
Open eVision
Matching and Measurement Tools

USER GUIDE

© EURESYS S.A. 2024 - Doc. D125ET-Using Matching and Measurement Tools .NET-Open eVision-24.02.0.1198 built on 2024-03-26

2

This documentation is provided with Open eVision 24.02.0 (doc build 1198).
www.euresys.com

This documentation is subject to the General Terms and Conditions stated on the website of EURESYS S.A.
and available on the webpage https://www.euresys.com/en/Menu-Legal/Terms-conditions. The article 10
(Limitations of Liability and Disclaimers) and article 12 (Intellectual Property Rights) are more specifically
applicable.

Open eVision User Guide

https://www.euresys.com/
https://www.euresys.com/en/Menu-Legal/Terms-conditions

3

Contents
1. Dealing with Pixel Containers and Files 6

1.1. Pixel Container Definition 6
1.2. Pixel Container Types 8
1.3. Supported Image File Types 9
1.4. Pixel and File Types Compatibility 10
1.5. Color Types 10

2. Conventions 11
2.1. Conventions for Strings 11
2.2. Image Coordinate Systems 11
2.3. Image and Depth Map Buffer 13

3. Basic Operations 15
3.1. Memory Allocation 15
3.2. Loading a Pixel Container File 16
3.3. Saving a Pixel Container File 17
3.4. Drawing in Open eVision 19
3.5. 3D Rendering of 2D Images 22
3.6. Vector Types and Main Properties 23
3.7. ROI Main Properties 27
3.8. Arbitrarily Shaped ROI (ERegion) 29
3.9. Flexible Masks 51
3.10. Profile 55

4. Matching and Measurement Tools 57
4.1. EasyObject - Analyzing Blobs 57

Image Segmenters 60
Image Encoder 63
Holes Construction 66
Normal vs. Continuous Mode 67
Selecting and Sorting Blobs 70
Object Template Matcher 71
Advanced Features 74

Computable Features 74
Draw Coded Elements 80
Flexible Masks in EasyObject 80

4.2. EasyGauge - Measuring down to Sub-Pixel 83
Workflow 83
Gauge Definitions 84
Find Transition Points Using Peak Analysis 91
Find Shapes Using Geometric Models 96
Gauge Manipulation: Draw, Drag, Plot, Group 98
Calibration and Transformation 100
Calibration Using EWorldShape 101
Advanced Features 104
Unwarp an Image 106

4.3. EasyFind - Matching Geometric Patterns 108
Introduction 108
Purpose and Principles 108
Workflow 110
Using EasyFind 112
Learn the Model from Images 112
Learn the Model from Vectors 115
Find Instances of the Model 117
Open eVision Studio Tools 121
Use "Don't Care Areas" in the Model 121

Open eVision User Guide

4

Setting the Parameters 123
Learning Parameters 123
Finding Parameters 128
Vector Model Parameters 136

4.4. EasyMatch - Matching Area Patterns 138
Workflow 138
Learning Process 139
Matching Process 141
Advanced Features 142

4.5. EChecker2 - Validating Golden Templates 143
EChecker2 143
Creating a Model 144
Inspecting an Image 146

5. Using Open eVision Studio 148
5.1. Selecting your Programming Language 148
5.2. Navigating the Interface 149
5.3. Running Tools on Images 150

Step 1: Selecting a Tool 150
Step 2: Opening an Image 151
Step 3: Managing ROIs 152
Step 4: Configuring the Tool 154
Step 5: Running the Tool and Checking Execution Time 155
Step 6: Using the Generated Code 157

5.4. Pre-Processing and Saving Images 158
6. Tutorials 160

6.1. EasyObject 160
Removing Non-Significant Objects After Image Segmentation 160
Detecting Differences Between Images Using Min-Max References 162
Detecting Printing Errors Using a Flexible Mask 163

6.2. EasyGauge 165
Measuring the Rotation Angle of an Object 165
Measuring the Diameter of a Circle 166
Measuring a Distorted Rectangle 168
Locating Points Regarding to a Coordinate System 170
Unwarping a Distorted Image 172

6.3. EasyFind 173
Detecting Highly-Degraded Occurrences of a Reference Model in Multiple Files 173
Improving the Score of Found Instances by Using "Don't Care Areas" 175

6.4. EasyMatch 178
Learning a Pattern and Creating an EasyMatch Model File 178
Matching a Pattern According to a Model File 178
Learning a Pattern According to an ROI 179
Improving the Score of Matching Instances by Using "Don't Care Areas" 181

7. Code Snippets 184
7.1. Basic Types 185

Loading and Saving Images 185
Interfacing Third-Party Images 185
Retrieving Pixel Values 186
ROI Placement 186
Vector Management 186
Exception Management 187

7.2. EasyObject 188
Constructing the Blobs 188

Image Encoder 188
Image Segmenter 188
Holes Extraction 189
Continuous Mode 190

Open eVision User Guide

5

Computing Blobs Features 190
Selecting and Sorting Blobs 191
Using Flexible Masks 192

Constructing Blobs 192
Generating a Flexible Mask from an Encoded Image 192
Generating a Flexible Mask from a Blob Selection 193

Using the Object Template Matcher 193
7.3. EasyGauge 195

Point Location 195
Line Fitting 195
Circle Fitting 196
Rectangle Fitting 197
Wedge Fitting 197
Gauge Grouping 198

Gauge Hierarchy 198
Complex Measurement 198

Calibration using EWorldShape 199
Calibration by Guesswork 199
Landmark-Based Calibration 200
Dot Grid-Based Calibration 200
Coordinates Transform 201
Image Unwarping 201

7.4. EasyFind 203
Pattern Learning 203
Setting Search Parameters 203
Pattern Finding and Retrieving Results 204
Learning Using a DXF File 204
Learning Using an EPolygonShape 205

7.5. EasyMatch 206
Pattern Learning 206
Setting Search Parameters 206
Pattern Matching and Retrieving Results 207
Pattern Learning with ERegion 207

Open eVision User Guide

6

1. Dealing with Pixel Containers and
Files

1.1. Pixel Container Definition

Image objects

The Open eVision image objects contain image data that represents rectangular images.

Each image object has a data buffer, accessible via a pointer, where pixel values are stored
contiguously, row by row.

Image main parameters

The rectangular array of pixels of an Open eVision image object is characterized by the EBaseROI
parameters:

● The Width is the number of pixels per row of the image.

● The Height is the number of rows of the image.

● The Size contains both the Width and the Height of the image.

The maximum size for the width and the height is:
□ 32,767 (215-1) in Open eVision 32-bit
□ 2,147,483,647 (231-1) in Open eVision 64-bit

● The Plane contains the number of color components.
□ For gray-level images: Plane = 1
□ For color images: Plane = 3

Open eVision User Guide

ebaseroi-class.htm
ebaseroi-width.htm
ebaseroi-height.htm
ebaseroi-setsize.htm
ebaseroi-width.htm
ebaseroi-height.htm
ebaseroi-planesperpixel.htm
ebaseroi-planesperpixel.htm
ebaseroi-planesperpixel.htm

7

Classes

The image and ROI classes derive from the abstract class EBaseROI and inherit all its properties.

Depth maps

A depth map represents a 3D object using a 2D grayscale image in which each pixel represents a
3D point.

□ The pixel coordinates are the X and Y coordinates of the point.
□ The gray value of the pixel is a representation of the Z coordinate of the point.

Open eVision User Guide

ebaseroi-class.htm

8

Point clouds

A point cloud is an unstructured set of 3D points representing discrete positions on the surface
of an object.

The point clouds are produced by various 3D scanning techniques, such as laser triangulation,
time of flight or structured lighting.

2 For details, see, for example, en.wikipedia.org/wiki/Point_cloud.

1.2. Pixel Container Types

2 For the enumeration of the available types, see "EImageType Enum" on page 1.

Images

Open eVision supports the following image types according to their pixel types.

Open
eVision

Genicam
PNFC Definition Class

BW1 Mono1 1-bit black and white image (8 pixels are stored in 1 byte). EImageBW1
BW8 Mono8 8-bit grayscale image (each pixel is stored in 1 byte). EImageBW8

BW16 Mono16 16-bit grayscale image (each pixel is stored in 2 bytes). EImageBW16
BW32 Mono32 32-bit grayscale image (each pixel is stored in 4 bytes). EImageBW32

C15 RGB5 15-bit color image (each pixel is stored in 2 bytes).
Compatible with Microsoft® Windows RGB15 color images. EImageC15

C16 RGB565 16-bit color image (each pixel is stored in 2 bytes).
Compatible with Microsoft® Windows RGB16 color images. EImageC16

C24 RGB8 24-bit color image (each pixel is stored in 3 bytes).
Compatible with Microsoft® Windows RGB24 color images. EImageC24

C24A BGRa8 32-bit color image (each pixel is stored in 4 bytes).
Compatible with Microsoft® Windows RGB32 color images. EImageC24A

TIP
Easy.GetBestMatchingImageType returns the best matching image type for a
given file on disk.

Open eVision User Guide

https://en.wikipedia.org/wiki/Point_cloud
../../../../../Content/reference/eimagetype-enum.htm
eimagebw1-class.htm
eimagebw8-class.htm
eimagebw16-class.htm
eimagebw32-class.htm
eimagec15-class.htm
eimagec16-class.htm
eimagec24-class.htm
eimagec24a-class.htm
easy-getbestmatchingimagetype.htm

9

Depth Maps

Open
eVision

Genicam
PNFC Definition Class

EDepth8 Coord3D_C8 8-bit depth map
(each pixel is stored in 1 byte as an integer) EDepthMap8

EDepth16 Coord3D_C16 16-bit depth map
(each pixel is stored in 2 bytes as a fixed point) EDepthMap16

EDepth32f Coord3D_C32 32-bit depth map
(each pixel is stored in 4 bytes as a float) EDepthMap32f

TIP
8 and 16-bit depth map values are stored in buffers compatible with the 2D
Open eVision images.

Point Clouds

Open
eVision Genicam PNFC Definition Class

Point Cloud Coord3D_ABC32 Set of points coordinates
(each coordinate is stored in 4 bytes as a float) EPointCloud

1.3. Supported Image File Types

2 For the enumeration of the available types, see "EImageFileType Enum" on page 1.

Type Description
BMP Uncompressed image data format (Windows Bitmap Format).

JPEG A lossy data compression standard issued by the Joint Photographic Expert Group
registered as ISO/IEC 10918-1. The compression irretrievably loses quality.

JFIF JPEG File Interchange Format.

JPEG-2000

A data compression standard issued by the Joint Photographic Expert Group registered as
ISO/IEC 15444-1 and ISO/IEC 15444-2.
Open eVision supports only lossy compression format, file format and code stream variants.
- The code stream describes the image samples.
- The file format includes meta-information such as the image resolution and color space.

PNG Lossless data compression method (Portable Network Graphics).

Serialized The Euresys proprietary image file format obtained from the serialization of Open eVision
image objects.

TIFF

The Tag Image File Format is currently controlled by Adobe Systems and uses the LibTIFF
third-party library to process images written for the 5.0 or 6.0 TIFF specification.
- The file save operations are lossless and save the images without any compression.
- The file load operations support all the TIFF variants listed in the LibTIFF specification.

Open eVision User Guide

edepthmap8-class.htm
edepthmap16-class.htm
edepthmap32f-class.htm
epointcloud-class.htm
../../../../../Content/reference/eimagefiletype-enum.htm

10

1.4. Pixel and File Types Compatibility

For the compatible combinations in the following table, the image integrity is preserved with no
data loss (except from JPEG and JPEG2000 with lossy compression).

The other combinations are not supported and an exception occurs if you use them.

Type BMP JPEG JPEG2000 PNG TIFF Serialized

BW1 ✓ – – ✓ ✓ ✓

BW8 ✓ ✓ ✓ ✓ ✓ ✓

BW16 – – ✓ ✓ ✓ 2 ✓

BW32 – – – – ✓ 2 ✓

C15 ✓ ✓ 1 ✓ 1 ✓ 1 ✓ 1 ✓

C16 ✓ ✓ 1 ✓ 1 ✓ 1 ✓ 1 ✓

C24 ✓ ✓ ✓ ✓ ✓ 1 ✓

C24A ✓ – – ✓ – ✓

Depth8 ✓ ✓ ✓ ✓ ✓ ✓

Depth16 – – ✓ ✓ ✓ 2 ✓

Depth32f – – – – – ✓

● ✓ 1 : C15 and C16 formats are automatically converted into C24 during the save operation.

● ✓ 2 : BW16 and BW32 are not supported by Baseline TIFF readers.

1.5. Color Types

Open eVision supports the following color systems:

EISH Intensity, Saturation, Hue
ELAB CIE Lightness, a*, b*
ELCH Lightness, Chroma, Hue
ELSH Lightness, Saturation, Hue
ELUV CIE Lightness, u*, v*
ERGB NTSC/PAL/SMPTE Red, Green, Blue
EVSH Value, Saturation, Hue
EXYZ CIE XYZ
EYIQ CCIR Luma, Inphase, Quadrature
EYSH CCIR Luma, Saturation, Hue
EYUV CCIR Luma, U Chroma, V Chroma

Open eVision User Guide

eish-struct.htm
elab-struct.htm
elch-struct.htm
elsh-struct.htm
eluv-struct.htm
ergb-struct.htm
evsh-struct.htm
exyz-struct.htm
eyiq-struct.htm
eysh-struct.htm
eyuv-struct.htm

11

2. Conventions

2.1. Conventions for Strings

Since Open eVision 23.08, the only character encoding used in the Open eVision libraries and
tools is UTF-8.

□ All methods taking std.string as argument expect an UTF-8 encoded std.string.
□ All methods returning a std.string always return it as UTF-8 encoded.

Backward compatibility on Windows

On Windows (but not on Linux), there is also a sanitization process to preserve backward
compatibility with older releases that didn't use the UTF-8 encoding.

● The content of each input string is checked to ensure it is UTF-8 encoded.

If it is not the case:
□ The string is assumed to be encoded using the current Windows Language for Non-

Unicode Programs parameter.
□ It is converted to UTF-8.

● The output strings of all libraries and tools are always UTF-8.

TIP
Despite the presence of this backward compatibility layer it is recommended
to use exclusively UTF-8 to interact with Open eVision on all platforms to
ensure the best performance and compatibility.

2.2. Image Coordinate Systems

The conventions below apply to all Open eVision functions and results.
□ Pixel coordinates are usually given as integer numbers.
□ Some results can use subpixel precision with real (floating point) numbers.
□ Some exceptions apply and are documented per library.

Open eVision User Guide

12

Integer coordinates

● The origin (0,0) of the coordinate system is the upper left pixel of the image.

● The lower right pixel is (width-1, height-1).

Real coordinates

● With floating point (x,y) coordinates, the origin is the upper left corner of the upper left pixel.

● The first pixel area ranges in [0,1[for X and Y axis.

● Coordinates greater or equal than the width or the height are outside the image.

Open eVision User Guide

13

2.3. Image and Depth Map Buffer

The pixels of an image and of an depth map are stored contiguously into a buffer, from left to
right and from top to bottom, in the Windows bitmap format (top-down DIB -device-
independent bitmap-).

The buffer address is a pointer to the address that contains the top left pixel of the image.

● Image buffer pitch
□ The alignment must be a multiple of 4 bytes.
□ The default pitch in Open eVision is 32 bytes for performance reasons.

Memory layout

Image format Layout Illustration

EImageBW1 Stores 8 pixels in 1 byte

EImageBW8
EDepthMap8 Store 1 pixel in 1 byte

EImageBW16 Stores 1 pixel in 2 bytes

EImageC15
Stores 1 pixel in 2 bytes
- Each color component is coded with 5 bits
- The 16th bit is unused

Open eVision User Guide

eimagebw1-class.htm
eimagebw8-class.htm
edepthmap8-class.htm
eimagebw16-class.htm
eimagec15-class.htm

14

Image format Layout Illustration

EImageC16
Stores 1 pixel in 2 bytes
- The colors 1 and 3 are coded with 5 bits
- The color 2 is coded with 6 bits

EDepthMap16 Stores 1 pixel in 2 bytes (fixed point format)

EImageC24 Stores 1 pixel in 3 bytes
- Each color component is coded with 8 bits

EImageC24A
Stores 1 pixel in 4 bytes.
- Each color component is coded with 8 bits
- The alpha channel is coded with 8 bits

EDepthMap32f Stores 1 pixel in 4 bytes (float format)

Open eVision User Guide

eimagec16-class.htm
edepthmap16-class.htm
eimagec24-class.htm
eimagec24a-class.htm
edepthmap32f-class.htm

15

3. Basic Operations

3.1. Memory Allocation

You can construct an image using an internal or an external memory allocation.

Internal memory allocation

The image object dynamically allocates and deallocates a buffer:
□ The memory management is transparent.
□ When the image size changes, a reallocation occurs.
□ When an image object is destroyed, the buffer is deallocated.

To declare an image with an internal memory allocation:

1. Construct an image object, for instance EImageBW8, either with width and height arguments or
using the SetSize function.

2. Access a given pixel using one of the multiple available functions.
For example, use GetImagePtr to retrieve a pointer to the first byte of the pixel at the given
coordinates.

External memory allocation

Control the buffer allocation or link a third-party image in the memory buffer to an Open
eVision image.

□ You must specify the image size and the buffer address.
□ When an image object is destroyed, the buffer is unaffected.

2 For details, see "Image and Depth Map Buffer" on page 13 and "Interfacing Third-Party
Images" on page 185.

Open eVision User Guide

eimagebw8-class.htm
ebaseroi-setsize.htm
ebaseroi-getimageptr.htm

16

To declare an image with an external memory allocation:

1. Declare an image object, for instance EImageBW8.

2. Create a suitably sized and aligned buffer.

3. Assign the buffer to the image with SetImagePtr.

NOTE
Using the copy constructor of the EImage object to copy the externally
allocated image does not copy the buffer.
The copied image points to the same external buffer as the original image.

NOTE
If your buffer rows are not aligned on 4 bytes, use
InitializeFromUnalignedBuffer instead of SetImagePtr.
Please note that this allocates the memory internally and copies the external
buffer into the internal one instead of using the external one.

3.2. Loading a Pixel Container File

Loading images and depth maps

● Use the method Load to load image data into an image object.
□ It has only the argument path that includes the path, filename and file name extension.
□ The file type is determined by the file format.
□ The destination image is automatically resized according to the size of the image on disk.

● Load throws an exception when:
□ The file type identification fails.
□ The file type is incompatible with the pixel type of the image object.

NOTE: When loading a BW16 image (with integer values) in a depth map, the fixed point
precision set in the depth map (0 by default) is left unchanged and used.

Loading point clouds

Use the following methods to load a point cloud saved in a specific format:
□ EPointCloud.Load: Open eVision proprietary file format.
□ EPointCloud.LoadCSV: CSV file.
□ EPointCloud.LoadOBJ: OBJ file.
□ EPointCloud.LoadPCD: PCD file (supported in ASCII and binary modes).
□ EPointCloud.LoadPLY: PLY file (supported only in ASCII mode).
□ EPointCloud.LoadXYZ: XYZ file.

Open eVision User Guide

eimagebw8-class.htm
ebaseroi-setimageptr.htm
eimagebw8-initializefromunalignedbuffer.htm
ebaseroi-setimageptr.htm
ebaseroi-load.htm
ebaseroi-load.htm
epointcloud-load.htm
epointcloud-loadcsv.htm
epointcloud-loadobj.htm
epointcloud-loadpcd.htm
epointcloud-loadply.htm
epointcloud-loadxyz.htm

17

3.3. Saving a Pixel Container File

Images and depth maps

● Use the method Save of an image or the method SaveImage of a depth map or a ZMap to save
image data of the object into a file.
□ The argument Path includes the path, file name and file name extension.
□ The argument Image File Type can be omitted. In this case, the file name extension is

used.

● Save throws an exception when:
□ The requested image file format is incompatible with the pixel type of the image object.
□ The file name extension is not supported while using the Auto file type selection method.

NOTE: When saving a 16-bit depth map, the fixed point precision is lost and the pixels are
considered as 16-bit integers.

TIP
The images with a width or a height larger than 65,536 must be saved in
Open eVision proprietary format.

Image File Type arguments

Argument Image file type

EImageFileType_Auto (Default) Automatically determined by the file name extension. See
below.

EImageFileType_
Euresys Open eVision Serialization

EImageFileType_Bmp Windows bitmap - BMP

EImageFileType_Jpeg JPEG File Interchange Format - JFIF

EImageFileType_
Jpeg2000 JPEG 2000 File format / Code Stream - JPEG2000

EImageFileType_Png Portable Network Graphics - PNG

EImageFileType_Tiff Tagged Image File Format - TIFF

If the argument is EImageFileType_Auto or is missing, the assigned image file type is:

File name extension
(case-insensitive) Assigned image file type

BMP Windows Bitmap format

JPEG or JPG JPEG File Interchange Format - JFIF

JP2 JPEG 2000 file format

J2K or J2C JPEG 2000 Code Stream

PNG Portable Network Graphics

TIFF or TIF Tagged Image File Format

Open eVision User Guide

ebaseroi-save.htm
edepthmap8-saveimage.htm
ebaseroi-save.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm

18

Saving JPEG and JPEG2000 lossy compressions

SaveJpeg and SaveJpeg2K specify the compression quality when saving compressed images. They
have two arguments:

□ Path: a string of characters including the path, filename, and file name extension.
□ Compression quality of the image file, an integer value in range [0: 100].

SaveJpeg saves image data using JPEG File Interchange Format – JFIF.
SaveJpeg2K saves image data using JPEG 2000 File format.

JPEG compression values

JPEG compression Description

JPEG_DEFAULT_QUALITY (-1) Default quality (*)

100 Superb image quality, lowest compression factor

75 Good image quality (*)

50 Normal image quality

25 Average image quality

10 Bad Image quality
(*) The default quality corresponds to the good image quality (75).

Representative JPEG 2000 compression quality values

JPEG 2000 compression Description

-1 Default quality (*)

1 Highest image quality, lowest compression factor

16 Good Image Quality (*) (16:1 rate)

512 Lowest image quality, highest compression factor
(*) The default quality corresponds to the good image quality (16:1 rate).

Saving point clouds

Use the following methods to save a point cloud in a specific format:
□ EPointCloud::Save: Open eVision proprietary file format.
□ EPointCloud::SaveCSV: CSV file.
□ EPointCloud::SaveOBJ: OBJ file.
□ EPointCloud::SavePCD: PCD file.
□ EPointCloud::SavePLY: PLY file.
□ EPointCloud::SaveXYZ: XYZ file.

TIP
The PCD format is supported in ASCII and binary modes.

Open eVision User Guide

ebaseroi-savejpeg.htm
ebaseroi-savejpeg2k.htm
ebaseroi-save.htm
ebaseroi-savejpeg2k.htm
epointcloud-save.htm
epointcloud-savecsv.htm
epointcloud-saveobj.htm
epointcloud-savepcd.htm
epointcloud-saveply.htm
epointcloud-savexyz.htm

19

3.4. Drawing in Open eVision

Introduction

● Whenever relevant, the Open eVision tools provide methods Draw to render their contents
and/or configuration. This is, for instance, the contents of an EImage or the frame of an EROI.

● A given tool can have multiple methods Draw, usually one for each feature available.

● The Open eVision methods Draw take an object DrawAdapter as their main parameter, and
additional parameters for zoom and pan:

Tool::Draw(EDrawAdapter* adapter, float zoomX, float zoomY, float panX, float panY);
□ zoomX and zommY are expressed in percentage, 1 is the default value and means no zoom.
□ It can be different in the horizontal and vertical directions (which can be useful in the

case of non-square pixels for instance).
□ If you don’t provide a vertical zoom, or set it to 0, it will be set identical to the horizontal

one.
□ panX and panY are expressed in pixels, but in image coordinates. It means that the value

you pass to panX and panY are multiplied by the corresponding zoom before being
applied.

Example: How to draw an image and a ROI frame on a window under Windows:

EImageBW8 image;
EROIBW8 roi;
EWindowsDrawAdapter adapter(windowHdc);
image.Draw(adapter);
roi.DrawFrame(adapter);

Graphical interactions

● You can configure some of the Open eVision tools graphically and use the provided methods
to put your configuration in place.

● Graphical Interaction-enabled tools provide special parameters to some of their methods
Draw to draw handles on the tool representation.

● To capture the user interactions with those handles, these tools also provide two specialized
methods:
□ HitTest detects if a handle is under the mouse when providing it with the current cursor

coordinates. You typically use this test during a mouse button down event.
□ Drag moves the detected handle to the given coordinates. This in turn modifies the tool

configuration to match the new handle position. Drag is typically associated with the
mouse button up event.

NOTE: HitTest and Drag use the same zoom and pan parameters as Draw. You must set them
the same way (with the same values) to achieve the desired result.

Draw adapters

● The draw adapters are objects that, in addition to representing the context in which to draw,
provide methods to draw the selected primitives in that context.

● They are initialized by providing the targeted context to the constructor.

Open eVision User Guide

20

● Some of the drawing methods provided by the draw adapters are (but are not limited to):
□ EDrawAdapter::Line / Lines draws one or more lines on the context
□ EDrawAdapter::Rectangle / FilledRectangle draws a rectangle, filled or not, on the context
□ EDrawAdapter::Ellipse / FilledEllipse draws an ellipse, filled or not, in the context
□ EDrawAdapter::Text / BackedText renders a text in the context, with or without background
□ EDrawAdapter::Image renders an image in the context

● For more information about the drawing primitives provided by the draw adapters, please
refer to the reference documentation.

● To set the color of the primitives, provide a pen and/or a brush and use the methods
EDrawAdapter::SetPen and EDrawAdapter::SetBrush.
□ If you do not provide a pen and/or a brush, the default colors are used.

● The set the font of the text, provide a font with the method EDrawAdapter::SetFont.

Standard draw adapters

Open eVision provides a set of off-the-shelf draw adapters that you can use in different
situations:

● EWindowsDrawAdapter allows to draw on Windows systems. To draw on a window, provide the
window’s HDC to its constructor, or, to draw in an EImage buffer, provide that EImage.
□ It relies on GDI and GDI+ to provide its services.
□ This is the preferred way to draw on Windows.

● QtDrawAdapter allows you to draw using Qt on a QPainter context. To draw on a QPainter
context, provide the QPainter to the constructor, or, to draw on an EImage buffer, provide
that EImage.
□ You can use the QtDrawAdapter both on Windows and Linux.
□ This is the preferred way to draw on Linux.

NOTE: QtDrawAdapter is using an external resource (namely Qt) and as such is provided as
source code in its own header rather than in the global Open eVision header. For
more information about external and custom draw adapters, see below.

● EGenericDrawAdapter is a draw adapter that can only render on an EImage, but it can do it in a
consistent manner on all supported OSes.
□ It is available on both Windows and Linux.

Drawing in an EImage

● As said above, you can draw in an EImage (usually an EImageBW8 or EImageC24) by initializing a
draw adapter with that image and using either the Open eVision methods Draw or the draw
adapter drawing primitives:

EImageBW8 image;
EMatrixCode code;
EWindowsDrawAdapter adapter(image);
code.DrawPosition(adapter);

Open eVision User Guide

edrawadapter-line.htm
edrawadapter-rectangle.htm
edrawadapter-filledrectangle.htm
edrawadapter-ellipse.htm
edrawadapter-filledellipse.htm
edrawadapter-text.htm
edrawadapter-backedtext.htm
edrawadapter-image.htm
edrawadapter-pen.htm
edrawadapter-brush.htm
edrawadapter-font.htm
ewindowsdrawadapter-class.htm
egenericdrawadapter-class.htm

21

Custom draw adapters

● If you require a draw adapter to render in a specific, unsupported type of context (for ex. a
DirectDraw surface, an OpenGL context...), you can build your own draw adapter by deriving
from the interface EExternalDrawAdapter provided by Open eVision and implementing all the
required methods.

● Once this work is done, you will be able to use your new, custom draw adapter in the same
way as the off-the-shelf ones, taking advantage of Open eVision methods Draw.

● The provided QtDrawAdapter is a draw adapter built using that mechanism, you can use it as a
reference on how to build a custom draw adapter. The sources of the QtDrawAdapter are
bundled with the Qt Samples.

Enhanced Image Display

When the enhanced image display mode is enabled, a high-quality interpolation method is used
to display the resized images.

□ Set Easy::SetEnableEnhancedImageDisplay(bool) to TRUE, to enable the enhanced image
display.

□ By default, this option is disabled.
□ Enhanced image display has a significant impact on display speed, the drawing can be 4x

to 10x slower.
□ The drawing of images with EBW8Vector or EC24Vector used as Look Up Table doesn't

support enhanced image display

EnhancedImageDisplay disabled (left) and enabled (right)

□ Open eVision Studio exposes this option in View > Option dialog:

Open eVision User Guide

eexternaldrawadapter-class.htm
easy-enableenhancedimagedisplay.htm

22

3.5. 3D Rendering of 2D Images

These images are viewed by rotating them around the X-axis, then the Y-axis.

Gray 3D rendering

Easy::Render3D prepares a 3-dimensional rendering where gray-level values are altitudes.
Magnification factors in the three directions (X = width, Y = height and Z = depth) can be given.
The rendered image appears as independent dots whose size can be adjusted to make the
surface more or less opaque.

3D rendering

Color histogram 3D rendering

Easy::RenderColorHistogram prepares a 3-dimensional rendering of a color image histogram.
The pixels are drawn in the RGB space (not XY-plane) to show clustering and dispersion of RGB
values.
This function can process pixels in other color systems (using EasyColor to convert), but the raw
RGB image is required to display the pixels in their usual colors.

