ Set a smaller ROI.
□ Use an ERegion.
□ Use several threads.

The following table shows the computation time in different configurations (when
computing albedos, mean and Gaussian curvatures with high contrast, see below).

Number of
lights Image size Number of

threads
Computation

time (ms)

4 4096 × 3072
1 479 ⤸/ 1.4 ⤸/ 11
4 337

4 1024 × 768
1 52 ⤸/ 1.2
4 42

Retrieving the results

● Use the method Get… or Compute… of PhotometricStereoImager to retrieve your results.

// Retrieve the results
EImageC24 normals = photometricStereo.Normals;

EImageBW8 albedos = photometricStereo.GetAlbedos(EPhotometricStereoContrast.HighContrast);

EImageBW8 gradientsX = photometricStereo.GradientsX;
EImageBW8 gradientsY = photometricStereo.GradientsY;

EImageBW8 gaussianCurvatures = photometricStereo.ComputeGaussianCurvatures
(EPhotometricStereoContrast.HighContrast);

EImageBW8 meanCurvatures = photometricStereo.ComputeMeanCurvatures(EPhotometricStereoContrast.HighContrast);

EZMap8 heightMap = photometricStereo.ComputeHeightMap();

● The normals EImageC24 represents the x,y,z normals of the surface at each pixel.
□ A RGB pixel intensity of (0, 128, 255) corresponds to a x,y,z normal of (-1, 0, 1)

● The albedos EImageBW8 represents the fraction of light reflected at each pixel.
□ Compared to the input image, the albedo is independent of the lighting direction and

intensity.
□ The albedos are normalized to the full image range.

Open eVision User Guide PART VI 3D Processing Tools

eregion-class.htm
eregion-class.htm
ephotometricstereoimager-class.htm
eimagec24-class.htm
eimagebw8-class.htm

437

● The gradientsX and the gradientsY EImageBW8 represent the gradients of the surface along the
X- and Y-axis.
□ The gradients are clipped to +/- 3.715 before being mapped to the full image range.

● The gaussianCurvatures and the meanCurvatures EImageBW8 represent the local curvature of the
surface at each pixel.
□ The Gaussian curvatures are important when the curvature of the object is big in 2

orthogonal directions.
□ The mean curvatures only need an important change in 1 direction.
□ You can think of the Gaussian and the mean curvatures as a corner detector and an edge

detector.

The Gaussian curvature highlights the corners and the mean curvature highlights the edges

● Each pixel of the height map EZMap8 represents the height of the object.
□ The pixel furthest from the camera has a height of 1.
□ The pixel closest to the camera has a height of 255.

GetAlbedos, ComputeMeanCurvatures, ComputeGaussianCurvatures, ComputeHeightMap

Most of the computations are done in the method Compute, however:

1. The last computations required for the curvatures and the height map are only performed
when retrieving them to avoid computing them unnecessarily.
□ This is why these methods are named ComputeXXX instead of GetXXX.
□ Intermediary results common to the mean and the Gaussian curvatures are cached to

avoid computing them several times.

2. Albedos, mean and Gaussian curvatures are intrinsically floating point images. To convert
them to EImageBW8, you can choose between several arguments:
□ EPhotometricStereoContrast_HighContrast to ignore outliers and produce images with a

high contrast.
□ EPhotometricStereoContrast_FullRange to produce images where no data is ignored.
□ EPhotometricStereoContrast_FixedRange to produce images where the range is specified

using an additional argument. This is especially useful when processing several different
objects with a fixed threshold.

Open eVision User Guide PART VI 3D Processing Tools

eimagebw8-class.htm
eimagebw8-class.htm
ezmap-type.htm
ephotometricstereoimager-compute.htm
eimagebw8-class.htm
ephotometricstereocontrast-enum.htm
ephotometricstereocontrast-enum.htm
ephotometricstereocontrast-enum.htm

438

Processing the Results with Open eVision Tools
As the computation results are EImageBW8, you can process them with the various tools of Open
eVision.

Here are some examples:

● Reading an embossed code with EasyBarCode2, EasyMatrixCode and EasyQRCode.

Mean curvatures of an engraved matrix code and EasyMatrixCode2 reading

● Reading an engraved text with EasyOCR2.

EasyOCR2 reading on the mean curvatures

● Finding patterns on embossed surfaces with EasyFind, EasyMatch and EasyObject.

EasyFind results on the Gaussian curvatures to detect braille characters

Open eVision User Guide PART VI 3D Processing Tools

eimagebw8-class.htm

439

● Measuring shapes with EasyGauge.

Rectangle measurement with EasyGauge on the mean curvatures

● Finding defects in objects with EasySegment.

Gaussian curvatures of a blister pack with 3 holes
and EasySegment supervised potential results

Open eVision User Guide PART VI 3D Processing Tools

440

Optimizing your Setup
Photometric stereo is based on two main assumptions:

1. The light has the same intensity and direction for each pixel of the image.

2. The object is mostly matte and not too specular.
□ Matte surfaces send back light in all directions (wood is a good example).
□ Specular surfaces send all the light in a single direction (mirrors are a good example).

While these conditions are never met in practice, deviating too much from them often causes
poor results.

Uniformity of the lights

Ideally, all pixels of interest should be lit with the same intensity and from the same direction.

To achieve this:
□ We recommend using bar lights or ring lights designed for photometric stereo.
□ They should be larger than the objects you want to acquire.

NOTE: The sample images were taken with a bar light of around 15 cm in length and a ring
light of around 15 cm of diameter. Both gave similar results.

● The image of the sheet of paper is whiter on the left when, ideally, it should be uniformly
white.

● If you are interested in curvatures, this does not prevent acquiring good images, while the
albedos and normals images are more affected by this.

Open eVision User Guide PART VI 3D Processing Tools

441

● In the mean curvature and albedo image above, you see artifacts on the left and on the right
of the object, while not at the top and the bottom. This is because the object is large and not
so high, so the lights are mostly uniform on the object when coming from the top or bottom
but not when coming from left or right.

● It can be alleviated by using Flat Images, as shown in the next section but it does not solve
the problem completely.

TIP
In practice, you can measure the uniformity of your lights by acquiring an
image of a matte sheet of paper.

Specularity of the object

Photometric Stereo works better on matte surfaces as the reflection of the source light by the
object causes artifacts. Please note however that a little reflection is not necessarily a problem.
This is something to keep in mind when analyzing results.

This also applies to the calibration (hemi-)sphere. The current calibration algorithm is designed
to handle a bit of reflection but too much of it induces calibration errors. Nevertheless, tough
there is reflection in our sample images, the calibration still works on them.

TIP
We recommend using a wooden hemisphere or one covered in matte paint.
Alternatively, you can measure and specify your angles manually as no loss
of quality is observed in the images in that case.

Open eVision User Guide PART VI 3D Processing Tools

442

Improving the Results

Using a dark image to account for ambient lighting

The photometric stereo assumes that each image is lit from a single light source.

● This assumption is not valid if the setup is exposed to (non-negligible) ambient lighting.

● To handle this issue, the EPhotometricStereoImager provides an EImageBW8 dark image to the
methods Calibration and Compute.
□ This dark image is an image of the object under ambient light only (all setup lights are

off).

The dark image

The object image: raw (left) and after correction with the dark image (right)

Using flat images to correct non-uniform lighting

Photometric stereo assumes that each image is lit from an intensity uniform light source.

● This means that each pixel is lit by the same quantity of light.

● This assumption is not valid in physical setups using leds, where the part of the image
closest to the leds receives more light.

● To handle this issue, the EPhotometricStereoImager provides a method to register a flat image
used by the method Compute.
□ This flat image is an image of a uniform background taken in the same lighting

configuration.

// calibrate imager or sets its angles (Todo)

EImageBW8[] flatImages;

// Load flat images in the same order than the calibration images/angles (Todo)

EROIBW8[] flatROIs = new EROIBW8[4];

Open eVision User Guide PART VI 3D Processing Tools

ephotometricstereoimager-class.htm
eimagebw8-class.htm
ephotometricstereoimager-compute.htm
ephotometricstereoimager-class.htm
ephotometricstereoimager-compute.htm

443

// Set the flat images ROIs (Todo)

// Configure flat images, this could optionally be done with a dark image as well
photometricStereo.ConfigureNonUniformLightingCorrection(flatROIs);

// Perform one or more computations, each will use the flat images (Todo)
photometricStereo.Compute(objectROIs);

// Optional: non uniform lighting correction could be disabled or (re-)enabled
// using EnableNonUniformLightingCorrection

● The following example illustrates the effect of a non-uniform lighting correction on the
object images.
□ The proximity of the light source generates a lighting effect on the left of the image that is

visible on both the flat and the raw images.
□ This effect is corrected on the last image, where the brightest pixels are those oriented

towards the surface.

The flat image

The object image: raw (left) and after correction with the flat image (right)

Open eVision User Guide PART VI 3D Processing Tools

444

● The following examples illustrate the effects of a non-uniform lighting correction on 2
albedos images.
□ The corrected albedos show less burning on the extremities of the images.

The albedos images: raw (left) and after correction with the flat images (right)

● The following examples illustrate the effects of a non-uniform lighting correction on a
normals images.
□ The normals fields is more uniform.

The normals image: raw (left) and after correction with the flat image (right)

Effect of the distance between lights and object

There is a tradeoff in the distance between the light and the object (that is the elevation angle).

● When the elevation angle is high, the lighting is more uniform. This means that:
□ The “burning” effects visible on some images is less important.
□ The shadows are also less of a problem.

● When the lighting source is close, the lighting directions are more diverse. This means that:
□ The quantity of information used to build the photometric stereo is higher.

TIP
We recommend using elevation angles between 30 and 70°.
We achieve our best results around 40°.

Open eVision User Guide PART VI 3D Processing Tools

445

2. Easy3DLaserLine - Laser Line
Extraction and Calibration

2.1. Laser Triangulation

In a laser-line triangulation system, a laser line is projected on the object to measure. A camera
is looking at the laser line from a different point of view. The line deformation observed by the
camera contains the shape information of the measured object.

The scanning of the object consists in moving it under the laser line and recording multiple
images.

From the scanning you can reconstruct its 3D shape.

Open eVision User Guide PART VI 3D Processing Tools

446

Occlusions

Using the laser triangulation method, the laser may be unable to reach some parts of the object
or the camera may be unable to view them. This is called occlusion.

□ On the left illustration, the camera does not see the bottom of the hole, inducing camera
occlusion.

□ On the right illustration, the laser does not reach the bottom of the hole, inducing laser
occlusion.

TIP
You can limit or avoid occlusions by using advanced scanning methods, for
example by using two cameras or two lasers.

2.2. The Laser Line 3D Acquisition Pipeline

The 3D acquisition pipeline starts with the acquisition of a laser line profile and ends up with
the point cloud, mesh or ZMap.

The source material for 3D processing is the depth map, coming from a Coaxlink Quad 3D-LLE or
generated from a list of images.

3 types of depth map are available, one for each different pixel coding scheme (8, 16 or 32 bits).

The generation of a depth map, from a hardware or a software source

Some processing methods can use the depth map directly, but most measurement and
matching processes need metric, distortion-free representations. Calibration of the laser
triangulation setup is therefore required. Calibration is used to turn the depth map into a point
cloud or mesh expressed in a metric space that we call “world space”.

The generation of an object based calibration model, from a scan of the reference object

Open eVision User Guide PART VI 3D Processing Tools

447

A point cloud is a list of 3D points, expressed in a world space coordinate system. The point
cloud can be projected on a plane, producing a ZMap, which is a convenient and effective
representation for 2D processing with a metric scale.

The workflow from the depth map to the ZMap

The following sections describe the classes and methods useful for a 3D workflow. The Use Case
- Measuring a Remote Controller goes through this processing pipeline.

2.3. Laser Line Extraction

A Laser Line Extraction (LLE) algorithm is required to create a depth map from a sequence of
profiles of the object captured by the camera sensor.

The objective of an LLE algorithm is to measure the line position along a vertical profile in every
column of a sensor frame, within a user-defined region of interest (ROI).

For every step of the object position, the detection analyzes each column of a frame individually
and produces a row of output positions, stored as gray values.

The figure below illustrates a depth map generation.

Open eVision User Guide PART VI 3D Processing Tools

../../../../../Content/05 Resources/04 3D Application Examples/Measuring a Remote Controller.htm
../../../../../Content/05 Resources/04 3D Application Examples/Measuring a Remote Controller.htm

448

The class ELaserLineExtractor provides the laser line extraction functionality in Open eVision.

Uses the method ELaserLineExtractor.AnalysisMode to select one of the following algorithms to
extract the laser line (see below for more details):

□ Maximum detection returns the position of the pixel of maximum intensity. It’s the fastest
method but it doesn’t support sub-pixel precision.

□ Peak detection approach detects local maxima. If several maxima are detected, the one
with the highest intensity is returned. The position is returned with sub-pixel precision.

□ Center of gravity algorithm is suitable when the laser line is spread over several pixels.
The position is returned with sub-pixel precision.

TIP
You can also set a threshold to exclude pixels with low intensity.

The line position returned by the laser line extraction algorithms is relative to the bottom of the
region of interest. So, values in the depth map range from 0 (bottom of the ROI) to the height of
the ROI.

Laser line extraction methods

Maximum detection

The maximum detection algorithm analyzes all the pixels in a ROI column to determine the one
with the maximum intensity. The figure below shows the laser line position on a given ROI
column.

Maximum detection on a ROI profile

We also recommend to include in the processing chain:
□ A low-pass filter to reduce the high frequency variations in the image.
□ A threshold to eliminate the background noise from the sensor.

Open eVision User Guide PART VI 3D Processing Tools

elaserlineextractor-class.htm
elaserlineextractor-analysismode.htm

449

Peak detection

The peak detection algorithm relies on a discrete simplification of the first derivative function.

The f'(x)outputs the slope of a given f(x)along the x.

f(x)and f'(x)plots

We compute the line position by detecting where f’(x)changes its signal based on the two-point
form line equation:

where (x1,y1)and (x2,y2)are two points on the line with x2≠ x1, we obtain the following
equation for y = 0:

Open eVision User Guide PART VI 3D Processing Tools

450

Center of gravity

The center of gravity (CoG) method uses an algorithm that calculates the center of mass of an
image object. Also known as "centroid of plane figures", the CoG is obtained by the following
equations:

where and are the coordinates of the CoG and a is the pixel intensity along the x and y
axes.

Center of gravity on a ROI profile

Low-pass linear filter

Optionally, you can apply a low-pass linear filter in front of the line extraction in order to reduce
noise and high frequencies in the image.

The low-pass filter applies a convolution operator on a 1 x 3 sliding window. The 3 elements of
the convolution kernel (A, B and C) are configurable, accepting any positive integer. The figure
below illustrates the positioning of the convolution kernel elements within a given ROI.

You can activate the low-pass filter for any of the laser line extraction methods with the method
ELaserLineExtractor::SetEnableSmoothing(true/false). Parameters A, B and C are set with
ELaserLineExtractor::SetSmoothingParameters(A, B, C).