Magnification factors in all three directions (X = red, Y = green and Z = blue) can be given.

Color histogram rendering

Open eVision User Guide

easy-render3d.htm
easy-rendercolorhistogram.htm

23

3.6. Vector Types and Main Properties

A vector is a one-dimensional array of pixels (taken from an image profile or contour).

EVector is the base class for all vectors. It contains all non-type-specific methods, mainly for
counting elements and serialization.

Profile in a C24 image, RGB values plot along profile and RGB values array (EC24Vector)

A vector manages an array of elements. Memory allocation is transparent, so vectors can be
resized dynamically. Whenever a function uses a vector, the vector type, size and structure are
automatically adjusted to suit the function needs.

The use of vectors is quite straightforward:

● To create a vector of the appropriate type:
□ Use its constructor and preallocate elements if required.

● To fill a vector with values:
□ Call the EVector::Empty member to empty it.
□ Call the EC24Vector::AddElement member to add elements one by one.
□ Use the indexing to access any element.

● To access a vector element, either for reading or writing:
□ Use the brackets operator EC24Vector::operator[].

● To determine the current number of elements:
□ Use the EVector::NumElements member.

● To draw the vector:
□ A pixel vector is a plot of the element values as a function of the element index, so its

graphical appearance depends on its type. You can draw a vector in a window. For
legibility, the drawing should appear on a neutral background.

□ Drawing is done in the device context associated to the desired window. By default,
curves are drawn in blue and annotations in black. You can define: graphicContext, width,
height, originX, originY, color0, color1 and color2.

□ The EC24Vector has three curves drawn instead of one, each corresponding to a color
component. By default the red, blue and green pens are used.

Open eVision User Guide

evector-class.htm
ec24vector-class.htm
evector-empty.htm
ec24vector-addelement.htm
ec24vector-operator_index.htm
evector-numelements.htm
ec24vector-class.htm

24

Vector types

● EBW8Vector: a sequence of gray-level pixel values, often extracted from an image profile
(used by EasyImage::Lut, EasyImage::SetupEqualize, EasyImage::ImageToLineSegment,
EasyImage::LineSegmentToImage, EasyImage::ProfileDerivative...).

Graphical representation of an EBW8Vector (see Draw method)

● EBW16Vector: a sequence of gray-level pixel values, using an extended range (16 bits), mainly
for intermediate computations.

Graphical representation of an EBW16Vector

● EBW32Vector: a sequence of gray-level pixel values, using an extended range (32 bits), mainly
for intermediate computations
(used in EasyImage::ProjectOnARow, EasyImage::ProjectOnAColumn, ...).

Graphical representation of an EBW32Vector

Open eVision User Guide

ebw8vector-class.htm
easyimage-lut.htm
easyimage-setupequalize.htm
easyimage-imagetolinesegment.htm
easyimage-linesegmenttoimage.htm
easyimage-profilederivative.htm
ebw8vector-class.htm
ebw8vector-draw.htm
ebw16vector-class.htm
ebw16vector-class.htm
ebw32vector-class.htm
easyimage-projectonarow.htm
easyimage-projectonacolumn.htm
ebw32vector-class.htm

25

● EC24Vector: a sequence of color pixel values, often extracted from an image profile
(used by EasyImage::ImageToLineSegment, EasyImage::LineSegmentToImage,
EasyImage::ProfileDerivative, ...).

Graphical representation of an EC24Vector

● EBW8PathVector: a sequence of gray-level pixel values, extracted from an image profile or
contour, with corresponding pixel coordinates
(used by EasyImage::ImageToPath, EasyImage::PathToImage, ...).

Graphical representation of an EBW8PathVector (see Draw method)

● EBW16PathVector: a sequence of gray-level pixel values, extracted from an image profile or
contour, with corresponding pixel coordinates
(used by EasyImage::ImageToPath, EasyImage::PathToImage, ...).

Graphical representation of an EBW16PathVector (see Draw method)

Open eVision User Guide

ec24vector-class.htm
easyimage-imagetolinesegment.htm
easyimage-linesegmenttoimage.htm
easyimage-profilederivative.htm
ec24vector-class.htm
ebw8pathvector-class.htm
easyimage-imagetopath.htm
easyimage-pathtoimage.htm
ebw8pathvector-class.htm
ebw8pathvector-draw.htm
ebw16pathvector-class.htm
easyimage-imagetopath.htm
easyimage-pathtoimage.htm
ebw16pathvector-class.htm
ebw16pathvector-draw.htm

26

● EC24PathVector: a sequence of color pixel values, extracted from an image profile or contour,
with corresponding pixel coordinates
(used by EasyImage::ImageToPath, EasyImage::PathToImage, ...).

Graphical representation of an EC24PathVector (see Draw method)

● EBWHistogramVector: a sequence of frequency counts of pixels in a BW8 or BW16 image
(used by EasyImage::IsodataThreshold, EasyImage::Histogram, EasyImage::AnalyseHistogram,
EasyImage::SetupEqualize, ...).

Graphical representation of an EBWHistogramVector (see Draw method)

● EPathVector: a sequence of pixel coordinates. The corresponding pixels need not be
contiguous
(used by EasyImage::PathToImage and EasyImage::Contour).

Graphical representation of an EPathVector (see Draw method)

● EPeakVector: peaks found in an image profile
(used by EasyImage::GetProfilePeaks).

● EColorVector: a description of colors
(used by EasyColor::ClassAverages and EasyColor::ClassVariances).

Open eVision User Guide

ec24pathvector-class.htm
easyimage-imagetopath.htm
easyimage-pathtoimage.htm
ec24pathvector-class.htm
ec24pathvector-draw.htm
ebwhistogramvector-class.htm
easyimage-isodatathreshold.htm
easyimage-histogram.htm
easyimage-analysehistogram.htm
easyimage-setupequalize.htm
ebwhistogramvector-class.htm
ebwhistogramvector-draw.htm
epathvector-class.htm
easyimage-pathtoimage.htm
easyimage-contour.htm
epathvector-class.htm
epathvector-draw.htm
epeakvector-class.htm
easyimage-getprofilepeaks.htm
ecolorvector-class.htm
easycolor-classaverages.htm
easycolor-classvariances.htm

27

3.7. ROI Main Properties

ROIs are defined by a width, a height, and origin x and y coordinates.
The origins are specified with respect to the top left corner in the parent image or ROI.
The ROI must be wholly contained in its parent image.
The processing/analysis time of a BW1 ROI is faster if OrgX and Width are multiples of 8.

Save and load

You can save or load an ROI as a separate image, to be used as if it was a full image. The ROIs
perform no memory allocation at all and never duplicate parts of their parent image, the parent
image provides them with access to its image data.

The image size of the new file must match the size of the ROI being loaded into it. The image
around the ROI remains unchanged.

ROI Classes

An Open eVision ROI inherits parameters from the abstract class EBaseROI.

There are several ROI types, according to their pixel type. They have the same characteristics as
the corresponding image types.

□ EROIBW1
□ EROIBW8
□ EROIBW16
□ EROIBW32
□ EROIC15
□ EROIC16
□ EROIC24
□ EROIC24A

Attachment

An ROI must be attached to a parent (image/ROI) with parameters that set the parent, position
and size, and these links are updated transparently, avoiding dangling pointers.
A normal image cannot be attached to another image or ROI.

Nesting

Set and Get functions change or query the width, height and position of the origin of an ROI,
with respect to its immediate or topmost parent image.

An image may accommodate an arbitrary number of ROIs, which can be nested in a hierarchical
way. Moving the ROI also moves the embedded ROIs accordingly. The image/ROI classes provide
several methods to traverse the hierarchy of ROIs associated with an image.

Open eVision User Guide

ebaseroi-width.htm
ebaseroi-height.htm
ebaseroi-orgx.htm
ebaseroi-orgy.htm
ebaseroi-orgx.htm
ebaseroi-width.htm
ebaseroi-save.htm
ebaseroi-load.htm
ebaseroi-class.htm
eroibw1-class.htm
eroibw8-class.htm
eroibw16-class.htm
eroibw32-class.htm
eroic15-class.htm
eroic16-class.htm
eroic24-class.htm
eroic24a-class.htm
ebaseroi-attach.htm

28

Nested ROIs: Two sub-ROIs attached to an ROI, itself attached to the parent image

Cropping

CropToImage crops an ROI which is partially out of its image. The resized ROI never grows.
An exception is thrown if a function attempts to use an ROI that has limits that extend outside
of the parents.

NOTE
(In Open eVision 1.0.1 and earlier, an ROI was silently resized or repositioned
when placed out of its image and sometimes grew. If ROI limits extended
outside parents, they were silently resized to remain within parent limits.)

Resizing and moving

ROIs can easily be resized and positioned by two functions and dragging handles:

● EBaseROI.Drag adjusts the ROI coordinates while the cursor moves.

● EBaseROI.HitTest informs if the cursor is placed over a dragging handle.
□ Once the handle is known, the cursor shape can be changed by an OnSetCursor MFC event

handler. HitTest is unpredictable if called while dragging is in progress.
□ HitTest can be used in an OnSetCursor MFC event handler to change the cursor shape, or

before a dragging operation like OnLButtonDown,
(or EvSetCursor and EvLButtonDown in Borland/CodeGear's OWL)
(or FormMouseMove and FormMouseDown in Borland/CodeGear's VCL).

Open eVision User Guide

ebaseroi-croptoimage.htm
ebaseroi-drag.htm
ebaseroi-hittest.htm

29

3.8. Arbitrarily Shaped ROI (ERegion)

See also: example: Inspecting Pads Using Regions / code snippets: ERegion

Regions or arbitrarily shaped ROI

You define and use regions of interest (ROI) to restrict the area processed with your vision tool
and to reduce and optimize the processing time.

In Open eVision:
□ An ROI (EROIxxx class) designates a rectangular region of interest.
□ A region (ERegion class) designates an arbitrarily shaped ROI. With regions, you can

determine precisely which part of the image, down to a single pixel, is used for your
processing.

Currently, only the following Open eVision methods support ERegions:

Open eVision User Guide

../../../../../Content/05 Resources/03 2D Application Examples/Inspecting Pads Using Regions.htm
../../../../../Content/05 Resources/02 Code Snippets/01b ERegion/ERegion.htm
eregion-class.htm
eregion-class.htm

30

Library Method
EasyImage EasyImage::Threshold

Open eVision User Guide

easyimage-threshold.htm

31

Library Method
EasyImage::AutoThreshold

Open eVision User Guide

easyimage-autothreshold.htm

32

Library Method
EasyImage::Copy

Open eVision User Guide

easyimage-copy.htm

33

Library Method
EasyImage::ConvolKernel

Open eVision User Guide

easyimage-convolkernel.htm

34

Library Method
EasyImage::ConvolSymmetricKernel

Open eVision User Guide

easyimage-convolsymmetrickernel.htm

35

Library Method
EasyImage::ConvolLowpass1

Open eVision User Guide

easyimage-convollowpass1.htm

36

Library Method
EasyImage::ConvolLowpass2

Open eVision User Guide

easyimage-convollowpass2.htm

37

Library Method
EasyImage::ConvolLowpass3

Open eVision User Guide

easyimage-convollowpass3.htm

38

Library Method
EasyImage::ConvolUniform

Open eVision User Guide

easyimage-convoluniform.htm

39

Library Method
EasyImage::ConvolGaussian

Open eVision User Guide

easyimage-convolgaussian.htm

40

Library Method
EasyImage::ConvolHighpass1

Open eVision User Guide

easyimage-convolhighpass1.htm

41

Library Method
EasyImage::ConvolHighpass2

Open eVision User Guide

easyimage-convolhighpass2.htm

42

Library Method
EasyImage::ConvolGradientX

Open eVision User Guide

easyimage-convolgradientx.htm

43

Library Method
EasyImage::ConvolGradientY

Open eVision User Guide

easyimage-convolgradienty.htm

44

Library Method
EasyImage::ConvolGradient
EasyImage::ConvolSobelX
EasyImage::ConvolSobelY
EasyImage::ConvolSobel
EasyImage::ConvolPrewittX
EasyImage::ConvolPrewittY
EasyImage::ConvolPrewitt
EasyImage::ConvolRoberts
EasyImage::ConvolLaplacianX
EasyImage::ConvolLaplacianY
EasyImage::ConvolLaplacian8
EasyImage::DilateBox
EasyImage::ErodeBox
EasyImage::OpenBox
EasyImage::CloseBox
EasyImage::WhiteTopHatBox
EasyImage::BlackTopHatBox
EasyImage::MorphoGradientBox
EasyImage::ErodeDisk
EasyImage::DilateDisk
EasyImage::OpenDisk
EasyImage::CloseDisk
EasyImage::WhiteTopHatDisk
EasyImage::BlackTopHatDisk
EasyImage::MorphoGradientDisk
EasyImage::Median
EasyImage::ScaleRotate
EasyImage::DoubleThreshold
EasyImage::Histogram
EasyImage::Area
EasyImage::AreaDoubleThreshold
EasyImage::BinaryMoments
EasyImage::WeightedMoments
EasyImage::GravityCenter
EasyImage::PixelCount
EasyImage::PixelMax
EasyImage::PixelMin
EasyImage::PixelAverage
EasyImage::PixelStat
EasyImage::PixelVariance
EasyImage::PixelStdDev
EasyImage::PixelCompare
EasyImage::ImageToLineSegment
EasyImage::ImageToPath

Open eVision User Guide

easyimage-convolgradient.htm
easyimage-convolsobelx.htm
easyimage-convolsobely.htm
easyimage-convolsobel.htm
easyimage-convolprewittx.htm
easyimage-convolprewitty.htm
easyimage-convolprewitt.htm
easyimage-convolroberts.htm
easyimage-convollaplacianx.htm
easyimage-convollaplaciany.htm
easyimage-convollaplacian8.htm
easyimage-dilatebox.htm
easyimage-erodebox.htm
easyimage-openbox.htm
easyimage-closebox.htm
easyimage-whitetophatbox.htm
easyimage-blacktophatbox.htm
easyimage-morphogradientbox.htm
easyimage-erodedisk.htm
easyimage-dilatedisk.htm
easyimage-opendisk.htm
easyimage-closedisk.htm
easyimage-whitetophatdisk.htm
easyimage-blacktophatdisk.htm
easyimage-morphogradientdisk.htm
easyimage-median.htm
easyimage-scalerotate.htm
easyimage-doublethreshold.htm
easyimage-histogram.htm
easyimage-area.htm
easyimage-areadoublethreshold.htm
easyimage-binarymoments.htm
easyimage-weightedmoments.htm
easyimage-gravitycenter.htm
easyimage-pixelcount.htm
easyimage-pixelmax.htm
easyimage-pixelmin.htm
easyimage-pixelaverage.htm
easyimage-pixelstat.htm
easyimage-pixelvariance.htm
easyimage-pixelstddev.htm
easyimage-pixelcompare.htm
easyimage-imagetolinesegment.htm
easyimage-imagetopath.htm

45

Library Method

Easy3D

EDepthMapToMeshConverter::Convert
EDepthMapToPointCloudConverter::Convert
EStatistics::ComputePixelStatistics
EStatistics::ComputeStatistics
E3DObjectExtractor::Extract
EZMapToPointCloudConverter::Convert

EasyObject EImageEncoder::Encode

EasyFind
EPatternFinder::Find
EPatternFinder::Learn

EasyOCR2
EOCR2::Read
EOCR2::Detect

EasyGauge

EPointGauge::Measure
ELineGauge::Measure
ERectangleGauge::Measure
ECircleGauge::Measure
EWedgeGauge::Measure

EasyMatch
EMatcher::LearnPattern
EMatcher::Match

EasyQRCode EQRCodeReader::SetSearchField
EQRCodeReader::Read

TIP
In the future Open eVision releases, the support of ERegions will be gradually
extended to all operators.

Creating regions

Open eVision offers multiple ways to create regions, depending on the shape you need:

The ERegion is the base class for all regions and the most versatile. It encodes a region using a
Run-Length Encoded (RLE) representation.

□ The RLE representation of a region is made of runs (horizontal, 1-pixel high slices).
□ The runs are stored in the form of their ordinate, starting abscissa and length.

Run-Length Encoding of a circle-shaped region

Open eVision User Guide

edepthmaptomeshconverter-convert.htm
edepthmaptopointcloudconverter-convert.htm
estatistics-computepixelstatistics.htm
estatistics-computestatistics.htm
../../../../../Content/reference/e3dobjectextractor-extract.htm
../../../../../Content/reference/ezmaptopointcloudconverter-convert.htm
eimageencoder-encode.htm
epatternfinder-find.htm
../../../../../Content/reference/epatternfinder-learn.htm
../../../../../Content/reference/eocr2-read.htm
../../../../../Content/reference/eocr2-detect.htm
../../../../../Content/reference/epointgauge-measure.htm
../../../../../Content/reference/elinegauge-measure.htm
../../../../../Content/reference/erectanglegauge-measure.htm
../../../../../Content/reference/ecirclegauge-measure.htm
../../../../../Content/reference/ewedgegauge-measure.htm
../../../../../Content/reference/ematcher-learnpattern.htm
../../../../../Content/reference/ematcher-match.htm
eqrcodereader-searchfield.htm
eqrcodereader-read.htm
eregion-class.htm

46

To create a region, either:
□ Use one of the geometry-based region classes.
□ Use the result of another tool, such as EasyFind, EasyMatch or EasyObject.
□ Combine or modify other regions.
□ Use a mask image.
□ Directly provide the list of runs.

Geometry-based regions

Geometry based regions are specialized classes of regions that are encompassed in simple
geometries. Open eVision currently provides classes based on a rectangle, a circle, an ellipse or
a polygon.

Use these classes to setup geometric regions and modify them with translation, rotation and
scaling. The transformation operators return new regions, leaving the source object unchanged.

● ERectangleRegion
□ The contour of an ERectangleRegion class is a rectangle.
□ Define it using its center, width, height and angle.
□ Alternatively, use an ERectangle instance, such as one returned by an ERectangleGauge

instance.

Rectangle region separating a bar code from the background

● ECircleRegion
□ The contour of an ECircleRegion class is a circle.
□ Define it using its center and radius or 3 non-aligned points.
□ Alternatively, use an ECircle instance, such as one returned by an ECircleGauge instance.

Circle region encompassing the useful part of an X-Ray image

Open eVision User Guide

erectangle-class.htm
erectangle-class.htm
erectangle-class.htm
erectanglegauge-class.htm
ecircleregion-class.htm
ecircleregion-class.htm
ecircle-class.htm
ecirclegauge-class.htm

47

● EEllipseRegion
□ The contour of an EEllipseRegion class is an ellipse.
□ Define it using its center, long and short radius and angle.

Ellipse region encompassing a waffle

● EPolygonRegion
□ The contour of an EPolygonRegion class is a polygon.
□ It is constructed using the list of its vertices.

Polygon region encompassing a key

Using the result of other tools

The ERegion class provides a set of specialized constructors to create regions from the results of
another tool.

In a tool chain, these constructors restrict the processing of a tool to the area issued from the
previous tool.

Open eVision User Guide

eellipseregion-class.htm
eellipseregion-class.htm
epolygonregion-class.htm
epolygonregion-class.htm
eregion-class.htm

48

Open eVision provides constructors for the following tools:
□ EasyFind: EFoundPattern
□ EasyMatch: EMatchPosition
□ EasyGauge: ECircle and ERectangle
□ EasyObject: ECodedElement

TIP
When compatible, Open eVision also provides specialized constructors for
the geometry-based regions. For instance, ECircleRegion provides a
constructor using an ECircle.

Combining regions

Use the following operations to create a new region by combining existing regions:

● Union
□ The ERegion::Union(const ERegion&, const ERegion&) method returns the region that is

the addition of the two regions passed as arguments.

Union of 2 circles

● Intersection
□ The ERegion::Intersection(const ERegion&, const ERegion&) method returns the region

that is the intersection of the two regions passed as argument.

Intersection of 2 circles

Open eVision User Guide

efoundpattern-class.htm
ematchposition-struct.htm
ecircle-class.htm
erectangle-class.htm
ecodedelement-class.htm
ecircleregion-class.htm
ecircle-class.htm
eregion-union.htm
eregion-intersection.htm

49

● Subtraction
□ The ERegion::Subtraction(const ERegion&, const ERegion&) method returns the first

region passed as argument after removing the second one.

Subtraction of 2 circles

Morphological operations on regions

The initial arbitrary region used to illustrate the different morphological operations

● Grow
□ The ERegion::Grow(int radius) method returns a region that is the dilation of the region

by a disk with a radius equals to the argument.

Grow of the arbitrary region

● Shrink
□ The ERegion::Shrink(int radius) method returns a region that is the erosion of the region

by a disk with a radius equals to the argument.

Shrink of the arbitrary region

Open eVision User Guide

eregion-subtraction.htm
eregion-grow.htm
eregion-shrink.htm

50

● Contour
□ The ERegion::Contour(int thickness, bool centered = true) method returns a region

that is the contour of the region.

Contour of the arbitrary region

Free-hand drawing a region

● The ERegionFreeHandPainter class provides the methods that allow you to create a region by
hand, using the mouse or any other user input method.

● The RegionFreeHand sample, available both in C++ and C#, shows how to use this class to
draw a region on an image.

Using regions

The tools supporting regions provide methods that follow one of these conventions:
□ Method(const EImage& source, const ERegion& region)
□ Method(const EImage& source, const ERegion& region, EImage& destination)

NOTE
The source, the region and the destination must be compatible. It means
that the region must at least partly fit in the source, and that source and
destination must have the same size.

Preparing the region

● Open eVision automatically prepares the regions when it applies them to an image, but this
preparation can take some time.

● If you do not want your first call to a method to take longer than the next ones, you can
prepare the region in advance by using the appropriate Prepare() method.

● To manually prepare the regions, adapt the internal RLE description to your images.

Drawing regions

The ERegion classes provide several methods to display the regions:

● ERegion::Draw() draws the region area, in a semi-transparent way, in the provided device
context.

● ERegion::DrawContour() draws the region contour in the provided device context.

Open eVision User Guide

eregion-contour.htm
eregionfreehandpainter-class.htm
eregion-prepare.htm
eregion-class.htm
eregion-draw.htm
eregion-drawcontour.htm

51

● ERegion::ToImage() renders the region as a mask into the provided destination image.
□ You can configure the foreground and the background colors.
□ If you initialized your image with a width and a height, Open eVision renders the region

inside those bounds.
□ If not, Open eVision resizes the image to contain the whole region.
□ Use ToImage() to create masks for the Open eVision functions that support them.

ERegions and EROIs

● The older EROI classes of Open eVision are compatible with the new regions.

● Some tools allow the usage of regions with source and/or destinations that are ERoi instead
of EImage follow one of these conventions:
□ Method(const ERoi& source, const ERegion& region)
□ Method(const ERoi& source, const ERegion& region, ERoi& destination)

TIP
In that case, the coordinates used for the region are relative to the reduced
ROI space instead of the whole image space .

ERegion and 3D

● The new regions are compatible with the 2.5D representations of Easy3D (EDepthMap and
EZMap).

● You can also reduce the domain of processing when using these classes.

3.9. Flexible Masks

ROIs vs flexible masks

ROIs and masks restrict processing to part of an image:
□ "ROI Main Properties" on page 27 apply to all Open eVision functions. Using Regions of

Interest accelerates processing by reducing the number of pixels. Open eVision supports
hierarchically nested rectangular ROIs.

□ Flexible Masks are recommended to process disconnected ROIs or non-rectangular
shapes. They are supported by some EasyObject and EasyImage library functions.

Open eVision User Guide

eregion-toimage.htm
eregion-toimage.htm
edepthmap-class.htm
ezmap-class.htm
EasyImage - Pre-Processing Images.htm

52

Flexible Masks

A flexible mask is a BW8 image with the same height and width as the source image. It contains
shapes of areas that must be processed and ignored areas (that will not be considered during
processing):

□ All pixels of the flexible mask having a value of 0 define the ignored areas.
□ All pixels of the flexible mask having any other value than 0 define the areas to be

processed.

Source image Associated mask Processed masked image

A flexible mask can be generated by any application that outputs BW8 images and by some
EasyObject and EasyImage functions.

Flexible Masks in EasyImage

Code Snippets

Source image (left) and mask variable (right)

Simple steps to use flexible masks in Easyimage

1. Call the functions from EasyImage that take an input mask as an argument. For instance,
one can evaluate the average value of the pixels in the white layer and after in the black
layer.

2. Display the results.

Resulting image

Open eVision User Guide

EasyImage - Pre-Processing Images.htm
using-flexible-masks-easyimage.htm

53

EasyImage Functions that support flexible masks

● EImageEncoder.Encode has a flexible mask argument for BW1, BW8, BW16, and C24 source
images.

● AutoThreshold.

● Histogram (function HistogramThreshold has no overload with mask argument).

● RmsNoise, SignalNoiseRatio.

● Overlay (no overload with mask argument for BW8 source images).

● ProjectOnAColumn, ProjectOnARow (Vector projection).

● ImageToLineSegment, ImageToPath (Vector profile).

Flexible Masks in EasyObject

A flexible mask can be generated by any application that outputs BW8 images or uses the Open
eVision image processing functions.

EasyObject can use flexible masks to restrict blob analysis to complex or disconnected shaped
regions of the image.

If an object of interest has the same gray level as other regions of the image, you can define
"keep" and "ignore" areas using flexible masks and Encode functions.

A flexible mask is a BW8 image with the same height and width as the source image.
□ A pixel value of 0 in the flexible mask masks the corresponding source image pixel so it

doesn't appear in the encoded image.
□ Any other pixel value in the flexible mask causes the pixel to be encoded.

EasyObject functions that create flexible masks

Source image

1) ECodedImage2.RenderMask: from a layer of an encoded image
1. To encode and extract a flexible mask, first construct a coded image from the source image.

2. Choose a segmentation method (for the image above the default method
GrayscaleSingleThreshold is suitable).

3. Select the layer(s) of the coded image that should be encoded (i.e. white and black layers
using minimum residue thresholding).

4. Make the mask image the desired size using mask.SetSize(sourceImage.GetWidth(),
sourceImage.GetHeight()).

Open eVision User Guide

eimageencoder-encode.htm
easyimage-autothreshold.htm
easyimage-histogram.htm
easyimage-histogramthreshold.htm
easyimage-rmsnoise.htm
easyimage-signalnoiseratio.htm
easyimage-overlay.htm
easyimage-projectonacolumn.htm
easyimage-projectonarow.htm
easyimage-imagetolinesegment.htm
easyimage-imagetopath.htm
eimageencoder-encode.htm

54

5. Exploit the flexible mask as an argument to ECodedImage2.RenderMask.

BW8 resulting image that can be used as a flexible mask

2) ECodedElement.RenderMask: from a blob or hole
1. Select the coded elements of interest.

2. Create a loop extracting a mask from selected coded elements of the coded image using
ECodedElement.RenderMask.

3. Optionally, compute the feature value over each of these selected coded elements.

BW8 resulting image that can be used as a flexible mask

3) EObjectSelection.RenderMask: from a selection of blobs
EObjectSelection.RenderMask can, for example, discard small objects resulting from noise.

BW8 resulting image that can be used as a flexible mask

Open eVision User Guide

ecodedimage2-rendermask.htm
ecodedelement-rendermask.htm
eobjectselection-rendermask.htm

55

Example: Restrict the areas encoded by EasyObject

Find four circles (left) Flexible mask can isolate the central chip (right)

1. Declare a new ECodedImage2 object.

2. Setup variables: first declare source image and flexible mask, then load them.

3. Declare an EImageEncoder object and, if applicable, select the appropriate segmenter. Setup
the segmenter and choose the appropriate layer(s) to encode.

4. Encode the source image. Encoding a layer with just the area in the flexible mask is then
pretty straightforward.
We see that the circles are correctly segmented in the black layer with the grayscale single
threshold segmenter:

5. Select all objects of the coded image.

6. Select objects of interest by filtering out objects that are too small.

7. Display the blob feature by iterating over the selected objects to display the chosen feature.

3.10. Profile

Code Snippets

Profile Sampling

A profile is a series of pixel values sampled along a line/path/contour in an image.

● EasyImage.ImageToLineSegment copies the pixel values along a given line segment (arbitrarily
oriented and wholly contained within the image) to a vector. The vector length is adjusted
automatically. This function supports flexible masks.

● A path is a series of pixel coordinates stored in a vector.
EasyImage.ImageToPath copies the corresponding pixel values to the vector. This function
supports flexible masks.

Open eVision User Guide

ecodedimage2-class.htm
eimageencoder-class.htm
egrayscalesinglethresholdsegmenter-class.htm
egrayscalesinglethresholdsegmenter-class.htm
profile-sampling.htm
easyimage-imagetolinesegment.htm
epathvector-class.htm
epath-struct.htm
easyimage-imagetopath.htm

56

● A contour is a closed or not (connected) path, forming the boundary of an object.
EasyImage.Contour follows the contour of an object, and stores its constituent pixels values
inside a profile vector.

Profile Analysis

The profile can be processed to find peaks or transitions:

● A transition corresponds to an object edge (black to white or white to black). It can be
detected by taking the first derivative of the signal (which transforms transitions (edges) into
peaks) and looking for peaks in it.
EasyImage.ProfileDerivative computes the first derivative of a profile extracted from a gray-
level image.
The EBW8 data type only handles unsigned values, so the derivative is shifted up by 128.
Values under [above] 128 correspond to negative [positive] derivative (decreasing
[increasing] slope).