Open eVision User Guide PART VI 3D Processing Tools

elaserlineextractor-enablesmoothing.htm
elaserlineextractor-setsmoothingparameters.htm

451

Depth map Z resolution

● As explained above, the laser line extraction computes the sub-pixel position of the laser line
profile for each column of the region of interest.
□ This position is encoded in a 16-bit depth map (EDepthMap16).
□ The resolution controls the way the sub-pixel positions are converted to 16-bit fixed point

values (that is how many bits are allocated to represent the fractional part of the sub-
pixel position).

□ On a EDepthMap16, use the method EDepthMap16.ZResolution to retrieve the resolution. It is
a floating-point value used to convert the integer pixel value to a real depth value.

● By default, ELaserLineExtractor computes the best resolution depending on the height of the
region of interest. The following table lists typical resolution values depending on the height
of the processed frame or region of interest.

Frame or ROI height Bits used for the fractional part Z resolution
100 8 1/256 = 0.00390625
200 8 1/256 = 0.00390625
400 7 1/128 = 0.0078125
800 6 1/64 = 0.015625
2500 4 1/16 = 0.0625

● Use the optional parameter zResolution of the constructor
ELaserLineExtractor.ElaserLineExtractor to fix the Z resolution.
□ If you do not set the parameter zResolution, an algorithm computes the optimal value.

Use ElaserLineExtractor.DepthMap to query the returned depth map and get the effective
resolution.

● If you are using the hardware laser line extraction with the Coaxlink Quad 3D-LLE, the fixed
point format is set by the configuration: 8_8 or 11_5 for 8- or 5-bit fractional part.

2 See documentation.euresys.com/Products/COAXLINK/COAXLINK/en-us/Content/03_
Interfaces/functional-guide/lle/LLE_Processing_Core_Characteristics.htm

2.4. Software vs Hardware Line Extraction

Hardware line extraction on a Coaxlink

● The Coaxlink Quad 3D-LLE frame grabber features hardware line extraction.

The performances are as follows, for all methods - Maximum detection (Max), Center of
gravity detection (CoG) and Peak detection (Peaks):
□ 9500 profiles/s for a 2048 × 256 or a 4096 × 128 region
□ 19000 profiles/s for a 2048 × 128 region
□ 38000 profiles/s for a 1024 × 128 region
□ 76000 profiles/s for a 1024 × 64 region

● As a result, the hardware-based line extraction is 2× to 15× faster than the software
implementation in Open eVision running on an Intel Core i7-10850H CPU at 2.70 GHz (see
below).

Open eVision User Guide PART VI 3D Processing Tools

edepthmap16-class.htm
edepthmap16-class.htm
edepthmap16-zresolution.htm
elaserlineextractor-class.htm
elaserlineextractor-elaserlineextractor.htm
elaserlineextractor-depthmap.htm
https://documentation.euresys.com/Products/COAXLINK/COAXLINK/en-us/Content/03_Interfaces/functional-guide/lle/LLE_Processing_Core_Characteristics.htm
https://documentation.euresys.com/Products/COAXLINK/COAXLINK/en-us/Content/03_Interfaces/functional-guide/lle/LLE_Processing_Core_Characteristics.htm

452

Software line extraction on an Intel CPU

● The tables below present benchmarks for software line extraction for various region sizes (in
pixels) and configurations. The extraction speed is expressed in profiles per second.

The measurement setup is:
□ Intel Core i7-10850H CPU at 2.70 GHz
□ Generation of 16-bit depth maps
□ Methods used: Maximum detection (Max), Center of gravity detection (CoG) and Peak

detection (Peaks)

Using 1 thread, without low pass filter

Region size Max COG Peaks
3072 × 512 368 298 248
3072 × 256 752 593 497
3072 × 128 1488 1179 966
3072 × 64 3764 2723 2169
1024 × 512 1142 891 771
1024 × 256 2226 1777 1479
1024 × 128 4266 3324 2752
1024 × 64 11130 8533 6400

Using 1 thread, with low-pass filter

Region size Max COG Peaks
3072 × 512 241 200 183
3072 × 256 468 403 357
3072 × 128 920 790 703
3072 × 64 2169 1765 1610
1024 × 512 707 600 561
1024 × 256 1406 1219 1057
1024 × 128 2723 2370 2048
1024 × 64 6400 5333 4830

Using 2 threads, without low-pass filter

Region size Max COG Peaks
3072 × 512 731 576 474
3072 × 256 1406 1094 941
3072 × 128 2813 2226 1868
3072 × 64 7314 5224 3240
1024 × 512 2000 1718 1446
1024 × 256 4129 3368 2844
1024 × 128 8533 6564 4654
1024 × 64 21333 15058 10666

Using 4 threads, without low-pass filter

Region size Max COG Peaks
3072 × 512 1108 885 703
3072 × 256 2438 1765 1273
3072 × 128 4740 3459 2639
3072 × 64 9481 7757 6564
1024 × 512 3605 2694 2031
1024 × 256 6400 5446 4063
1024 × 128 13473 11636 9846
1024 × 64 36571 19692 19692

Software line extraction on a Jetson Nano

● The tables below present benchmarks for software line extraction for various region sizes (in
pixels) and configurations. The extraction speed is expressed in profiles per second.

The measurement setup is:
□ Jetson Nano (4 available cores)

2 See developer.nvidia.com/embedded/jetson-nano
□ Generation of 16-bit depth maps
□ Methods used: Maximum detection (Max), Center of gravity detection (CoG) and Peak

detection (Peaks)

Using 1 thread, without low pass filter Using 1 thread, with low-pass filter

Open eVision User Guide PART VI 3D Processing Tools

http://developer.nvidia.com/embedded/jetson-nano

453

Region size Max COG Peaks
3072 × 512 34 30 30
3072 × 256 126 106 102
3072 × 128 248 210 199
3072 × 64 479 409 374
1024 × 512 110 98 97
1024 × 256 383 321 308
1024 × 128 736 623 587
1024 × 64 1426 1229 1114

Region size Max COG Peaks
3072 × 512 30 28 27
3072 × 256 112 94 93
3072 × 128 220 188 183
3072 × 64 413 356 333
1024 × 512 90 83 82
1024 × 256 337 285 280
1024 × 128 658 567 543
1024 × 64 1226 1065 987

Using 2 threads, without low-pass filter

Region size Max COG Peaks
3072 × 512 61 56 56
3072 × 256 206 180 181
3072 × 128 423 367 365
3072 × 64 864 740 711
1024 × 512 185 170 168
1024 × 256 596 530 517
1024 × 128 1203 1065 1035
1024 × 64 2403 2106 2000

Using 4 threads, without low-pass filter

Region size Max COG Peaks
3072 × 512 95 91 90
3072 × 256 257 234 240
3072 × 128 515 470 489
3072 × 64 1092 992 1029
1024 × 512 269 260 259
1024 × 256 689 678 675
1024 × 128 1383 1352 1356
1024 × 64 2820 2716 2745

Software line extraction on a Jetson AGX Orin

● The tables below present benchmarks for software line extraction for various region sizes (in
pixels) and configurations. The extraction speed is expressed in profiles per second.

The measurement setup is:
□ Jetson AGX Orin (12 available cores)

2 See www.nvidia.com/en-il/autonomous-machines/embedded-systems/jetson-orin
□ Generation of 16-bit depth maps
□ Methods used: Maximum detection (Max), Center of gravity detection (CoG) and Peak

detection (Peaks)

Using 1 thread, without low pass filter

Region size Max COG Peaks
3072 × 512 222 192 181
3072 × 256 449 386 362
3072 × 128 898 766 710
3072 × 64 1796 1521 1391
1024 × 512 671 579 546
1024 × 256 1336 1155 1075
1024 × 128 2680 2301 2106
1024 × 64 5278 4511 4079

Using 1 thread, with low-pass filter

Region size Max COG Peaks
3072 × 512 198 174 164
3072 × 256 401 351 332
3072 × 128 801 697 653
3072 × 64 1592 1380 1261
1024 × 512 600 525 498
1024 × 256 1197 1049 987
1024 × 128 2386 2085 1935
1024 × 64 4697 4096 3696

Open eVision User Guide PART VI 3D Processing Tools

http://www.nvidia.com/en-il/autonomous-machines/embedded-systems/jetson-orin

454

Using 2 threads, without low-pass filter

Region size Max COG Peaks
3072 × 512 444 382 362
3072 × 256 897 772 723
3072 × 128 1790 1528 1416
3072 × 64 3543 3002 2745
1024 × 512 1338 1158 1088
1024 × 256 2659 2311 2142
1024 × 128 5224 4471 4112
1024 × 64 9941 8533 7529

Using 4 threads, without low-pass filter

Region size Max COG Peaks
3072 × 512 876 763 720
3072 × 256 1790 1530 1436
3072 × 128 3447 3011 2745
3072 × 64 6649 5752 5069
1024 × 512 2687 2321 2178
1024 × 256 5251 4571 4213
1024 × 128 10138 8752 8000
1024 × 64 18618 16516 14422

2.5. Calibration

The calibration is used to apply the transformation between a depth map and a point cloud or a
mesh.

There are 3 ways to set up this conversion:
□ Apply a simple scale on the pixel coordinates of the depth map (EScaleCalibrationModel

class)
□ Use the explicit geometric model (EExplicitGeometricCalibrationModel class)
□ Use the object-based calibration approach (EObjectBasedCalibrationModel class)

These models share the same base class ECalibrationModel and exposes the method Apply(),
which is used to apply the conversion between a depth map pixel and a 3D point. It takes as
input the coordinates of one point in a depth map and it returns the coordinates of the
corresponding point in the 3D space.

The method Apply is not aware of the possible mirroring of the corresponding depth map and
cannot make use of EDepthMap::AxisSystemType (see below). If necessary (when the
corresponding depth map is vertically mirrored) the y coordinates should be flipped before
calling the Apply method.

□ The class EDepthMapToPointCloudConverter generates a point cloud from a depth map,
using one of the calibration models.

□ The class EDepthMapToMeshConverter generates a mesh from a depth map, using one of the
calibration models.

By convention:
□ The origin of the referential is the lower-left corner of the depth map.
□ The center of the first pixel at the lower-left corner is at x = 0.5 and y = 0.5.
□ The center of the pixel at the upper-right corner is at x = width - 0.5 and y = height - 0.5

where width is the width of the depth map and height is its height.

Open eVision User Guide PART VI 3D Processing Tools

escalecalibrationmodel-class.htm
eexplicitgeometriccalibrationmodel-class.htm
eobjectbasedcalibrationmodel-class.htm
ecalibrationmodel-class.htm
ecalibrationmodel-apply.htm
ecalibrationmodel-apply.htm
edepthmap-axissystemtype.htm
edepthmaptopointcloudconverter-class.htm
edepthmaptomeshconverter-class.htm

455

Mirrored depth maps

By default, Easy3D considers that the origin of the 3D axis of the depth map is the bottom left of
the internal image buffer, and the Y axis is pointing up. This means that the depth map image is
not seen as vertically mirrored compared to the real world image of the scanned object.

Nevertheless, depending on your acquisition setup this mirroring can happen (for example if the
direction of the scan is inverted).

If this is your case, you can set the EDepthMap::SetAxisSystemType to EAxisSystem_
UpperLeftCorner, meaning that the origin of the 3D axis is on the upper left corner and the Y axis
is pointing down.

This value changes the behavior of the methods :
□ EObjectBasedCalibrationGenerator.Compute
□ EDepthMapToPointCloudConverter.Convert
□ EDepthMapToMeshConverter.Convert

Scale calibration

The scale model (EScaleCalibrationModel) only applies a simple factor on the X, Y and Z axis.
These factors are the only parameters of EScaleCalibrationModel.

For depth maps coming from laser triangulation setup, this transformation does not produce
corrected, metric points. It’s main use is to display depth maps as 3D data with the E3DViewer
class.

Open eVision User Guide PART VI 3D Processing Tools

edepthmap-axissystemtype.htm
eaxissystemtype-enum.htm
eaxissystemtype-enum.htm
eobjectbasedcalibrationgenerator-compute.htm
edepthmaptopointcloudconverter-convert.htm
edepthmaptomeshconverter-convert.htm
escalecalibrationmodel-class.htm
escalecalibrationmodel-class.htm
e3dviewer-class.htm

456

Explicit geometric calibration

The explicit geometric model (EExplicitGeometricCalibrationModel) defines a simple and ideal
laser triangulation setup. The explicit calibration makes some strong assumptions on the setup
geometry and can only be used when a minimum set of parameters are known:

□ The angles of the camera and the laser plane, in the counter clockwise direction. The
camera angle must be positive.

□ The height of the camera above the scanned object.
□ The field of view of the camera defined by the sensor size (mm) and the optical focal

length (mm).
□ The physical distance between two line scans of the depth map (depends on acquisition

rate and motion speed).
□ The size of the image and the ROI origin used in laser line extraction (between the top (0)

and the bottom (height) of the image).

TIP
Use the "Easy3D_Setup_Configuration.xlsx" spreadsheet to compute and
check your setup configuration and parameters.

Explicit calibration setup with camera angle, laser angle and camera height

The setup of an explicit geometric calibration uses the constructor of the
EExplicitGeometricCalibrationModel class.

Open eVision User Guide PART VI 3D Processing Tools

eexplicitgeometriccalibrationmodel-class.htm
Easy3D_Setup_Configuration.xlsx
eexplicitgeometriccalibrationmodel-class.htm

457

Object-based calibration

Object-based calibration gives real world, metric, coordinates from an arbitrary laser
triangulation setup. From the scan of a reference object, the calibration process tries to
calculate all the parameters required for the transformation to the world space (position and
attributes of the camera, position of the laser plane, relative motion of the object, optical
distortion…).

For more details, please refer to the "Object-Based Calibration Guidelines" on page 457 section.

2.6. Object-Based Calibration Guidelines

Easy3D calibration is a powerful process that uses a single scan of a calibration object to
calibrate a laser triangulation setup.

1. The calibration process generates a calibration model.

2. Easy3D uses this calibration model to transform the laser profile scans (or depth maps) into
metric, distortion free point clouds.

● The calibration model includes all the geometric parameters required for this
transformation:
□ The relative position of the laser and the camera.
□ The projection and the distortion model of the camera.
□ The relative motion of the object.

This document explains all the steps involved in the calibration process, from the design of the
calibration object to the Open eVision API.

Open eVision User Guide PART VI 3D Processing Tools

458

The calibration object

The general principle of Easy3D calibration is to match a scan of a known calibration object to
its true geometric dimensions.

The double pyramid

TIP
In Open eVision 2.7 the “double truncated pyramid” calibration object is
recommended over the "double pyramid" model.

The dimensions of the “double pyramid” calibration object along the X-, Y- and Z-axes are
named A, B and C respectively.

The "double pyramid" calibration model

Open eVision User Guide PART VI 3D Processing Tools

459

The truncated double pyramid

● The dimensions of the “double truncated pyramid” calibration object the X-, Y- and Z-axes
are named A, B and C respectively.

● The design of the double truncated pyramid must follow the ratios given in the illustration
below.

The "double truncated pyramid" calibration model (recommended)

● For example, the provided CAD files of the calibration object use A = 4 cm, B = 6 cm and
C = 1 cm. The Calibration Object Size, required for the calibration process, are the values A, B
and C.

The "double truncated pyramid" calibration model with A = 4, B = 6 and C = 1

Open eVision User Guide PART VI 3D Processing Tools

460

Building a calibration object

Overall dimensions

● Manufacture a calibration object that fits the working area of the project.