● A peak is the portion of the signal that is above [or below] a given threshold - the maximum
or minimum of the signal. This may correspond to the crossing of a white or black line or
thin feature. It is defined by its:
□ Amplitude: difference between the threshold value and the max [or min] signal value.
□ Area: surface between the signal curve and the horizontal line at the given threshold.

EasyImage.GetProfilePeaks detects max and min peaks in a gray-level profile. To eliminate false
peaks due to noise, two selection criteria are used. The result is stored in a peaks vector.

Profile Insertion Into an Image

EasyImage.LineSegmentToImage copies the pixel values from a vector or constant to the pixels of a
given line segment (arbitrarily oriented and wholly contained within the image).

EasyImage.PathToImage copies the pixel values from a vector or a constant to the pixels of a given
path.

Open eVision User Guide

easyimage-contour.htm
easyimage-profilederivative.htm
ebw8-struct.htm
epeak-struct.htm
epeak-amplitude.htm
epeak-area.htm
easyimage-getprofilepeaks.htm
epeakvector-class.htm
easyimage-linesegmenttoimage.htm
easyimage-pathtoimage.htm

57

4. Matching and Measurement Tools

4.1. EasyObject - Analyzing Blobs

Reference | Code Snippets

The EasyObject library picks out features in an image by creating and processing blobs (objects
or holes that have the same gray level range).

This library can be used for BW1, BW8, BW16 and C24 source images and is accessible from the
ECodedImage2 class which has improved execution time, especially for large images with many
objects.

Open eVision User Guide

ecodedimage2-class.htm
easyobject-library.htm
ecodedimage2-class.htm

58

Workflow

Open eVision User Guide

59

Blob Definition

A blob is a grouping of neighboring pixels of the same gray level range.
Blobs may be objects or holes in objects. EasyObject functions analyze both objects and holes.
When blobs are built, the inclusion relationship between holes and objects is computed.

Even though holes may be the actual objects of interest, it is easier to find an object of interest,
then detect its holes (with EasyObject) and measure their characteristics (with EasyGauge or
EasyObject).

Blobs are handled as independent entities:

l They can be selected by means of the layer they belong to, their position, a rectangular
ROI or their computed features. The selection criteria can be combined (select the small
objects; among these, select those close to the right edge...).

l They can be listed and sorted by their geometric characteristics: such as area, width, or
ellipse of inertia.

Blob analysis can be restricted to rectangular and nested ROIs, and to complex or disconnected-
shape regions using flexible masks.

Build Blobs

EasyObject chooses objects of interest and constructs blobs/holes in two steps:

1. Segment: classifies the source image pixels, creates layers, and constructs the runs (a run
is a sequence of adjacent pixels in a row, that share the same property).

2. Encode: assembles runs, to build blobs for each layer.
You select which objects or holes are kept.
EImageEncoder.Encode analyzes the blobs and stores the result into a coded image which
has a set of superimposed, mutually exclusive image layers, where the pixels of each layer
have properties in common, such as being above a threshold.
Flexible masks can restrict encoding to an arbitrary shaped area.

There is no need to build holes, they are constructed on-the-fly when required.

Functions
l Segmentation GetSegmentationMethod and SetSegmentationMethod
l Grayscale single threshold EGrayscaleSingleThresholdSegmenter
l Grayscale double threshold EGrayscaleDoubleThresholdSegmenter
l Color single threshold EColorSingleThresholdSegmenter
l Color range threshold EColorRangeThresholdSegmenter
l Reference image EReferenceImageSegmenter
l Image range EImageRangeSegmenter
l Labeled image ELabeledImageSegmenter
l Binary images EBinaryImageSegmenter

Pixel aggregation (encoder)

l Layer selection
l Object construction: run aggregation into objects
l Hole construction: run aggregation into holes

Open eVision User Guide

eimageencoder-encode.htm
eimageencoder-segmentationmethod.htm
eimageencoder-segmentationmethod.htm
egrayscalesinglethresholdsegmenter-class.htm
egrayscaledoublethresholdsegmenter-class.htm
ecolorsinglethresholdsegmenter-class.htm
ecolorrangethresholdsegmenter-class.htm
ereferenceimagesegmenter-class.htm
eimagerangesegmenter-class.htm
elabeledimagesegmenter-class.htm
ebinaryimagesegmenter-class.htm

60

Extract objects (using geometric parameters)

Once an image has been encoded, the coded elements (objects or holes) are accessible through
the abstract class ECodedElement which provides a large set of methods applicable to a particular
coded element:

Features computation and display

The objects, holes and their features can be efficiently accessed randomly (in an index-based
fashion).

Image Segmenters
Code Snippets

There are several ways to segment pixels. The method is chosen with GetSegmentationMethod and
SetSegmentationMethod.

1. Grayscale Single Threshold (default)

EGrayscaleSingleThresholdSegmenter is applicable to BW8 and BW16 grayscale images and
produces coded images with two layers:

l The black layer (usually Layer 0) contains unmasked pixels with a gray value below the
Threshold value.

l The white layer (usually Layer 1) contains the remaining unmasked pixels, i.e. unmasked
pixels having a gray value greater or equal to the Threshold value.

EasyObject provides 5 thresholding methods:

l Absolute (integer value): represents the first gray value of the white layer. Set with
SetAbsoluteThreshold method and got with GetAbsoluteThreshold method.

l Relative (%): represents the fraction of image pixels that belong to the Black layer, it is a
user-defined float value in range 0 to 1. Set with SetRelativeThreshold method and got
with GetRelativeThreshold method.

l Minimum Residue (default): The threshold is an automatically computed value such that
the quadratic difference between the source and thresholded image is minimized.

l Maximum Entropy: automatically computed value such that the entropy (i.e. the amount
of information) of the resulting thresholded image is maximized.

l IsoData: automatically computed value that lies halfway between the average dark gray
value (gray levels below the threshold) and average light gray values (gray levels above
the threshold).

Grayscale Single Threshold with a minimum residue thresholding method is the default. Only
objects whose pixels have a value that is above this threshold are encoded.

Open eVision User Guide

ecodedelement-class.htm
eimageencoder-segmentationmethod.htm
eimageencoder-segmentationmethod.htm
egrayscalesinglethresholdsegmenter-class.htm
egrayscalesinglethresholdsegmenter-absolutethreshold.htm
egrayscalesinglethresholdsegmenter-absolutethreshold.htm
egrayscalesinglethresholdsegmenter-relativethreshold.htm
egrayscalesinglethresholdsegmenter-relativethreshold.htm

61

2. Grayscale Double Threshold

EGrayscaleDoubleThresholdSegmenter is applicable to BW8 and BW16 grayscale images and
produces coded images with three layers:

l The black layer (usually Layer 0) contains unmasked pixels having a gray value below the
Low Threshold value.

l The white layer (usually Layer 2) contains unmasked pixels having a gray value above or
equal the High Threshold value.

l The neutral layer (usually Layer 1) contains the remaining unmasked pixels.

The Low Threshold and High Threshold are user-defined integer values, set with
SetLowThreshold and SetHighThreshold methods, and got with GetLowThreshold and
GetHighThreshold methods.

3. Color Single Threshold

EColorSingleThresholdSegmenter is applicable to C24 color images; it produces coded images
with two layers:

l The white layer (usually Layer 1) contains unmasked pixels that belong to the cube of the
color space defined by the threshold point and the white point (255,255,255).

l The black layer(usually Layer 0) contains the remaining unmasked pixels.

The Color Threshold is a set of three user-defined integer values designating a color in the color
space, set with SetThreshold method and got with GetThreshold method.

4. Color Range Threshold

EColorRangeThresholdSegmenter is applicable to C24 color images; it produces coded images with
two layers:

l The white layer(usually Layer 1) contains unmasked pixels that belong to the cube of the
color space defined by the Low Threshold point and the High Threshold point.

l The black layer (usually Layer 0) contains the remaining unmasked pixels.

The Low Threshold and High Threshold are each a set of three user-defined integer values
designating a color in the color space, set with SetLowThreshold and SetHighThreshold methods
and got with GetLowThreshold and GetHighThreshold methods.

5. Image Range

The following cases need a segmentation using pixel-by-pixel thresholding which gives an
allowed range of values for each pixel:

l when the background is not uniform enough,
l when the illumination is not uniform across the image,
l when only differences between the image and a reference image (ideal) are to be

enhanced,

The allowed range for each pixel is specified using two images: a low reference image with the
minimum values allowed for each pixel, a high reference image with the maximum values. The
reference images are thus the source image minus (or plus) a fixed value all over the image
(assuming noise distribution is uniform and additive).
The difficulty is preparing suitable high and low reference images.

Open eVision User Guide

egrayscaledoublethresholdsegmenter-class.htm
egrayscaledoublethresholdsegmenter-lowthreshold.htm
egrayscaledoublethresholdsegmenter-highthreshold.htm
egrayscaledoublethresholdsegmenter-lowthreshold.htm
egrayscaledoublethresholdsegmenter-highthreshold.htm
ecolorsinglethresholdsegmenter-class.htm
ecolorsinglethresholdsegmenter-threshold.htm
ecolorsinglethresholdsegmenter-threshold.htm
ecolorrangethresholdsegmenter-class.htm
ecolorrangethresholdsegmenter-lowthreshold.htm
ecolorrangethresholdsegmenter-highthreshold.htm
ecolorrangethresholdsegmenter-lowthreshold.htm
ecolorrangethresholdsegmenter-highthreshold.htm

62

Preparing high and low reference images
You can start from an image of the scene without defects and add security margins before
comparison.

Source image

Gray-level tolerance must be provided for noise and illumination variations.

Gray-level tolerance margins

The image may have a slight shift in some direction which can be corrected by enlarging the
light and dark areas using dilate and erode morphological operations. This geometric tolerance
margin is roughly as large as the morphological filter size.

Geometric tolerance margins

Combining both kinds of tolerance margins gives the best results.

Combined margins

Image Segmenter
EImageRangeSegmenter and EReferenceImageSegmenter are applicable to BW8, BW16, and C24
images; and produce coded images with two layers.

Open eVision User Guide

eimagerangesegmenter-class.htm
ereferenceimagesegmenter-class.htm

63

The low threshold and the high threshold are defined for each pixel individually by means of
two reference images of the same type as the source image: the Low Image and the High Image.
The Reference Image defines the reference threshold of each pixel individually.

l For grayscale images, the white layer (usually Layer 1) contains unmasked pixels having a
gray value in a range defined by the gray value of the corresponding unmasked pixels in
the Low, High or Reference Image.

l For color images, the white layer (usually Layer 1) contains unmasked pixels having a
color inside the cube of the color space defined by the colors of the corresponding
unmasked pixels in the Low, High or Reference Image.

l The black layer (usually Layer 0) contains the remaining unmasked pixels.

Pointers to the Low Image can be set or got using the functions associated with the type of the
source image:

l BW8: SetLowImageBW8 GetLowImageBW8
l BW16: SetLowImageBW16GetLowImageBW16
l C24: SetLowImageC24GetLowImageC24

Pointers to the High Image can be set or got using the functions associated with the type of the
source image:

l BW8: SetHighImageBW8GetHighImageBW8
l BW16 SetHighImageBW16GetHighImageBW16
l C24 SetHighImageC24GetHighImageC24

Pointers to the Reference Image can be set or got using the functions associated with the type
of the source image:

l BW8: SetReferenceImageBW8, GetReferenceImageBW8
l BW16: SetReferenceImageBW16, GetReferenceImageBW16
l C24: SetReferenceImageC24 , GetReferenceImageC24

6. Labeled Image

ELabeledImageSegmenter is applicable to is applicable to BW8 and BW16 grayscale images; it
produces coded images with a number of layers equal to the maximum number of gray values:
256 for BW8 images or 65536 for BW16 images. The layer n contains all the unmasked pixels
having a gray value equal to n.

By default, all layers are encoded. However, it is possible to restrict the encoding to a single
range of layers with SetMinLayer and SetMaxLayer functions which return the lowest and the
highest values of the index range respectively.

7. Binary Image

EBinaryImageSegmenter is applicable to BW1 binary images; it produces coded images with two
layers:

l Black layer (usually index 0) contains unmasked pixels with a binary value equal to zero.
l White layer (usually index 1) contains the remaining unmasked pixels, i.e. unmasked

pixels with a binary value equal to one.

Image Encoder
Reference | Code Snippets

Open eVision User Guide

eimagerangesegmenter-lowimagebw8.htm
eimagerangesegmenter-lowimagebw8.htm
eimagerangesegmenter-lowimagebw16.htm
eimagerangesegmenter-lowimagebw16.htm
eimagerangesegmenter-lowimagec24.htm
eimagerangesegmenter-lowimagec24.htm
eimagerangesegmenter-highimagebw8.htm
eimagerangesegmenter-highimagebw8.htm
eimagerangesegmenter-highimagebw16.htm
eimagerangesegmenter-highimagebw16.htm
eimagerangesegmenter-highimagec24.htm
eimagerangesegmenter-highimagec24.htm
ereferenceimagesegmenter-referenceimagebw8.htm
ereferenceimagesegmenter-referenceimagebw8.htm
ereferenceimagesegmenter-referenceimagebw16.htm
ereferenceimagesegmenter-referenceimagebw16.htm
ereferenceimagesegmenter-referenceimagec24.htm
ereferenceimagesegmenter-referenceimagec24.htm
elabeledimagesegmenter-class.htm
elabeledimagesegmenter-minlayer.htm
elabeledimagesegmenter-maxlayer.htm
ebinaryimagesegmenter-class.htm
eimageencoder-class.htm

64

The class representing the objects (EObject) derives from an abstract class ECodedElement.

Object building

Selecting the Layers to Encode

The segmentation methods (see Image Segmenters) determine which layer(s) to encode by
default, and do not encode pixels from the other layers.

Function GetMaxLayerIndex returns the highest Layer Index value. It is available for all
segmenters.

Enabling/disabling layer encoding for each layer individually

The following tables list, for each layer, the Set/Get function and the default enable/disable
value.

Two-layer segmenters

Layer Set LayerEncoded function Get LayerEncoded function Default value

Black layer SetBlackLayerEncoded IsBlackLayerEncoded FALSE

White layer SetWhiteLayerEncoded IsWhiteLayerEncoded TRUE

Three-layer segmenters

Layer Set LayerEncoded function
name

Get LayerEncoded function
name

Default
value

Black layer SetBlackLayerEncoded IsBlackLayerEncoded FALSE

White layer SetWhiteLayerEncoded IsWhiteLayerEncoded FALSE

Neutral
layer SetNeutralLayerEncoded IsNeutralLayerEncoded TRUE

Manually Assigning a Layer Index to Each Layer Individually

The following tables list, for each layer, the Set/Get function and the default value.

Two-layer segmenters

Open eVision User Guide

eobject-class.htm
ecodedelement-class.htm

65

Layer Set LayerEncoded function
name

Get LayerEncoded function
name

Default
value

Black
layer SetBlackLayerIndex IsBlackLayerIndex 0

White
layer SetWhiteLayerIndex IsWhiteLayerIndex 1

Three-layer segmenters

Layer Set LayerEncoded function
name

Get LayerEncoded function
name

Default
value

Black layer SetBlackLayerIndex IsBlackLayerIndex 0

Neutral
layer SetNeutralLayerIndex IsNeutralLayerIndex 1

White layer SetWhiteLayerIndex IsWhiteLayerIndex 2

Runs

For the sake of computational efficiency, the objects are described as lists of runs. A run is a
sequence of adjacent pixels that share homogeneous properties (such as being above a given
threshold). These runs are merged in objects by the image encoder.

A single object with five enhanced runs

EasyObject can work at object level, and at run level which allows faster processing in critical
cases. This is useful to compute custom features on objects then list all runs belonging to a
given object as shown in this example of working at run level, with colored runs in the output
image.

1. Declare a new ECodedImage2 object.
2. Declare an EImageEncoder and, if applicable, select the appropriate segmenter.

Setup the segmenter and choose appropriate layer(s) to encode.
3. Set up an output image.
4. Encode the image.
5. Color the runs in the output image. Iterate over the objects of a specific layer by

constructing a loop and then a RunsIterator object. This iterator allows to browse
runs of the considered object. Once the iterator has finished a run of the
considered object, the inner loop processes the pixels spanned by this run in the
output image.

6. Select a specific layer.

Open eVision User Guide

ecodedimage2-class.htm
eimageencoder-class.htm
ecodedelement-runsiterator.htm

66

Source image (left) with the white layer rendered (right)

Connexity

Pixels can touch each other along an edge or by a corner. In Four Connexity only pixels touching
by an edge are considered neighbors. In Eight Connexity (the default) pixels touching by a
corner are also considered neighbors.

Multiple images can be encoded in continuous mode.

Holes Construction
Code Snippets

A hole is a set of connected pixels that are entirely surrounded by a parent object (4 or 8 pixels
depending on the connexity mode).

A hole has no child. Objects inside a hole are considered as separate objects.

EObject and EHole classes both derive from ECodedElement, so objects and holes are managed in
the same way and share the same functions.

Encoding the white layer (3 objects and 3 holes)

Open eVision User Guide

eobject-class.htm
ehole-class.htm
ecodedelement-class.htm

67

Encoding the black layer (4 objects and 3 holes)

How to Color holes

1. Declare a new ECodedImage2 object.
2. Declare an EImageEncoder and, if applicable, select and setup the appropriate segmenter,

and choose the appropriate layer(s) to encode.
3. Set up an output image.
4. Encode the image.
5. Declare a helper function to draw the runs. A helper function (see also section Object

Construction/Working at the Run Level) draws the runs in an output image, using, for
example, a given color. This function can be shared for objects and holes.

6. Draw the objects and their holes in the output image. It is necessary to iterate over the
objects of the chosen layer.

a. The helper function draws the runs of each object (DrawRuns) using a specific color.
b. The holes are iterated over the current object, and their runs are drawn.
c. Each hole of an object is drawn with a different color computed in the global

function (GetFadedColor) that returns a color. This color depends upon the hole
index, for example a gradation of red to green colors.

Raw image (left) Building of objects and all holes (right)

Normal vs. Continuous Mode
Code Snippets

Normal Mode (default)

In normal mode, the image encoder does not track blobs across several successive images.
EasyObject works with one image, without keeping blobs in memory. All the blobs are returned
as objects.

Open eVision User Guide

ecodedimage2-class.htm
eimageencoder-class.htm

68

Continuous Mode

In continuous mode EasyObject can process an image whose height is unknown or infinite (e.g.
coming from a line-scan camera). The image is split into several chunks that are fed into an
image encoder. Objects that straddle several successive image chunks can be detected.

The image encoder encodes only the objects that contain no run touching the last row of the
source image. Objects that touch the inferior border of the image are not written in the coded
image because they are expected to continue in subsequent image chunks, but they are kept in
memory and are processed when subsequent images are analyzed.

A large image is assumed to be divided into several chunks that are stored in the array
EImageBW8 chunk[x].

In this example, we generate a sequence of color images that exhibit objects
encoded over successive chunks

Original image

Three chunks of the image

1. Draw the objects encoded in a layer of a coded image. This code is essentially the same
as in "Browsing Runs" code snippet. The only difference is that an offset can be applied
along the Y-axis.

2. Define a function to draw the objects of a layer. If a coded image contains objects that
were started in a previous image: the runs of this object from the previous image are
assigned with a negative Y-coordinate.
The zero Y-coordinate is the first row of the most recently encoded image. The
convention is to assign the lowest Y-coordinate to the oldest run in the encoded objects.
The method EImageEncoder.GetStartY obtains the Y-coordinate of this oldest run. It is
necessary to define a function that displays the content of a layer of a coded image.
Each object can be displayed with a different color(computed by GetFadedColor). This

Open eVision User Guide

eimagebw8-class.htm

69

function closely follows the function DrawRuns, but is adapted to continuous mode by
taking GetStartY into account.

3. Enable continuous mode in property EImageEncoder.SetContinuousModeEnabled. Additional
variables can be declared, for example to store the successive encoded image, or to hold
the output images.

4. Analyze the successive chunks. To encode successive chunks use Encode(chunk[count],
codedImage) and then DrawLayer. Note: The variable count spans integers 0, 1 and 2. When
an object from a chunk is not complete it is kept in the internal memory of the image
encoder.

Content of layerImage when count equals 0, after the application of DrawLayer.
Chunk of the large image that is under consideration.

Note that two objects in the lower-left of the image chunk are not encoded,
because they touch the border of the chunk.

When count reaches 1, one of these two objects becomes completed,
which leads to the encoding of the following image.
Two other objects are not encoded yet at this time.

Here is the result of the encoding of the last chunk (count = 2).

Three objects from the previous chunks have been closed, and have thus been encoded.

Flushing Continuous Mode

After encoding the three image chunks, there remains one object to be completed (in the
bottom-right corner of the large image). However, as there are no more chunks, it is necessary
to explicitly close this object and encode the remaining object using the flushing of the image
encoder. The internal memory of the image encoder is then empty.

Open eVision User Guide

eimageencoder-continuousmodeenabled.htm
eimageencoder-encode.htm
eimageencoder-flushcontinuousmode.htm
eimageencoder-flushcontinuousmode.htm

70

Result of the flush

Selecting and Sorting Blobs
Code Snippets

The object segmentation process considers any blob as an object, including noise pixels which
appear as tiny objects. You can select which blobs to keep using the class EObjectSelection.

Create / modify a selection

You can use the methods Add and Remove of the class EObjectSelection to:
□ Add or remove a single object , a hole or a whole layer to/from a selection.
□ Add or remove objects or holes based on some specified feature (see the feature list in

Computing the Coded Element Features).
□ Add or remove objects or holes based on their specific position, or whether they lie within

a specified ROI rectangle.
□ Add or remove objects based on their specific position, or whether they lie outside, on or

within a specified ROI rectangle or ERegion (AddObjectsUsingRectangle and
AddObjectsUsingRegion).

These actions can be cascaded and combined at will in a single selection.

Clear a selection

You can clear a previous selection using EObjectSelection.Clear.

Sort a selection

You can sort the elements of a selection according to any of their features.

Example

In this example, we select objects in the middle band of an image, with a surface >100 pixels.

Open eVision User Guide

eobjectselection-class.htm
eobjectselection-add.htm
eobjectselection-remove.htm
eobjectselection-class.htm
eobjectselection-addobjectsusingrectangle.htm
eobjectselection-addobjectsusingregion.htm
eobjectselection-clear.htm

71

Source image, and selection of objects

1. Declare a new ECodedImage2 object.

2. Declare an EImageEncoder object and, if applicable, select and setup the appropriate
segmenter and choose the appropriate layer(s) to encode.

3. Encode the source image.

4. Create a selection of objects. Create an instance of the EObjectSelection class and add
objects to this selection, for instance through EObjectSelection.AddObjects.

5. Remove objects based on the value of one feature at a time. The objects in a selection can
be unselected by calling one of the EObjectSelection.Remove methods.

6. Remove the objects based on their position using
EObjectSelection.RemoveUsingFloatFeature. For details, see also "Working at the Run Level".

7. Sort the selected objects using EObjectSelection.Sort.

8. Access the selected objects.

Object Template Matcher
The class EObjectTemplateMatcher is a tool designed to align and match the output of EasyObject
to a reference template. It is designed and developed to handle efficiently thousand of objects.

Open eVision User Guide

ecodedimage2-class.htm
eimageencoder-class.htm
eobjectselection-class.htm
eobjectselection-addobjects.htm
eobjectselection-remove.htm
eobjectselection-removeusingfloatfeature.htm
eobjectselection-sort.htm
eobjecttemplatematcher-class.htm

72

Creating the reference template

Use the method BuildTemplate to create the reference template, with one of the following
parameters:

□ An ECodedImage2, result of the method EImageEncoder::Encode.
□ An EObjectSelection, a selection (subset) of ECodedImage2 objects.
□ A list of positions, given by a vector of points (std::vector<EPoint>).

An encoding of the reference image for use as the template.
And the center positions of each object for use in the matching process.

Sorting the objects

● To perform the matching after setting up the template:
□ Use the method SortSelection with an EObjectSelection as parameter.
□ Or use the more generic method SortPositions with a std::vector<EPoint> as parameter.

● When you pass the objects in a selection as the sort method parameter, the bounding box
center of the objects is the position used for the matching with the template.

● Before the sorting, EObjectTemplateMatcher performs an optional global rigid alignment of the
submitted positions with the defined template.
□ This alignment only applies the translation and rotation transformations.
□ Use the method SetEnableAlignment to enable the alignment process.

Left: the template.
Right: the alignment of the submitted selection.

Open eVision User Guide

eobjecttemplatematcher-buildtemplate.htm
ecodedimage2-class.htm
eimageencoder-encode.htm
eobjectselection-class.htm
ecodedimage2-class.htm
../../../reference/eobjectsort-sortselection.htm
eobjectselection-class.htm
../../../reference/eobjectsort-sortpositions.htm
eobjecttemplatematcher-class.htm
../../../reference/eobjectsort-enablealignment.htm

73

● After the optional alignment, EObjectTemplateMatcher matches the submitted positions with
the reference template.
□ It uses the shortest distance criterion to pair these positions with the template.
□ You can set the maximum distance to constraint the search. This can speed up the

processing.

Retrieving the Sorting Results

● Use one of these methods to retrieve the sorting results:
□ GetSelectionIndexes returns, for each position in the template, the paired index in the

selection. The value -1 is used if the object in the template has no correspondence in the
selection.

□ GetTemplateIndexes returns, for each position in the selection, the paired index in the
template. The value -1 is used if the object in the selection has no correspondence in the
template.

□ GetUnpairedObjects returns the positions in the template and in the selection that have
not been paired.

● Use the method GetNumberOfPairedObjects to get the total number of paired objects.

● Use the methods Save and Load to store and retrieve the configuration of an
EObjectTemplateMatcher object, including the template.

Open eVision User Guide

eobjecttemplatematcher-class.htm
../../../reference/eobjectsort-selectionindexes.htm
../../../reference/eobjectsort-templateindexes.htm
../../../reference/eobjectsort-getunpairedobjects.htm
../../../reference/eobjectsort-numberofpairedobjects.htm
../../../reference/eobjectsort-save.htm
../../../reference/eobjectsort-load.htm
eobjecttemplatematcher-class.htm

74

Advanced Features

Computable Features

Methods prefixed with Get indicate a lazy evaluation: the result is computed on the first
invocation of the method and cached.

Methods prefixed with Compute indicate that the function is reevaluated at every invocation
and the result is never cached.

Open eVision User Guide

75

Position

Limit
(top, bottom, left, right)

ECodedElement.GetTopLimit
ECodedElement.GetBottomLimit
ECodedElement.GetLeftLimit
ECodedElement.GetRightLimit

Gravity center
(X and Y)

ECodedElement.GetGravityCenter
ECodedElement.GetGravityCenterX
ECodedElement.GetGravityCenterY

Weight gravity center
(X and Y) ECodedElement.ComputeWeightedGravityCenter

Gravity center and weight gravity center

The gravity center returns the abscissa of the gravity center of the coded element.

The weight gravity center computes the gravity center of a given image over a coded element.

Extents

Area (pixel count) ECodedElement.Area

Feret box
(center X and Y, height, width
with distinct orientation angles
at 22, 45, 68 degrees)

ECodedElement.ComputeFeretBox
ECodedElement.GetFeretBox22Box
ECodedElement.GetFeretBox22Center
ECodedElement.GetFeretBox22CenterX
ECodedElement.GetFeretBox22CenterY
ECodedElement.GetFeretBox22Height
ECodedElement.GetFeretBox22Width
ECodedElement.GetFeretBox45Box
ECodedElement.GetFeretBox45Center
ECodedElement.GetFeretBox45CenterX
ECodedElement.GetFeretBox45CenterY
ECodedElement.GetFeretBox45Height
ECodedElement.GetFeretBox45Width
ECodedElement.GetFeretBox68Box
ECodedElement.GetFeretBox68Center
ECodedElement.GetFeretBox68CenterX
ECodedElement.GetFeretBox68CenterY
ECodedElement.GetFeretBox68Height
ECodedElement.GetFeretBox68Width

Open eVision User Guide

ecodedelement-toplimit.htm
ecodedelement-bottomlimit.htm
ecodedelement-leftlimit.htm
ecodedelement-rightlimit.htm
ecodedelement-gravitycenter.htm
ecodedelement-gravitycenterx.htm
ecodedelement-gravitycentery.htm
ecodedelement-computeweightedgravitycenter.htm
ecodedelement-area.htm
ecodedelement-computeferetbox.htm
ecodedelement-feretbox22box.htm
ecodedelement-feretbox22center.htm
ecodedelement-feretbox22centerx.htm
ecodedelement-feretbox22centery.htm
ecodedelement-feretbox22height.htm
ecodedelement-feretbox22width.htm
ecodedelement-feretbox45box.htm
ecodedelement-feretbox45center.htm
ecodedelement-feretbox45centerx.htm
ecodedelement-feretbox45centery.htm
ecodedelement-feretbox45height.htm
ecodedelement-feretbox45width.htm
ecodedelement-feretbox68box.htm
ecodedelement-feretbox68center.htm
ecodedelement-feretbox68centerx.htm
ecodedelement-feretbox68centery.htm
ecodedelement-feretbox68height.htm
ecodedelement-feretbox68width.htm

76

Bounding box
(center X and Y, height, width)

ECodedElement.GetBoundingBox
ECodedElement.GetBoundingBoxCenter
ECodedElement.GetBoundingBoxCenterX
ECodedElement.GetBoundingBoxCenterY
ECodedElement.GetBoundingBoxHeight
ECodedElement.GetBoundingBoxWidth

Min. enclosing rectangle
(angle, center X and Y,
heath, width)

ECodedElement.MinimumEnclosingRectangle
ECodedElement.MinimumEnclosingRectangleAngle
ECodedElement.MinimumEnclosingRectangleCenter
ECodedElement.MinimumEnclosingRectangleCenterX
ECodedElement.MinimumEnclosingRectangleCenterY
ECodedElement.MinimumEnclosingRectangleHeight
ECodedElement.MinimumEnclosingRectangleWidth

Feret box
A Feret box is a rectangle with the minimum surface rotated at a specified angle that contains
all the pixels center points of an object.

● Bounding box is the Feret box at 0°.

● Minimum enclosing rectangle is the Feret box with the minimum surface across all the
possible angles.

● Width of a FeretBox rectangle is the length of the rectangle side that exhibits the smallest
angle with the X-axis. This is NOT necessarily the smallest side!

● The height of a Feret box rectangle is the length of the other side of the rectangle.

● Use ECodedElement.ComputeFeretBox to compute a Feret box with an arbitrary angle.
□ The angle is measured clockwise from the X axis to the width side of the rectangle as

shown in the image below:

● In the legacy EasyObject library, the class ECodedImage does not follow the same conventions.
The main differences are:
□ The minimum enclosing rectangle corresponds to the Feret box of the legacy EasyObject

library (features ELegacyFeature_Feret*).
□ The method ECodedElement.ComputeFeretBox corresponds to the ECodedImage.LimitAngle in

the legacy EasyObject library.

Open eVision User Guide

ecodedelement-boundingbox.htm
ecodedelement-boundingboxcenter.htm
ecodedelement-boundingboxcenterx.htm
ecodedelement-boundingboxcentery.htm
ecodedelement-boundingboxheight.htm
ecodedelement-boundingboxwidth.htm
ecodedelement-minimumenclosingrectangle.htm
ecodedelement-minimumenclosingrectangleangle.htm
ecodedelement-minimumenclosingrectanglecenter.htm
ecodedelement-minimumenclosingrectanglecenterx.htm
ecodedelement-minimumenclosingrectanglecentery.htm
ecodedelement-minimumenclosingrectangleheight.htm
ecodedelement-minimumenclosingrectanglewidth.htm
ecodedelement-computeferetbox.htm
ecodedimage-class.htm
elegacyfeature-enum.htm
ecodedelement-computeferetbox.htm
ecodedimage-limitangle.htm

77

□ The angle, width and height in the legacy EasyObject library are defined as shown in the
image below:

Miscellaneous

Starting point of the object contour
(X and Y)

ECodedElement.GetContour
ECodedElement.GetContourX
ECodedElement.GetContourY

Path of the object contour ECodedElement.GetContourPath

Largest run ECodedElement.GetLargestRun

Run count ECodedElement.GetRunCount

Object number
(index)

ECodedElement.GetLayerIndex
ECodedElement.GetElementIndex

Pixel gray-level value
(average, deviation, variance)

ECodedElement.ComputePixelGrayAverage
ECodedElement.ComputePixelGrayDeviation
ECodedElement.ComputePixelGrayVariance

Pixel gray-level value
(min and max)

ECodedElement.ComputePixelMax
ECodedElement.ComputePixelMin

Ellipse of inertia

Eccentricity of the ellipse of inertia ECodedElement.Eccentricity

Moment
ECodedElement.GetCentralMoment
ECodedElement.GetMoment
ECodedElement.GetNormalizedCentralMoment

Open eVision User Guide

ecodedelement-contour.htm
ecodedelement-contourx.htm
ecodedelement-contoury.htm
ecodedelement-contourpath.htm
ecodedelement-largestrun.htm
ecodedelement-runcount.htm
ecodedelement-layerindex.htm
ecodedelement-elementindex.htm
ecodedelement-computepixelgrayaverage.htm
ecodedelement-computepixelgraydeviation.htm
ecodedelement-computepixelgrayvariance.htm
ecodedelement-computepixelmax.htm
ecodedelement-computepixelmin.htm
ecodedelement-eccentricity.htm
ecodedelement-getcentralmoment.htm
ecodedelement-getmoment.htm
ecodedelement-getnormalizedcentralmoment.htm

78

Ellipse
(angle, height, width)

ECodedElement.GetEllipseAngle
ECodedElement.GetEllipseHeight
ECodedElement.GetEllipseWidth

Second order geometric moments
(Sigma: X, XX, XY, Y, YY)

ECodedElement.GetSigmaX
ECodedElement.GetSigmaXX
ECodedElement.GetSigmaXY
ECodedElement.GetSigmaY
ECodedElement.GetSigmaYY

NOTE
The object perimeter can be measured indirectly by tracing the object
contour with contouring methods and counting the pixels.

From the standard geometric features, others can be derived. For instance, object elongation is
computed as the ratio of large to short ellipse axis or max height over max width. Object
circularity is defined as the ratio of the squared perimeter divided by four times pi multiplied by
the object area.

NOTE
Note. Formulas (N = area):

Open eVision User Guide

ecodedelement-ellipseangle.htm
ecodedelement-ellipseheight.htm
ecodedelement-ellipsewidth.htm
ecodedelement-sigmax.htm
ecodedelement-sigmaxx.htm
ecodedelement-sigmaxy.htm
ecodedelement-sigmay.htm
ecodedelement-sigmayy.htm

79

Convex Hull

The convex hull of a shape is the convex polygon of minimum area that completely surrounds
an object. The convex hull can be used to characterize the object footprint, as well as to observe
concavities. Given that the number of vertices of the convex hull is variable, they are stored in a
EPathVector container.

The corresponding function is ECodedElement.ComputeConvexHull.

Graphic Representation

The objects can be drawn onto the source image by means of ECodedImage2.Draw. The following
features also have a graphical representation that can be drawn by the means of
ECodedImage2.DrawFeature.

Objects Graphic Objects Graphic

Bounding box Feret box with an angle
of 45°

Contour Feret box with an angle
of 68°

Convex hull Gravity center

Ellipse Minimum enclosing
rectangle

Feret box Weighted gravity center

Feret box with an angle
of 22°

Coordinate System and Conventions

Coordinate system

EasyObject uses a pixel coordinate system where the origin is conventionally at the top left
corner of the top left pixel of an image. Consequently, the fractional part of the coordinates of
the center of a pixel is ".5". This convention is best suited for the representation of sub-pixel
coordinates.

Open eVision User Guide

epathvector-class.htm
ecodedelement-computeconvexhull.htm
ecodedimage2-draw.htm
ecodedimage2-drawfeature.htm

80

Angles

According to the mathematical conventions, the angles are now counted inversely: A positive
angle brings the X axis on the Y axis.

Evaluating the features

There is one property per feature, removing the need to access the feature through an enum.

Draw Coded Elements

Once an image has been encoded, the coded elements (object or hole) are accessible through
the abstract class ECodedElement and a large set of methods:

To draw coded elements

1. Declare a new ECodedImage2 object.
2. Declare an EImageEncoder object and, if applicable, select and setup the appropriate

segmenter and choose the appropriate layer(s) to encode.
3. Create an output image: copy, pixel by pixel, the (grayscale) source image into a

(color) output image if the drawing of the resulting features has to be colored.
4. Encode the source image.
5. Draw the features for each object in a layer.
6. Read the result, which can be rounded down. A specific drawing can be created to

mark the feature (for example, draw a target for a gravity center).

To render flexible masks use ECodedElement.RenderMask.

The objects, holes and their features can be efficiently accessed randomly (in an index-based
fashion).

Flexible Masks in EasyObject

See also: using Code Snippets : Creating Code Snippets

A flexible mask can be generated by any application that outputs BW8 images or uses the Open
eVision image processing functions.
EasyObject can use flexible masks to restrict blob analysis to complex or disconnected shaped
regions of the image.

If an object of interest has the same gray level as other regions of the image, you can define
"keep" and "ignore" areas using flexible masks and Encode functions.

A flexible mask is a BW8 image with the same height and width as the source image.
□ A pixel value of 0 in the flexible mask masks the corresponding source image pixel so it

doesn't appear in the encoded image.
□ Any other pixel value in the flexible mask causes the pixel to be encoded.

Open eVision User Guide

ecodedelement-class.htm
ecodedimage2-class.htm
eimageencoder-class.htm
ecodedelement-rendermask.htm
code-snippets.htm
eimageencoder-encode.htm

81

EasyObject functions that create flexible masks

Source image

1. ECodedImage2.RenderMask: from a layer of an encoded image
1. To encode and extract a flexible mask, first construct a coded image from the source image.

2. Choose a segmentation method (for the image above the default method
GrayscaleSingleThreshold is suitable).

3. Select the layer(s) of the coded image that should be encoded (i.e. white and black layers
using minimum residue thresholding).

4. Make the mask image the desired size using mask.SetSize(sourceImage.GetWidth(),
sourceImage.GetHeight()).

5. Exploit the flexible mask as an argument to ECodedImage2.RenderMask.

BW8 resulting image that can be used as a flexible mask

2. ECodedElement.RenderMask: from a blob or hole
1. Select the coded elements of interest.

2. Create a loop extracting a mask from selected coded elements of the coded image using
ECodedElement.RenderMask.

3. Optionally, compute the feature value over each of these selected coded elements.

BW8 resulting image that can be used as a flexible mask

Open eVision User Guide

ecodedimage2-rendermask.htm
ecodedelement-rendermask.htm

82

3. EObjectSelection.RenderMask: from a selection of blobs
EObjectSelection.RenderMask can, for example, discard small objects resulting from noise.

BW8 resulting image that can be used as a flexible mask

Example: Restrict the areas encoded by EasyObject

Find four circles (left) Flexible mask can isolate the central chip (right)

1. Declare a new ECodedImage2 object.

2. Setup variables: first declare source image and flexible mask, then load them.

3. Declare an EImageEncoder object and, if applicable, select the appropriate segmenter. Setup
the segmenter and choose the appropriate layer(s) to encode.

4. Encode the source image. Encoding a layer with just the area in the flexible mask is then
pretty straightforward.
We see that the circles are correctly segmented in the black layer with the grayscale single
threshold segmenter:

5. Select all objects of the coded image.

6. Select objects of interest by filtering out objects that are too small.

7. Display the blob feature by iterating over the selected objects to display the chosen feature.

Open eVision User Guide

eobjectselection-rendermask.htm
ecodedimage2-class.htm
eimageencoder-class.htm
egrayscalesinglethresholdsegmenter-class.htm
egrayscalesinglethresholdsegmenter-class.htm

83

4.2. EasyGauge - Measuring down to Sub-Pixel

Workflow

EasyGauge

EasyGauge library controls dimensions. It accurately determines position, orientation, curvature
and size of parts. It can interact graphically to place and size gauges, combine them in grouped
hierarchies, and store and retrieve them with all their parameters.

TIP
The theoretical best-case precision is 1/64th pixel for all EasyGauge
operators. In practice, you can assume a precision of 1/10th pixel.

Workflow

The gauge model can be built programmatically or in a graphical editor, then "played" in the
final application.
Choose the workflow that matches the complexity of your model and the accuracy required:
uncalibrated, calibrated or grouped.

Uncalibrated Gauging: for a simple model

EasyGauge basic use is straightforward.

a. Create a gauge object that corresponds to the required measurement.

b. Change the parameters whose default values are not appropriate.

c. Invoke the desired measurement function.

d. Read the resulting position parameters.

Uncalibrated gauging is easy to implement but has several drawbacks:
□ Measurements are performed in pixels, not millimeters.
□ Measurement models are not portable: gauge positions and sizes must be reworked if

viewing conditions change.
□ Optical distortion or perspective causes inaccurate measurements.

Open eVision User Guide

84

Calibrated gauging: for one or two simple measurement sites

Calibrated gauging is more accurate, and measures the inspected parts independently of the
viewing conditions.
All measurements are taken in the calibrated units, with any distortion implicitly compensated.
Refer to Calibration to learn how to master field-of-view calibration.

a. Create a calibrator object.

b. Place it on the inspected scene.

c. Adjust calibration parameters.

d. Attach a gauge.

Complex Gauging

Gauges can be grouped (see Gauge Manipulation Processes) and attached to another item:

● Attaching gauges to an EFrameShape object moves the gauges with the frame (translation
and/or rotation), the application program must adjust the frame position to track the
inspected part.

● Attaching gauges to another gauge moves them according to the measured position of the
supporting gauge. For example, if gauges are attached to a common rectangle gauge that is
detecting the outline of a part, all gauges automatically track the part when the rectangle
outline is fitted.

If using several measurement sites, you can save the complete model, with calibration modes,
coefficients, and attached gauges, in a single file.

NOTE
Unlike the rest of Open eVision, EasyGauge uses a pixel center origin (see
"Image Coordinate Systems" on page 11). The subpixel coordinate (0, 0) is
the center of the upper left pixel of the image.

Gauge Definitions

Point gauge

You can select the most relevant transition points along a line segment probe that crosses one
or several objects edges. Crosswise and lengthwise filtering can be activated for noise
reduction.

Open eVision User Guide

eframeshape-class.htm

85

Point location. Contrast-based selection

Usage

● Define and position the gauge, then fit the points with Measure.

● Use the methods EPointGauge.GetNumMeasuredPoint and EPointGauge.GetMeasuredPoint to
access the results.

Line gauge

The placement of a line gauge is defined by its center coordinates, its length and its angle with
respect to the X-axis. To constrain the line slope value, set Angle and KnownAngle.

Line fitting

Usage

● Define and position the gauge, then use Measure to fit the lines.
□ The method ELineGauge.GetFound returns TRUE if a suitable line is found.
□ To obtain the line properties, set the ActualShape property to TRUE to return the fitted line

(TRUE value) (instead of the nominal line position FALSE value, default).

● Alternatively, MeasuredLine provides the results as an ELine object.

Rectangle Gauge

The placement of a rectangle gauge is defined by its nominal position (given by the coordinates
of its center), its nominal size and its rotation angle.

Open eVision User Guide

epointgauge-measure.htm
epointgauge-nummeasuredpoints.htm
epointgauge-getmeasuredpoint.htm
elinegauge-class.htm
elineshape-center.htm
elineshape-length.htm
elineshape-angle.htm
elineshape-angle.htm
elinegauge-knownangle.htm
elinegauge-measure.htm
eshape-getfound.htm
eline-class.htm
eshape-actualshape.htm
elinegauge-measuredline.htm
eline-class.htm
erectanglegauge-class.htm
erectangleshape-center.htm
erectangleshape-setsize.htm
erectangleshape-angle.htm

86

Each side of a rectangle can have its own transition detection parameters, and can be set to
active or inactive with the ActiveEdges property. When a side is active:

l setting the value of a parameter only applies to the currently active sides1.
l getting the value of a parameter yields a result only when the value of this property is the

same for all active sides.
l only active sides are used for measurement and model fitting.

These rules allow to set different parameters for different sides, and measure parallel sides or a
corner point instead of the whole rectangle. The four sides are denoted by letters "x", "y", "XX"
and "YY" respectively.

Naming conventions for the sides of a rectangle gauge

Usage

● Define and position the gauge, then use Measure to fit the lines.
□ The method ERectangleGauge.GetFound returns TRUE if a suitable rectangle is found.
□ To obtain the rectangle properties, set ActualShape to TRUE to return the fitted line (TRUE

value) (default is FALSE).

● Alternatively, MeasuredRectangle provides the results as an ERectangle object.

● For instance, you can accurately locate the four corners (landmarks) of a rectangle using a
rectangle fitting gauge.

Locating a rectangle's corners

Open eVision User Guide

erectanglegauge-activeedges.htm
elinegauge-measure.htm
eshape-getfound.htm
erectangleshape-class.htm
eshape-actualshape.htm
erectanglegauge-measuredrectangle.htm
erectangle-class.htm

87

Circle gauge

The placement of a circle gauge is defined by its nominal position (given by the coordinates of
its center), its nominal diameter (or radius), the angular position from where it extends and its
angular amplitude.

The Set member can distinguish between a full circle and an arc (the arc amplitude must be
specified).

Circle fitting

Usage

● Once the gauge has been defined and positioned, use Measure to trigger the circle fitting
operation.
□ The method ECircleGauge.GetFound returns TRUE if a suitable rectangle is found.
□ To obtain the measurement results, set the ActualShape mode to TRUE. The ActualShape

mode determines whether an inquiry returns the fitted circle (TRUE value) or the nominal
circle position (FALSE value, default).

□ The requested information is then retrieved by means of the circle properties.

● Alternatively, MeasuredCircle provides the results as an ECircle object.

Wedge gauge

The placement of a wedge gauge is defined by its nominal position (given by the coordinates of
its center), its nominal inner and outer radius (inner and outer diameter), its breadth (difference
between radii), the angular position from where it extends and its angular amplitude.

The Set member can distinguish between a full ring, a sector of a ring and a disk.

Each side of a wedge can have its own transition detection parameters and can be set to active
or inactive with the ActiveEdges property. When a side is active, this means that:

l setting the value of a parameter only applies to the currently active sides;
l getting the value of a parameter yields a result only when the value of this parameter is

the same for all active sides;
l only active sides are used for measurement and model fitting.

So different sides can have different parameters, and you can measure parallel arcs or oblique
sides, or a corner point, instead of the whole wedge. The four sides are denoted by letters "a",
"r", "AA" and "RR" respectively.

Open eVision User Guide

ecirclegauge-class.htm
ecircleshape-center.htm
ecircleshape-diameter.htm
ecircleshape-radius.htm
ecircleshape-amplitude.htm
ecirclegauge-measure.htm
eshape-getfound.htm
eshape-actualshape.htm
eshape-actualshape.htm
ecircleshape-class.htm
ecirclegauge-measuredcircle.htm
ecircle-class.htm
ewedgegauge-class.htm
ewedgeshape-center.htm
ewedgeshape-innerradius.htm
ewedgeshape-outerradius.htm
ewedgeshape-innerdiameter.htm
ewedgeshape-outerdiameter.htm
ewedgeshape-breadth.htm
ewedgeshape-angle.htm
ewedgeshape-amplitude.htm
ewedgegauge-activeedges.htm

88

Naming conventions for the sides of a wedge gauge

Usage

● Define and position the gauge, then use Measure to fit the lines.
□ The method EWedgeGauge.GetFound returns TRUE if a suitable rectangle is found.
□ To obtain the wedge properties, set the ActualShape property to TRUE to return the fitted

line (instead of the nominal line position FALSE, default).

● Alternatively, MeasuredWedge provides the results as an EWedge object.

Polygon gauge

● A polygon is defined as a list of connected vertices, forming a closed or an open shape.
EPolygonGauge computes several transition points along each edge of the polygon, like with a
line gauge. Then from these transition points, a measured polygon is computed with a
strategy depending on the measurement mode.

In orange, the closed or open polygon gauge and, in green, the measured transition points

Open eVision User Guide

elinegauge-measure.htm
eshape-getfound.htm
ewedgeshape-class.htm
eshape-actualshape.htm
ewedgegauge-measuredwedge.htm
ewedge-class.htm
epolygongauge-class.htm

89

● The position of the vertices of the polygon are defined in the local EFrame of the polygon.
□ An EFrame is a coordinate system, with a position, an orientation and a scale.
□ The class EPolygon stores the vertices and other attributes.
□ The class EPolygonShape handles the hierarchy of the shapes and the drawing methods.
□ The class EPolygonGauge is the main class for the measurement process.

Class dependency of the class EPolygonGauge

● To setup the polygon geometry, use the following methods:
□ EPolygon.SetCenter (derived from EPoint.SetCenter), EPolygon.SetAngle (derived from

EFrame.SetAngle) and EPolygon.SetScale (derived from EFrame.SetScale) to change the
EFrame reference coordinate system.

□ EPolygon.SetIsClosed to choose between close or open polygon configuration.
□ EPolygon.AppendVertex to add a new vertex to the polygon.
□ EPolygon.SetVertex to change the position (x, y) of a vertex.
□ EPolygon.InsertVertex to insert a vertex before the given index.
□ EPolygon.RemoveVertex to remove a vertex at the given index.
□ EPolygonShape.AddVertexAtDisplayPosition to insert a vertex depending on a display

coordinate (typically a mouse click). This is useful for the graphical edition of a polygon.
□ EPolygonShape.RemoveVertexAtDisplayPosition to remove the closest vertex to a display

coordinate.

TIP
EPolygonGauge has 3 measurement modes EPolygonMeasurementMode.
The typical use cases are:
- For Global: the precise positioning of parts.
- For Edge: the verification of specific shapes defined by angles and lengths.
- For Point: the measure of complex object contours.

Open eVision User Guide

eframe-class.htm
eframe-class.htm
epolygon-class.htm
epolygonshape-class.htm
epolygongauge-class.htm
epoint-center.htm
eframe-angle.htm
eframe-scale.htm
eframe-class.htm
epolygon-isclosed.htm
epolygon-appendvertex.htm
epolygon-setvertex.htm
epolygon-insertvertex.htm
epolygon-removevertex.htm
epolygonshape-addvertexatdisplayposition.htm
epolygonshape-removevertexatdisplayposition.htm
epolygongauge-class.htm
epolygonmeasurementmode-enum.htm
epolygonmeasurementmode-enum.htm
epolygonmeasurementmode-enum.htm
epolygonmeasurementmode-enum.htm

90

● Use the method EPolygonGauge.SetMeasurementMode to select the measurement mode:
□ Global: The position, the orientation and optionally the scale of the polygon (EFrame) are

adjusted to fit the detected transition points.

Illustration of the Global measurement mode:
the measured polygon is a translation and a rotation of the input polygon

By default, the global transformation is rigid:
- Only the translation and the rotation are optimized to match the contour of the object.
- If scaling is required, you must explicitly enable it with the method
EPolygonGauge.SetEnableScaling.
- The global measurement doesn’t change the polygon vertex positions, it only adjusts
the polygon frame.

□ Edge: Each polygon edge is measured individually.
- A polygon composed by the union of these fitted edges is generated.
- The number of edges of the measured polygon is the same as the input polygon.

The input polygon (blue) and the fitted polygon (green)

□ Point: All transition points on the object contour are used to build a new polygon, with an
optimized number of edges.
- The resulting polygon is simplified using a filtering threshold to reduce the number of
edges while keeping the shape of the object.
- The resulting number of edges depends on the geometry of the contour of the object
and on the filtering threshold.
- Set the filtering threshold with EPolygonGauge.SetFilteringThreshold.

Open eVision User Guide

epolygongauge-measurementmode.htm
epolygonmeasurementmode-enum.htm
eframe-class.htm
epolygongauge-enablescaling.htm
epolygonmeasurementmode-enum.htm
epolygonmeasurementmode-enum.htm
epolygongauge-filteringthreshold.htm

91

A polygon gauge with a single edge produces a measured polygon that follow the contour of the object.
Depending on the filtering threshold, the number of vertices is reduced.

● Other parameters of the class EPolygonGauge.

The class EPolygonGauge inherits other common EasyGauge parameters:
□ EPolygonGauge.SetNumFilteringPasses sets the number of filtering passes, then removes

outliers before the line fitting operation. This parameter is only available in Global et Edge
measurement modes.

□ EPolygonGauge.SetMinNumFitSamples sets the minimum number of samples required for the
fitting on each edge of the polygon. The measure fails if the minimum is not achieved.

□ EPolygonGauge.SetTransitionType sets the transition type (ETransitionType): white to
black, black to white or both.

□ EPolygonGauge.SetTransitionChoice selects which peak is used when there are several
transitions.

□ EPolygonGauge.SetSamplingStep gives the distance, in pixels, between two sample points.

Usage

● Sets the parameters of the gauge, then use EPolygonGauge.Measure to fit the polygon.
□ The method EPolygonGauge.GetFound returns TRUE if a suitable polygon is found.
□ To obtain the polygon geometry, use the method EPolygonGauge.GetMeasuredPolygon.

Find Transition Points Using Peak Analysis
Finds the position of all transition points along a line segment probe that crosses one or several
objects edges, and allows selecting the most relevant ones. Crosswise and lengthwise filtering
can be activated for noise reduction.

Open eVision User Guide

epolygongauge-class.htm
epolygongauge-class.htm
epolygongauge-numfilteringpasses.htm
epolygongauge-minnumfitsamples.htm
epolygongauge-transitiontype.htm
etransitiontype-enum.htm
epolygongauge-transitionchoice.htm
epolygongauge-samplingstep.htm
epolygongauge-measure.htm
eshape-getfound.htm
epolygongauge-measuredpolygon.htm

92

Point location. Contrast-based selection

Point Location principle

Point location principle (left) and S-shaped curve and its derivative (right)

On a linear profile extracted from an image, an edge appears as a transition from dark to light
(or vice versa). When plotting pixel values along the gauge, this transition appears as an S-
shaped curve. The first derivative of this curve exhibits a peak around the transition point. The
better the contrast, the sharper the transition and the higher the peak.

EasyGauge extracts the pixel values along a profile (red curve) then uses peak analysis to
determine the transition location. All the pixel values in the peak area1 are used to compute the
transition location.

l Sub-pixel accuracy is only possible if the transition is surrounded by almost uniform
regions of at least 2 pixels wide.

l BWB2 transitions have an increasing profile curve and the peak takes positive values.
Otherwise, the curve decreases and the peak extends negatively.

l You cannot normally detect peaks using the default threshold value (20) as BWB or WBW
transitions base the peak analysis on the gray level profile along the EPointGauge (or
sample path) and not its first derivative.

EPointGauge contains all point measurement parameters, with default values that detect
reasonably contrasted edges.

1Area between the derivative curve and a horizontal user-defined threshold level

2Black / White / Black

Open eVision User Guide

epointgauge-class.htm

93

EPointGauge parameters
Center: Nominal point position (will normally be different before and after measurement).
Tolerance: Tolerance value and gauge orientations.
TransitionType, TransitionChoice, TransitionIndex: Peak selection strategies.
Threshold: Noise immunity.
MinAmplitude, MinArea: Peak strength.
Thickness, Smoothing: Local filter widths.
RectangularSamplingArea Sets sampling area (rectangular by default) to transverse filtering
mode.
Measure: Measures the object.
- In single transition mode, Valid returns True when an appropriate point was found. To obtain

measurement results, set ActualShape to True so that Center returns the located point. (False
default value returns nominal point position).
- In multiple transition mode, NumMeasuredPoints returns the number of points found,
GetMeasuredPoint returns an EPoint object which contains located point information.
An integer index between 0 and GetNumMeasuredPoints-1 must be passed.
GetMeasuredPeak: Returns EPeak containing the peak's Area and Amplitude, and the delimiting
coordinates along the probe segment (Start, Length and Center values).

Select Peaks to improve edge precision

The threshold level is very important:

l Too high can cause significant peaks to be missed, and insufficient pixel values to achieve
good precision.

l Too low can cause false peaks because of noise.

To resolve this dilemma, the EasyGauge peak selection mechanism can reject low contrast or
false edges: transition strength is measured by peak amplitude and area. Every edge
measurement determines peak amplitude and area. If either value falls below the minimum
amplitude or minimum area, the peak is disregarded and no point is assumed at that location.

Threshold level selection (left) and Peak amplitude and area (right)

Multiple versus single transition
EasyGauge can measure several edge points in a single go and retrieve all results afterwards
while in multiple transition mode.

Open eVision User Guide

epointgauge-center.htm
epointgauge-tolerance.htm
epointgauge-transitiontype.htm
epointgauge-transitionchoice.htm
epointgauge-transitionindex.htm
epointgauge-threshold.htm
epointgauge-minamplitude.htm
epointgauge-minarea.htm
epointgauge-thickness.htm
epointgauge-smoothing.htm
epointgauge-rectangularsamplingarea.htm
epointgauge-measure.htm
epointgauge-valid.htm
eshape-actualshape.htm
epointgauge-center.htm
epointgauge-nummeasuredpoints.htm
epointgauge-getmeasuredpoint.htm
epoint-class.htm
epointgauge-getmeasuredpeak.htm
epeak-struct.htm
epeak-area.htm
epeak-amplitude.htm
epeak-start.htm
epeak-length.htm
epeak-center.htm
epointgauge-minamplitude.htm
epointgauge-minamplitude.htm
epointgauge-minarea.htm

94

Multiple transition (left) versus single transition (right)

You can select the single most relevant transition based on 4 criteria: the highest peak, the peak
with the largest area, the peak closest to the gauge center, or the N-th peak encountered
starting from one tip of the gauge.

Choice: (1) best area, (2) best amplitude, (3) closest, (4) 3rd from the start

NOTE: When several peaks have the same value (same area, same amplitude...), the last peak is
selected.

Positive or negative peak selection
Peak selection can also be refined by choosing the transition polarity: White to Black or Black to
White (i.e. positive or negative peak), or indifferent.

Black to white, white to black or indifferent polarities

Prefiltering
Prefiltering the image locally can reduce noise effects.
Transverse (lengthwise) filtering averages several parallel lines when sampling the image.
Longitudinal (crosswise) uniform filtering can also be applied to the resulting profile curve.

Open eVision User Guide

95

Thick point gauge for filtering

Transverse Filtering
Transverse filtering places parallel line segments in either a parallelogram or a rectangle
(default). This behavior can be toggled.
Parallelogram mode is faster than rectangular if the angle is close to 0° or 90°, or thickness is
less than 5. If thickness=1, no difference exists between the two modes.
thickness determines the number of parallel lines.
sampling area is the smallest region containing all the parallel line segments.