● For example, if the project targets the inspection of a PCB (a printed circuit board as
illustrated), design your calibration object with:

a. The dimension A or B (it does not matter) similar to the width of the PCB.

b. The height (C) of only several millimeters.

TIP
This is not a strict requirement, if the scanned object is slightly larger or
smaller than the calibration object, the calibration process is still valid.

A PCB scanning setup with the associated calibration object
The calibration object dimensions (A, B and C) match the width and the height of the PCB

TIP
There is no constraint on the orientation of the calibration object during the
scan:
- The X-axis can be aligned with the motion direction or with the laser line.
- After the calibration process, the origin and axes of the 3D calibrated point
cloud follow the conventions of the reference design.

A calibrated point cloud with the origin and the axis of the coordinates system
The 3D origin is located at the external corner of the higher pyramid

Open eVision User Guide PART VI 3D Processing Tools

461

Precision and tolerance

The relevant dimensions of the calibration object are the width, the length and the height of the
pyramids (called A, B and C in the illustrations).

□ The relative dimensions to A, B and C (B/2, A/4…) are important and you must execute
them with the same precision.

□ The dimensional tolerances are related to the overall expected precision.
If you want to achieve measurements on the point cloud with a precision of 0.01 mm, the
manufacturing of the calibration object must have the same precision.

□ These tolerances only apply to the pyramids geometry, the calibration process does not
use the dimensions of the support.

□ The planar surfaces must be flat between 2 parallel planes separated by the target
tolerance, as illustrated.

The tolerance of the pyramids sides is defined as the smallest distance between two parallel planes that
contain the entire surface

Material and surface finishing

TIP
The goal is to obtain the laser profile as thinnest as possible over the whole
object surface with the largest reflected energy.

The build material and the surface finishing are also important and must have:
□ A good reflectance, with diffuse reflection (no specular reflections).
□ No transmission and limited diffusion inside the material.

TIP
You can obtain a good surface finishing using aluminum material and
blasting. Blasting gives the surfaces a satin gray finish.

2 aluminum machined calibration objects with a micro-abrasive blasting surface treatment

Open eVision User Guide PART VI 3D Processing Tools

462

3D CAD models

The calibration object models are available in various 3D CAD formats like STEP, OBJ and STL.

Download these files from the Open eVision download area in the Additional Resources section
(www.euresys.com/Support).

Download the calibration object models

Scanning the calibration object

● The scan of the calibration object produces a depth map.

● To ensure a correct detection of the calibration object and a precise calibration model, you
must fulfill the following criteria:
□ All faces of the calibration object must be visible on the depth map (this affects the

orientation of both the camera and the laser).
□ No other object can be higher than the calibration object in the depth map.
□ The depth map must have at least 200 x 200 pixels.
□ The calibration object must cover at least 50% of the defined pixels of the depth map.

● Examples of bad scans:

Missing pixels on the side faces

Not enough lines

Open eVision User Guide PART VI 3D Processing Tools

https://www.euresys.com/Support/Software,-drivers-and-documentation?Series=f97da39d-3c25-404c-aee7-73de1d1867fc

463

The calibration object is too small on the depth map

Calibration with Easy3D Studio

Easy3D Studio is a free application that helps you to set up a laser triangulation scanner. You
can easily set the acquisition parameters of the Coaxlink Quad 3D LLE frame grabber and
perform the calibration.

The DepthMap panel

This panel displays:
□ The scanned image.
□ The acquisition parameters on the right side.

Open eVision User Guide PART VI 3D Processing Tools

464

The PointCloud panel

This panel displays:
□ The depth map of the scanned image.
□ The object-based calibration parameters on the right side.
□ The Calibrate button computes the calibration model using the last scanned depth map.
□ When the calibration model is ready, the depth map is transformed into a point cloud.
□ You can export the calibration model for later use.

Required parameters

The calibration based on a calibration object requires several parameters:

● Set the Object Type as DoublePyramid or TruncatedDoublePyramid.
□ The DoublePyramid object type is deprecated and not recommended.

● Set the Object Size to represent the real size of the calibration object.
□ If your calibration object has a base of 20 mm by 30 mm and a height of 5 mm, set these

values in the Object Size A/B/C parameters.
□ The point cloud after the calibration uses coordinates in millimeters.

● Set the parameter Precision Vs Speed Trade Off to define the time spent on the calibration
process.
□ The 3 possible values are Fast, Balanced and Precise.

● Set the parameter Passes count to define the number of iterations used to refine the
calibration model.
□ Use 1 for the fastest processing.
□ Use up to 3 for slower but potentially better calibration model.

Open eVision User Guide PART VI 3D Processing Tools

465

Using the calibration with Open eVision

● The class EObjectBasedCalibrationModel is the container for the object based calibration
model.

● The class EObjectBasedCalibrationGenerator performs the computation of such a model using
an EDepthMap8/16/32f as input.

The following code snippet illustrates the calculation of a calibration model:

// Initialize a depth map from an image of a double truncated pyramid
EDepthMap16 depth_map = new EDepthMap16();
depth_map.LoadImage("ctx1 calibration object.png"); // from Easy3D sample images
depth_map.ZResolution = 1.0F / 32.0F; // 11.5 fixed point pixel

// Initialize the calibration generator
EObjectBasedCalibrationGenerator calib_generator = new EObjectBasedCalibrationGenerator();
calib_generator.SetCalibrationObjectType(EObjectBasedCalibrationType.TruncatedDoublePyramid, 40.0F, 60.0F,
10.0F); // Type and size of the calibration object

// Compute the calibration model
EObjectBasedCalibrationModel calib_model = new EObjectBasedCalibrationModel();
calib_model = calib_generator.Compute(depth_map);
float error = calib_model.CalibrationError;

// Save the calibration model
calib_model.Save("calib.model");

The following code snippet illustrates the use of a saved calibration model:

// Load the calibration model EObjectBasedCalibrationModel calib_model;
calib_model.Load("calib.model");

// Load a depth map (captured in the same context) EDepthMap16 depth_map;
depth_map.LoadImage("ctx1 shapes.png");
depth_map.ZResolution = 1.0F / 32.0F;

// Initialize a converter, use the loaded model EDepthMapToPointCloudConverter converter;
converter.SetCalibrationModel(calib_model);

// Convert the depth map to a metric point cloud and save it EPointCloud point_cloud;
converter.Convert(depth_map, point_cloud);
point_cloud.SavePCD("point_cloud.pcd");

To experiment and learn about the Easy3D calibration, a C++ sample called
Easy3DLaserLineCalibration is provided with the source code in the Open eVision distribution.

Open eVision User Guide PART VI 3D Processing Tools

eobjectbasedcalibrationmodel-class.htm
eobjectbasedcalibrationgenerator-class.htm
edepthmap8-class.htm
edepthmap16-class.htm
edepthmap32f-class.htm

466

3. Easy3DObject - Extracting 3D Objects

3.1. Purpose and Workflow

Introduction

● The Easy3DObject tool extracts objects and their features from a ZMap.
□ The E3DObjectExtractor class uses a set of criteria to select the objects to extract.
□ The extracted objects are instances of the ED3Object class.

● Open eVision provides a demo application with C++ source code and 2 C++ / C# samples:

This demo application exposes most of the features of the Easy3DObject tool.

Library workflow

1. Load or build a ZMap (from an image or a point cloud).

2. Construct an E3DObjectExtractor instance.

3. Set the selection criteria of the E3DObjectExtractor instance.

4. Extract the 3D objects, with or without an ERegion.

5. Get and process the extracted objects list.

Open eVision User Guide PART VI 3D Processing Tools

e3dobjectextractor-class.htm
e3dobject-class.htm
e3dobjectextractor-class.htm
e3dobjectextractor-class.htm
eregion-class.htm

467

Load or build a ZMap

A ZMap is a grayscale image with a metric coordinate system. It is sometimes referred to as a
“height map”.

You can create a ZMap from an 8- or a 16-bit image or generate it from a point cloud.
□ Before using an image as a ZMap, set the resolution.

TIP
The resolution is the metric size of a pixel (for example in mm / pixel) and
the height difference between 2 consecutive grayscale levels.

□ From a point cloud, use the EPointCloudToZMapConverter class to generate a ZMap. Choose
the target ZMap resolution according to the point cloud sampling.

□ Depending on the 3D scan precision, you can use a ZMap with 8- or 16-bit per pixel.

TIP
A 16-bit processing is more accurate but slower than an 8-bit processing.

3.2. Object Features

Units

Both the E3DObjectExtractor parameters and the E3DObject features are expressed in metric
units.

□ For example: if the resolution of the input EZMap is expressed in mm / pixel, the length
parameter is expressed in mm.

□ Use the Resolution accessors of the EZMap to query and change its resolution.

Angles are expressed in the unit defined by Easy.AngleUnit.

TIP
In this documentation, we use the default setting and all angles are
expressed in degrees.

Open eVision User Guide PART VI 3D Processing Tools

epointcloudtozmapconverter-class.htm
e3dobjectextractor-class.htm
e3dobject-class.htm
ezmap-class.htm
ezmap-setresolution.htm
ezmap-class.htm
easy-angleunit.htm

468

Object plane and base plane

The E3DObjectExtractor fits a plane to the pixels of each E3DObject output:
□ Use E3DObject.Plane to access this plane.

The E3DObjectExtractor also tries to fit a plane to the pixels surrounding an E3DObject
□ This plane is called the base plane.
□ It is an estimation of the local background around the object.
□ If there are too many undefined pixels in this area, the base plane is equal to the

reference plane of the input EZMap.

Bounding box

The bounding box is the minimal enclosing rectangle for all the object positions.
□ It is oriented in the XY plane of the ZMap space (rotation around the Z axis of the ZMap).
□ Its rotation is used as the orientation of the object (see E3DObject.GetOrientation).
□ Its X and Y sizes are the object length and width (see E3DObject.GetLength and

E3DObject.GetWidth).
□ Its Z size is always in the Z axis of the ZMap direction.

Open eVision User Guide PART VI 3D Processing Tools

e3dobjectextractor-class.htm
e3dobject-class.htm
e3dobject-plane.htm
e3dobjectextractor-class.htm
e3dobject-class.htm
ezmap-class.htm
e3dobject-orientation.htm
e3dobject-length.htm
e3dobject-width.htm

469

Length and width

The length of an object is the largest dimension on the XY plane in the ZMap space. It is the
same as the size of the major axis of the bounding box.

The width of an object is the smallest dimension on the XY plane in the ZMap space. It is the
same as the size of the minor axis of the bounding box.

Use the E3DObjectExtractor.LengthRange and the E3DObjectExtractor.WidthRange accessors to set
the ranges of allowed values for the length and the width.

Local and reference top positions and heights

The local top position of an object is the position (3D coordinates) of the point in the E3DObject
that is the furthest from the base plane.

The local height of an object is the distance between the local top position and the base plane.

The reference top position of an object is the position (3D coordinates) of the point in the
E3DObject that is the furthest from the reference plane.

The reference height of an object is the distance between the reference top position and the
reference plane.

If there are too many undefined pixels in the object surroundings:
□ The base plane is equal to the reference plane of the input EZMap.
□ The local top position is equal to the reference top position.
□ The local height is equal to the reference height.

Use the E3DObjectExtractor.LocalHeightRange and the E3DObjectExtractor.ReferenceHeightRange
accessors to set the ranges of allowed values for the local and the reference height.

Open eVision User Guide PART VI 3D Processing Tools

e3dobjectextractor-lengthrange.htm
e3dobjectextractor-widthrange.htm
e3dobject-class.htm
e3dobject-class.htm
ezmap-class.htm
e3dobjectextractor-localheightrange.htm
e3dobjectextractor-referenceheightrange.htm

470

Average position

The average position is the arithmetic mean of the 3D positions of the object, also known as the
barycenter.

In the illustration below:
□ The average position is displayed in blue.
□ The top position is displayed in red.
□ On the left object, the average and the top positions are at the same place.
□ On the center object the average position is “inside” the object.

Aspect ratio

The aspect ratio is the width (the smallest dimension on the XY plane) divided by the length (the
largest dimension).

□ It lies between 0 and 1.
□ The smaller the ratio, the more elongated the object is.
□ A square has an aspect ratio of 1.

Use the E3DObjectExtractor.AspectRatioRange accessor to set the range of allowed values for the
aspect ratio.

Open eVision User Guide PART VI 3D Processing Tools

e3dobjectextractor-aspectratiorange.htm

471

Orientation angle

The orientation angle is the angle between the X axis of the EZMap and the longest axis (the
length) of the object.

□ The angle is measured in the clockwise direction.
□ The value must lie between -90° and +90°.

Use the E3DObjectExtractor.OrientationRange accessor to set the range of allowed values for the
orientation angle.

Local and reference tilt angles

The local tilt angle is the angle between the base plane and the object plane.
□ A value of 0 means that the object top surface is parallel to its base.
□ The value must lie between 0° and +90°.

The reference tilt angle is the angle between the object plane and ZMap XY plane.
□ A value of 0 means that the object top surface is parallel to its base.
□ The value must lie between 0° and +90°.

Use the E3DObjectExtractor.LocalTiltRange and the E3DObjectExtractor.ReferenceTiltRange
accessors to set the range of allowed values for the tilt angles.

Open eVision User Guide PART VI 3D Processing Tools

ezmap-class.htm
e3dobjectextractor-orientationrange.htm
e3dobjectextractor-localtiltrange.htm
e3dobjectextractor-referencetiltrange.htm

472

Area

The object area is the area of the top surface of the object projected on the reference plane of
the EZMap.

□ It is equal to [the number of pixels in the object] × [the x-resolution of the EZMap] × [the
y-resolution of the EZMap].

Use the E3DObjectExtractor.AreaRange accessor to set the range of allowed values for the area.

Volume

The object volume is the volume that lies between the top surface and the base plane of the
object.

Use the E3DObjectExtractor.VolumeRange accessor to set the range of allowed values for the
volume.

Sphere

This feature is disabled by default.

When enabled, a sphere is an object E3DSphere that represents the sphere that best fits the
object (calculated according to the least squares).

Open eVision User Guide PART VI 3D Processing Tools

ezmap-class.htm
ezmap-class.htm
ezmap-class.htm
e3dobjectextractor-class.htm
e3dobjectextractor-volumerange.htm
e3dsphere-class.htm

473

3.3. Extracting and Using Objects

Extracting the objects

Use the E3DObjectExtractor.Extract method to perform the objects extraction.

You can limit the extraction to an ERegion, for example to ignore parts of the ZMap that are not
interesting and/or to speed up the extraction process.

The processing speed of the extraction depends directly on:
□ The number of pixels in the ZMap or in the ERegion.
□ The number of segmented objects.
□ The computer features for each segmented object.

TIP
To speed up the extraction process:
- Adjust the extraction ranges to reduce the number of objects.
- Disable the features you do not need.

Overlapped objects

By default, the extraction does not produce objects that overlap on the ZMap. You must enable
the SetOverlappedObject option to extract “stacked” objects.

The area ratio and the height difference parameters control how overlapped objects are
extracted:

● The area ratio is configured by SetOverlappedAreaRatio. The area of the bottom object
divided by the area of the top object must be larger or equal than that ratio.