Rectangular sampling area (left) and Parallelogram sampling area (right)

Point Probe Position
The expected nominal position of a point gauge is specified by its center, orientation angle with
respect to the X-axis, and length tolerance that the point position can vary.

The results are the coordinates of the located points (the actual location) and the strength of
the transition (amplitude and area).
Low values indicate a weak edge, possibly corresponding to an unreliable or inaccurate
measurement.

Tuning Point Measurement Parameters for unclear edges

The EasyGauge default parameters and working modes are good for clear edges. More complex
situations may need parameter tuning.

1. Set the gauge point location and tolerance.
The center position and orientation are easy to decide based on a sample
image or on coordinate considerations. The tolerance depends on the edge
position variations. A larger tolerance increases the likelihood of hitting an
edge, but it may be a false edge or extraneous feature.
2. Decide whether noise reduction is required. Lay the gauge over the desired
location and observe the profile curve and its derivative (play with the filtering
parameters while looking at the plotted curve). The curve regularity gives an
indication of the spread of the gray-level values.

Open eVision User Guide

epointgauge-thickness.htm
epointgauge-rectangularsamplingarea.htm

96

When these coefficients are set, the gray-level profile will not change anymore.

3. Set the threshold value to be low enough for useful parts of the peaks to
cover enough pixels (to achieve better sub-pixel accuracy), but not lower than
the ambient image noise.

4. Remove weak or false edges using the list of peak amplitudes and areas.
Plotting these values along with good and extraneous peaks can help find
appropriate peak rejection limits.

5. Choose whether all transition points are needed or just the most relevant. If
all are required, they can be queried one after another. Otherwise, a point
selection strategy should be chosen based on strength, order or transition
polarity (black to white and/or conversely).

Find Shapes Using Geometric Models
The predefined geometric models ELineGauge, ECircleGauge, ERectangleGauge, EWedgeGauge or
EPolygonGauge can be fit over the edges of an object. The targeted edge must be defined, and
points sampled along it at regularly spaced point measurement gauges. Model fitting in the
least square sense can be applied.

● Line: Measures position and orientation of straight edges.

● Circle: Measures position and curvature of a circle or arc.

● Rectangle: Measures position, orientation and size of a rectangle.

Open eVision User Guide

elinegauge-class.htm
ecirclegauge-class.htm
erectanglegauge-class.htm
ewedgegauge-class.htm
epolygongauge-class.htm

97

● Wedge: Measures position, orientation and size of a ring/ disk sector / curvilinear rectangle.

● Polygon: Fits a polygon to an object and measures the exact position of the polygon, the
relative orientation of the edges or the path of the contour.

All gauge types share these common features:

● Point sampling
□ Point gauges are placed along the edges and point measurement carried out at regularly

spaced spots, which can be adjusted differently per side in rectangle and wedge gauges.
All point measurement parameters and operating modes are available.

□ SamplingStep sets the spacing of point location gauges along the model.
□ NumSamples returns the number of points sampled during the model fitting operation.

Sampling paths and sampled points

● Model fitting
□ The model is adjusted to minimize error residue and provide the best edge parameter

estimates. Rectangles and wedges have parallelism and concentricity constraints. Image
shows sampled points and fitted line.

Open eVision User Guide

elinegauge-samplingstep.htm
elinegauge-numsamples.htm

98

● Outlier rejection
□ After model fitting, some points will be too far away from the fitted model and may harm

location accuracy. EasyGauge can tag them as outliers to be ignored using the
FilteringThreshold property.

□ The outlier elimination process can be repeated several times using NumFilteringPasses.
The number of valid sample points remaining after a model fitting operation is kept in
NumValidSamples.
The average distance of these points to the fitted model is returned by AverageDistance.

● Skip range
□ The skip ranges define exclusion ranges for the paths. The sample point indexes in the

skip ranges are not taken into account to fit the model.
□ The skip ranges applie to all gauge models: line, circle, rectangle, wedge and polygon.
□ To define several skip ranges, use AddSkipRange.
□ To manage the skip ranges, use RemoveSkipRange, RemoveAllSkipRanges and GetSkipRange.
□ You must call the method Measure to take a skip range into account.
□ Use the attribute EDrawingMode_PointsInSkipRange with the method Draw to display the

skipped points.

Gauge Manipulation: Draw, Drag, Plot, Group
EasyGauge provides means to graphically interact with gauges to place and size them, combine
them as a hierarchy of grouped items, and store/retrieve them and all working parameters
to/from model files.

Draw

Draw gives a graphical representation of a gauge. Drawing is done with the current pen in the
device context associated with the desired window. Depending on the operation, handles may
be displayed.

Open eVision User Guide

elinegauge-filteringthreshold.htm
elinegauge-numfilteringpasses.htm
elinegauge-numvalidsamples.htm
elinegauge-averagedistance.htm
elinegauge-class.htm
ecirclegauge-class.htm
erectanglegauge-class.htm
ewedgegauge-class.htm
epolygongauge-class.htm
elinegauge-addskiprange.htm
elinegauge-removeskiprange.htm
elinegauge-removeallskipranges.htm
elinegauge-getskiprange.htm
elinegauge-measure.htm
edrawingmode-enum.htm
elinegauge-draw.htm

99

Drag

An operator can drag a gauge interactively over an image. Several dragging handles are
available.

● HitTest determines when the mouse cursor is over a handle. When it is, the cursor shape
should be changed for feedback, and a drag can take place.

● Drag moves the handle and the corresponding gauge accordingly.

In addition, if you are interacting with a polygon gauge, you can:

● Use the method EPolygonGauge.AddVertexAtDisplayPosition (derived from
EPolygonShape.AddVertexAtDisplayPosition) to create a new vertex at a chosen position
(typically at a mouse click)

● Use the method EPolygonGauge.RemoveVertexAtDisplayPosition (derived from
EPolygonShape.RemoveVertexAtDisplayPosition) to remove a vertex.

Plot

EasyGauge can Plot gray-level values along the sampled paths and/or its derivative - useful for
parameter tuning.

● Point measurement gauges can plot after calling Measure.

● Model fitting gauges can plot after calling MeasureSample with an index argument that lies
between 0 and GetNumSamples-1 (included).

● To view the corresponding sampling path, use the method Draw with mode EDrawingMode_
SampledPath.

Group

Measurement gauges can be grouped (their relative placement remains fixed) to form a
dedicated tool that can be moved (translated and rotated) to follow the movement of inspected
items / probes before computing measurements.

● Attach associates a gauge to a mother gauge or EFrameShape object.

● NumDaughters, GetDaughter, or Mother retrieves information relative to attached daughters or
mother.

● Detach, DetachDaughters dissociates the gauge or daughters from the mother.

Open eVision User Guide

epolygonshape-addvertexatdisplayposition.htm
epolygonshape-removevertexatdisplayposition.htm
epointgauge-measure.htm
eshape-attach.htm
eframeshape-class.htm
eshape-numdaughters.htm
eshape-getdaughter.htm
eshape-mother.htm
eshape-detach.htm
eshape-detachdaughters.htm

100

Calibration and Transformation

Field-of-view calibration

Calibration establishes the relationship between real-world point
coordinates and image pixels. A simple calibration model computes faster, a
repeatable part position is easier to locate.

The Raw sensor coordinate system starts from upper left and extends
rightwards and downwards.
The range of abscissas is 0 to width-1 and the range of ordinates is 0 to
height-1 where integer coordinate values correspond to pixel centers.

The Centered sensor coordinate system starts at the center ([width-1]/2,
[height-1]/2 in the Raw system) and extends rightwards and upwards.

The real world 3D coordinates are defined in a 2D reference frame tied to a
reference plane. The origin and direction of the axis are normally aligned
with major features of the inspected parts.

Before World-to-Sensor Transform

Before converting from world to sensor coordinates, sources of distortion should be eliminated:
□ adjust sweep frequency or scanning speed to avoid non-square pixels.
□ adjust optical alignment to minimize perspective effect. The field of view should be

parallel to the sensor plane.
□ use long focal distances and good quality lenses to minimize Optical distortion.
□ use appropriate scale factor based on lens magnification, observation distance and

focusing.
□ minimize skew and translation effects by secure fixtures, and part-movement /

acquisition-triggering synchronization.

Effects of World-to-Sensor Transform

● No calibration. World and sensor coordinates are identical.

● Translated calibration: The coordinate origin can be moved. World
coordinates correspond to pixel units.

● Isotropic scaling (square pixels). A scale factor converts pixel values to
physical measurements.

Open eVision User Guide

101

● Anisotropic scaling (non-square pixels). Uses two scale factors with pixel
aspect ratio (X /Y) in the range [-4/3, -3/4] (or [3/4, 4/3]). Pixels are always
displayed as square, so the image appears stretched.

● Scaled and skewed (square pixels). Real-world axis aligns with rotated
inspected part using translation, rotation and scaling.

● Scaled and skewed (non-square pixels). Distortion is apparent. Occurs when
camera scan speed does not match pixel spacing.

● Perspective distortion causes further away objects to look smaller; lines
remain straight but angles are not preserved.

● Optical distortion causes cushion or barrel appearance of rectangles.

● Combined distortions result in a complex, non linear, transform from real-
world to sensor spaces.

Calibration Using EWorldShape
The EWorldShape object can calibrate the whole field of view (in given imaging conditions with
fixed camera placement and lens magnification), if the optical setup is modified.
EWorldShape computes appropriate calibration coefficients and transforms measurement gauges
that are tied to it.
It can set world-to-sensor transform parameters, perform conversions from and to either
coordinate system, determine unknown calibration parameters, and save the parameters of a
given transform for later reuse.

After calibration EWorldShape can perform coordinate transform for arbitrary points using
SensorToWorld and WorldToSensor to:

□ measure non-square pixels and rotated coordinate axis.
□ correct perspective and optical distortion, with no performance loss.

There are several ways to obtain the calibration coefficients:

Open eVision User Guide

eworldshape-class.htm
eworldshape-class.htm
eworldshape-sensortoworld.htm
eworldshape-worldtosensor.htm

102

Estimate (feasible if no distortion correction is required and accuracy
requirements are low)

To estimate the calibration coefficients either locate the limits of the field of view and divide the
image resolution by the field of view size, or use the following procedure:

1. Take a picture of the part to be inspected or a calibration target (e.g. rectangle).

2. Locate feature points such as corners in the image (by the eye) and determine their
coordinates in pixel units —let (i,j).

3. Use the euclidean distance formula to derive the calibration coefficient:
where C is a calibration coefficient, in pixels per unit, and D is the world distance between the
corresponding points, in units.

4. For non-square pixels repeat this operation for pairs of horizontal and vertical points.

To estimate a skew angle, apply this formula to two points on the X-axis in the world system:

Estimating scale factors and skew angle

When the calibration coefficients are available, use SetSensor to adjust them and set the
calibration mode, or set them individually using: SetSensorSize, SetFieldSize, SetResolution,
SetCenter, SetAngle.

Pass a set of reference points (landmarks) to a calibration function

Locate at least 4 landmarks and obtain their coordinates in sensor (using image processing) and
world coordinate systems (actual measurements). More landmarks give more accurate
calibration.

The resulting pixels aspect ratio (X resolution / Y resolution) must be in the range [-4/3, -3/4] (or
[3/4, 4/3]).

Use the method EWorldShape::AddLandmark to add reference points, then use
EWorldShape::AutoCalibrateLandmarks to calculate the calibration.

Analyze a Calibration target

A calibration target can be automatically analyzed to get an appropriate set of landmarks. It is
an easy way to achieve automatic calibration, provided an appropriate procedure is available to
extract the desired landmark point coordinates.

Open eVision relies on the use of a specific target holding a rectangular grid of symmetrical dots
(of any shape) with no other object on the grid.

Open eVision User Guide

eworldshape-addlandmark.htm
eworldshape-autocalibratelandmarks.htm

103

Dot Grid based calibration example

1. Grab an image of the calibration target in such a way that it covers the whole field of view (or
restricts the image of view to an ROI where only dots are visible).

2. Apply blob analysis to extract the coordinates of the centers of the dots, as can be done by
EasyObject.

3. Pass all points detected to AddPoint (sensor coordinates only).

4. Call RebuildGrid to reconstruct a grid to calibrate a field of view using an iterative algorithm
which computes the world coordinates of each dot.

a. The grid points nearest to the gravity center (g) of grid points are selected (g1 and g2) to
form the first reference oriented segment, of length A.

b. Starting from the extremity of the reference segment (g2), the algorithm determines
3 tolerance areas (white squares in the figure), in perpendicular directions. The tolerance
areas are centered at a distance A (length of the reference segment) from (g2). They are
square, with a side-length of A.
The algorithm searches for 1 neighboring point, in each of the 3 tolerance areas.
The grid will be correctly calibrated if each tolerance area contains a neighboring point.

c. The 3 perpendicular segments are the references of the next iterative searches. The
algorithm goes back to step 2.

5. Call Calibrate.

Open eVision User Guide

eworldshape-addpoint.htm
eworldshape-rebuildgrid.htm

104

If the grid exhibits too much distortion, grid reconstruction does not work as expected. The
following errors could happen:

1. A tolerance area does not contain a neighboring point (red square in the figure).

2. A tolerance area contains more than one neighboring point.

3. The point in the tolerance area is not the correct one. For instance, the point might be
diagonally connected (red point in the figure).

TIP
Use the method EWorldShape::AutoCalibrateDotGrid to automatically
perform the process above.

Advanced Features
The field-of-view calibration model can be tuned using these parameters:

Sensor width and height

The sensor width and sensor height give the logical image size, in pixels (always integers).

Field-of-view width and height

The field-of-view (f-o-v) width and height give the actual image size, in length units, i.e. the size
of the rectangle corresponding to the image edges in the world space. These values are related
to the pixel resolution by the following equations:

f-o-v width = pixel width * sensor width

f-o-v height = pixel height * sensor height

or

sensor width = f-o-v width * horizontal resolution

sensor height = f-o-v height * vertical resolution

By default pixel height is not specified, the pixels are assumed to be square (pixel width = pixel
height).

Open eVision User Guide

eworldshape-autocalibratedotgrid.htm
eworldshape-sensorwidth.htm
eworldshape-sensorheight.htm
eworldshape-fieldwidth.htm
eworldshape-fieldheight.htm

105

Ratio

Anisotropic aspect ratio

Center abscissa and ordinate

The center abscissa (x) and ordinate (y) indicate the image origin point (world coordinates (0,0)).
Default is the image center.

Skew angle

The skew angle is the angle formed by the real-world reference frame (X-axis) and the image
edge (horizontal). The default is no skew.

Skew angle

NOTE
When the pixels are not square, the EWorldShape object can convert the angle
between the world and sensor spaces.

X and Y tilt angles

The X and Y tilt angles describe the viewing plane direction. They correspond to the required
rotations around X and Y axis that bring the Z axis parallel to the optical axis.

Tilt X and tilt Y angles

Open eVision User Guide

eworldshape-centerx.htm
eworldshape-centery.htm
eworldshape-angle.htm
eworldshape-class.htm
eworldshape-tiltxangle.htm
eworldshape-tiltyangle.htm

106

Perspective strength

The perspective strength gives a relative measure of the perspective effect. The shorter the focal
length, the larger the value.

Weak and strong perspective

Distortion strength

Distortion strength gives a relative measure of radial distortion in the image corners, that is the
ratio of image diagonal length with and without distortion.

Positive and negative distortion

Calibration mode, expressed as a combination of options, can be accessed via CalibrationModes.

Effect of the Calibration Coefficients

No calibration coefficient: All coefficients combined.

Unwarp an Image
An EWorldShape object manages a field-of-view calibration context. Such an object is able to
represent the relationship between world coordinates (physical units) and sensor coordinates
(pixels), and account for the distortions inherent in the image formation process.

Open eVision User Guide

eworldshape-perspectivestrength.htm
eworldshape-distortionstrength.htm
ecalibrationmode-enum.htm
eworldshape-calibrationmodes.htm

107

Image calibration is an important process in quantitative measurement applications. It
establishes the relation between the location of points in an image (pixel indices) and the actual
positions of those points in the real world, on the inspected item.

Calibration can be setup by providing explicit calibration parameters of the calibration model,
or a set of known points (landmarks), or a calibration target.

The goal of calibration is twofold:

● To gain independence with respect to the viewing conditions (part placement in the field of
view, lens magnification, sensor resolution, ...), letting you describe the inspected item once
for all using absolute measurements.

Single model versus multiple viewing conditions

● To correct some distortion related to the imaging process (perspective effect, optical
aberrations, ...).

Removal of image distortion

The pixel indices in an image are usually integer numbers, but fractional values can occur when
using sub-pixel methods. They are normally obtained by processing an image and locating
known feature points. These values are called sensor coordinates.

Feature point in sensor space

The world coordinates describe the location of points on the inspected item are expressed in an
appropriate length measurement unit.
The world coordinates are actual dimensions, usually gathered from design drawings or by
mechanical measurements.
They require a reference frame to be defined.

Open eVision User Guide

108

Reference frame in world space

Unwarp

Unwarp an image using Unwarp, SetupUnwarp and UnwarpAfterSetup.
Using a lookup table before unwarping may speed up the process.

Distorted vs. Unwarped image

4.3. EasyFind - Matching Geometric Patterns

Introduction

Purpose and Principles

Purpose

Based on an innovative feature-point technology, EasyFind is a matching tool designed to
rapidly locate one or more instances of a reference model in an image. With an adjustable
accuracy up to sub-pixel level, it reports very precise information about the instances found,
such as their location, rotation angle, scale and matching score.

● EasyFind supports “don't-care” areas, a feature that allows the creation of complex pattern
shapes.

● Fast Processing and Improved Robustness:

EasyFind is based on a new feature-point technology. Instead of comparing the reference
model to the sample image pixel-wise, it carefully selects relevant feature points in the
model. This method allows EasyFind to match only the areas that convey valuable
information, resulting in faster processing and much improved robustness.

Open eVision User Guide

eworldshape-unwarp.htm
eworldshape-setupunwarp.htm

109

● Training on vector patterns:

In this mode, the learning is done on collections of 2D geometrical shapes rather than on
rasterized patterns. The learning model is constructed using the new class EVectorModel
either by loading it from a DXF file or, programmatically, by using Open eVision EShape
objects.

This extension is well- suited to find objects with a known geometry.

Example of a model (left) and 3 found instances (right)

TIP
Compared to EasyMatch, EasyFind is computationally fast, robust against
noise, occlusion, blurring, missing parts and illumination variations.

Edge feature points

● EasyFind uses edge feature points to find instances in a search field:
□ An edge feature point is an abrupt change of gray level between two regions.
□ It indicates that there is an edge at this location in the search field.

● To start the finding function, EasyFind needs either a model image on which it computes the
edge feature points or directly a geometrically-defined feature model.

NOTE: The optimal model depends on the type of pattern that you are searching.

An image model and the computed edge feature points

A vector model and the computed edge feature points

Open eVision User Guide

110

● The point-by-point scores improve the robustness and the computation time of the finding
phase.

● To use this tool:
□ The models must be well contrasted with sharp edges.
□ They should be substantially different from the rest of the expected search fields.
□ They can be scaled or rotated.

● EasyFind is very robust regarding:
□ Blurring
□ Noise
□ Occlusion
□ Illumination variation

Model Rotation Occlusion Blurring

Workflow

Learn the model from images

Open eVision User Guide

111

Learn the model from vectors

Find instances of the model

Open eVision User Guide

112

Using EasyFind

Learn the Model from Images

Learning

EasyFind detects in images the instances of a reference model.

● The reference model is a set of all the feature points that EasyFind computes during the
learning process:
□ EasyFind can extract these points from a bitmap representation of the pattern as

described below.
□ Or it can use the feature points that are directly given by geometrical shapes (see "Learn

the Model from Vectors" on page 115).

Process

To learn a model in an image with EasyFind:

1. Create an EPatternFinder instance for the model and an EFoundPattern vector for the results.

Code

EPatternFinder finder;
vector<EFoundPattern> foundPattern;

Studio

In the main menu:
1. EasyFind > New EasyFind Tool > name your tool.

Open eVision User Guide

113

2. Load the image with your model.

Code

EImageBW8 image;
image.Load("Fiducial 1.tif");

Studio

In the tool window, in the Model tab:
1. Open your Source Image.
2. Select your image in the browse dialog (Fiducial 1.tif).

3. Attach an ROI to your image.

Code

EROIBW8 pattern;
pattern.Attach(&image, 520, 390, 130, 120);

Studio

In the image window:
1. Right-click > New ROI > move and resize in the image > Close.

4. According to your application and needs, adjust the "Learning Parameters" on page 123.

5. To adjust the model shape and to improve your find results, you can add "Don't Care Areas".

2 See "Use "Don't Care Areas" in the Model" on page 121.

Open eVision User Guide

114

6. Select the source image and learn the model.

Code

finder.Learn(&pattern);

Studio

In the tool window, in the Model tab:
1. Select the ROI as your Source Image.
2. Learn
3. The result is displayed on the image.

7. If you want to reuse it later, save the new model (.fnd file).

Code

finder.Save("myModel.fnd");

Studio

In the tool window, in the Model tab:
1. In the Model File area > Save As....

► EasyFind creates and save your model.

Use this model to perform:
□ "Find Instances of the Model" on page 117

Open eVision User Guide

115

Learn the Model from Vectors

Learning

EasyFind detects in images the instances of a reference model.

● The reference model is a set of all the feature points that EasyFind computes during the
learning process:
□ EasyFind can extract these points from a bitmap representation of the pattern (see

"Learn the Model from Images" on page 112).
□ Or it can use the feature points that are directly given by geometrical shapes as described

below.

● To learn a model from geometrical shapes:
□ Use the class EVectorModel to hold a collection of shapes as a vector model.
□ Load the EVectorModel from an external DXF file or use the Open eVision API to define it.

Process using an EPolygonShape

NOTE
- This feature is not available in Open eVision Studio.
- You can also use the sample program EasyFindVectorLearn.

To learn a model from geometrical shapes with EasyFind:

1. Create an EPatternFinder instance for the model.

Code

// EPatternFinder constructor
EPatternFinder finder;

2. Create your vector model and get its root shape.

Code

// EVectorModel constructor
EVectorModel myModel;
// Get the root EFrameShape of the model
EFrameShape& shapeMother = myModel.GetRoot();

Open eVision User Guide

../../../../../Content/05 Resources/07 Sample Programs/03 Matching and Measurement/EasyFindVectorLearn.htm

116

3. Create your polygon.

Code

// EPolygonShape constructor
EPolygonShape polygon;
// Define the vertices of a polygon
std::vector<EPoint> vertices = { {0.f, 0.f}, {1.f, 0.f}, {1.f, 1.f}, {0.f, 1.f} };
// Define the EPolygonShape
polygon.SetPolygon(EPolygon(vertices, true));

4. Attach the polygon to the root shape and adjust its parameters according to your application
and needs.

2 See "Vector Model Parameters" on page 136.

Code

// Attach the EPolygonShape to the root EFrameShape
polygon.Attach(&shapeMother);
// Sets the polarity of the EPolygonShape
polygon.SetProperty("polarity", "direct");

5. Learn the model.

Code

finder.Learn(&pattern);

6. If you want to reuse it later, save the new model (.fnd file).

Code

finder.Save("myModel.fnd");

► EasyFind creates and save your model.

Use this model to perform:
□ "Find Instances of the Model" on page 117

Process using a DXF file

NOTE
This feature is not available in Open eVision Studio.

● Alternatively to define the geometrical shapes of your model, you can load an EVectorModel
from an external DXF file.

Once loaded, the EVectorModel:
□ Holds a collection of shapes.
□ Holds a center position depending on the method used for the definition of the DXF.

1. Create an EPatternFinder instance for the model.

Code

// EPatternFinder constructor
EPatternFinder finder;

Open eVision User Guide

evectormodel-class.htm
evectormodel-class.htm

117

2. Create your vector model.

Code

// EVectorModel constructor
EVectorModel myModel;

3. Load the model from the DXF file.

Code

// Load the model from a dxf file
myModel.LoadDXF("myModel.dxf");

4. The scale and polarity attributes are not part of the DXF file. If necessary, add them to the
EVectorModel.

2 See "Vector Model Parameters" on page 136.

5. Learn the model.

Code

finder.Learn(&pattern);

6. If you want to reuse it later, save the new model (.fnd file).

Code

finder.Save("myModel.fnd");

► EasyFind creates and save your model.

Use this model to perform:
□ "Find Instances of the Model" on page 117

Find Instances of the Model

Finding

EasyFind detects the instances of your reference model in your images.

These instances can be highly-degraded due to noise, blur, occlusion, missing parts or unstable
illumination conditions. To optimize the finding process, adjust the search parameters and
check what EasyFind has found in the result information.

TIP
To speed up the search process, you can also use multicore processing. This
is especially interesting when you use EasyFind with angle and scale
tolerances.

Open eVision User Guide

evectormodel-class.htm
Multicore Processing.htm

118

Process

2 Create your model as described in "Learn the Model from Images" on page 112 or "Learn the
Model from Vectors" on page 115.

● In Open eVision Studio, if you just created a model following "Learn the Model from Images"
on page 112, go directly to step 3.

1. Create an EPatternFinder instance for the model and an EFoundPattern vector for the results.

Code

EPatternFinder finder;
std::vector<EFoundPattern> foundPattern;

Studio

In the main menu:
1. EasyFind > New EasyFind Tool > name your tool.

2. Open an existing model saved in a .fnd file:

Code

finder.Load("myModel.fnd");

Studio

In the tool window, in the Model tab:
1. In the Model File area > Load....

Open eVision User Guide

119

3. According to your application and needs, adjust the following parameters:
□ SetAngleBias and SetAngleTolerance: search for instances in this angle range.
□ SetScaleBias and SetScaleTolerance: search for instances in this scale range.

2 see "Finding Parameters" on page 128 for more details.

Code

finder.SetAngleBias(45.00f);
finder.SetAngleTolerance(90.00f);
finder.SetScaleBias(1.20f);
finder.SetScaleTolerance(0.30f);

Studio

In the Allowances tab:
1. In the Angle (Deg) area, set the Bias and the Tolerance on the angle.
2. In the Scale (%) area, set the Bias and the Tolerance on the scale.

4. Load your image(s).

Code

EImageBW8 srcImage;
srcImage.Load("...\\Sample Images\\EasyFind\\Fiducial 2 (Skewed).tif");

Studio

In the tool window, in the Search Field tab:
1. Open your Source Image.
2. Select one or several images in the browse dialog (Fiducial 2->8 xxx.tif).
3. Name your image set.
4. In the Drawing area, check all settings to display them on the found instances.

Open eVision User Guide

eocr2-charsheight.htm
eocr2-charsheight.htm
eocr2-textpolarity.htm
eocr2-charsheight.htm

120

5. Find the instances in your image set.

Code

foundPattern = finder.Find(&srcImage);

Studio

In the Search Field tab:
1. Find

6. Display the results.

Code

float score= foundPattern[0].Score;
float centerX= foundPattern[0].Center.X;
float centerY= foundPattern[0].Center.Y;

Studio

In the tool window, in the Search Field tab:
1. The instance location and feature points are highlighted in the current source image.
2. Use the Load Previous File and Load Next File to browse the images of your set.
3. Click on Results to open the result windows.
4. The result windows displays the score and the center coordinates of the found instance(s).

Open eVision User Guide

121

Open eVision Studio Tools

Use "Don't Care Areas" in the Model

NOTE
The "don't care areas" are deprecated:
- Instead, use an ERegion (see "Arbitrarily Shaped ROI (ERegion)" on page
29).
- As ERegions are not supported in Open eVision Studio, you can still use
"don't care areas" as described below to improve the finding results.

Don't care areas

● Use "don't care areas" in geometric pattern matching to define in the image the meaningful
features only.

● Create a "don't care areas" mask image to remove from the search process the areas that
may change from image to image, such as text and numbers:
□ "0" values indicate ignored areas.
□ "255" values indicate areas taken into account.

2 For more details about the mask, see "Flexible Masks" on page 51.

Open eVision User Guide

122

Process

2 Create your model as described in "Learn the Model from Images" on page 112.

This example is based on the file Solder Pad 1.tif with:
□ An ROI positioned at (200, 130, 190, 130)
□ Max Instances = 4

(1) Model - (2) Instances

1. Add a Don't Care Area to improve your model.

Studio

In the tool window, in the Don't Care Areas tab:
1. Blacken Inside > Rectangle.
2. Draw a rectangle over the central number to remove this part from the model.

Open eVision User Guide

123

2. Learn the model.

Studio

In the tool window, in any tab:
1. Learn
2. The result is displayed on the image.

► In the example, the find results are better with the don't care area than without as follows:

Results without (left) and with (right) don't care areas

► EasyFind creates your model.

Use this model to perform:
□ "Find Instances of the Model" on page 117

Setting the Parameters

Learning Parameters

2 The following parameters are set and used in the process: "Learn the Model from Images" on
page 112.

TIP
These parameter settings are saved together with your model in the model
file.

Open eVision User Guide

124

Pattern type

● Use the parameter SetPatternType to set the pattern type as consistent edges (default) or
thin structures.

EasyFind supports 2 pattern types:

● Use Consistent edges when:
□ Your model is well contrasted with sharp edges.
□ Your model is substantially different from the rest of the expected search fields.

● Use Thin structures when:
□ The edges of your model are consistent between thin elements and regions.
□ The contrast is the same for each thin element.

Examples of thin structures

Code

finder.SetPatternType(PatternType_ConsistentEdges);

Open eVision User Guide

epatternfinder-patterntype.htm

125

Studio

In the Model tab:
1. Select the Pattern Type.
2. Learn

Light Balance

● Use the parameter SetLightBalance to adjust the gray-level threshold of the model so that it
fits the useful parts of the pattern.
□ In Open eVision Studio, the preview of the model is automatically updated when you

adjust the light balance.
□ Once you have the correct light balance, learn your model again.

► Example of the computed feature points for different light balance values:

Open eVision User Guide

epatternfinder-lightbalance.htm

126

Code

finder.SetLightBalance(0.50f);

Studio

In the Model tab:
1. Set the Light Balance and click Learn.

Or
2. Move the Light Balance slider. The result is immediately displayed on your model.

Thin structure mode (advanced)

If the Pattern Type is Thin Structure:

● Use the parameter SetThinStructureMode to adjust the gray-level threshold of the model so
that it fits the useful parts of the pattern:
□ Auto: EasyFind chooses automatically the best contrast for thin elements.
□ Dark: EasyFind selects thin elements darker than their neighborhood.
□ Bright: EasyFind selects thin elements brighter than their neighborhood.

Code

finder.SetThinStructureMode(ThinStructureMode_Auto);

Open eVision User Guide

epatternfinder-thinstructuremode.htm
ethinstructuremode-enum.htm
ethinstructuremode-enum.htm
ethinstructuremode-enum.htm

127

Studio

If the Pattern Type is Thin Structure in the Model tab:

In the Advanced tab:
1. Select the Thin Structure Mode.
2. Learn

Number of feature points and reduction strength (advanced)

&
More feature points lead to a finer matching and a better positioning accuracy but also to a
longer processing time.

● Use the parameters SetMinFeaturePoints and SetMaxFeaturePoints to adjust the number of
feature points used to match the patterns.
□ By default, this number is computed automatically (between 8 and 1024).

● Use the parameter SetReductionMode to select the reduction mode:
□ Auto (default): the reduction strength is computed automatically.
□ Manual: use the parameter SetReductionStrength to set the reduction strength from more

accuracy (0.0) to more speed (1.0).

Code

finder.SetMinFeaturePoints(8);
finder.SetMaxFeaturePoints(1024);
finder.SetReductionMode(EReductionMode_Manual);
finder.SetReductionStrength(0.80f);

Open eVision User Guide

epatternfinder-minfeaturepoints.htm
epatternfinder-maxfeaturepoints.htm
epatternfinder-reductionmode.htm
ereductionmode-enum.htm
ereductionmode-enum.htm
epatternfinder-reductionstrength.htm

128

Studio

In the Advanced tab:
1. Set the Minimum Feature Points and the Maximum Feature Points.
2. Reduction Strength:

- Check Auto for automatic computation.
Or
- Uncheck Auto.
- Set the Reduction Strength or move the slider between Max Accuracy and Max Speed.

3. Learn

Finding Parameters

2 The following parameters are set and used in the process: "Find Instances of the Model" on
page 117.

Open eVision User Guide

129

Maximum number of expected instances

● Use the parameter SetMaxInstances to set the maximum number of instances that EasyFind
returns.

► In this example the number was 3:

Code

finder.SetMaxInstances(3);

Studio

In the Search Field tab:
1. Set the Max Instances.

Open eVision User Guide

epatternfinder-maxinstances.htm

130

Minimum score and contrast

If the Pattern Type is Thin Structure:

&
The score depends on the Contrast:

● Normal: the score is normalized between -1 and 1:
□ 1 means a perfect match with the same contrast as the model.
□ 0 means no match.
□ -1 means a perfect match but with the inverted contrast compared to the model.

● Inverse: the score is normalized between -1 and 1:
□ 1 means a perfect match with the inverted contrast compared to the model.
□ 0 means no match.
□ -1 means a perfect match but with the same contrast as the model.

● Any: the score is normalized between 0 and 1:
□ 1 means a perfect match with the same contrast or the inverted contrast compared to

the model.
□ 0 means no match.

&
Global vs point by point contrast:

● Global: the score is computed as the normalized sum of the correlation of each point.

► The feature points with a high gradient have more weight.

► Global gives higher score on incomplete instances.

● Point by point: the score is computed as the mean of the normalized correlation of each
point.

► Each feature point has the same weight.

► Point by point gives higher score on images with irregular lighting and instances with
variable contrast.

● Use the parameter SetMinScore to set the minimum score for an instance to be accepted and
returned.
□ The default value is -1.0 (no score filtering).

● If the Pattern Type is Consistent Edges, use the parameter SetContrastMode to select the
contrast mode.
□ The default value is Normal.

Code

finder.SetMinScore(0.90f);
finder.SetContrastMode(EFindContrastMode_Normal);

Open eVision User Guide

epatternfinder-minscore.htm
epatternfinder-contrastmode.htm

131

Studio

In the Search Field tab:
1. Set the Min Score.
2. Select the Contrast.

Maximum overlap

EasyFind can filter out instances that completely or partially overlap with each other.

● Use the parameter SetMaxOverlap to defined the allowed overlap.
□ The maximum overlap is defined as the area of both instances intersection divided by the

area of the smallest instance.
□ Set the parameter between 0.0 (no overlap allowed) and 1.0 (complete overlap allowed).
□ The default value is 1.0 (complete overlap allowed).

Code

finder.SetMaxOverlap(0.50f);

Open eVision User Guide

epatternfinder-maxoverlap.htm

132

Studio

In the Search Field tab:
1. Set the Max Overlap.

Angle and scale

The angle and scale ranges are defined by a bias and a tolerance:
□ For example, with an angle bias of 20° and an angle tolerance of 5°, EasyFind returns

instances with an angle between 15° and 25° with respect to the learned model
(20° ± 5°).

□ The default values are 100.0 for the scale bias and 0.0 for the other parameters. That
means EasyFind returns only patterns with no rotation nor scaling.

● Use the parameters SetAngleBias and to SetAngleTolerance to set the angle range.

● Use the parameters SetScaleBias and to SetScaleTolerance to set the scale range.

Code

finder.SetAngleBias(20.00f);
finder.SetAngleTolerance(5.00f);
finder.SetScaleBias(100.00f);
finder.SetScaleTolerance(20.00f);

Open eVision User Guide

epatternfinder-anglebias.htm
epatternfinder-angletolerance.htm
epatternfinder-scalebias.htm
epatternfinder-scaletolerance.htm

133

Studio

In the Allowances tab:
1. In the Angle (Deg) area, set the Bias and the Tolerance.
2. In the Scale (%) area, set the Bias and the Tolerance.

Find partial patterns

● Use the parameter SetFindExtension to extend the search area (in pixels) and locate
instances of thin structures and consistent edges that are partially out of the search field.

Code

finder.SetFindExtension(10);

Studio

In the Allowances tab:
1. In the Search Area area, set the Extension.

Open eVision User Guide

epatternfinder-findextension.htm

134

Local search mode (advanced)

&
In the multistage approach:

□ At the coarsest stage, EasyFind finds the pattern occurrence candidates.
□ At each of the following stages, their position and score are refined until the last and

finest one. This refining is achieved by searching for better candidates in the
neighborhood of each of the ones found in the previous stage.

● Use the parameter SetLocalSearchMode to set the extent of the neighborhood in which the
better candidates are searched.
□ Basic: the default local search neighborhood

Search extend: Angle and Scale = 3; X and Y = 3
□ ExtendedTranslation: the local search neighborhood is extended along the translation

degrees of freedom.
Search extend: Angle and Scale = 3; X and Y = 5

□ ExtendedAll: the local search neighborhood is extended along all the degrees of freedom.
Search extend: Angle and Scale = 5; X and Y = 5

□ ExtendedMore: same as ExtendedAll but with a larger extension.
Search extend: Angle and Scale = 7; X and Y = 9

□ Custom: manually define the search extend:
Use AngleSearchExtent to set the Angle and ScaleSearchExtent to set the Scale
Use XSearchExtent and YSearchExtent to set the translation along X and Y

Code

finder.SetLocalSearchMode(LocalSearchMode_Basic);

Open eVision User Guide

epatternfinder-localsearchmode.htm
elocalsearchmode-enum.htm
elocalsearchmode-enum.htm
elocalsearchmode-enum.htm
elocalsearchmode-enum.htm
elocalsearchmode-enum.htm
elocalsearchmode-enum.htm
epatternfinder-anglesearchextent.htm
epatternfinder-scalesearchextent.htm
epatternfinder-xsearchextent.htm
epatternfinder-ysearchextent.htm

135

Studio

In the Advanced tab:
1. In the Search Field area, select the Local Search Mode.
2. If you select the Custom mode, set the Angle and the Scale.

Maximum initial candidates (advanced)

&
During the search for matching patterns, EasyFind considers a set of candidates and
progressively refines it:

□ A large number of initial candidates can enable finding difficult or partial matches but at
the cost of increasing the processing time.

□ A small number of initial candidates can speed up the find process.

● Use the parameter SetMaxInitialCandidates to set the maximum number of initial candidates
that EasyFind considers.
□ This number must be greater than or equal to the number of instances to be found.
□ By default, the value is chosen internally.

Code

finder.SetMaxInitialCandidates(8);

Open eVision User Guide

epatternfinder-maxinitialcandidates.htm

136

Studio

In the Advanced tab:
1. In the Search Field area, set the Maximum initial candidates.

Vector Model Parameters

2 The following parameters are set and used in the process: "Learn the Model from Vectors" on
page 115.

Open eVision User Guide

137

Scaling the vector model

● Use the parameter Scale to set the scale of your vector model.
□ The scale represents the size of the instances in the search field (in pixels) divided by their

size in the EVectorModel.

Code

myModel.SetScale(10.0f);

Centering the vector model

● Use the parameter Center to set or get the center of your vector model.
□ The center is the anchor point in the EVectorModel coordinate system.
□ After the Find, you can retrieve its position in the search field coordinates as illustrated

below.

Code

myModel.SetCenter({2.0f, 2.0.f});

Open eVision User Guide

evectormodel-scale.htm
evectormodel-class.htm
evectormodel-center.htm
evectormodel-class.htm

138

Orienting the transitions in the vector model

● To search for light to dark or dark to light transitions, set the polarity attribute for the vector
model in the EVectorModel.

Code

// Sets the polarity of the EPolygonShape
polygon.SetProperty("polarity", "direct");

4.4. EasyMatch - Matching Area Patterns

Workflow

EasyMatch

Reference

EasyMatch learns a pattern and finds exact matches:

1. The pattern is learned by defining an ROI that contains the object to be matched.
This ROI is created after iteratively learning from several images which contain the object.

2. The parameters are tuned to ensure the pattern is found reliably.

3. Images can now be searched for one or more occurrences of the pattern, which may be
translated, rotated or scaled.

Learning and Matching a pattern

Open eVision User Guide

evectormodel-class.htm
easymatch-library.htm
easymatch-library.htm

139

Learning workflow

Matching workflow

Learning Process
Select an image containing the pattern/ROI to be searched for and call LearnPattern. Pass an
arbitrary shaped region of interest (ERegion) to ignore the pixels outside of this region.

Open eVision User Guide

ematcher-learnpattern.htm

140

The resulting pattern can be saved as a model for later use. You can repeat this process to
search for and save multiple patterns.

Best pattern characteristics

● repeatable, you need to know if it can translate or rotate or scale.

● represent the object to be located.

It should:
□ Keep the same appearance whatever the lighting conditions.
□ Remain at a fixed location with respect to the part.
□ Be rigid and not change shape.

● exhibit good contrast in small and large scale. It should be distinctly visible from a distance,
and on a reduced image.

● not be invariant under the degrees of freedom to be measured. For instance, a pattern of
black and white horizontal stripes cannot detect horizontal translation; a cog wheel cannot
help measure large rotations.

● have a neutral background. If objects around the pattern in the ROI may change, this area
should be neutralized by means of "don't care" pixels or a mask.

● have contrasted margin around the objects so that foreground and background intensities
are seen.

Customize Parameters

Parameters can be tuned to minimize processing time, but it still takes longer than EasyFind as
the entire selected area is matched.

● DontCareThreshold: If don't care areas are required, the corresponding pixels must hold a
value below the DontCareThreshold.
If all the background can be ignored, merely adjusting the DontCareThreshold to the right
thresholding value can do.
Otherwise, when the don't care area is unrelated to the threshold pattern image, the
DontCareThreshold should be set to 1 and all pixels belonging to the don't care area should
be set to black (value 0).

Alternatively, pass an arbitrary shaped region of interest (ERegion) to ignore the pixels
outside of this region. It is equivalent to setting all pixels outside of the region to black and
having a DontCareThreshold set to 1.

● MinReducedArea: To improve time performance, EasyMatch sub-samples the pattern. This
parameter stipulates the minimum size of the pattern (as its area in pixels) during sub-
sampling. The smaller the value, the faster the matching process, but, set too low, it
decreases the matching process reliability.
The value of MinReducedArea is computed automatically if AdvancedLearning is enabled
(default behavior). Setting explicitly MinReducedArea will disable AdvancedLearning. A value of
64 is usually a good compromise.

● AdvancedLearning: If the pattern is defined as a ROI of an image, AdvancedLearning optimizes
learning parameters, such as MinReducedArea, by using the whole image context.
AdvancedLearning is enabled by default, as it leads to better results in case of tiled or periodic
images. If MinReducedArea is set explicitly, AdvancedLearning is disabled. Please note that as
AdvancedLearning changes the number of pixels in the pattern, it can have a significant
impact on the matching process duration.

Open eVision User Guide

ematcher-dontcarethreshold.htm
ematcher-dontcarethreshold.htm
ematcher-dontcarethreshold.htm
ematcher-dontcarethreshold.htm
ematcher-minreducedarea.htm
ematcher-minreducedarea.htm
ematcher-advancedlearning.htm
ematcher-minreducedarea.htm
ematcher-advancedlearning.htm
ematcher-advancedlearning.htm
ematcher-advancedlearning.htm
ematcher-minreducedarea.htm
ematcher-advancedlearning.htm
ematcher-minreducedarea.htm
ematcher-advancedlearning.htm
ematcher-advancedlearning.htm

141

● FilteringMode: If the image has sharp gray-level transitions, it is better to choose a low-pass
kernel instead of the usual uniform kernel.

Learning a pattern

Matching Process
For each new image, one or more occurrences of the pattern is searched for, allowing it to
translate, rotate or scale, using a single function call:

□ Match: receives the target image/ROI as its argument and locates the desired occurrences
of the pattern. You can pass an arbitrary shaped region of interest (ERegion) to ignore the
pixels located outside of this region.

You can set these parameters:
□ Rotation range: MinAngle, MaxAngle.
□ Scaling range: MinScale, MaxScale.
□ Anisotropic scaling range: MinScaleX, MaxScaleX, MinScaleY, MaxScaleY.

The following functions return the result of the matching:
□ NumPositions returns the number of good matches found. A good match is defined as

having a score higher than prescribed value (the MinScore threshold value).
□ GetPosition returns the coordinates of the N-th good match. The positions are sorted by

decreasing score.

If you want to match several patterns against the same image, create an EMatcher object for
each pattern.

Matching a pattern

Open eVision User Guide

ematcher-filteringmode.htm
ematcher-match.htm
ematcher-minangle.htm
ematcher-maxangle.htm
ematcher-minscale.htm
ematcher-maxscale.htm
ematcher-minscalex.htm
ematcher-maxscalex.htm
ematcher-minscaley.htm
ematcher-maxscaley.htm
ematcher-numpositions.htm
ematcher-minscore.htm
ematcher-getposition.htm
ematcher-class.htm

142

Advanced Features
The best way to speed up this process is to minimize rotation and scaling, and limit the number
of occurrences searched for.

● Learning time:
□ Optimize number of searches: Searching all positions takes too long, so a sequence of

searches is performed at various scales (reductions). The coarsest reduction is quick and
approximate. Subsequent reductions work in a close neighborhood to improve location,
drastically reducing the number of positions to be tried. The location accuracy is given by
2K, where K is the reduction number.

□ MinReducedArea. Indicates how small the pattern can be made for rough location.

● Matching time:
□ Correlation mode (way to compare the pattern and the image): CorrelationMode. Can be

standard, offset-normalized, gain-normalized and fully normalized: the correlation is
computed on continuous tone values. Normalization copes with variable light conditions,
automatically adjusting the contrast and/or intensity of the pattern before comparison.

□ Contrast mode (way to deal with contrast inversions): ContrastMode. Lighting effects can
cause an object to appear with inverted contrast, you can choose whether to keep
inverted instances or not, and whether to match positive occurrences only, negative
occurrences only or both.

□ Maximum positions (expected number of matches): MaxPositions, MaxInitialPositions.
You can compel EasyMatch to consider more instances than needed at the coarse stage
using the MaxInitialPositions parameter (this number is progressively reduced to reach
MaxPositions in the final stage).

□ Minimum score (under which match is considered as false and is discarded): MinScore,
InitialMinScore.

□ Sub-pixel accuracy: Interpolate. The accuracy with which the pattern is measured can be
chosen (the less accurate, the faster). By default, the position parameters for each degree
of freedom are computed with a precision of a pixel. Lower precision can be enforced.
One tenth-of-a-pixel accuracy can be achieved.

□ Number of reduction steps: FinalReduction. Can speed up matching when coarse location
is sufficient, range [0...NumReductions-1].

□ Non-square pixels: GetPixelDimensions, SetPixelDimensions. When images are acquired
with non-square pixels, rotated objects appear skewed. Taking the pixel aspect ratio into
account can compensate for this effect.

□ "Don't care" pixels (ignored for correlation score) below the DontCareThreshold value.
When the pattern is inscribed in a rectangular ROI, some parts of the ROI can be ignored
by setting the pixels values below a threshold level. The same feature can be used if parts
of the template change from sample to sample.
Another way of specifying these ignored pixels is to use the region argument of the
method LearnPattern. The advantage of using the ERegion is that it is compatible with the
AdvancedLearning feature, while DontCareThreshold isn’t.
Our code snippet “Pattern Learning with ERegion” illustrates this.

Open eVision User Guide

ematcher-minreducedarea.htm
ematcher-correlationmode.htm
ematcher-contrastmode.htm
ematcher-maxpositions.htm
ematcher-maxinitialpositions.htm
ematcher-maxinitialpositions.htm
ematcher-maxpositions.htm
ematcher-minscore.htm
ematcher-initialminscore.htm
ematcher-interpolate.htm
ematcher-finalreduction.htm
ematcher-numreductions.htm
ematcher-getpixeldimensions.htm
ematcher-setpixeldimensions.htm
ematcher-dontcarethreshold.htm
ematcher-learnpattern.htm
eregion-class.htm
ematcher-advancedlearning.htm
ematcher-dontcarethreshold.htm

143

● Overlapping:
□ EasyMatch can filter out instances that completely or partially overlap with each other in

the search results if the parameter MaxOverlap is set to less than 1.0.
The overlap is defined as the area of the intersection of the two instances divided by the
area of the smallest instance.
The maximum allowed overlap can take any value between 0 (no overlap allowed) and 1
(complete overlap allowed).

● Extension:
□ EasyMatch can match patterns that are partially outside of the matching ROI. While this

feature is disabled by default, it can be tuned with the Extension parameter. Use this
parameter to set the maximum number of pixels of a found pattern occurrence that may
be outside the matching ROI.

4.5. EChecker2 - Validating Golden Templates

EChecker2
● EChecker2 is a tool that allows to inspect an image using a Golden Template validation.

It works in 2 steps:

a. The Model Creation involves pre-processing a set of reference images to compute a
model.
You can create the model once and archive the results in a Golden Template model for
later use.

b. The Inspection involves processing an image and checking its quality using the previously
computed model.

These 2 operations are totally independent and can even be programmed in separate
applications.

● EChecker2 is part of the EasyObject library.

● The following sections present the relevant API functions for use in the training and
inspection steps.

EChecker2 vs. EChecker

● EChecker2 supersedes the original EChecker:
□ It expands EChecker with an up-to-date API.
□ It adds the possibility to use geometrical pattern matching and a flexible number of

fiducials.
□ It works with the newer ECodedImage2.
□ It only requires the EasyObject license.

● For all these reasons, the original EChecker is now considered legacy and deprecated.

Open eVision User Guide

ematcher-maxoverlap.htm
ematcher-setextension.htm

144

Creating a Model
During the model creation phase, the good images are processed to build the model that is
used in the inspection phase. The model includes the pixel acceptance ranges, in the form of 2
threshold images, as well as the information needed to realign and normalize the images.

To create a model, 2 operations are performed: initialization and training.

Initialization

● The initialization of the model creation process is done on a specific image, called the
reference.

● On this reference, the following information are defined or computed:
□ The global gray level metrics are computed as reference for the normalization process.

It is thus very important that the reference image is well lit and contrasted.
□ One or more ERegions are placed to define the location patterns (fiducial marks or

landmarks).
The location of these patterns is used as reference in the realignment process.

TIP
- If you use only 1 pattern, the only transformation handled is the
translation.
- With 2 or more patterns, the scaling and the rotation are also processed.

NOTE
- As per Open eVision 2.15, you can only use either 1 or 2 regions.
- The possibility to use more regions will be added in the future.

□ An ERegion is defined to delimit the area to be inspected.
This area should only include pixels of the rigid part (that moves with the fiducial marks),
and not the background.

● To perform the initialization, use the method EChecker2::Initialize.

Initialization: the fiducial regions and tolerances (green) and the inspection region (blue)

Open eVision User Guide

eregion-class.htm
eregion-class.htm
echecker2-initialize.htm

145

Training

● After the initialization, the main training phase begins.
□ All the training images are processed and are averaged using statistical training (see

below).
□ The training uses realignment to deal with displacement of the inspected part in the field

of view.
□ The training uses gray-level normalization to deal with global illumination changes.

● Ideally, use 16 images or more in training to create the low and high threshold images that
serve as the basis of the inspection process.

● To perform the training:
□ Use the method EChecker2::Train with class instances.
□ Use the method EChecker2::TrainFromImageFiles with a list of image files.

Statistical training

● Use several training images to optimize the assessment of normal gray-level variations and
acceptance intervals:
□ Consecutive images of the same part without any change (static test) generates a gray-

level distribution that corresponds to the noise distribution.
□ Consecutive images of different defect-free parts reveal variations due to the parts

themselves (as opposed to defects).

Accepted gray-level ranges

Model creation parameters

● Choose the TrainingMode to fit your needs:
□ Quick for a quick training process and simpler cases (well defined defects and stable

illumination).
□ Precise for more difficult cases.
□ Default: Precise mode.

Open eVision User Guide

echecker2-train.htm
echecker2-trainfromimagefiles.htm
echecker2-trainingmode.htm

146

● Set NormalizationMode to select the type of normalization used by EChecker2:
□ Moments: linear.
□ Threshold: non-linear.
□ NoNormalization: if your acquisition process already produces consistently lit images.
□ Default: Moments.

● Choose the FiducialMatchingMode to define the search of the fiducials inside the processed
images:
□ Geometric for well-defined fiducials that can potentially suffer from occlusion.
□ Area for less-well defined fiducials.
□ Default: Geometric.

● Set FiducialHorizontalTolerance and FiducialVerticalTolerance to adjust the search
distance for the fiducials from the reference position (after realignment).
□ Default: 30 pixels.

● Set InspectionTolerance to adjust the acceptance ranges during the inspection.
□ Use higher values to make the inspection process more tolerant to noise and/or texture.

NOTE
All these parameters have an influence on how the model is built, and, as
such, if any of these parameters is changed, you must restart the model
creation.

Model serialization

● After the training, use the methods EChecker2::Save and EChecker2::Load you can save the
created model in a single file including all the relevant information and to retrieved it.

Inspecting an Image
● Use the inspection on an image to assess it towards the trained model.

The process is straightforward:

a. The sample image is realigned with the model.

b. The gray-level is normalized.

c. This gray-level is combined with the high and low threshold images to populate an
ECodedImage2.

d. The computed blobs are made of pixels that fall out of the range defined by the threshold
images and thus represent potential defects.

Open eVision User Guide

echecker2-normalizationmode.htm
echecker2-fiducialmatchingmode.htm
echecker2-fiducialhorizontaltolerance.htm
echecker2-fiducialverticaltolerance.htm
echecker2-inspectiontolerance.htm
echecker2-save.htm
echecker2-load.htm

147

The realigned Image

The low and high threshold images

Detected defects after inspection

● When the inspection is done, you can discard the smaller defects (usually noise), as well as
measure the geometric characteristics (location, size, orientation...) using the standard
EasyObject processes.

● To perform the inspection, use the method EChecker2::Inspect.

Open eVision User Guide

echecker2-inspect.htm

148

5. Using Open eVision Studio

5.1. Selecting your Programming Language

When you start Open eVision Studio for the first time, the following welcome screen is
displayed:

1. Select your programming language.

TIP
Your selection is saved and your programming language will be
automatically selected next time you start Open eVision Studio.

NOTE
When you change your programming language, any script present in the
scripting window is automatically deleted and the window content is reset.

2. Click on one of the Load buttons to already load one or several images for later processing.

3. Check the Do not show at startup box to hide this welcome screen next time you start Open
eVision Studio.

TIP
To access this welcome screen at any time, and change this setting, go to
the Help > Welcome Screen menu.

Open eVision User Guide

149

5.2. Navigating the Interface

Open eVision Studio graphical user interface (GUI) is organized as follows:

1. The main menu bar gives you access to the functions and tools of all libraries.

TIP
Open eVision Studio does not require any license and allows you to test all
libraries. Of course, if you copy code from Open eVision Studio in your own
application but you do not have the required license, you will receive a
"missing license" error at run-time.

2. The main toolbar gives you quick access to main Open eVision objects such as images,
shapes, gauges, bar codes, matrix codes...

3. The script window displays the code, in the programming language you selected,
corresponding to the actions you perform in Open eVision Studio. You can save or copy this
code in your own application at any time.

4. The image windows display the open images that you can process using the libraries and
tools.

5. The tool windows enable you to easily configure all the available tools. The corresponding
settings are automatically added in the script window for easy reuse.

TIP
Most tool windows are floating and you can easily move them outside the
Open eVision Studio main window to make better use of your screen size.

6. The execution time bar displays the precise time taken for the execution of the selected
functions (measured in milliseconds or microseconds) on your computer. This accurate
measurement helps you to evaluate the performance of your application.

Open eVision User Guide

150

7. The color toolbar displays current information such as the X and Y coordinates of the cursor
on an image and the corresponding pixel value.

8. The status bar displays general information about the application such as the active image
file path...

5.3. Running Tools on Images

Step 1: Selecting a Tool
When you use Open eVision Studio, the first step is to select the library and the tool you want to
use on your image.

To do so:

1. In the main menu bar, click on the library you want to use.

2. Click on the tool you want to use.

TIP
All libraries (except EasyImage, EasyColor and EasyGauge) expose only one
tool named New Xxx Tool. Some of these libraries also expose additional
functions.

3. In the dialog box, enter a Variable name for the variable that is automatically created and
that will contain the result of the processing.

Example of variable creation dialog box for EasyQRCode

4. Click OK.

The selected tool dialog box opens.

Open eVision User Guide

151

Example of variable creation dialog box for EasyQRCode

The next step is "Step 2: Opening an Image" on page 151.

Step 2: Opening an Image
Once you have selected your library and your tool, you need to open an image to apply this
tool.

In the Source Image area of the selected tool dialog box:

1. Open an image:

□ Click on the Open an Image button and select one or several (using SHIFT and CTRL)
images on your computer.

□ Or select one of the images (or one of the ROIs, if any) already open in the drop-down list.

NOTE
You can select only images with an appropriate file format (JPG, PNG, TIFF
or BMP) and in 8- and/or 24-bit depending on the library.

2. If you selected several images, activate one with the Load Previous or Load Next
buttons.

The tool is automatically applied on any loaded image and, at this stage, the result is displayed
based on the tool default settings.

Open eVision User Guide

152

The next step is "Step 3: Managing ROIs" on page 152.

Step 3: Managing ROIs
In some cases, most often to decrease the processing time or to single-out the object you want
to read, you do not want to process the whole image but only one or several well defined
rectangular parts of this image, or ROIs (Regions Of Interest).

TIP
In Open eVision, ROIs are attached to an image and exist only as long as the
parent image is available.

Creating a ROI

1. Open the image:
□ If the image is already open, activate the corresponding image window.
□ If the image is not open yet, go to the main menu: Image > Open... to open one.

2. To create an ROI, go to the main menu: Image > ROI Management....

The ROI Management window is displayed as illustrated below.

3. Select the image in the tree.

4. Click on the New button.

5. In the dialog box, enter a Variable name for the new ROI.

The ROI is represented as a color rectangle on your image as illustrated below.

Open eVision User Guide

153

6. Drag the ROI corner and side handles to move it to the required position.

7. Click on the Close button to close the ROI Management window .

The next step is "Step 4: Configuring the Tool" on page 154.

Managing ROIs

You can add, change and remove ROIs.

TIP
An image can have several ROIs. Each ROI can be attached directly to the
image (meaning that its position is relative to the image) or to another ROI
(meaning that its position is relative to this 'parent' ROI).

1. To manage ROIs, go to the main menu: Image > ROI Management....

The ROI Management window is displayed with the ROI relation tree as illustrated below.

If the Draw Rois box is checked, all ROIs are displayed on the image with a different color.

Open eVision User Guide

154

2. Select an ROI in the ROI relation tree.

3. Drag the ROI corner and side handles to change the position and size of the selected ROI (as
well as the position of all ROIs attached to it if any).

4. Click on the New button to add a new ROI attached to the selected ROI.

TIP
Select the image at the top of the ROI relation tree to attach the ROI directly
to the image.