Open eVision User Guide PART VI 3D Processing Tools

e3dobjectextractor-extract.htm
eregion-class.htm
e3dobjectextractor-overlappedobject.htm
e3dobjectextractor-overlappedarearatio.htm

474

Overlapped extraction is disabled.

Overlapped extraction is enabled, with OverlappedAreaRatio = 4.

Overlapped extraction is enabled, with OverlappedAreaRatio = 4.
The top object is too large to be extracted, the ratio of the areas is lower than 4.

● The height difference is configured by SetOverlappedHeightDifference. This represent the
minimum height difference between the top and the bottom object

Overlapped extraction is enabled, with OverlappedHeightDifference = 2.
The height of the top object (red) from the bottom object (green) is too small, the object is not

extracted.

Open eVision User Guide PART VI 3D Processing Tools

e3dobjectextractor-overlappedheightdifference.htm

475

Overlapped extraction is enabled, with OverlappedHeightDifference = 2.
The height of the top object from the bottom object is larger than 2, the object is extracted.

Controlling the object detection

Two optional parameters affect the detection of the object:

● SetExtractionSensitivity controls the sensitivity of the extraction.
□ A higher value increases the ability to detect objects that are mixed with their

surrounding, because their grey values are close to the background or because the
transition (the gradient) between the object and the background is smooth.

□ This parameter value ranges from 0 to 1 (the default value is 0.6).

Extraction sensitivity: 0.5 (left) and 0.8 (right)

● SetContourReinforce affects the extraction of the objects.
□ As the extraction can fail when objects are close or touch each other, this parameter

enables a filter to enhance the frontiers between objects and enable the extraction of
such objects.

□ The filter can affect the measurements.

Contour reinforcement: OFF (left) and ON (right)

Open eVision User Guide PART VI 3D Processing Tools

e3dobjectextractor-extractionsensitivity.htm
e3dobjectextractor-contourreinforce.htm

476

Using the objects

The E3DObjectExtractor.Extract method populates a list of E3DObject fulfilling your set criteria.
□ Each E3DObject is a collection of descriptive features of the associated 3D points in the

EZMap, such as its oriented bounding box, its local height and its volume.
□ Call the associated E3DObject method to access a feature.
□ The E3DObject list is sorted from the smallest area to the largest area.
□ Use GetObjectsMask to get the mask of all the extracted E3DObjects.

The code snippet below provides an example for extracting features from the E3DObject list.

// get the extracted objects and loop over them
E3DObject[] objects = extractor.Objects;
int nObjects = objects.Length;
for (int index = 0; index < nObjects; ++index)
{

// inspect bounding box dimensions
E3DPoint bbCenter = objects[index].BoundingBox.Center;
float bbHeight = objects[index].BoundingBox.XSize;
float bbLength = objects[index].BoundingBox.YSize;

// inspect object plane and base plane
E3DPlane opjPlane = objects[index].Plane;
E3DPlane basePlane = objects[index].BasePlane;

// inspect the ERegion that exactly contains the object
ERegion objRegion = objects[index].Region;

}

Visualizing the objects

To visualize some of these features in 2D or 3D:
□ Use the E3DObject.Draw method.
□ Or submit a list of E3DObject to an E3DViewer.

TIP
In an E3DViewer, use the ERenderStyle structure to choose your rendering
style.

The following code snippets illustrate how to draw some object features:
□ In a 2D graphic context: Drawing a 2D Feature from the List of E3DObjects

Open eVision User Guide PART VI 3D Processing Tools

e3dobjectextractor-extract.htm
e3dobject-class.htm
e3dobject-class.htm
ezmap-class.htm
e3dobject-class.htm
e3dobject-class.htm
e3dobjectextractor-objectsmask.htm
e3dobject-class.htm
e3dobject-class.htm
e3dobject-draw.htm
e3dobject-class.htm
e3dviewer-class.htm
e3dviewer-class.htm
erenderstyle-struct.htm
../../../../../Content/05 Resources/02 Code Snippets/16 Easy3DObject/Drawing a 2D Feature from the List of E3DObjects.htm

477

□ In a 3D viewer: Drawing 3D Features from a List of E3DObjects

3.4. Use Case - Inspecting a PCB

The purpose of this use case is to test if all the components are present and correctly placed on
the PCB.

TIP
This example uses the sample image Sample
Images\Easy3D\Easy3DObject\PCB.png and the illustrations are based on the
Easy3DObject demo application.

1. Load the PCB image.

2. Set the resolution.
□ The provided PCB sample is an 8-bit gray scale image.
□ Use a Z resolution of 0.3 metric unit per gray scale level for a realistic proportion.

3. Keep the suggested parameters for a first extraction.
□ The suggested parameters are set from the ZMap width, height and resolution.

Open eVision User Guide PART VI 3D Processing Tools

../../../../../Content/05 Resources/02 Code Snippets/16 Easy3DObject/Drawing 3D Features from a List of E3DObjects.htm

478

4. Click on the Extract button to perform the extraction.

When the extraction is done:
□ The object list is filled.
□ Click on a column title to sort the object list.
□ The various measures are displayed.
□ The 2D View and the 3D View show the extracted object bounding boxes.

Open eVision User Guide PART VI 3D Processing Tools

479

5. Use a polygon region of interest to restrict the searched area.
□ You can limit the extraction to a region defined as a rectangle, a polygon or an ellipse in

the demo application.
□ Use the Open eVision API, to define and use any ERegion.

6. Press again the Extract button to generate a new list of objects. Now, only the objects
located inside the region are extracted.

7. The 2D View and 3D View automatically focus on the object selected in the list. You can also
select an object by clicking on a bounding box in the 2D View.

Open eVision User Guide PART VI 3D Processing Tools

eregion-class.htm

480

8. Use the size ranges to discard the smaller components.

To add or remove objects:
□ Change the extraction parameters, like the length and width ranges.
□ In the illustration below, objects smaller than 10x10 metric unit are not extracted.

NOTE
After changing a parameter, press the Extract button to perform a new
extraction.

Open eVision User Guide PART VI 3D Processing Tools

481

9. Check or uncheck the boxes at the top of the views to toggle the display of most of the
object features, either in the 2D View or the 3D View.
□ In the illustration below, the object list is sorted by local height.
□ The first object is selected and displayed in both views.

10.Adjust the extraction parameters to accept or reject objects based on the results.

Open eVision User Guide PART VI 3D Processing Tools

482

11.Open the Help menu and click on Generate code snippet to generate the C++ code
corresponding to the current configuration.

The generated code illustrates how you can:
□ Load a ZMap.
□ Define a region.
□ Set the configuration parameters of the extraction.
□ Start the extraction process.
□ Iterate through the resulting objects list.

Open eVision User Guide PART VI 3D Processing Tools

483

4. Easy3DMatch - 3D Alignment and
Comparison

4.1. Purpose and Workflow

Purpose

Easy3DMatch allows you to:

● Align a scanned object with another scan or with a reference mesh.
□ The Easy3DMatch tool features alignment functions to find the exact pose (position and

orientation) of acquired 3D objects using a reference model.
□ You can specify this model as a reference point cloud or as a 3D mesh from CAD software

(using the stl file format).

CAD model — sample point cloud — model and sample aligned
(3D models courtesy of Direct Dimensions)

Open eVision User Guide PART VI 3D Processing Tools

484

● Compare an aligned scan with a reference model or mesh:

a. Compute the local distances between 3D scans and a golden sample or a reference mesh.

b. Detect anomalies such as misplaced features, geometric distortions, gaps and bumps.

Reference — sample
(3D CAD models courtesy of Direct Dimensions)

Result of the comparison

Workflow

1. Load a reference as:
□ A mesh (define its viewpoints)
□ A point cloud (with one viewpoint)
□ A ZMap

2. Load a sample, either as:
□ A point cloud (with one viewpoint)
□ A ZMap

Open eVision User Guide PART VI 3D Processing Tools

485

3. Perform alignment and/or matching:
□ Optionally, align the sample and get its E3DAlignment with respect to the reference

(E3DAligner).
□ Optionally, compare the sample to the reference by defining ROIs as 3DBox (E3DComparer).
□ Align the sample and compare it directly to the reference by defining ROIs as an ERegion

(E3DMatcher).

4. Use the transformation from sample to model to locate the sample and/or process the
detected E3DAnomalies.

Resources

● The example described here demonstrates how to use Easy3DMatch with Open eVision 3D
tools.

● You can also find a sample application, with its source code, in …\Sample Programs\MsVc
samples\3D Processing\Easy3DMatchMatch.

NOTE: Most of the illustrations are screenshots from this sample.

● The example and the sample application are based on the following resources:
□ Open eVision 2.16
□ Microsoft Visual Studio 2017

● You need the Easy3DMatch license to use it.

4.2. Alignment (E3DAligner)

Base case

Use the class E3DAligner to load a reference and a sample and to find the transformation from
the sample to the reference.

1. The first step is to set the reference using the method SetReference.
□ In addition to the mesh or the cloud, this method also takes one or several E3DPlane or

azimuth and elevation angles (see "Calibration" on page 433 for a definition of the
azimuth and the elevation).

□ The angles are used to compute the plane and are just an easier way to specify it.

Open eVision User Guide PART VI 3D Processing Tools

e3dalignment-class.htm
e3daligner-class.htm
e3dbox-class.htm
e3dcomparer-class.htm
eregion-class.htm
e3dmatcher-class.htm
e3danomaly-class.htm
e3daligner-class.htm

486

2. The goal of the plane is to specify the face(s) of the object that can be visible on the sample.
□ You must do this only once for the reference and once for the sample(s), assuming they

are all taken with the same scanner.

Here is an illustration of the process:

View of the CAD

Bottom face, corresponding to the plane of the normal (0, 0, -1) and equation z = 15
or an azimuth of 0° and an elevation of -90°

Open eVision User Guide PART VI 3D Processing Tools

487

Top face of the object, corresponding to the plane of the normal (0, 0, 1) and equation z = -15
or an azimuth of 0° and an elevation of 90°.

3. Call the method Align with a point cloud or a zmap and get an object E3DAlignment that
contains:
□ The pose, an E3DTransformMatrix mapping the sample to the reference.
□ The error, indicating the quality of the matching.
□ The index of the reference pose that was matched. This is useful when several poses are

defined (in the example above, there are 2 poses defined).

Defining a reprojection plane to improve the results

Ideally, the sample (and the point cloud or the ZMap used as reference) should be aligned on
the viewpoint. This is however not always true, for example when the scanner does not lay on
top of the object. In these cases, the user may specify the plane on which the object lays, either
by giving an E3DPlane or a flat scan on which only the plane is visible.

In both cases, the plane normal must have the correct orientation (pointing upwards or
downwards), that is if the plane is above the normal (z object > z plane), the z coordinate of the
normal should be positive. This is specified either directly in the E3DPlane or by a boolean
argument objectAbovePlane when giving a flat scan.

Code samples

Base sample

//
// This code snippet shows how to compute the //
// alignment between a sample and a cad reference.//
//

// load the reference mesh and define the pose
E3DAligner aligner = new E3DAligner();
EMesh cad = new EMesh();
cad.Load("...");
float azimuthReference = 0.0f, elevationReference = 90.0f;
aligner.SetReference(cad, azimuthReference, elevationReference);

// load the sample

Open eVision User Guide PART VI 3D Processing Tools

e3daligner-align.htm
e3dalignment-class.htm
e3dtransformmatrix-class.htm
e3dplane-class.htm
e3dplane-class.htm

488

EPointCloud sample = new EPointCloud();
sample.Load("...");
float azimuthSample = 0.0f, elevationSample = -90.0f;

// perform alignment
E3DAlignment alignment = aligner.Align(sample, azimuthSample, elevationSample);

Use a reprojection plane

//
// This code snippet shows how to set the //
// reprojection plane when performing alignment. //
//

// load the reference mesh and define the pose
E3DAligner aligner = new E3DAligner();
EMesh cad = new EMesh();
cad.Load("...");
float azimuthReference = 0.0f, elevationReference = 90.0f;
aligner.SetReference(cad, azimuthReference, elevationReference);

// define the reprojection plane
bool userKnowsPlaneEquation = false; // depending on the user
if (userKnowsPlaneEquation)
{
E3DPlane reprojectionPlane = new E3DPlane(new E3DPoint(0, 0, -1), -15);
aligner.ScanReprojectionPlane = reprojectionPlane;

}
else
{
EPointCloud cloud = new EPointCloud();
cloud.Load("...");
bool objectAbovePlane = true; // is the object above the plane on the cloud
aligner.SetFlatScan(cloud, objectAbovePlane);

}

// load the sample
EPointCloud sample = new EPointCloud();
sample.Load("...");
float azimuthSample = 0.0f, elevationSample = 90.0f;

// perform alignment
E3DAlignment alignment = aligner.Align(sample, azimuthSample, elevationSample);

Use E3DAlignment to align a sample on the reference

///
// This code snippet shows how to apply the //
// transformation of the E3DAlignment to the //
// sample to overlap it on the reference //
///

// perform alignment (see previous examples)
E3DAlignment alignment = new E3DAlignment(); // obtained with E3DAligner
EPointCloud sample = new EPointCloud(); // same pointcloud as the input of the E3DAligner

// align sample on reference
EPointCloud alignedSample = new EPointCloud();
EAffineTransformer.ApplyMatrix(alignment.Pose, sample, alignedSample);

Open eVision User Guide PART VI 3D Processing Tools

489

Computation Time

The following table shows the computation time on a representative object. The first step of an
alignment is to decimate the given EPointCloud (a very large cloud may explain important
computation times).

Number of threads Computation times

1 780 ms

2 520 ms

4 383 ms

4.3. Comparison (E3DComparer)

Base case

Use the class E3DComparer to load a reference and an already aligned sample (for example by
using E3DAligner) and to find the distance map between both as well as anomalies.

● To use the E3DComparer:
□ Use the method SetMeshReference or SetPointCloudReference to specify the reference with

either an EMesh or an EPointCloud.
□ Set the options of the comparison (ROIs, mode and thresholds).
□ Call the method Compare with the sample EPointCloud.
□ Use ComputesAnomalies to retrieve the list of E3DAnomaly.
□ Use GetComparisonPointCloud to retrieve the EPointCloud containing the distances.

● An E3DAnomaly represents a specific area in which the discrepancies between the sample and
the reference are important. They are represented by:
□ An EPointCloud containing all the points of the anomaly and their distance to the sample.
□ The area of the anomaly.
□ Its center of gravity.
□ A bounding box around the anomaly.

NOTE: The E3DAnomaly represents points on the reference (except on NoExtraMaterial regions
and when the distance mode is set to EComparisonDistanceMode_Euclidian_Advanced or or
EComparisonDistanceMode_Normals_Advanced).

● Use GetComparisonPointCloud to retrieve an EPointCloud containing distance and/or colors
that represent the distance to the sample or the reference for each of these points.

SetROI and SetDontCare

● The class E3DComparer can perform the comparison on only a subset of the object. This has
two benefits: it is faster and it allows to ignore false-positives when detecting anomalies.
□ Use SetROI with a vector of E3DBox to define the zones on which to perform a comparison.
□ Use SetDontCare to specify areas that are excluded from the comparison.
□ A point belonging to SetROI and SetDontCare boxes is not compared. By default, all points

are compared.