5. Click on the Remove button to delete the selected ROI (and all ROIs attached to it if any).

6. Click on the Close button to close the ROI Management window.

Step 4: Configuring the Tool
Once your image, including its ROIs if you created some, is ready, you need to configure your
tool.

In the tool window:

1. Open the various tabs.

TIP
When you create a new tool, all parameters are set with their default value.

Open eVision User Guide

155

Example of the parameter tab of an EasyQRCode tool

2. In each tab, set the value of the parameters as desired.

Please refer to the "Functional Guide" and to the "Reference Manual" for detailed information
about the parameters, their function and their default value.

For specific actions such as learning or using gauges, please refer to the "Functional Guide".

3. Run the tool and analyze the results as described in the next step "Step 5: Running the Tool
and Checking Execution Time" on page 155.

Step 5: Running the Tool and Checking Execution Time
Once your tool parameters are set, run your tool and, if desired, check the execution time on
your computer.

In the tool window:

1. Click on the Read, Detect, Results or Execute button (depending on the library function), to
run the tool on the selected image.

2. Check the results on the image and in the Results field or area as illustrated below.

Open eVision User Guide

156

Example of results after reading a QRCode

3. If you do not have the expected results:
□ Try to change your parameters (start with default values then change one parameter at a

time).
□ If your image is not good enough, try to enhance it as described in .

4. Check the execution time in the execution time bar at the bottom left of the main Open
eVision Studio window.

The execution time

TIP
The execution time is the actual time that the processing took as measured
on your computer. It depends your computer processor, memory, operating
system... and, of course, on the processor load at the time of execution. Thus
this execution time slightly varies from execution to execution.

5. To get a more representative execution time, click on the Read, Detect, Results or Execute
button several times and calculate the mean execution time.

6. If your application requires that you reduce the execution time, try:
□ To change the tool parameters,
□ To add one or several ROIs on your image,
□ To enhance your image.

The next step is "Step 6: Using the Generated Code" on page 157.

Open eVision User Guide

157

Step 6: Using the Generated Code
By default, Open eVision Studio translates all the operations you perform in the interface into
code in the language you selected as illustrated below.

Once your tool results suit you, you can save or copy this generated code to use it in your own
application.

Copy and paste the code in your application

In the script window:

1. Select the code section you want to copy.

2. Right click on this code and click Copy in the menu.

3. Go to your development environment tool and paste the code in place.

Save the code

1. Go to the Script menu.

2. Click on Save Script As....

3. Enter a file name and path to save the code as a text file.

Manage the generated code

In the Script menu, you can:
□ Select the programming language (please note that if you change the language, the script

window content is automatically deleted).
□ Activate or deactivate the Script Code Generation. Deactivate this option if you want to

perform some operations without saving them as code.

Open eVision User Guide

158

5.4. Pre-Processing and Saving Images

When should you pre-process your images?

Of course, the best situation is to set up your image acquisition system to have good and easy
to process images so the Open eVision tools run smoothly and efficiently.

If this is not possible or easy to achieve, you can pre-process your images or your ROIs to
enhance and prepare them for the Open eVision tool you want to run.

Using the various available functions, you can adjust the gain and offset of your image, apply a
convolution, threshold, scale, rotate and white balance your image, enhance contours... using
EasyImage and EasyColor functions.

Pre-processing images

The difference between pre-processing an image and running tools is that the pre-processing
generates a new image while the tools mainly extract and retrieve information from the image
without changing it.

To pre-process an image or an ROI:

1. In the main menu bar, click on the library you want to use (EasyImage or EasyColor).

2. Click on the function you want to use.

Most function dialog boxes are similar to the one illustrated below with 2 image selection areas
and a parameter setting area.

Example of a pre-processing dialog box (Threshold with EasyImage)

3. If there are multiple versions for your selected function, open the corresponding tab.

4. In the Source Image area, open the source image (as described in "Step 2: Opening an
Image" on page 151).

5. In the Destination Image area, open or create a new destination image.

6. Set your parameters.

7. Click on the Execute button.

The pre-processed image is available in the destination image as illustrated below.

Open eVision User Guide

159

Source and destinations images (Threshold with EasyImage)

8. If you want to use the destination image outside of Open eVision Studio, save it as described
below.

Saving an image

1. Click on the image you want to save to makes its window active.

2. To open the save menu either:
□ Right-click in the image
□ Or open the main menu > Image

3. Click on Save as....

4. Select the file format (JPEG, JPEG2000, PNG, TIFF or Bitmap).

5. Enter a name and select a path.

6. Click on the Save button.

Open eVision User Guide

160

6. Tutorials

6.1. EasyObject

Removing Non-Significant Objects After Image
Segmentation
"Image Segmenter" on page 188

Objective

Following this tutorial, you will learn how to use EasyObject to detect bad rice grains (largely
dark) among many normal rice grains (largely light).

You'll need first to load the source image (step 1). Then you'll perform the image segmentation,
based on a threshold value (step 2). All the detected objects are dark, but some are too small to
be significant. So, you'll set a minimum object area (number of pixels), and remove the smallest
objects (step 3). Finally, you'll get only the objects that really represent bad rice grains.

Source image

Open eVision User Guide

161

Bad rice grains are detected

Step 1: Load the source image

1. From the main menu, click EasyObject, then New EasyObject Tool.

2. Keep the default variable name for the new object, and click OK.

3. In the Encoder tab, click the Open icon of the Source Image area, and load the image file
EasyObject\Rice.jpg.

4. Keep the default variable name for the new image, and click OK.

Step 2: Perform image segmentation

1. In the Encoder tab, select the Black Layer check-box, and unselect the White Layer check-box.

2. Click the ... button around the Threshold field. In the Threshold dialog box, select Absolute,
enter '115', and click OK.

3. Click Encode to detect the dark objects. In the image, each object is drawn using a different
color.

4. Click Results to display the list of all the detected objects. Clicking an object in the image
highlights it in the list, and vice versa.

Step 3: Remove the smallest objects

1. In the objects list, click Columns.

2. Tick the Area check-box, and click OK. In the list view, a new Area column appears, displaying
each object area.

3. Click the Area column header to sort the objects. There are many small objects (area < 100)
that may be considered as noise.

4. In the Selection tab, select Area from the Feature drop-down list. Select 'Less' from the Mode
drop-down list. In the Threshold field, enter '100'.

5. Click Remove. All the objects with an area smaller than 100 pixels have been removed from the
list. The two remaining objects are the bad rice grains.

Open eVision User Guide

162

Detecting Differences Between Images Using Min-Max
References
"Selecting and Sorting Blobs" on page 191

Objective

Following this tutorial, you will learn how to use EasyObject to compare images. In this
example, we will check the quality of a PCB film.

You'll need first to load a reliable source image (step 1), from which two reference images (min
and max) will be built (step 2). Then you'll load another image to be inspected (step 3), and
perform the comparison with the min and max reference images (step 4). The differences will be
detected.

High (left) and low (right) threshold reference images

In another image, differences are detected

Step 1: Load the source image

1. From the main menu, click EasyObject, then Make Min Max.

2. Click the Open icon of the Source Image area, and load the image file EasyObject\FilmOk.png.

Open eVision User Guide

163

3. Enter 'filmOk' for the name of the new image, and click OK.

Step 2: Build min and max reference images

1. Click Execute. Min and Max reference images are created, based on the source image.
□ filmOkMax is computed by dilating filmOk a given number of times ('geometric margin')

and adding a constant ('gray level margin') to every pixel. filmOkMin is computed by
eroding filmOk the same number of times and subtracting the same constant to every
pixel.

□ The geometric margin can be seen as a position tolerance between the image to be
inspected and the reference.

□ The gray level margin introduces a tolerance to lighting variations.

Step 3: Load an image to be inspected

1. From the main menu, click EasyObject, then New EasyObject Tool.

2. Keep the default variable name for the new object, and click OK.

3. In the Encoder tab, click the Open icon of the Source Image area, and load the image file
EasyObject\FilmBad.png.

4. Enter 'filmBad' for the name of the new image, and click OK

Step 4: Compare the image with the reference images

1. In the Encoder tab, select ImageRange in the segmentation method drop-down list.

2. Disable the White Layer check-box, and enable the Black Layer check-box.

3. Click the ... button around the High Image field. Select filmOkMax in the drop-down list, and
click OK.

4. Click the ... button around the Low Image field. Select filmOkMin in the drop-down list, and
click OK.

5. Click Encode. Eight differences are highlighted in the image.

6. Click Results to get further information about the detected objects. They may be further
filtered and analyzed using object features selection and sorting capabilities of EasyObject.

Detecting Printing Errors Using a Flexible Mask
"Generating a Flexible Mask from an Encoded Image" on page 192

Objective

Following this tutorial, you will learn how to use a flexible mask to target and search specific
areas in the image.

You'll need first to load a source image (step 1), and a flexible mask image (step 2), that can be
automatically applied on the source image to separate do-care areas (that must be considered)
and don't-care areas (that should not be considered). Then, you'll perform the inspection only
on do-care areas (step 3).

Open eVision User Guide

164

Source image

Mask image

Results

Step 1: Load the source image

1. From the main menu, click EasyObject, then New EasyObject Tool.

2. Keep the default variable name for the new object, and click OK.

3. In the Encoder tab, click the Open icon, and load the image file EasyObject\Mobile3.jpg.

Open eVision User Guide

165

4. Keep the default variable name for the new image, and click OK.

Step 2: Load the flexible mask image

1. In the Encoder tab, click the Open icon, and load the flexible mask image file
EasyObject\MobileMask.bmp.

2. Enter 'mask' for the name of the new image, and click OK. In the Mask area of the Encoder tab,
notice that the mask image is selected from the drop-down list: the mask is automatically
applied on the source image, because its name contains 'mask', and because it has been
loaded from the coded image dialog box. The source image preview in the dialog box shows
(in red diagonal lines) the don't-care area, that is the area that will be not be considered
when encoding the source image.

Step 3: Inspect the image

1. In the Segmentation area of the Encoder tab, click the ... button to display the threshold
dialog box.

2. Select Absolute and enter 202 for the threshold. Click OK to close the dialog box.

3. Click Encode to locate the objects (in the do-care areas only). In the source image, each object
is drawn using a different color. Three printing errors can be observed:
□ The digit '7' is partially printed.
□ The '+' sign is missing.
□ The handset is printed on a lighter tone.

4. Click Results to display the statistics on each object.
□ Selecting an object in the list highlights it in the image.
□ Selecting Columns and Drawing will display more options.

6.2. EasyGauge

Measuring the Rotation Angle of an Object
"Line Fitting" on page 195

Objective

Following this tutorial, you will learn how to use EasyGauge to measure the rotation angle of a
CCD sensor package. As we only need to retrieve an angle value, it's not required to work in a
calibrated field of view. All geometrical parameters and results will be express as numbers of
pixels.

You'll need to load the source image (step 1), and attach a line fitting gauge (step 2). The
inspection is automatically performed (step 3).

Open eVision User Guide

166

Line fitting gauge

Step 1: Load the source image

1. From the main menu, click EasyGauge, then New World Shape.

2. Keep the default variable name, and click OK.

3. From the Gauges tab, click the Open icon, and load the image file EasyImage\CCD.tif.

4. Keep the default variable name for the new image object, and click OK.

Step 2: Attach a line gauge to the image

1. In the Gauges tab of the world shape dialog box, right-click the world shape icon, select New >
Line Gauge from the contextual menu.

2. Keep the default variable name, and click OK. The line location gauge appears on the image.
It consists of the following elements:
□ A blue line segment along which the transitions search is carried out.
□ Five white handles, allowing the user to move and rotate the segment.
□ A gray arrow, indicating in which direction the segment is traversed.
□ Black and white rectangles, indicating which kind of transition is searched for.
□ Green line, indicating the transition points found (if any).

3. Using the handles, move, rotate and extend the line gauge, so that it is positioned on the
upper edge of the CCD package, with the gray arrow pointing downwards.

4. In the Measurement tab of the line gauge dialog box, choose 'White to Black' from the Type
dropdown list and 'From Begin' from the Choice dropdown list.

Step 3: Perform the inspection

1. The image is automatically inspected. However, clicking Process in the world shape dialog
box will insert the corresponding code into the script window.

2. Click the Results tab to retrieve the measured angle value.

3. To see the individual fitting points, select the Points checkbox under the Draw Samples area.

Measuring the Diameter of a Circle
"Circle Fitting" on page 196

Open eVision User Guide

167

Objective

Following this tutorial, you will learn how to use EasyGauge to measure the diameter of a circle
in an image.

You'll first load an image for calibration —a dot grid— (step 1), and calibrate the field of view
(step 2). Then you'll load the source image for inspection (step 3), and attach a circle fitting
gauge (step 4). The inspection is automatically performed (step 5). All measurement results are
expressed in physical units..

Measuring the diameter of a circle

Step 1: Load the calibration image

1. From the main menu, click EasyGauge, then New World Shape.

2. Keep the default variable name, and click OK.

3. In the Dot Grid Calibration tab, click the Open icon, and load the image file EasyGauge\Dot
Grid 1.tif.

4. Keep the default variable name for the new image object, and click OK.

Step 2: Calibrate the field of view

● Click Calibrate. From now on, the field of view is calibrated, and all results will be expressed
in physical units.

Step 3: Load the source image

1. From the Gauges tab, click the Open icon, and load the image file EasyGauge\Bracket 6.tif.

2. Keep the default variable name, and click OK.

Open eVision User Guide

168

Step 4: Attach a circle gauge to the image

1. In the Gauges tab of the world shape dialog box, right-click the frame shape icon, select New >
Circle Gauge from the contextual menu.

2. Keep the default variable name, and click OK.

3. The circle location gauge appears on the image. It consists of the following elements:
□ A blue ring in which the circle is searched for.
□ A blue nominal circle.
□ Six white handles, allowing the user to move and rotate the segment.
□ A gray arrow, indicating in which direction the segment is traversed.
□ Black and white rectangles, indicating which kind of transition are searched for.
□ A green arc of circle, indicating the circle found (if any).

4. Using the handles, drag the circle fitting gauge around the upper bracket hole. Adjust the
nominal circle on the hole edge and extend the searching area if necessary.

5. In the Measurement tab of the circle gauge dialog box, select 'From Begin' from the Choice
dropdown list.

Step 5: Perform the inspection

1. The image is automatically inspected. However, clicking Process in the world shape dialog
box will insert the corresponding code into the script window.

2. Click the Results tab to retrieve the measured diameter. All measurement results are
expressed in physical units.

Measuring a Distorted Rectangle
"Rectangle Fitting" on page 197

Objective

Following this tutorial, you will learn how to use EasyGauge to perform measurements on a
distorted rectangle component.

To obtain measurement results in physical units, we need to work in a calibrated field of view.
You'll need first to load an image for calibration —a dot grid— (step 1), and calibrate the field of
view (step 2). Then you'll load the distorted image (step 3), and attach a rectangle fitting gauge
(step 4). The inspection is automatically performed (step 5). All measurement results are
expressed in physical units.

Open eVision User Guide

169

Measuring a distorted rectangle

Step 1: Load the calibration image

1. From the main menu, click EasyGauge, then New World Shape.

2. Keep the default variable name, and click OK.

3. In the Dot Grid Calibration tab, click the Open icon, and load the image file EasyGauge\Dot
Grid 5.tif. This dot grid has been acquired in the same conditions and has the same
distortion as the image we want to inspect.

4. Keep the default variable name for the new image object, and click OK.

Step 2: Calibrate the field of view

● Click Calibrate. From now on, the field of view is calibrated, and all results will be expressed
in physical units.

Step 3: Load the distorted image

1. From the Gauges tab, click the Open icon, and load the image file EasyGauge\Distorted
Component.tif.

2. Keep the default variable name, and click OK.

Step 4: Attach a rectangle gauge to the image

1. In the Gauges tab, right-click the world shape icon, and select New > Rectangle Gauge from the
contextual menu.

2. Keep the default variable name, and click OK. The rectangle gauge dialog box is opened, and
the rectangle gauge is drawn on the image. It consists of the following elements:
□ A blue rectangular ring in which the rectangle is searched for.
□ A blue nominal rectangle.
□ Eleven white handles, allowing the user to move and extend the search area.
□ Gray arrows, indicating in which direction segments are examined.
□ Black and white rectangles, indicating which kind of transition are searched for.
□ A green rectangle, indicating the rectangle found (if any).

3. Due to the perspective effect, the rectangle gauge doesn't look like a rectangle. Using the
central handle, move the rectangle gauge in the image and observe the rectangle
deformation. Due to the calibration, the rectangle gauge shape adapts to the field of view
deformation. Extend the searching area, and adjust the nominal rectangle on the component
edges.

4. In the Measurement tab of the rectangle gauge dialog box, select 'White To Black' from the
Type dropdown list and 'From Begin' from the Choice dropdown list.

Step 5: Perform the inspection

1. The image is automatically inspected. However, clicking Process in the world shape dialog
box will insert the corresponding code into the script window.

2. Click the Results tab to retrieve the measured X and Y sizes. All measurement results are
expressed in physical units.

Open eVision User Guide

170

Locating Points Regarding to a Coordinate System
"Point Location" on page 195

Objective

Following this tutorial, you will learn how to use EasyGauge to perform lead frames inspection.
This operation determines the dimension, position, curvature, size, angle or diameter of the
lead frames with an excellent accuracy. Robustness is ensured by powerful edge-point selection
mechanisms that are intuitive and easy to tune, allowing measurement in cluttered images.

You'll first load an image for calibration —a dot grid— (step 1), and calibrate the field of view
(step 2). Then you'll load the lead frame image (step 3), and set a coordinate system (a frame
shape). Regarding to this coordinate system, you can define point gauges (steps 5-6). Finally,
you'll load another lead frame image, that has a slight angle deviation, so the coordinate system
has to be rotated (steps 7-8). The inspection is then automatically performed (step 9). All
measurement results are expressed in physical units.

Four point gauges over four sets of leads

Step 1: Load the calibration image

1. From the main menu, click EasyGauge, then New World Shape.

2. Keep the default variable name, and click OK.

3. In the Dot Grid Calibration tab, click the Open icon, and load the image file EasyGauge\Dot
Grid 2.tif.

4. Keep the default variable name for the new image object, and click OK.

Step 2: Calibrating the field of view

1. Click Calibrate. From now on, the field of view is calibrated, and all results will be expressed
in physical units.

Step 3: Loading a lead frame image

1. From the Gauges tab, click the Open icon, and load the image file EasyGauge\Lead Frame 1.tif.

2. Keep the default variable name, and click OK.

Open eVision User Guide

171

Step 4: Setting a coordinate system

1. In the Gauges tab of the world shape dialog box, right-click the world shape icon, select New >
Frame Shape from the contextual menu.

2. Keep the default variable name, and click OK. The frame shape icon appears in the world
shape dialog box.

3. Drag the frame shape center approximately to the square center of the image.

Step 5: Attaching a point gauge to the frame shape

1. In the Gauges tab of the world shape dialog box, right-click the frame shape icon, select New >
Point Gauge from the contextual menu.

2. Keep the default variable name, and click OK. The point location gauge appears on the image.
It consists of the following elements:
□ A blue line segment along which the transitions search is carried out.
□ Three white handles, allowing the user to move and rotate the segment.
□ A gray arrow, indicating in which direction the segment is traversed.
□ Black and white rectangles, indicating which kind of transition is searched for.
□ Green crosses, indicating the transition points found (if any).

3. Place the point location gauge over a set of leads: in the Position tab of the point gauge
dialog box, set the Center Y property to 7, and the Tolerance property to 5.

Step 6: Attaching other point gauges to the frame shape

1. From the Gauges tab of the world shape dialog box, create three other point gauges (refer to
step 5).

2. Place these point location gauges over the remaining sets of leads :
□ Center Y = -7, Tolerance = 5
□ Center X = 7, Tolerance = 5, Angle = 90
□ Center X = -7, Tolerance = 5, Angle = 90

Step 7: Loading another lead frame image

1. From the Gauges tab, click the Open icon, and load the image file EasyGauge\Lead Frame 2.tif.

2. Keep the default variable name for the new image, and click OK.

Step 8: Tuning the coordinate system

1. In the frame shape dialog box, set the Angle property to 5.8.

2. Drag the frame shape center approximately to the square center of the image. All point
location gauges automatically follow.

Step 9: Performing the inspection

1. The image is automatically inspected. However, clicking Process in the world shape dialog
box will insert the corresponding code into the script window.

Open eVision User Guide

172

2. From the point gauge dialog boxes, click the Results tab to retrieve the located points
coordinates. All measurement results are expressed in physical units. The values refer to the
frame shape system.

Unwarping a Distorted Image

Objective

Following this tutorial, you will learn how to use EasyGauge to perform grid calibration, and
unwarp a distorted image.

You'll first load an image for calibration —a dot grid— (step 1), and calibrate the field of view
(step 2). Then you'll load the distorted image (step 3), and perform the unwarping operation
(step 4).

Distorted image

Unwarped image

Step 1: Load the calibration image

1. From the main menu, click EasyGauge, then New World Shape.

2. Keep the default variable name, and click OK.

3. In the Dot Grid Calibration tab, click the Open icon, and load the image file EasyGauge\Dot
Grid 5.tif. This dot grid has been acquired in the same conditions and has the same
distortion as the image we want to unwarp.

4. Keep the default variable name for the new image object, and click OK.

Open eVision User Guide

173

Step 2: Calibrate the field of view

● Click Calibrate.

Step 3: Load the distorted image

1. From the Unwarping tab, click the Open icon, and load the image file EasyGauge\Distorted
component.tif.

2. Keep the default variable name, and click OK.

Step 4: Unwarp the distorted image

1. In the Destination Image area, click New icon to create a new image.

2. Keep the default image settings, and click OK.

3. Select Interpolate checkbox to improve resulting image quality.

4. Click Unwarp. In the destination image, all distortions are corrected.

6.3. EasyFind

Detecting Highly-Degraded Occurrences of a Reference
Model in Multiple Files
"Pattern Finding and Retrieving Results" on page 204

Objective

Following this tutorial, you will learn how to use EasyFind to detect in multiple images highly-
degraded occurrences of a reference model. The degradation can be due to noise, blur,
occlusion, missing parts or unstable illumination conditions.

You'll need first to load a reference image, define an ROI where EasyFind will learn the reference
model, and set rotation and scaling tolerances for the expected occurrences to search for (steps
1-4). Then you're ready to open multiple files, and perform automatic detection of occurrences
(even highly-degraded) of the reference model (steps 5-6).

Open eVision User Guide

174

Reference model

Occurrences of the reference model are found, even if highly-degraded

Step 1: Load the reference image

1. From the main menu, click EasyFind, then New EasyFind Tool.

2. Keep the default variable name for the new PatternFinder object, and click OK. The
PatternFinder management dialog box is opened.

3. In the Model tab, click the Open icon, and load the image file EasyFind\Fiducial 1.tif.

4. Keep the default variable name for the new image object, and click OK.

Step 2: Create an ROI to define the reference model on the reference image

1. In the image, right-click and select New ROI... item from the menu.

2. Keep the default variable name for the new ROI object, and click OK. A default ROI is placed
over the image (blue rectangle with handles). The ROI management dialog box is opened.

3. Drag the ROI over the reference model and resize it using its handles. Alternatively, enter the
following coordinates in the ROI dialog box: 500, 365, 170, 170 for OrgX, OrgY, Width, and
Height respectively, and click Close.

Open eVision User Guide

175

Step 3: Learn the reference model

1. In the PatternFinder Model tab, select the ROI object from the source image drop-down list,
and click Learn. The reference model is perfectly detected (green edges).

2. In the PatternFinder Search Field tab, select the Image object from the source image drop-
down list. Tick the Draw Features check-box.

The model location and feature points are highlighted in the source image.

Step 4: Set rotation and scaling tolerances

● In the PatternFinder Allowances tab, set both angle tolerance and scale tolerance to 25.0.

Step 5: Select multiple images

1. In the PatternFinder Search Field tab, click the Open icon. Select the images files
EasyFind\Fiducial 2.tif to Fiducial 8.tif (use the shift key to select multiple files), and
click Open.

2. Keep the default variable name for the new Image object, and click OK. The last image
appears. The reference model is found, even if highly-degraded.

3. Detection of the reference model is automatically performed. It is not necessary to click Find
once a new image appears, as inspection is automatically performed. However, clicking Find
will insert the corresponding code into the script windows.

4. Click Results to find more information about the found instance.

Step 6: Browse multiple images

● In the PatternFinder Search Field tab, click the Load Next or Load Previous icons.

The image files appear, and the reference model is automatically detected.

Improving the Score of Found Instances by Using "Don't
Care Areas"
"Setting Search Parameters" on page 203

Objective

Following this tutorial, you will learn how to use EasyFind to handle "don't care areas" in
geometric pattern matching. "Don't care areas" help to define in the image the meaningful
features only, by masking the areas that might change from image to image, such as text and
numbers.

You'll need first to load a reference image, define an ROI where EasyFind will learn the reference
model, and set a rotation tolerance for the expected instances to search for (steps 1-4). Then
you're ready to perform automatic detection of instances of the reference model, without using
"don't care areas" (step 5). As the matching scores of the found instances are not high enough,
you'll define a "don't care area" on the reference model, and restart the detection. The
matching scores are slightly better (steps 6-7).

Open eVision User Guide

176

Reference model

Found instances and matching scores, without (left) and with (right) using "don't care areas"

Step 1: Loading the reference image

1. From the main menu, click EasyFind, then New EasyFind Tool.

2. Keep the default variable name for the new PatternFinder object, and click OK. The
PatternFinder management dialog box is opened.

3. In the Model tab, click the Open icon, and load the image file EasyFind\Solder Pad 1.tif.

4. Keep the default variable name for the new Image object, and click OK.

Open eVision User Guide

177

Step 2: Creating an ROI to define the reference model on the reference image

1. In the image, right-click and select New ROI... item from the menu.

2. Keep the default variable name for the new ROI object, and click OK. A default ROI is placed
over the image (blue rectangle with handles). The ROI management dialog box is opened.

3. Drag the ROI over the reference model and resize it using its handles. Alternatively, enter the
following coordinates in the ROI dialog box: 200, 130, 190, 130 for OrgX, OrgY, Width, and
Height respectively, and click Close.

Step 3: Learning the reference model

1. In the PatternFinder Model tab, select the ROI object from the source image drop-down list,
and click Learn. The reference model is detected.

2. In the PatternFinder Search Field tab, select the Image object from the source image drop-
down list. Tick the Draw Features check-box. The model location and feature points are
highlighted in the source image.

Step 4: Setting a rotation tolerance

1. In the PatternFinder Allowances tab, set the angle tolerance to 5.0.

Step 5: Detecting instances of the reference model without "don't care areas"

1. In the PatternFinder Search Field tab, set Max Instances to 4, and click Find. The instances
matching the reference model are highlighted.

2. Click Results to see the matching score of each found instance. Even though the scores are
good, we can still improve them slightly by using a "don't care area" to mask the text
appearing in the learned pattern.

Step 6: Defining the "don't care area"

1. In the PatternFinder Don't Care Areas tab, select the Rectangle radio button from the Blacken
Inside group.

2. In the ROI defining the reference model, move your mouse pointer on the top-left corner of
the text "U9", left-click and drag the don't care area (rectangle with red stripes) to mask out
the text.

Step 7: Detecting instances of the reference model with "don't care areas"

1. In the PatternFinder Don't Care Areas tab, click Learn, and then click Find.

The instances matching the reference model are still highlighted, but the text is not found
anymore.

2. Click Results to compare the new matching scores.

They are slightly better.

Open eVision User Guide

178

6.4. EasyMatch

Learning a Pattern and Creating an EasyMatch Model File
"Pattern Learning" on page 206

Objective

Following this tutorial, you will learn how to use EasyMatch to learn a model from a reference
image, and save it as an EasyMatch model file.

You'll need first to load the reference image (step 1). Then, you'll learn it as the reference model
(step 2). And you'll save the model as an EasyMatch model file (step 3).

Reference image

Step 1: Load the reference image

1. From the main menu, click EasyMatch, then New Match Tool.

2. Keep the default variable name for the new matcher object, and click OK.

3. In the Learning tab, click the Open icon, and load the image file EasyMatch\FrameModel.tif.

4. Keep the default variable name for the new image object, and click OK.

Step 2: Learn the reference image

● In the Learning tab, click Learn to acquire the model pattern.

Step 3: Save the model file

1. In the Learning tab, click the Save As... button.

2. Type a file name for the new EasyMatch model file. Its extension will be .mch.

3. Click Save.

Matching a Pattern According to a Model File
"Pattern Matching and Retrieving Results" on page 207

Objective

Following this tutorial, you will learn how to use EasyMatch to load an EasyMatch model file,
and search for occurrences of the pattern in an image.

Open eVision User Guide

179

You'll need first to load the model file, and a source image where the model will be searched for
(steps 1-2). Then the pattern matching is fully automatic (step 3).

Occurrences of the model are automatically highlighted

Step 1: Load the model file

1. From the main menu, click EasyMatch, then New Match Tool.

2. Keep the default variable name for the new matcher object, and click OK.

3. In the Learning tab, click Load... to open the model file EasyMatch\Switch.MCH. The model
contains all necessary information about the pattern we are searching for.

Step 2: Load a source image

1. In the Matching tab, click the Open icon, and load the image file EasyMatch\Switch1.tif.

2. Keep the default variable name for the new image object, and click OK.

Step 3: Perform the pattern matching

1. The pattern matching is automatically performed on the source image, and the matching
occurrences are highlighted. Clicking Execute will insert the corresponding code into the
script windows.