Open eVision User Guide PART VI 3D Processing Tools

e3dcomparer-class.htm
e3daligner-class.htm
e3dcomparer-class.htm
e3dcomparer-meshreference.htm
e3dcomparer-pointcloudreference.htm
emesh-class.htm
epointcloud-class.htm
e3dcomparer-compare.htm
epointcloud-class.htm
e3dcomparer-computesanomalies.htm
e3danomaly-class.htm
e3dcomparer-getcomparisonpointcloud.htm
epointcloud-class.htm
e3danomaly-class.htm
epointcloud-class.htm
e3danomaly-class.htm
e3dcomparer-noextramaterial.htm
ecomparisondistancemode-enum.htm
ecomparisondistancemode-enum.htm
e3dcomparer-getcomparisonpointcloud.htm
epointcloud-class.htm
e3dcomparer-class.htm
e3dcomparer-roi.htm
e3dbox-class.htm
e3dcomparer-dontcare.htm
e3dcomparer-roi.htm
e3dcomparer-dontcare.htm

490

SetNoExtraMaterial

● The class E3DComparer checks, for each point of the reference (in the ROI), the distance to its
nearest neighbor in the sample.
□ This avoids false positives, where we would use points of the sample that are not part of

the object (the plane on which the object lays for example).
□ This allows to detect missing points on the sample.
□ A drawback of this approach is that extra material, that is points that should not be in the

sample (for example, a hole that is filled) are not detected. You can solve this problem by
specifying a list of E3DBox containing the areas that should not contain extra material.

SetAnomalyThresholds

● An anomaly is a sufficiently large contiguous area of points whose distance to the scan is
above a threshold.
□ To specify the two thresholds (distance and area), use the method SetAnomalyThresholds.
□ By default, these two thresholds are set relatively to the model size.
□ Aa a more advanced anomaly detection method, use SetAnomalyHysteresis.

Illustration of the thresholds

SetAnomalyHysteresis

● You can use the method SetAnomalyHysteresis that is a more specific anomaly detection
method.
□ With this method, a cluster of points should have a large enough subset of its points with

an even larger distance to the sample to be an anomaly.
□ This may be useful if you do not want to consider as an anomaly the points with a

medium distance unless they are close to points with a high distance.

Illustration of the hysteresis thresholds

Open eVision User Guide PART VI 3D Processing Tools

e3dcomparer-class.htm
e3dbox-class.htm
e3dcomparer-setanomalythresholds.htm
e3dcomparer-setanomalyhysteresis.htm
e3dcomparer-setanomalyhysteresis.htm

491

SetComparisonDistanceMode

● By default, the aligned scan and the reference comparison is based on the euclidean
distance between their corresponding points.
□ Use SetComparisonDistanceMode(EComparisonDistanceMode_Euclidean) to enable it.

● Another possibility is to base the comparison on the angular distance between the
corresponding normals of the scan and of the reference.
□ This works better to detect scratches.
□ Use SetComparisonDistanceMode(EComparisonDistanceMode_Normals) to enable it.

● There is a variant that is more robust towards false positives near the edges.
□ Use SetComparisonDistanceMode(EComparisonDistanceMode_Normals_Advanced) to enable it.

The Normals comparison mode

Results when using normals to detect scratches.
(left) scratch is not visible using the euclidean distance mode

(center) scratch and false positives on the edges are visible using normals distance mode
(right) only scratch is detected using the advanced normals distance mode

SetEnableAutomaticEdgeCropping and SetEdgeCroppingParameters

● Sharp edges in the reference can lead to false positives, especially when using normals (see
SetComparisonDistanceMode).

A solution is to remove them automatically:
□ Use SetEnableAutomaticEdgeCropping(true) to enable this.
□ Use SetEdgeCroppingParameters to adjust this function.
□ By default, the edge cropping is disabled.

Open eVision User Guide PART VI 3D Processing Tools

e3dcomparer-comparisondistancemode.htm
e3dcomparer-comparisondistancemode.htm
e3dcomparer-comparisondistancemode.htm
e3dcomparer-comparisondistancemode.htm
e3dcomparer-enableautomaticedgecropping.htm
e3dcomparer-setedgecroppingparameters.htm

492

SetAutomaticCropFactor

● By default, the sample clouds are automatically cropped around the reference plus a margin
to avoid computing distance for points that are not on the object (for example, the plane on
which the object lays).

● The margin is obtained by multiplying the anomaly distance threshold by the automatic crop
factor (set with SetAutomaticCropFactor).
□ By default, the factor is 1.

Prepare the reference

● If not called explicitly, the first call to Compare automatically computes the internal data
structures.

Code samples

Minimal code

///
// This code snippet shows how to compare a sample //
// with a golden scan reference. //
///

// load the reference golden scan and set reference
E3DComparer comparer = new E3DComparer();
EPointCloud reference = new EPointCloud();
reference.Load("...");
comparer.PointCloudReference = reference;

// set thresholds
float distanceThresh = 0.2f, areaThresh = 1.0f;
comparer.SetAnomalyThresholds(distanceThresh, areaThresh);
// Prepare data structures (optional)
comparer.PrepareReference();

// load the sample and perform comparison
EPointCloud sample = new EPointCloud();
sample.Load("...");
comparer.Compare(sample);

// compute anomalies
E3DAnomaly[] anomalies = comparer.ComputesAnomalies();

// TODO: if (anomalies.Length != 0): an anomaly was detected: inspect the sample manually? throw it away?

// get cloud to inspect it manually
EPointCloud visualisationCloud = new EPointCloud();
comparer.GetComparisonPointCloud(visualisationCloud);

Advanced code

//
// This code snippet shows how to set the options //
// when comparing two elements with E3DComparer. //
//

// load the reference cad and set reference

Open eVision User Guide PART VI 3D Processing Tools

e3dcomparer-automaticcropfactor.htm

493

E3DComparer comparer = new E3DComparer();
EMesh cad = new EMesh();
cad.Load("...");
comparer.MeshReference = cad;

// set thresholds
float distanceThresh = 0.2f, areaThresh = 1.0f;
float hystDistanceThresh = 1.5f, hystAreaThresh = 0.5f;
comparer.SetAnomalyThresholds(distanceThresh, areaThresh);
comparer.SetAnomalyHysteresis(hystDistanceThresh, hystAreaThresh); // defined relatively to base thresholds

// set ROIs
E3DBox[] rois = new E3DBox[1];
rois[0] = new E3DBox(15, 15, 15);
comparer.ROI = rois;
E3DBox[] dontCare = new E3DBox[1];
dontCare[0] = new E3DBox(5, 5, 5);
comparer.DontCare = dontCare;
E3DBox[] noExtraMaterial = new E3DBox[1];
noExtraMaterial[0] = new E3DBox(new E3DPoint(10, 15, 20), 0, 0, 0, 5, 5, 5);
comparer.NoExtraMaterial = noExtraMaterial;

// prepare data structures (optional)
comparer.PrepareReference();

// load the sample and perform comparison
EPointCloud sample = new EPointCloud();
sample.Load("...");
comparer.Compare(sample);

// compute anomalies
E3DAnomaly[] anomalies = comparer.ComputesAnomalies();

// TODO: if (anomalies.Length) != 0): an anomaly was detected: inspect the sample manually? throw it away?

// get cloud to inspect it manually
EPointCloud visualisationCloud = new EPointCloud();
comparer.GetComparisonPointCloud(visualisationCloud);

Computation time

The following table shows the computation time on a representative object. The first step of a
comparison is to decimate the given EPointCloud (a very large cloud may explain important
computation times).

If you are using a mesh as reference without a specific ROI, the mesh contains many points that
have no correspondence in the scan (hidden faces), this can increase processing time a
hundred-fold.

Number of threads Computation times

1 503 ms

2 454 ms

4 395 ms

Open eVision User Guide PART VI 3D Processing Tools

494

4.4. Alignment and Comparison (E3DMatcher)

Base Case

Use the class E3DMatcher to load a reference and a sample and to align and compare them at the
same time.

E3DMatcher inherits from E3DAligner (see "Alignment (E3DAligner)" on page 485)and implements
an API close to the one of E3DComparer (see "Comparison (E3DComparer)" on page 489)with
some extra capabilities due to the usage of the reference points of view used in E3DAligner.

To use the E3DMatcher:

1. The first step is to set the reference using the method SetReference.
□ In addition to the mesh or the cloud, this method also takes one or several E3DPlane or

azimuth and elevation angles (see "Calibration" on page 433 for a definition of the
azimuth and the elevation).

□ The angles are used to compute the plane and are just an easier way to specify it.

2. Set the options of the comparison (ROIs, thresholds, mode...) and optionally a reference
plane.

3. Call the Match method with the sample point cloud and its reference plane.
□ This returns an E3DMatch object containing the anomalies and the E3DAlignment (E3DMatch

inherits from E3DAlignment)

4. Optionally, use GetComparisonPointCloud to retrieve an EPointCloud that contains the
distances.

● You can perform all these steps interactively in the Easy3DMatchMatch sample.

● The main difference between E3DMatcher and E3DComparer is that the ROIs are defined using
ERegion on the EZMap corresponding to the projection of the reference on the given E3DPlane.

This also allows for more advanced comparisons (see ComparisonDistanceMode and
SetEnableMissingPointAsAnomaly).

SetComparisonDistanceMode

Use SetComparisonDistanceMode to select one of the methods available in the class E3DMatcher to
compute the distances:

□ EcomparisonDistanceMode_Euclidean_Fast: the fastest method based on the euclidean
distance between points. It is less precise on the edges.

□ EcomparisonDistanceMode_Euclidean: the default method. It is based on the euclidean
distance between corresponding points.

□ EcomparisonDistanceMode_Euclidean_Advanced: the slowest method based on the euclidean
distances. It penalizes more the bumps.

□ EcomparisonDistanceMode_Normals: the same as EcomparisonDistanceMode_Euclidean except
that the comparison is based on the angular distance between the points normals instead
of the euclidean distance between the points. It works better to detect scratches.

□ EcomparisonDistanceMode_Normals_Advanced: a variant of EcomparisonDistanceMode_Normals
that is more robust towards false positives near the edges.

Open eVision User Guide PART VI 3D Processing Tools

e3dmatcher-class.htm
e3dmatcher-class.htm
e3daligner-class.htm
e3dcomparer-class.htm
e3daligner-class.htm
e3dmatcher-class.htm
e3dplane-class.htm
e3dmatch-class.htm
e3dalignment-class.htm
e3dmatch-class.htm
e3dalignment-class.htm
e3dcomparer-getcomparisonpointcloud.htm
epointcloud-class.htm
e3dmatcher-class.htm
eregion-class.htm
ezmap8-class.htm
e3dplane-class.htm
e3dmatcher-comparisondistancemode.htm
e3dmatcher-enablemissingpointasanomaly.htm
e3dmatcher-comparisondistancemode.htm
e3dmatcher-class.htm
ecomparisondistancemode-enum.htm
ecomparisondistancemode-enum.htm
ecomparisondistancemode-enum.htm
ecomparisondistancemode-enum.htm
ecomparisondistancemode-enum.htm
ecomparisondistancemode-enum.htm
ecomparisondistancemode-enum.htm

495

The Normals comparison mode

Results when using normals to detect scratches.
(left) scratch is not visible using the euclidean distance mode

(center) scratch and false positives on the edges are visible using normals distance mode
(right) only scratch is detected using the advanced normals distance mode

SetEnableAutomaticEdgeCropping and SetEdgeCroppingParameters

● Sharp edges in the reference can lead to false positives, especially when using normals (see
SetComparisonDistanceMode).

A solution is to remove them automatically:
□ Use SetEnableAutomaticEdgeCropping(true) to enable this.
□ Use SetEdgeCroppingParameters to adjust this function.
□ By default, the edge cropping is disabled.

SetAllComparisonROI

● The class E3DMatcher can perform the comparison on only a subset of the object. This has
two benefits: it is faster and it allows to ignore false-positives when detecting anomalies.
□ Use SetAllComparisonROI with one on several Eregion to define the zones on which to

perform a comparison.
□ These Eregion should be interpreted as a masking part of the object on a projected view.

Use RetrieveReferencePoses to retrieve the corresponding view.

Open eVision User Guide PART VI 3D Processing Tools

e3dcomparer-comparisondistancemode.htm
e3dcomparer-enableautomaticedgecropping.htm
e3dcomparer-setedgecroppingparameters.htm
e3dmatcher-class.htm
e3dmatcher-allcomparisonroi.htm
eregion-class.htm
eregion-class.htm
e3daligner-retrievereferenceposes.htm

496

Only the areas on the ROI are compared

Illustration of setting ROI on a projection of the reference

SetAllComparisonNoExtraMaterial

● The class E3DMatcher checks, for each point of the reference (in the ROI), the distance to its
nearest neighbor in the sample.
□ This avoids false positives, where we would use points of the sample that are not part of

the object (the plane on which the object lays for example).
□ This allows to detect missing points on the sample.
□ A drawback of this approach is that extra material, that is points that should not be in the

sample (for example, a hole that is filled) are not detected. You can solve this problem by
specifying a list of E3DBox containing the areas that should not contain extra material.

Open eVision User Guide PART VI 3D Processing Tools

e3dmatcher-class.htm
e3dbox-class.htm

497

We do not want the holes to be filled

A filled hole is reported as an anomaly

SetEnableMissingPointAsAnomaly

● By default, the points missing on the scan are considered as defaults.
□ In some case this may lead to false positives (a shadow on the sample is not necessarily a

default, just the absence of information).
□ In other cases these points should be taken into account (for example, a deep hole in the

object can result in the absence of points instead of the presence of misplaced points).
□ Use the method SetEnableMissingPointAsAnomaly to select one of these behaviors.

Open eVision User Guide PART VI 3D Processing Tools

e3dmatcher-enablemissingpointasanomaly.htm

498

False anomalies due to shadows in the sample

SetAnomalyThresholds

● An anomaly is a sufficiently large contiguous area of points whose distance to the scan is
above a threshold.
□ To specify the two thresholds (distance and area), use the method SetAnomalyThresholds.
□ By default, these two thresholds are set relatively to the model size.
□ Aa a more advanced anomaly detection method, use SetAnomalyHysteresis.

Illustration of the thresholds

Open eVision User Guide PART VI 3D Processing Tools

e3dmatcher-setanomalythresholds.htm
e3dmatcher-setanomalyhysteresis.htm

499

SetAnomalyHysteresis

● You can use the method SetAnomalyHysteresis that is a more specific anomaly detection
method.
□ With this method, a cluster of points should have a large enough subset of its points with

an even larger distance to the sample to be an anomaly.
□ This may be useful if you do not want to consider as an anomaly the points with a

medium distance unless they are close to points with a high distance.

Illustration of the hysteresis thresholds

SetEnableAutomaticDecimation

● By default, the clouds are automatically decimated in such a way that the decimation error
does not impact the anomalies detection.
□ This has the benefit of speeding up processing.
□ If the resolution of your point clouds is small with respect to your distance threshold,

calling SetEnableAutomaticDecimation(false) could improve the speed as it will avoid
useless decimation.

SetAutomaticCropFactor

● By default, the sample clouds are automatically cropped around the reference plus a margin
to avoid computing distance for points that are not on the object (for example, the plane on
which the object lays).

● The margin is obtained by multiplying the anomaly distance threshold by the automatic crop
factor (set with SetAutomaticCropFactor).
□ By default, the factor is 1.

Prepare the reference

● If not called explicitly, the first call to Compare automatically computes the internal data
structures.

Open eVision User Guide PART VI 3D Processing Tools

e3dmatcher-setanomalyhysteresis.htm
e3dmatcher-enableautomaticdecimation.htm
e3dmatcher-automaticcropfactor.htm

500

Code samples

Minimal sample

//
// This code snippet shows how to match a sample //
// with a golden scan reference. //
//

// load the reference golden scan and set reference
E3DMatcher matcher = new E3DMatcher();
EPointCloud reference = new EPointCloud();
float azimuthReference = 0.0f, elevationReference = 90.0f;
reference.Load("...");
matcher.SetReference(reference, azimuthReference, elevationReference);

// set thresholds
float distanceThresh = 0.2f, areaThresh = 1.0f;
matcher.SetAnomalyThresholds(distanceThresh, areaThresh);

// prepare data structures (optional)
matcher.PrepareReference();

// load the sample and perform comparison
EPointCloud sample = new EPointCloud();
float azimuthSample = 0.0f, elevationSample = -90.0f;
sample.Load("...");
E3DMatch match = matcher.Match(sample, azimuthSample, elevationSample);
E3DAnomaly[] anomalies = match.Anomalies;

// TODO: if (anomalies.Length != 0): an anomaly was detected: inspect the sample manually? throw it away?

// get cloud to inspect it manually
EPointCloud visualisationCloud = new EPointCloud();
matcher.GetComparisonPointCloud(visualisationCloud);

Advanced sample

//
// This code snippet shows how to set the options //
// when matching two elements with E3DMatcher. //
//

// load the reference golden scan and set reference
E3DMatcher matcher = new E3DMatcher();
EPointCloud reference = new EPointCloud();
float azimuthReference = 0.0f, elevationReference = 90.0f;
reference.Load("...");
matcher.SetReference(reference, azimuthReference, elevationReference);

// use advanced comparison mode
matcher.ComparisonDistanceMode = EComparisonDistanceMode.Advanced;

// ignore shadows
matcher.EnableMissingPointAsAnomaly = false;

// set thresholds
float distanceThresh = 0.2f, areaThresh = 1.0f;
float hystDistanceThresh = 1.5f, hystAreaThresh = 0.5f;

Open eVision User Guide PART VI 3D Processing Tools

501

matcher.SetAnomalyThresholds(distanceThresh, areaThresh);
matcher.SetAnomalyHysteresis(hystDistanceThresh, hystAreaThresh); // defined relatively to base thresholds

// retrieve reference poses (reference must have been set)
EZMap8[] referencePoseProjections;
matcher.RetrieveReferencePosesProjections(out referencePoseProjections);

// set ROI on the left half of the object
float originX = 0.0f, originY = 0.0f, width = referencePoseProjections[0].Width / 2, height =
referencePoseProjections[0].Height / 2;
ERectangleRegion roiRegion = new ERectangleRegion(originX, originY, width, height);
matcher.SetComparisonROI(roiRegion);

// set No Extra material on the whole object
originX = 0.0f; originY = 0.0f; width = referencePoseProjections[0].Width / 2; height =
referencePoseProjections[0].Height / 2;
ERectangleRegion noExtraMatRegion = new ERectangleRegion(originX, originY, width, height);
matcher.SetComparisonNoExtraMaterial(roiRegion);

// prepare data structures (optional)
matcher.PrepareReference();

// load the sample and perform comparison
EPointCloud sample = new EPointCloud();
float azimuthSample = 0.0f, elevationSample = -90.0f;
sample.Load("...");
E3DMatch match = matcher.Match(sample, azimuthSample, elevationSample);
E3DAnomaly[] anomalies = match.Anomalies;

// TODO: if (anomalies.Length != 0):an anomaly was detected: inspect the sample manually? throw it away?

// get cloud to inspect it manually
EPointCloud visualisationCloud = new EPointCloud();
matcher.GetComparisonPointCloud(visualisationCloud);

Computation time

The following table shows the computation time on a representative object. The first step of an
alignment is to decimate the given EPointCloud (a very large cloud may explain important
computation times).

Number of threads Computation times

1 683 ms

2 642 ms

4 587 ms

Open eVision User Guide PART VI 3D Processing Tools

502

4.5. 3D Sensor Fusion (EPointCloudMerger)

NOTE: You need a license for Easy3DMatch to use the sensor merging tools.

3D sensor fusion

The 3D sensor fusion is a technique to merge the output of different 3D sensors together. In this
case, these are different views of the same object.

Use the class EPointCloudMerger:

1. Choose how many sensors to use and position them.

2. Acquire scans of the calibration cube (that must be 3D printed).

3. Use the method Calibrate to perform the calibration.

4. For each new object:

a. Acquire the scans of the object.

b. Use the method Merge to merge the scans together.

TIP
You can perform all these steps interactively in the C++ and C#
Easy3DMatchPointCloudMerger samples.

Several sensors acquiring different views of the calibration object

Scans of the calibration cube (displayed as ZMaps)

Open eVision User Guide PART VI 3D Processing Tools

epointcloudmerger-class.htm
epointcloudmerger-calibrate.htm
epointcloudmerger-merge.htm

503

Scans of the object (displayed as ZMaps)

Merged calibration scans

Merged cloud scans

Open eVision User Guide PART VI 3D Processing Tools

504

3D CAD model

● The calibration cube model is available in the STL file format.

● Download this file from the Open eVision download area in the Additional Resources section
(www.euresys.com/Support).

Download the calibration object model

● Once downloaded, we recommend using a specialized subcontractor to print the 3D
calibration cube as 3D filament printing is not really suitable to produce the cube.

For reference, we worked with a company using Selective Laser Sintering and printing a
10×10×10 cm cube using PA12 material costed 220 €.

The calibration cube

Open eVision User Guide PART VI 3D Processing Tools

https://www.euresys.com/en/Support/Download-area?Series=f97da39d-3c25-404c-aee7-73de1d1867fc

505

Removing duplicate points

A physical point seen by two sensors should not be present two times in the output cloud.

● By default, these points are removed. As this takes most of the processing time, you can
disable the process if speed is an issue.

● Set the cloud resolution with the parameter SetMergedCloudResolution to control this
process. The parameter value is computed automatically but you can increase it to reduce
the size of the output cloud and speed-up the processing.

Code samples

///
// This code snippet shows how to perform sensor fusion. //
///

// Calibration
EPointCloudMerger merger = new EPointCloudMerger();
EPointCloud[] calibrationClouds = new EPointCloud[4]; // TODO: load or grab
float calibrationObjectSize = 100.0f; // size of an edge of the cube in the calibrationClouds
float calibrationScore = merger.Calibrate(calibrationClouds, calibrationObjectSize, true);

// Merging
EPointCloud[] clouds = new EPointCloud[4]; // TODO: load or grab, must be in same order as calibrationClouds
EPointCloud mergedCloud = new EPointCloud();

merger.Merge(clouds, mergedCloud);

Computation Time

The following table shows the computation time on 4 clouds of around 200,000 points each.

Nb of
threads

Calibration
(ms)

Merging @ res
(ms)

Merging @ 4 x res
(ms)

Merging
w/o decimation

1 3386 73 44 15

2 2298 64 46 9

4 1752 52 47 9

Where Res is the resolution computed by the Calibrate method when its argument
computeMergedCloudResolution is set to true.

Open eVision User Guide PART VI 3D Processing Tools

epointcloudmerger-mergedcloudresolution.htm
epointcloudmerger-calibrate.htm

506

Open eVision User Guide

PART VII
ADVANCED PROGRAMMING

507

1. Multicore Processing

Multicore processing support in Open eVision

Since release 2.7, Open eVision supports multicore processing and some algorithms are
optimized to take advantage of modern multicore CPUs.

● By default, parallel processing is disabled.

● To enable parallel processing in your current thread:
□ Use Easy::SetMaxNumberOfProcessingThreads() with a value greater than 1.
□ Set the number of threads up to the number of physical CPU cores available in your

system (without including hyper-threading).
□ Of course, you can use less threads than the maximum possible to preserve some of your

CPU power for other processes.

NOTE
Easy::SetMaxNumberOfProcessingThreads() only sets the maximum number of
processing threads for the thread in which the function is called.

● To enable parallel processing in Open eVision Studio:
□ Go to View > Options.
□ In the pop-up, tune the number of processing threads enabled.

Multiprocessor-enabled features

Currently, only some features of Open eVision are multiprocessor-enabled.

These methods as well as the speed improvements that you can expect are:

Library Method

Max. expected
improvement
for 2 proc.
threads

EasyMatrixCode2 EMatrixCodeReader::Read 50%

EasyBarCode2 EBarCodeReader::Read 20%

EasyFind EPatternFinder::Find 30%

EasyImage

Threshold on ERegion 50%

Statistics on ERegion 75%

EasyImage ::Median 30%

Open eVision User Guide PART VII Advanced Programming

easy-maxnumberofprocessingthreads.htm
easy-maxnumberofprocessingthreads.htm
../../../../../Content/reference/ematrixcode2reader-read.htm
ebarcode2reader-read.htm
epatternfinder-find.htm
easyimage-median.htm

508

Library Method

Max. expected
improvement
for 2 proc.
threads

Easy3D

EPointCloudToZMapConverter::Convert 50%

EDepthMapToPointCloudConverter::Convert 30%

EDepthMapToMeshConverter::Convert 30%

EZMapToPointCloudConverter::Convert 30%

EPhotometricStereoImager::Compute 35%

ELaserLineExtractor::ExtractProfileFromFrame 30%

Easy3DMatch

E3DAligner::Align 30%

E3DComparer::Compare 10%

E3DMatcher::Match 10%

EPointCloudMerger::Calibrate 30%

EPointCloudMerger::Merge 10%

EasyClassify EClassifier::Classify 2%

EasySegment EUnsupervisedSegmenter::Apply 4%

Regions

ERegion::ToImage

ERegion::Union

ERegion::Intersection

ERegion::Subtraction

EasyQRCode EasyQRCode::Read
(see documentation for optimization) 20%

NOTE
• The speedups are given for 1 additional processing thread (so a total of
2 processing threads). Adding more processing threads could lead to some
improvements, but usually the speedups are not linear with the number of
processing threads.
• The improvements strongly depend on the parameters of the methods and
the size and type of the images.
• The speedups can also vary according to the CPU type.

Thread-safe classes

● Open eVision supports simultaneous execution by multiple (unlimited) threads on the same
CPU, but data can only be accessed by one thread at a time
So independent tasks can execute simultaneously in your application, but each bit of shared
data must be controlled by a separate task.

● The following rules avoid data corruption, crashes and misbehaving programs.

Open eVision User Guide PART VII Advanced Programming

../../../../../Content/reference/epointcloudtozmapconverter-convert.htm
../../../../../Content/reference/edepthmaptopointcloudconverter-convert.htm
../../../../../Content/reference/edepthmaptomeshconverter-convert.htm
../../../../../Content/reference/ezmaptopointcloudconverter-convert.htm
ephotometricstereoimager-compute.htm
../../../../../Content/reference/elaserlineextractor-extractprofilefromframe.htm
e3daligner-align.htm
e3dcomparer-compare.htm
e3dmatcher-match.htm
epointcloudmerger-calibrate.htm
epointcloudmerger-merge.htm
../../../../../Content/reference/eclassifier-classify.htm
../../../../../Content/reference/eunsupervisedsegmenter-apply.htm
../../../../../Content/reference/eregion-toimage.htm
../../../../../Content/reference/eregion-union.htm
../../../../../Content/reference/eregion-intersection.htm
../../../../../Content/reference/eregion-subtraction.htm
eqrcodereader-read.htm

509

Thread-safe basic types classes

Basic types Recommendations Restrictions

Basic pixel structures
EColor, EPeak, EISH, ELAB, ELCH,
ELSH, ELUV, EBW1, EBW8,
EBW8Path, EBW16, EBW16Path,
EBW32, EC15, EC16, EC24, EC24A,
EC24Path, EPath, ERGB, ERGBColor,
EVSH, EXYZ, EYIQ, EYSH, EYUV,
EDepth8, EDepth16 and EDepth32f

No

Pixel collection classes
EColorLookup,
EPseudoColorLookup, EPeakVector,
EBW8Vector, EBWHistogramVector,
EBW8PathVector, EBW16PathVector,
EBW16Vector, EBW32Vector,
EC24Vector, EPathVector,
EColorVector, EColorLookup and
EC24PathVector

No restrictions on
read-only access.

A single instance may not be
modified by several threads.
If a thread is modifying an
instance, no other thread can
access it.

Image classes
EImageBW1, EImageBW8,
EImageBW16, EImageBW32,
EImageC15, EImageC16,
EImageC24and EImageC24A

No restrictions on
read-only access.

A single instance may not be
modified by several threads.
If a thread is modifying an
instance, no other thread can
access it.

3D map classes
EDepthMap8, EDepthMap16 and
EDepthMap32f
EZMap8, EZMap16 and EZMap32f

No restrictions on
read-only access.

A single instance may not be
modified by several threads.
If a thread is modifying an
instance, no other thread can
access it.

Point cloud classes
EPointCloud

No restrictions on
read-only access.

A single instance may not be
modified by several threads.
If a thread is modifying an
instance, no other thread can
access it.

ROI classes
EROIBW1, EROIBW8, EROIBW16,
EROIBW32, EROIC15, EROIC16,
EROIC24and EROIC24A
ERegion, ERectangleRegion,
ECircleRegion, EEllipseRegion and
EPolygonRegion

No restrictions on
read-only access.

A single instance may not be
modified by several threads.
If a thread is modifying an
instance, no other thread can
access it.
Different ROI can be added or
removed from an image or
moved event if their parent
image is the same.
Consequently, different
threads can work on different
areas of an image possibly
changing in position and size
during the process.

Open eVision User Guide PART VII Advanced Programming

ecolor-struct.htm
epeak-struct.htm
eish-struct.htm
elab-struct.htm
elch-struct.htm
elsh-struct.htm
eluv-struct.htm
ebw1-struct.htm
ebw8-struct.htm
ebw8path-struct.htm
ebw16-struct.htm
ebw16path-struct.htm
ebw32-struct.htm
ec15-struct.htm
ec16-struct.htm
ec24-struct.htm
ec24a-struct.htm
ec24path-struct.htm
epath-struct.htm
ergb-struct.htm
ergbcolor-blue.htm
evsh-struct.htm
exyz-struct.htm
eyiq-struct.htm
eysh-struct.htm
eyuv-struct.htm
edepth8-struct.htm
edepth16-struct.htm
edepth32f-struct.htm
ecolorlookup-class.htm
epseudocolorlookup-class.htm
epeakvector-class.htm
ebw8vector-class.htm
ebwhistogramvector-class.htm
ebw8pathvector-class.htm
ebw16pathvector-class.htm
ebw16vector-class.htm
ebw32vector-class.htm
ec24vector-class.htm
epathvector-class.htm
ecolorvector-class.htm
ecolorlookup-class.htm
ec24pathvector-class.htm
eimagebw1-class.htm
eimagebw8-class.htm
eimagebw16-class.htm
eimagebw32-class.htm
eimagec15-class.htm
eimagec16-class.htm
eimagec24-class.htm
eimagec24a-class.htm
edepthmap8-class.htm
edepthmap16-class.htm
edepthmap32f-class.htm
ezmap8-class.htm
ezmap16-class.htm
ezmap32f-class.htm
epointcloud-class.htm
eroibw1-class.htm
eroibw8-class.htm
eroibw16-class.htm
eroibw32-class.htm
eroic15-class.htm
eroic16-class.htm
eroic24-class.htm
eroic24a-class.htm
eregion-class.htm
erectangleregion-class.htm
ecircleregion-class.htm
eellipseregion-class.htm
epolygonregion-class.htm

510

Thread-safe library classes

Library Recommendations Restrictions

EasyImage and EasyColor

Static methods from this class
(provided threading rules
applying to their arguments
are not broken).

No

EasyObject No

EasyMatch, EasyFind,
EasyQRCode and EasyOCR2
EMatcher, EMatchPosition,
EPatternFinder and
EFoundPattern

A single instance cannot be
accessed from several
threads.
Search field (read-only) can
be shared by different
objects.

EasyGauge and Shape
subclasses
Gauging classes
(EPointGauge, ELineGauge,
ERectangleGauge,
ECircleGauge,
EWedgeGauge), EWorldShape
and EFrameShape)

Can be attached, moved or
removed from different
threads, even in the same
hierarchy.
A single instance must not
be used by different
threads.

Basic geometric classes
(EFrame, EPoint, ECircle,
ELine, ERectangle and
EWedge)

Can be accessed from
different threads provided
that an instance is not used
by two different threads
simultaneously.

Gauging classes measuring
and processing operations

May be executed in different
threads with no blocking even
if these gauges perform their
measuring operations in the
same image.
Multiple CPU usage will be
optimal.

A single instance cannot be
read / modified by two
threads .

EWorldShape
A single instance cannot be
read / modified from
different threads.

EasyOCR and EasyBarCode
EOCR and EBarCode

Different instances may be
created and used from
different threads.

A single instance cannot be
accessed from several
threads.

EChecker Different instances may be
used from different threads.

EasyMatrixCode
EMatrixCodeReader

Multiple CPU usage will be
optimal.

A single instance cannot be
used by several threads.
A single MatrixCode cannot
be used in multiple
threads.

Open eVision User Guide PART VII Advanced Programming

easyimage-library.htm
easycolor-library.htm
easyobject-library.htm
easymatch-library.htm
easygauge-library.htm
../../../../../Content/04 Reference Manual/easyqrcode-library.htm
../../../../../Content/04 Reference Manual/easyocr2-library.htm
ematcher-class.htm
ematchposition-struct.htm
epatternfinder-class.htm
efoundpattern-class.htm
easygauge-library.htm
epointgauge-class.htm
elinegauge-class.htm
erectanglegauge-class.htm
ecirclegauge-class.htm
ewedgegauge-class.htm
eworldshape-class.htm
eframeshape-class.htm
eframe-class.htm
epoint-class.htm
ecircle-class.htm
eline-class.htm
erectangle-class.htm
ewedge-class.htm
eworldshape-class.htm
easyocr-library.htm
easybarcode-library.htm
eocr-class.htm
ebarcode-class.htm
echecker-class.htm
easymatrixcode-library.htm
ematrixcodereader-class.htm

511

2. EGrabberBridge - Using Images from
eGrabber Sources

See also: code snippets: EGrabberBridge

EGrabberBridge and EGrabber

EGrabberBridge is a user-friendly namespace of conversion classes. These classes perform the
direct conversion from a buffer originating from eGrabber, the API of eGrabber sources, to an
Open eVision data container.

See EGrabber documentation for more information about the eGrabber library.

EGrabber sources

The possible eGrabber sources are the following:
□ Euresys Coaxlink frame grabbers
□ Gigelink vision cameras

Prerequisites

● Open eVision 2.9 (or newer)

● With a Coaxlink frame grabber: Coaxlink 11.0.3 (or newer) or eGrabber 12.8 (or newer)

● With a Gigelink vision camera: eGrabber 12.8 (or newer)

Libraries

● To use EGrabberBridge in C++, include the main EGrabber headers before the Open eVision
header.

#include "EGrabber.h"
#include "FormatConverter.h"
#include "Open_eVision_X_Y.h"

● To use EGrabberBridge in C#, reference the Coaxlink assembly in addition to the Open
eVision .NET assembly.

Data containers

● EGrabberBridge is part of the main Open eVision header.

● The FormatConverter header is required only if you need to perform pixel format conversion
(see EGrabberBridge code snippets).

● Each class EGrabberBridge derives from a specific Open eVision data container.

The following classes are implemented:

Open eVision User Guide PART VII Advanced Programming

../../../../../Content/05 Resources/02 Code Snippets/01c EGrabberBridge/EGrabberBridge.htm
https://documentation.euresys.com/Products/COAXLINK/COAXLINK/en-us/Content/Using_EGrabber.htm
../../../../../Content/05 Resources/02 Code Snippets/01c EGrabberBridge/EGrabberBridge.htm

512

Base class EGrabberBridge class Corresponding GenAPI pixel
format

DepthMap16 EGrabberBridge::EGrabberDepthMap16 Coord3D_C16

DepthMap8 EGrabberBridge::EGrabberDepthMap8 Coord3D_C8

EImageBW16 EGrabberBridge::EGrabberImageBW16
Mono16

BayerGR16, BayerRG16
BayerGB16, BayerBG16

EImageBW8 EGrabberBridge::EGrabberImageBW8
Mono8

BayerGR8, BayerRG8
BayerGB8, BayerBG8

EImageC24 EGrabberBridge::EGrabberImageC24 BGR8

● These classes have 2 constructors:
□ 1 that requires only an EGrabber buffer descriptor (see EGrabber reference).
□ 1 that requires an EGrabber buffer descriptor and an additional FormatConverter

parameter used to perform the conversion from the pixel format of the buffer to the pixel
format of your EGrabberBridge class, if these are different (see Using EGrabberBridge
with Format Conversion code snippet).

● Scope and copy of the buffer:
□ Open eVision does not perform any copy of the buffer unless you require a pixel format

conversion.
□ The availability of the EGrabberBridge data container buffer depends on the EGrabber

buffer object or on the FormatConverter object if a copy is performed.

Examples and code snippets

● A sample (Using EGrabberBridge) illustrates the use of the EGrabberBridge classes using
callbacks. The sample is available in C++ and in C# and is present in its corresponding
samples solution under the EGrabberBridge name.

● A code snippet (Using EGrabberBridge with Format Conversion) is available to show how to
use EGrabberBridge to perform the inversion of an image acquired using EGrabber.

● Camera and GenTL parameters can be handled through the EGrabber Object setters and
getters (see EGrabber documentation).

● You can also test out parameters using the GenTL application (see GenTL documentation).

Open eVision User Guide PART VII Advanced Programming

edepthmap16-class.htm
egrabberdepthmap16-class.htm
edepthmap8-class.htm
egrabberdepthmap8-class.htm
eimagebw16-class.htm
egrabberimagebw16-class.htm
eimagebw8-class.htm
egrabberimagebw8-class.htm
eimagec24-class.htm
egrabberimagec24-class.htm
https://documentation.euresys.com/Products/COAXLINK/COAXLINK/en-us/Content/IOdoc/egrabber-reference/index.html
../../../../../Content/05 Resources/02 Code Snippets/01c EGrabberBridge/Using EGrabberBridge with Format Conversion.htm
../../../../../Content/05 Resources/02 Code Snippets/01c EGrabberBridge/Using EGrabberBridge with Format Conversion.htm
../../../../../Content/05 Resources/02 Code Snippets/01c EGrabberBridge/Using EGrabberBridge.htm
Using EGrabberBridge.htm
../../../../../Content/05 Resources/02 Code Snippets/01c EGrabberBridge/Using EGrabberBridge with Format Conversion.htm
https://documentation.euresys.com/Products/COAXLINK/COAXLINK/en-us/Content/04_eGrabber/programmers-guide/eGrabber/eGrabber.htm
https://documentation.euresys.com/Products/COAXLINK/COAXLINK/en-us/Content/04_eGrabber/programmers-guide/GenTL.htm

513

3. VimbaXBridge - Using Images from
VimbaX Sources

See also: code snippets: VimbaXBridge

VimbaXBridge and VimbaX

VimbaXBridge is a user-friendly namespace of conversion classes. These classes perform the
direct conversion from a buffer originating from VimbaX to an Open eVision data container.

Prerequisites

● Open eVision 23.12 (or newer)

● VimbaX 1.0 (or newer)

Libraries

● To use the VimbaXBridge in C++, include the main VimbaX headers before the Open eVision
header.

#include <VmbC/VmbC.h> or #include <VmbCPP/VmbCPP.h>
#include <VmbImageTransform/VmbTransform.h>
#include "Open_eVision.h" or #include "Easy.h"

Data containers

● VimbaXBridge is part of the main Open eVision header.

● The VmbImageTransform header is required only if you need to perform a pixel format
conversion.

● Each class VimbaXBridge derives from a specific Open eVision data container.

The following classes are implemented:

Base class VimbaXBridge class Corresponding GenAPI pixel
format

EImageBW16 VimbaXBridge::EVimbaXImageBW16
Mono16

BayerGR16, BayerRG16
BayerGB16, BayerBG16

EImageBW8 VimbaXBridge::EVimbaXImageBW8
Mono8

BayerGR8, BayerRG8
BayerGB8, BayerBG8

EImageC24 VimbaXBridge::EVimbaXImageC24 BGR8

Open eVision User Guide PART VII Advanced Programming

VimbaXBridge.htm
eimagebw16-class.htm
eimagebw8-class.htm
eimagec24-class.htm

514

● These classes have 2 constructors:
□ 1 that requires only an VimbaX C frame descriptor and an optional color transformation

directive.
□ 1 that requires only an VimbaX C++ frame descriptor and an optional color transformation

directive.

● Scope and copy of the buffer:

Open eVision does not perform any copy of the buffer unless:
□ You require a pixel format conversion.
□ The color transformation directive is set to Always, in which case a copy is always

performed.

Examples and code snippets

● A sample illustrates the use of the classes VimbaXBridge using callbacks. The sample is
available in C++ and is present in its corresponding samples solution under the VimbaXBridge
name.

● A code snippet (Using VimbaXBridge) is available to show how to use VimbaXBridge to perform
the inversion of an image acquired using VimbaX.

Open eVision User Guide PART VII Advanced Programming

Using VimbaXBridge.htm

515

4. Handling the Memory in .NET

The memory management in .NET

● .NET keeps its objects in a special part of the memory called the managed heap.

● If that managed heap becomes too full, a specialized process called the garbage collector
(GC) starts. This process cleans and removes from the memory the objects that are no longer
in use.

Open eVision specificity

● The managed objects of Open eVision are linked to C++ objects that are stored outside of the
managed memory space, in the heap memory of the DLL.

Open eVision User Guide PART VII Advanced Programming

516

● As the .NET side of Open eVision objects is significantly smaller than their C++ side:
□ The memory usage is usually (much) bigger than the GC computation.
□ The GC is unable to free memory when needed.
□ So, it is important, in a .NET application using Open eVision managed objects, to call

.Dispose() on them when you do not need them anymore.
This frees the C++ memory and allows the GC to work efficiently.

When to call .Dispose()

Call .Dispose() as soon as you don't need the object anymore.

Simple case

// Create finder
EPatterFinder finder = new EPatternFinder()
...
// Use finder
finder.Find(image);
...
// Finder has done its job, dispose
finder.Dispose();

TIP
However, be aware of a few tricky cases, especially on temporary values and
nested classes as illustrated below.

Temporary values

// Call EasyMatrixCode2 Reader
mxc2Reader.Read(image);

// Get the first MXC decoded string
string decodedString = mxc2Reader.ReadResults[0].DecodedString;

// Cleanup
mxc2Reader.Dispose();

● Regarding the above code example:
□ It seems pretty straightforward but mxc2Reader.ReadResults[0] returns a temporary

EMatrixCode object that you should dispose of too.
□ If called a few times, it does not pose any real problem.
□ If called a few thousand times, it can lead to memory issues.

Open eVision User Guide PART VII Advanced Programming

517

● The correct safe code is:

// Call EasyMatrixCode2 Reader
mxc2Reader.Read(image);

// Get the first MXC decoded string
EMatrixCode code = mxc2Reader.ReadResults[0];
string decodedString = code.DecodedString;

// Cleanup
code.Dispose();
mxc2Reader.Dispose();

Nested objects

Some of the Open eVision objects have other objects nested inside them. In that case, when you
use the nested object, it is important to dispose of it before its host.

● As an example, let's take the case of the EImageEncoder class of EasyObject:

// Set the segmentation method to GrayscaleDoubleThreshold
encoder.SegmentationMethod= ESegmentationMethod.GrayscaleDoubleThreshold;

// Configure the segmenter object
encoder.GrayscaleDoubleThresholdSegmenter.HighThreshold = 150;
encoder.GrayscaleDoubleThresholdSegmenter.LowThreshold = 50;

// Cleanup
encoder.Dispose();

□ GrayscaleDoubleThresholdSegmenter is a segmenter object nested inside the EImageEncoder
class.

□ Accessing it with the encoder.GrayscaleDoubleThresholdSegmenter.HighThreshold = 150
and the ...LowThreshold = 50 lines create a wrapper around that segmenter that you
should dispose to avoid any memory issue.

● The correct safe code is:

// Set the segmentation method to GrayscaleDoubleThreshold
encoder.SegmentationMethod= ESegmentationMethod.GrayscaleDoubleThreshold;

// Retrieve the segmenter object
EGrayscaleDoubleThresholdSegmenter segmenter = encoder.GrayscaleDoubleThresholdSegmenter;

// Configure the segmenter
segmenter.HighThreshold = 150;
segmenter.LowThreshold = 50;

// Cleanup
segmenter.Dispose();
encoder.Dispose();

NOTE
Always dispose of a nested object before its host object to avoid crashes of
your application.

Open eVision User Guide PART VII Advanced Programming

518

Good practice: use the using statement

An elegant way to manage the lifetime of a variable and to ensure that the disposal is done
correctly is to code with the using statement.

● Instead of writing your code as follows:

EMatrixCodeReader reader = new EMatrixCodeReader();
...
reader.Dispose();

● Use the using statement to ensure that .Dispose() is automatically called on reader when the
statement closes.

using (EMatrixCodeReader reader = new EMatrixCodeReader())
{

...
}

Function scope and limitation

void function()
{
EMatrixCodeReader reader = new EMatrixCodeReader();
...

}

In the above code, when the variable is released at the end of the function scope, you can
believe that it is not necessary to call .Dispose() on a corresponding object.

However, the object is not automatically disposed of at the end of the function, even if the
variable itself does not exist anymore.

● In practice, at the end of the function:
□ The object is released.
□ The GC can dispose of the object, but this is not immediate, as the GC only frees memory

when needed.
□ Since it may take some time, if the C++ memory is already quite full, it may not be

efficient enough.

● The correct safe code is:

void function()
{
EMatrixCodeReader reader = new EMatrixCodeReader();
...
reader.Dispose();

}

Open eVision User Guide PART VII Advanced Programming

519

Disposing function arguments

In .NET, the Open eVision objects are always passed as references, without copy. This means
that the object inside the function is the same one that has been passed to the function in the
calling code.

void UseImage(EImageBW8 imageInFunction)
{
imageInFunction.SetSize(128, 128);
...

}

void MainFunction()
{
EImageBW8 imageOutOfFunction = new EImageBW8();
UseImage(imageOutOfFunction);

}

● In the above example code:
□ imageInFunction and imageOutOfFunction are in fact the same image.
□ When you call .Dispose() on one image, both are disposed of.
□ Call .Dispose() on a function argument, but only when you don't need the object

anymore, neither inside nor outside the function.

TIP
To have a better view of an object lifetime, it is recommended, whenever
possible, to dispose of the objects in the same scope as their creation.

● The correct safe code is:

void UseImage(EImageBW8 imageInFunction)
{
imageInFunction.SetSize(128, 128);
...

}

void MainFunction()
{
EImageBW8 imageOutOfFunction = new EImageBW8();
UseImage(imageOutOfFunction);
imageOutOfFunction.Dispose();

}

Good practice: set the variables to null

● Set a variable to null after disposing of its object.
□ It is not mandatory but it is considered a good practice.
□ It unlinks the reference to the object, and so it informs the GC that the object is not used

anymore.
□ The GC is more susceptible to cleanup the object the next time it runs.

● Example:

// Cleanup
code.Dispose();
code = null;

Open eVision User Guide PART VII Advanced Programming

520

5. Using Open eVision in a DLL

Follow these guidelines to use Open eVision inside one or several DLLs. Ignoring this may lead
to random crashes usually due to incompatibilities between the memory representations and/or
the conflicting CRT.

NOTE
Until Open eVision 2.14.1, a bug in the method Easy::Terminate may lead to
a crash even if you follow these guidelines.
To avoid this, please use Open eVision 2.15 or later.

Depending on your configuration, implement one of the following scenarios. There are
presented in the order of increasing complexity:

1. A single DLL called from an application NOT compiled with Open eVision

Inside your DLL, it is mandatory to follow these rules:

● Call Easy::Initialize before any other call to Open eVision (with the exception of
Preconfiguration calls).

● Call Easy::Terminate when you do not need Open eVision anymore.

● Destroy any object created in the DLL.

● In the DLL API, do not expose any Open eVision object (otherwise the application is compiled
with Open eVision).

● If possible, use only standard C types.

In your application:

● Never use an Open eVision object as a global object.
□ Create the instance only after the DLL initialization.
□ You may use a global pointer or a reference to such an object.

● Never create an Open eVision object or make an Open eVision call inside DllMain.

2. A single DLL called from an application compiled with Open eVision

Inside your DLL and in the application, it is mandatory to follow these rules:

● Call Easy::Initialize before any other call to Open eVision (with the exception of
Preconfiguration calls).

● Call Easy::Terminate when you do not need Open eVision anymore.

● Destroy in the DLL any object created in the DLL.

● Destroy in the application any object created in the application.

Open eVision User Guide PART VII Advanced Programming

easy-terminate.htm
easy-initialize.htm
easy-terminate.htm
easy-initialize.htm
easy-terminate.htm

521

● In the DLL API, expose Open eVision objects only as pointers or references.
□ You may pass these pointers and references between the DLL and the application if and

only if the compilation and linking parameters are strictly the same between the DLL and
the application.

□ As this is difficult to achieve, avoid it as much as possible.
□ Be very careful when considering the lifetime of these objects.

● It is highly recommended to use the same exact version (all of Ma.Mi.Re.Bu) of Open eVision,
the DLL and the application.
□ This is mandatory if you pass objects around.

In your application:

● Never use an Open eVision object as a global object.
□ Create the instance only after the DLL initialization.
□ You may use a global pointer or a reference to such an object.

● Never create an Open eVision object or make an Open eVision call inside DllMain.

3. Multiple DLLs called from an application NOT compiled with Open eVision

Inside all your DLLs, it is mandatory to follow these rules:

● Call Easy::Initialize before any other call to Open eVision (with the exception of
Preconfiguration calls).

● Call Easy::Terminate when you do not need Open eVision anymore.

● Destroy in the same DLL any object created in a DLL.

● In the DLL API, expose Open eVision objects only as pointers or references.
□ You may pass these pointers and references between the DLLs if and only if the

compilation and linking parameters are strictly the same between the DLLs.
□ Be very careful when considering the lifetime of these objects.

● In a DLL API, do not expose any Open eVision object (otherwise the application is compiled
with Open eVision).

● If possible, use only standard C types.

● It is highly recommended to use the same exact version (all of Ma.Mi.Re.Bu) of Open eVision,
the DLL and the application.
□ This is mandatory if you pass objects around.

In your application:

● Never use an Open eVision object as a global object.
□ Create the instance only after the DLL initialization.
□ You may use a global pointer or a reference to such an object.

● Never create an Open eVision object or make an Open eVision call inside DllMain.

Open eVision User Guide PART VII Advanced Programming

easy-initialize.htm
easy-terminate.htm

522

4. Multiple DLLs called from an application compiled with Open eVision

Inside your DLLs and in the application, it is mandatory to follow these rules:

● Call Easy::Initialize before any other call to Open eVision (with the exception of
Preconfiguration calls).

● Call Easy::Terminate when you do not need Open eVision anymore.

● Destroy in the same DLL any object created in a DLL.

● Destroy in the application any object created in the application.

● In the DLL API, expose Open eVision objects only as pointers or references.
□ You may pass these pointers and references between the DLLs if and only if the

compilation and linking parameters are strictly the same between the DLLs.
□ You may pass these pointers and references between a DLL and the application if and

only if the compilation and linking parameters are strictly the same between the DLL and
the application.

□ As this is difficult to achieve, avoid it as much as possible.
□ Be very careful when considering the lifetime of these objects.

● It is highly recommended to use the same exact version (all of Ma.Mi.Re.Bu) of Open eVision,
the DLL and the application.
□ This is mandatory if you pass objects around.

In your application:

● Never use an Open eVision object as a global object.
□ Create the instance only after the DLL initialization.
□ You may use a global pointer or a reference to such an object.

● Never create an Open eVision object or make an Open eVision call inside DllMain.

Open eVision User Guide PART VII Advanced Programming

easy-initialize.htm
easy-terminate.htm

	PART I : Starting Up
	1. Installing Open eVision
	1.1. Installing on Windows
	1.2. Installing on Linux

	2. Managing the Licenses
	2.1. Activating the Licenses
	2.2. Selecting the Licensing Model

	3. Conventions
	3.1. Conventions for Strings
	3.2. Image Coordinate Systems
	3.3. Image and Depth Map Buffer

	4. Basic Operations
	4.1. Memory Allocation
	4.2. Loading a Pixel Container File
	4.3. Saving a Pixel Container File
	4.4. Drawing in Open eVision
	4.5. 3D Rendering of 2D Images
	4.6. Vector Types and Main Properties
	4.7. ROI Main Properties
	4.8. Arbitrarily Shaped ROI (ERegion)
	4.9. Flexible Masks
	4.10. Profile

	PART II : General Purpose Libraries
	1. EasyImage - Pre-Processing Images
	1.1. Intensity Transformation
	1.2. Thresholding
	1.3. Arithmetic and Logic
	1.4. Linear Filtering
	1.5. Non-Linear Filtering
	1.6. Geometric Transforms
	1.7. Noise Reduction and Estimation
	1.8. Scalar Gradient
	1.9. Vector Operations
	1.10. Canny Edge Detector
	1.11. Harris Corner Detector
	1.12. Overlay
	1.13. Operations on Interlaced Video Frames
	1.14. Flexible Masks in EasyImage
	1.15. Computing Image Statistics
	1.16. Fourier Transform
	1.17. Gabor Filter

	2. EasyColor - Pre-Processing Color Images
	2.1. Bayer Conversion
	2.2. LUT for Gain/Offset (Color)
	2.3. LUT for Color Calibration
	2.4. LUT for Color Balance

	PART III : Matching and Measurement Tools
	1. EasyObject - Analyzing Blobs
	1.1. Image Segmenters
	1.2. Image Encoder
	1.3. Holes Construction
	1.4. Normal vs. Continuous Mode
	1.5. Selecting and Sorting Blobs
	1.6. Object Template Matcher
	1.7. Advanced Features
	Computable Features
	Draw Coded Elements
	Flexible Masks in EasyObject

	2. EasyGauge - Measuring down to Sub-Pixel
	2.1. Workflow
	2.2. Gauge Definitions
	2.3. Find Transition Points Using Peak Analysis
	2.4. Find Shapes Using Geometric Models
	2.5. Gauge Manipulation: Draw, Drag, Plot, Group
	2.6. Calibration and Transformation
	2.7. Calibration Using EWorldShape
	2.8. Advanced Features
	2.9. Unwarp an Image

	3. EasyFind - Matching Geometric Patterns
	3.1. Introduction
	3.2. Purpose and Principles
	3.3. Workflow
	3.4. Using EasyFind
	3.5. Learn the Model from Images
	3.6. Learn the Model from Vectors
	3.7. Find Instances of the Model
	3.8. Open eVision Studio Tools
	3.9. Use Don't Care Areas in the Model
	3.10. Setting the Parameters
	3.11. Learning Parameters
	3.12. Finding Parameters
	3.13. Vector Model Parameters

	4. EasyMatch - Matching Area Patterns
	4.1. Workflow
	4.2. Learning Process
	4.3. Matching Process
	4.4. Advanced Features

	5. EChecker2 - Validating Golden Templates
	5.1. EChecker2
	5.2. Creating a Model
	5.3. Inspecting an Image

	PART IV : Text and Code Reading Tools
	1. List of Supported Codes
	2. ECodeReader - Unified Interface
	2.1. Reading Codes
	2.2. Reading Using a Grid

	3. EasyBarCode - Reading Bar Codes
	3.1. Reading Bar Codes
	3.2. Reading Mail Bar Codes

	4. EasyBarCode2 - Reading Bar Codes (Improved)
	4.1. EasyBarCode2 vs EasyBarCode
	4.2. Reading Bar Codes
	4.3. Grading Bar Codes
	4.4. Advanced Features

	5. EasyMatrixCode - Reading Matrix Codes
	5.1. EasyMatrixCode vs EasyMatrixCode2
	5.2. EasyMatrixCode
	Specifications
	Supported Symbols
	Workflow
	Reading a Matrix Code
	Learning a Matrix Code
	Computing the Print Quality
	Using GS1 Data Matrix Codes

	5.3. EasyMatrixCode2
	Specifications
	Supported Symbols
	Workflow
	Reading a Matrix Code
	Learning a Matrix Code
	Computing the Print Quality
	Using GS1 Data Matrix Codes
	Asynchronous Processing
	Reading Using a Grid
	Returning Unreadable Codes
	Advanced Parameters

	6. EasyQRCode - Reading QR Codes
	6.1. Workflow
	6.2. QR Codes Specifications
	6.3. Reading QR Codes

	7. EasyOCR - Reading Texts
	7.1. Workflow
	7.2. Learning Process
	7.3. Segmenting
	7.4. Recognition

	8. EasyOCR2 - Reading Texts (Improved)
	8.1. Introduction
	8.2. Purpose and Principles
	8.3. Workflow
	8.4. EasyOCR2 vs EasyOCR
	8.5. Using EasyOCR2
	8.6. Detect the Characters
	8.7. Set the Topology
	8.8. Learn the Characters
	8.9. Recognize the Characters
	8.10. Open eVision Studio Tools
	8.11. View Elements in Open eVision Studio
	8.12. View Results in Open eVision Studio
	8.13. Setting the Parameters
	8.14. Segmentation Parameters
	8.15. Detection Parameters
	8.16. No Topology Parameters

	9. Code Grading
	9.1. What Is Grading?
	9.2. How to Compute the Grading with Open eVision
	9.3. ISO/IEC 15416 for 1D Bar Codes
	9.4. ISO/IEC 15415 for Data Matrix and QR Codes
	9.5. ISO/IEC 29158 for Data Matrix and QR Codes
	9.6. SEMI T10-0701 for Data Matrix Codes
	9.7. Implementation Specifics and Limitations
	9.8. References

	PART V : Deep Learning Inspection Tools
	1. Deep Learning Tools - Inspecting Images with Deep Learning
	1.1. Purpose and Workflow
	1.2. Deep Learning Studio and Additional Resources
	1.3. Engines and Hardware Support (CPU/GPU)
	1.4. Managing the Dataset and the Annotations
	Images and Labels
	Adding Images
	Editing the Label of an Image
	Editing the Segmentation of an Image
	Editing the Objects of an Image
	ROI and Mask

	1.5. Managing the Dataset Splits
	1.6. Using Data Augmentation
	1.7. Training a Deep Learning Tool
	1.8. Using a Deep Learning Tool
	1.9. Benchmarking a Deep Learning Tool

	2. EasyClassify - Classifying Images
	2.1. Tool and Images
	2.2. Validating the Results
	2.3. Classifying New Images
	2.4. Benchmarks for EasyClassify

	3. EasySegment - Detecting and Segmenting Defects
	3.1. Unsupervised vs Supervised Modes
	3.2. EasySegment Unsupervised
	Tool and Configuration
	Validating the Results
	Applying the Tool to New Images
	Benchmarks for EasySegment Unsupervised

	3.3. EasySegment Supervised
	Tool and Configuration
	Using the Supervised Segmenter
	Evaluating the Results
	Benchmarks for EasySegment Supervised

	4. EasyLocate - Locating Objects and Defects
	4.1. Tool and Configuration
	4.2. Locating Objects
	4.3. Validating the Results
	4.4. Benchmarks for EasyLocate

	PART VI : 3D Processing Tools
	1. Easy3D - Using 3D Toolset
	1.1. Basic Concepts
	1.2. Static Methods
	1.3. Point Cloud
	Mapping Attributes
	Normals and Curvatures
	Coordinates Transformations
	Reducing a Point Cloud
	Managing Planes
	Aligning
	Using Spheres

	1.4. Mesh
	1.5. ZMap
	Generating a ZMap
	Creating a Point Cloud from a ZMap
	Managing the Coordinates

	1.6. 3D Viewer
	1.7. Photometric Stereo
	Photometric Stereo and Process
	Calibration
	Computation and Results
	Processing the Results with Open eVision Tools
	Optimizing your Setup
	Improving the Results

	2. Easy3DLaserLine - Laser Line Extraction and Calibration
	2.1. Laser Triangulation
	2.2. The Laser Line 3D Acquisition Pipeline
	2.3. Laser Line Extraction
	2.4. Software vs Hardware Line Extraction
	2.5. Calibration
	2.6. Object-Based Calibration Guidelines

	3. Easy3DObject - Extracting 3D Objects
	3.1. Purpose and Workflow
	3.2. Object Features
	3.3. Extracting and Using Objects
	3.4. Use Case - Inspecting a PCB

	4. Easy3DMatch - 3D Alignment and Comparison
	4.1. Purpose and Workflow
	4.2. Alignment (E3DAligner)
	4.3. Comparison (E3DComparer)
	4.4. Alignment and Comparison (E3DMatcher)
	4.5. 3D Sensor Fusion (EPointCloudMerger)

	PART VII : Advanced Programming
	1. Multicore Processing
	2. EGrabberBridge - Using Images from eGrabber Sources
	3. VimbaXBridge - Using Images from VimbaX Sources
	4. Handling the Memory in .NET
	5. Using Open eVision in a DLL