2. Further information about each occurrence can be found by clicking Results.

3. Click in a row to see the corresponding occurrence highlighted in the image.

Learning a Pattern According to an ROI
"Pattern Learning" on page 206

Open eVision User Guide

180

Objective

Following this tutorial, you will learn how to use EasyMatch to learn a model from an ROI in a
source image, and to perform pattern matching on the same image.

You'll need first to load the source image, and define an ROI inside (steps 1-2). Then, you'll have
to learn the model, using this ROI (step 3). Finally, you'll perform pattern matching in the source
image (step 4), and will find additional occurrences of the model.

ROI that will be learned

Occurrences matching the model ROI

Step 1: Load the source image

1. From the main menu, click Image, then Open.

2. Load the image file EasyMatch\BOARD.JPG.

3. Keep the default variable name for the new image object, and click OK.

Step 2: Define an ROI

1. Right-click in the image, and select New ROI... from the contextual menu.

Open eVision User Guide

181

2. Keep the default variable name for the new ROI object, and click OK. A default ROI is placed
over the image (blue rectangle with handles).

The ROI management dialog box is opened.

3. Resize the ROI and move it around one of the blue capacitors at the lower left part of the
image.

Step 3: Learn a model from the ROI

1. From the main menu, click EasyMatch, then New Match Tool.

2. Keep the default variable name for the new matcher object, and click OK.

3. In the Learning tab of the matcher dialog box, select the ROI object from the Source Image
drop-down list, and click Learn to acquire the model pattern.

Step 4: Match the pattern

1. In the Matching tab, increase the Max Occurrences field to 2.

2. Select the image object from the Source Image drop-down list.

3. Click Execute. The occurrences of the learned model are highlighted in the source image.

4. Further information about each occurrence can be found by clicking Results.

5. Click in a row to see the corresponding occurrence highlighted in the image.

Improving the Score of Matching Instances by Using
"Don't Care Areas"
"Setting Search Parameters" on page 206

Objective

Following this tutorial, you will learn how to use EasyMatch to handle "don't care areas". "Don't
care areas" help to define in the image the meaningful features only, by masking the areas that
might change from image to image.

You'll need first to load a reference image and learn the reference model (steps 1-2). Then you'll
perform automatic pattern matching of instances of the reference model, without using "don't
care areas" (step 3). As the matching scores of the found instances are not high enough, you'll
define a "don't care area" on the reference model, and restart the detection. The matching
scores are much better (steps 4-5).

Reference model

Open eVision User Guide

182

Found instances and matching scores, without (left) and with (right) using "don't care areas"

Step 1: Load the reference image

1. From the main menu, click EasyMatch, then New Match Tool.

2. Keep the default variable name for the new Matcher object, and click OK. The Matcher
management dialog box is opened.

3. In the Learning tab, click the Open icon, and load the image file EasyMatch\Die Pad Model
1.bmp.

4. Keep the default variable name for the new Image object, and click OK.

Step 2: Learn the reference model

● Click Learn to acquire the model pattern.

Step 3: Detect instances of the reference model without "don't care areas"

1. In the Matching tab, click the Open icon, and load the image file EasyMatch\Die Pad 1.bmp.

2. Keep the default variable name for the new Image object, and click OK. An instance matching
the reference model is highlighted.

3. Increase the Max Occurrences field to 3. Enable the Sub-Pixel Interpolate check-box to
increase the matching precision.

Open eVision User Guide

183

4. Enter '-10.0' as the Minimum Angle (Deg). (Check that the angle is displayed in degrees. If
not, select the angles unit from View > Option menu.)

5. Enter '10.0' as the Maximum Angle (Deg).

6. Click Execute. The pattern locations are highlighted in the source image.

7. Click Results to see the matching score of each found instance. The last two scores are
rather bad. This is mainly due to the bright rectangle on the upper part of the reference
image we have learned. We can improve the scores by using a "don't care area" to mask this
bright area.

Step 4: Define the "don't care area"

1. In the Don't Care Areas tab, select the Rectangle radio button from the Blacken Inside group.

2. In the reference image, move your mouse pointer on the lower left corner of the bright
rectangle, left-click and drag the don't care area (rectangle with red stripes) to the upper
right corner of the bright rectangle to mask out this area.

3. In the Don't Care Areas tab, click Learn.

Step 5: Detect instances of the reference model with "don't care areas"

1. In the Matching tab, click Execute. The instances matching the reference model are still
highlighted.

2. Click Results to compare the new matching scores. They are much better.

Open eVision User Guide

184

7. Code Snippets

Open eVision User Guide

185

7.1. Basic Types

Loading and Saving Images
Functional Guide | Reference: Load, Save, SaveJpeg

//
// This code snippet shows how to load and save an image. //
//

// Images constructor
EImageBW8 srcImage= new EImageBW8();
EImageBW8 dstImage= new EImageBW8();

// Load an image file
srcImage.Load("mySourceImage.bmp");

// ...

// Save the destination image into a file
dstImage.Save("myDestImage.bmp");

// Save the destination image into a jpeg file
// The default compression quality is 75
dstImage.Save("myDestImage.jpg");

// Save the destination image into a jpeg file
// set the compression quality to 50
dstImage.SaveJpeg("myDestImage50.jpg", 50);

Interfacing Third-Party Images
Functional Guide | Reference: SetImagePtr

///
// This code snippet shows how to link an Open eVision image //
// to an externally allocated buffer. //
///

// Images constructor
EImageBW8 srcImage= new EImageBW8();

// Size of the third-party image
int sizeX = bufferSizeX;
int sizeY = bufferSizeY;

//Pointer to the third-party image buffer
IntPtr imgPtr = bufferPointer;

// ...

// Link the Open eVision image to the third-party image
// Assuming the corresponding buffer is aligned on 4 bytes
srcImage.SetImagePtr(sizeX, sizeY, imgPtr);

Open eVision User Guide

ebaseroi-load.htm
ebaseroi-save.htm
ebaseroi-savejpeg.htm
ebaseroi-setimageptr.htm
ebaseroi-setimageptr.htm

186

Retrieving Pixel Values
Functional Guide | Reference: GetImagePtr

///
// This code snippet shows the recommended method to access //
// the pixel values in a BW8 image. //
///

using System.RunTime.InteropServices;

IntPtr pixAddr;
byte pix;

//...

for(int y = 0; y < height; ++y)
{

pixAddr = bw8Image.GetImagePtr(0,y);
for(int x = 0; x < width; ++x)

pix = Marshal.ReadByte(pixAddr,x);
}

ROI Placement
Functional Guide | Reference: Attach, SetPlacement

///
// This code snippet shows how to attach an ROI to an image //
// and set its placement. //
///

// Image constructor
EImageBW8 parentImage= new EImageBW8();

// ROI constructor
EROIBW8 myROI= new EROIBW8();

// Attach the ROI to the image
myROI.Attach(parentImage);

//Set the ROI position
myROI.SetPlacement(50, 50, 200, 100);

Vector Management
Functional Guide | Reference: Empty, AddElement

///
// This code snippet shows how to create a vector, fill it //
// and retrieve the value of a given element. //
///

// EBW8Vector constructor
EBW8Vector ramp= new EBW8Vector();
EBW8 bw8 = new EBW8();

Open eVision User Guide

ebaseroi-getimageptr.htm
ebaseroi-attach.htm
ebaseroi-setplacement.htm
ebaseroi-attach.htm
ebaseroi-setplacement.htm
evector-empty.htm
ebw8vector-addelement.htm

187

// Clear the vector
ramp.Empty();

// Fill the vector with increasing values
for(int i= 0; i < 128; i++)
{

bw8.Value = (byte)i;
ramp.AddElement(bw8);

}

// Retrieve the 10th element value
EBW8 value = ramp.GetElement(9);

Exception Management
Functional Guide | Reference: GetPixel, What

//
// This code snippet shows how to manage //
// Open eVision exceptions. //
//

try
{

// Image constructor
EImageC24 srcImage= new EImageC24();

// ...

// Retrieve the pixel value at coordinates (56, 73)
EC24 value= srcImage.GetPixel(56, 73);

}

catch(EException exc)
{

// Retrieve the exception description
string error = exc.What();

}

Open eVision User Guide

evector-empty.htm
ebw8vector-addelement.htm
eroic24-getpixel.htm
eexception-what.htm
eroic24-getpixel.htm
eexception-what.htm

188

7.2. EasyObject

Constructing the Blobs

Image Encoder

Functional Guide | Reference: Encode, SetBlackLayerEncoded, SetWhiteLayerEncoded, SetMode,
SetAbsoluteThreshold, GetGrayscaleSingleThresholdSegmenter

//
// This code snippet shows how to build blobs belonging to //
// the white layer according to the minimum residue method //
// and how to build blobs belonging to the black layer //
// according to an absolute threshold. //
//

// Image constructor
EImageBW8 srcImage= new EImageBW8();

// Image encoder
EImageEncoder encoder= new EImageEncoder();

// Coded image
ECodedImage2 codedImage= new ECodedImage2();

// ...

// Build the blobs belonging to the white layer,
// the segmentation is based on the Minimum Residue method
encoder.Encode(srcImage, codedImage);

// Build the blobs belonging to the black layer,
// the segmentation is based on an absolute threshold (110)
Euresys.Open_eVision_1_1.Segmenters.EGrayscaleSingleThresholdSegmenter segmenter=
encoder.GrayscaleSingleThresholdSegmenter;
segmenter.BlackLayerEncoded= true;
segmenter.WhiteLayerEncoded= false;

segmenter.Mode= EGrayscaleSingleThreshold.Absolute;
segmenter.AbsoluteThreshold= 110;

encoder.Encode(srcImage, codedImage);

Image Segmenter

Functional Guide | Reference: SetSegmentationMethod,
GetGrayscaleDoubleThresholdSegmenter, SetHighThreshold, SetLowThreshold

//
// This code snippet shows how to build blobs according to //
// a user-defined image segmenter. //
//

// Image constructor

Open eVision User Guide

eimageencoder-encode.htm
eimagerangesegmenter-blacklayerencoded.htm
eimagerangesegmenter-whitelayerencoded.htm
egrayscalesinglethresholdsegmenter-mode.htm
egrayscalesinglethresholdsegmenter-absolutethreshold.htm
eimageencoder-grayscalesinglethresholdsegmenter.htm
eimageencoder-segmentationmethod.htm
eimageencoder-grayscaledoublethresholdsegmenter.htm
egrayscaledoublethresholdsegmenter-highthreshold.htm
egrayscaledoublethresholdsegmenter-lowthreshold.htm

189

EImageBW8 srcImage= new EImageBW8();

// Image encoder
EImageEncoder encoder= new EImageEncoder();

// Coded image
ECodedImage2 codedImage= new ECodedImage2();

// ...

// Set the segmentation method to GrayscaleDoubleThreshold
encoder.SegmentationMethod= ESegmentationMethod.GrayscaleDoubleThreshold;

// Retrieve the segmenter object
Euresys.Open_eVision_1_1.Segmenters.EGrayscaleDoubleThresholdSegmenter segmenter=
encoder.GrayscaleDoubleThresholdSegmenter;

// Set the high and low threshold values
segmenter.HighThreshold= 150;
segmenter.LowThreshold= 50;

// Specify the layers to be encoded (neutral layer only)
segmenter.BlackLayerEncoded= false;
segmenter.NeutralLayerEncoded= true;
segmenter.WhiteLayerEncoded= false;

// Encode the image
encoder.Encode(srcImage, codedImage);

Holes Extraction

Functional Guide | Reference: GetHoleCount, GetHole, GetObjCount, GetObj

///
// This code snippet shows how to retrieve blobs' holes. //
///

// Image constructor
EImageBW8 srcImage= new EImageBW8();

// Image encoder
EImageEncoder encoder= new EImageEncoder();

// Coded image
ECodedImage2 codedImage= new ECodedImage2();

// ...

// Encode the image
encoder.Encode(srcImage, codedImage);

// Retrieve holes for all the blobs
for (uint blobIndex = 0; blobIndex < codedImage.GetObjCount(); blobIndex++)
{

EObject blob = codedImage.GetObj(blobIndex);

// Browse the holes of the current object
for (uint holeIndex = 0; holeIndex < blob.HoleCount; holeIndex++)
{

// Retrieve a given hole
EHole hole = blob.GetHole(holeIndex);

Open eVision User Guide

eobject-holecount.htm
eobject-gethole.htm
ecodedimage2-getobjcount.htm
ecodedimage2-getobj.htm

190

}
}

Continuous Mode

Functional Guide | Reference: SetContinuousModeEnabled, FlushContinuousMode

///
// This code snippet shows how to build blobs //
// in the continuous mode context. //
///

// Image constructor
EImageBW8 srcImage= new EImageBW8();

// Image encoder
EImageEncoder encoder= new EImageEncoder();

// Coded image
ECodedImage2 codedImage= new ECodedImage2();

// ...

// Enable the continuous mode
encoder.ContinuousModeEnabled= true;

// Loop to acquire 50 different chunks
for (int count = 0; count < 50 ; count++)
{

// Store the new chunk into srcImage
// ...

// Encode the current chunk
encoder.Encode(srcImage, codedImage);

}

// Flush the continuous mode
encoder.FlushContinuousMode(codedImage);

Computing Blobs Features
Functional Guide | Reference: GetGravityCenter, GetObj

//
// This code snippet shows how to retrieve blobs' features. //
//

// Image constructor
EImageBW8 srcImage= new EImageBW8();

// Image encoder
EImageEncoder encoder= new EImageEncoder();

// Coded image
ECodedImage2 codedImage= new ECodedImage2();

// ...

Open eVision User Guide

eimageencoder-continuousmodeenabled.htm
eimageencoder-flushcontinuousmode.htm
ecodedelement-gravitycenter.htm
ecodedimage2-getobj.htm

191

// Encode the source image
encoder.Encode(srcImage, codedImage);

for (uint index = 0; index < codedImage.GetObjCount(); index++)
{

// Retrieve the selected blob gravity center
EObject blob = codedImage.GetObj(index);
float centerX = blob.GravityCenter.X;
float centerY = blob.GravityCenter.Y;

}

Selecting and Sorting Blobs
Functional Guide | Reference: AddObjects, ElementCount, RemoveUsingUnsignedIntegerFeature,
Sort

///
// This code snippet shows how to build blobs, select //
// some of them and sort the selected ones. //
///

// Image constructor
EImageBW8 srcImage= new EImageBW8();

// Image encoder
EImageEncoder encoder= new EImageEncoder();

// Coded image
ECodedImage2 codedImage= new ECodedImage2();

// ...

// Encode the source image
encoder.Encode(srcImage, codedImage);

// Create a blob selection
EObjectSelection selection= new EObjectSelection();
selection.AddObjects(codedImage);

// Remove the Small blobs
selection.RemoveUsingUnsignedIntegerFeature(EFeature.Area, 100, ESingleThresholdMode.Less);

// Retrieve the number of remaining blobs
uint numBlobs= selection.ElementCount;

// Sort the remaining blobs based on their area
selection.Sort(EFeature.Area, ESortDirection.Ascending);

// Retrieve the selected blobs
for (uint index = 0; index < numBlobs; index++)
{

float centerX= selection.GetElement(index).GravityCenterX;
float centerY= selection.GetElement(index).GravityCenterY;

}

Open eVision User Guide

eobjectselection-addobjects.htm
eobjectselection-elementcount.htm
eobjectselection-removeusingintegerfeature.htm
eobjectselection-sort.htm

192

Using Flexible Masks

Constructing Blobs

Functional Guide | Reference: Encode

//
// This code snippet shows how to build blobs inside //
// a region defined by a flexible mask. //
//

// Images constructor
EImageBW8 srcImage= new EImageBW8();
EImageBW8 mask = new EImageBW8();

// Image encoder
EImageEncoder encoder= new EImageEncoder();

// Coded image
ECodedImage2 codedImage= new ECodedImage2();

// ...

// Encode the source image regions
// corresponding to the mask do care areas
encoder.Encode(srcImage, mask, codedImage);

Generating a Flexible Mask from an Encoded Image

Functional Guide | Reference: RenderMask

///
// This code snippet shows how to generate a flexible //
// mask from an encoded image. //
///

// Images constructor
EImageBW8 srcImage= new EImageBW8();
EImageBW8 mask= new EImageBW8();

// Image encoder
EImageEncoder encoder= new EImageEncoder();

// Coded image
ECodedImage2 codedImage= new ECodedImage2();

// ...

// Encode the source image
encoder.Encode(srcImage, codedImage);

// The source image and the mask must have the same size
mask.SetSize(srcImage);

// Create the mask based on the white layer
// of the coded image
codedImage.RenderMask(mask, 1);

Open eVision User Guide

eimageencoder-encode.htm
ecodedimage2-rendermask.htm

193

Generating a Flexible Mask from a Blob Selection

Functional Guide | Reference: RenderMask

///
// This code snippet shows how to generate a flexible //
// mask from a selection of blobs. //
///

// Images constructor
EImageBW8 srcImage= new EImageBW8();
EImageBW8 mask= new EImageBW8();

// Image encoder
EImageEncoder encoder= new EImageEncoder();

// Coded image
ECodedImage2 codedImage= new ECodedImage2();

// ...

// Encode the source image
encoder.Encode(srcImage, codedImage);

// The source image and the mask must have the same size
mask.SetSize(srcImage);

// Create a blob selection
EObjectSelection selection= new EObjectSelection();
selection.AddObjects(codedImage);

// Remove the Small blobs
selection.RemoveUsingUnsignedIntegerFeature(EFeature.Area, 100, ESingleThresholdMode.Less);

// Create the mask based on the blob selection
selection.RenderMask(mask);

// Sort the remaining blobs based on their area
selection.Sort(EFeature.Area, ESortDirection.Descending);

// Create the mask corresponding to the largest blob
selection.GetElement(0).RenderMask(mask);

Using the Object Template Matcher
Functional Guide | Reference: EObjectTemplateMatcher

///
// This code snippet shows how to use EObjectTemplateMatcher //
// for alignment and template matching //
///

// Encode the template image
EImageEncoder encoder = new EImageEncoder();
ECodedImage2 coded_img = new ECodedImage2();

EImageBW8 template_img = new EImageBW8();
encoder.Encode(template_img, coded_img);

Open eVision User Guide

eobjectselection-rendermask.htm
../../../../../Content/reference/eobjecttemplatematcher-class.htm

194

EObjectSelection object_select = new EObjectSelection();
object_select.AddObjects(coded_img);

// Initialize EObjectTemplateMatcher
EObjectTemplateMatcher object_matcher = new EObjectTemplateMatcher();
object_matcher.EnableAlignment = true; // optional
object_matcher.MaximumDistance = 60; // optional

// set the template
object_matcher.BuildTemplate(object_select);

// Encode the test image
EImageBW8 test_img = new EImageBW8();
encoder.Encode(test_img, coded_img);

// Build a selection of test objects
object_select.Clear();
object_select.AddObjects(coded_img);
object_select.RemoveUsingUnsignedIntegerFeature(EFeature.Area, 10, ESingleThresholdMode.Less); // optional
filter

// Perform the alignment and the matching
object_matcher.SortSelection(object_select);

// Get the number of matches
int num = object_matcher.NumberOfPairedObjects;

// Retrieve the template indexes for each selection object
int[] template_indexes = object_matcher.TemplateIndexes;

Open eVision User Guide

195

7.3. EasyGauge

Point Location
Functional Guide | Reference: SetTransitionType, SetTransitionChoice, SetCenterXY,
SetTolerance, Measure, GetMeasuredPoint, GetX, GetY

//
// This code snippet shows how to create a point location tool, //
// adjust the transition parameters, set the nominal gauge //
// position, perform the measurement and retrieve the result. //
//

// Image constructor
EImageBW8 srcImage= new EImageBW8();

// EPointGauge constructor
EPointGauge pointGauge= new EPointGauge();

// Adjust the transition parameters
pointGauge.TransitionType= ETransitionType.Wb;
pointGauge.TransitionChoice= ETransitionChoice.Closest;

// Set the gauge nominal position
pointGauge.SetCenterXY(256.0f, 256.0f);

// Set the gauge length to 10 units and the angle to 45°
pointGauge.SetTolerances(10.0f, 45.0f);

// Measure
pointGauge.Measure(srcImage);

// Get the measured point coordinates
float measuredX = pointGauge.GetMeasuredPoint().X;
float measuredY = pointGauge.GetMeasuredPoint().Y;

// Save the point gauge measurement context
pointGauge.Save("myPointGauge.gge");

Line Fitting
Functional Guide | Reference: SetTransitionType, SetTransitionChoice, SetTransitionIndex,
SetLine, Measure, GetMeasuredLine, GetOrg, GetEnd

//
// This code snippet shows how to create a line measurement tool, //
// adjust the transition parameters, set the nominal gauge //
// position, perform the measurement and retrieve the result. //
//

// Image constructor
EImageBW8 srcImage= new EImageBW8();

// ELineGauge constructor
ELineGauge lineGauge= new ELineGauge();

Open eVision User Guide

epointgauge-transitiontype.htm
epointgauge-transitionchoice.htm
epointgauge-setcenterxy.htm
epointgauge-tolerance.htm
epointgauge-measure.htm
epointgauge-getmeasuredpoint.htm
epoint-x.htm
epoint-y.htm
elinegauge-transitiontype.htm
elinegauge-transitionchoice.htm
elinegauge-transitionindex.htm
elinegauge-line.htm
elinegauge-measure.htm
elinegauge-measuredline.htm
eline-org.htm
eline-end.htm

196

// Adjust the transition parameters
lineGauge.TransitionType= ETransitionType.Bw;
lineGauge.TransitionChoice= ETransitionChoice.NthFromEnd;
lineGauge.TransitionIndex= 2;

// Set the line fitting gauge position,
// length (50 units) and orientation (20°)
EPoint center= new EPoint(256.0f, 256.0f);
ELine line= new ELine(center, 50.0f, 20.0f);
lineGauge.Line= line;

// Measure
lineGauge.Measure(srcImage);

// Get the origin and end point coordinates of the fitted line
EPoint originPoint = lineGauge.MeasuredLine.Org;
EPoint endPoint = lineGauge.MeasuredLine.End;

// Save the point gauge measurement context
lineGauge.Save("myLineGauge.gge");

Circle Fitting
Functional Guide | Reference: SetTransitionType, SetTransitionChoice, SetCircle, Measure,
GetMeasuredCircle, GetCenter, GetRadius

//
// This code snippet shows how to create a circle measurement tool, //
// adjust the transition parameters, set the nominal gauge //
// position, perform the measurement and retrieve the result. //
//

// Image constructor
EImageBW8 srcImage= new EImageBW8();

// ECircleGauge constructor
ECircleGauge circleGauge= new ECircleGauge();

// Adjust the transition parameters
circleGauge.TransitionType= ETransitionType.Bw;
circleGauge.TransitionChoice= ETransitionChoice.LargestAmplitude;

// Set the Circle fitting gauge position, diameter (50 units),
// starting angle (10°), and amplitude (270°)
EPoint center= new EPoint(256.0f, 256.0f);
ECircle circle= new ECircle(center, 50.0f, 10.0f, 270.0f);
circleGauge.Circle = circle;

// Measure
circleGauge.Measure(srcImage);

// Get the center point coordinates and the radius of the fitted circle
float centerX = circleGauge.MeasuredCircle.Center.X;
float centerY = circleGauge.MeasuredCircle.Center.Y;
float radius = circleGauge.MeasuredCircle.Radius;

// Save the point gauge measurement context
circleGauge.Save("myCircleGauge.gge");

Open eVision User Guide

ecirclegauge-transitiontype.htm
ecirclegauge-transitionchoice.htm
ecirclegauge-circle.htm
ecirclegauge-measure.htm
ecirclegauge-measuredcircle.htm
epoint-center.htm
ecircle-radius.htm

197

Rectangle Fitting
Functional Guide | Reference: SetTransitionType, SetTransitionChoice, SetRectangle, Measure,
GetMeasuredRectangle, GetSizeX, GetSizeY, GetAngle

///
// This code snippet shows how to create a rectangle measurement tool, //
// adjust the transition parameters, set the nominal gauge position, //
// perform the measurement and retrieve the result. //
///

// Image constructor
EImageBW8 srcImage= new EImageBW8();

// ERectangleGauge constructor
ERectangleGauge rectangleGauge= new ERectangleGauge();

// Adjust the transition parameters
rectangleGauge.TransitionType= ETransitionType.Bw;
rectangleGauge.TransitionChoice= ETransitionChoice.LargestAmplitude;

// Set the rectangle fitting gauge position,
// size (50x30 units) and orientation (15°)
rectangleGauge.SetCenterXY(256.0f, 256.0f);
rectangleGauge.SetSize(50.0f, 30.0f);
rectangleGauge.Angle = 15.0f;

// Measure
rectangleGauge.Measure(srcImage);

// Get the size and the rotation angle of the fitted rectangle
float sizeX = rectangleGauge.MeasuredRectangle.SizeX;
float sizeY = rectangleGauge.MeasuredRectangle.SizeY;
float angle = rectangleGauge.MeasuredRectangle.Angle;

// Save the point gauge measurement context
rectangleGauge.Save("myRectangleGauge.gge");

Wedge Fitting
Functional Guide | Reference: SetTransitionType, SetTransitionChoice, SetWedge, Measure,
GetMeasuredWedge, GetInnerRadius, GetOuterRadius

///
// This code snippet shows how to create a wedge measurement tool, //
// adjust the transition parameters, set the nominal gauge //
// position, perform the measurement and retrieve the result. //
///

// Image constructor
EImageBW8 srcImage= new EImageBW8();

// EWedgeGauge constructor
EWedgeGauge wedgeGauge= new EWedgeGauge();

// Adjust the transition parameters
wedgeGauge.TransitionType= ETransitionType.Bw;
wedgeGauge.TransitionChoice= ETransitionChoice.NthFromBegin;

Open eVision User Guide

erectanglegauge-transitiontype.htm
erectanglegauge-transitionchoice.htm
erectangleshape-rectangle.htm
erectanglegauge-measure.htm
erectanglegauge-measuredrectangle.htm
erectangleshape-sizex.htm
erectangleshape-sizey.htm
erectangleshape-angle.htm
ewedgegauge-transitiontype.htm
ewedgegauge-transitionchoice.htm
ewedgegauge-wedge.htm
ewedgegauge-measure.htm
ewedgegauge-measuredwedge.htm
ewedgeshape-innerradius.htm
ewedgeshape-outerradius.htm

198

wedgeGauge.TransitionIndex= 0;

// Set the wedge fitting gauge position, diameter (50 units),
// breadth (-25 units), starting angle (0°) and amplitude (270°)
EPoint center= new EPoint(256.0f, 256.0f);
EWedge wedge= new EWedge(center, 50.0f, -25.0f, 0.0f, 270.0f);
wedgeGauge.Wedge= wedge;

// Measure
wedgeGauge.Measure(srcImage);

// Get the inner and outer radius of the fitted wedge
float innerRadius = wedgeGauge.MeasuredWedge.InnerRadius;
float outerRadius = wedgeGauge.MeasuredWedge.OuterRadius;

// Save the point gauge measurement context
wedgeGauge.Save("myWedgeGauge.gge");

Gauge Grouping

Gauge Hierarchy

Functional Guide | Reference: Attach, SetName, Save

//
// This code snippet shows how to create a gauge hierarchy //
// and save it into a file. //
//

// EWorldShape constructor
EWorldShape worldShape= new EWorldShape();

// Gauges constructor
ERectangleGauge rectangleGauge= new ERectangleGauge();
ECircleGauge circleGauge1= new ECircleGauge();
ECircleGauge circleGauge2= new ECircleGauge();

// ...

// Attach the rectangle gauge to the EWorldShape
rectangleGauge.Attach(worldShape);

// Attach the circle gauges to the rectangle gauge
circleGauge1.Attach(rectangleGauge);
circleGauge2.Attach(rectangleGauge);

// Set the first circle gauge name
circleGauge1.Name= "myCircleGauge1";

// ...

// Save worldShape together with its daughters
worldShape.Save("myWorldShape.gge", true);

Complex Measurement

Functional Guide | Reference: Load, GetNumDaughters, Process, GetDaughter, GetShapeNamed

Open eVision User Guide

eshape-attach.htm
eshape-name.htm
eshape-save.htm
eshape-load.htm
eshape-numdaughters.htm
../../../reference/eshape-process.htm
eshape-getdaughter.htm
eshape-getshapenamed.htm

199

//
// This code snippet shows how to trigger the measurement //
// of a whole gauge hierarchy and retrieve the results. //
//

// Image constructor
EImageBW8 srcImage= new EImageBW8();

// EWorldShape constructor
EWorldShape worldShape= new EWorldShape();

// Load the EWorldShape together with its daughters
worldShape.Load("myWorldShape.gge", true);

// Retrieve the number of worldShape's daughters
uint numDaughters= worldShape.NumDaughters;

// ...

// Trigger the measurement of all the
// gauges attached to the EWorldShape
worldShape.Process(srcImage, true);

// Retrieve the measurement result of
// the first daughter (a rectangle gauge)
ERectangleGauge rectangleGauge= (ERectangleGauge)worldShape.GetDaughter(0);
float sizeX= rectangleGauge.MeasuredRectangle.SizeX;

// Retrieve the measurement result of a
// daughter gauge called "myCircleGauge1"
ECircleGauge circleGauge= (ECircleGauge)worldShape.GetShapeNamed("myCircleGauge1");
EPoint center= circleGauge.MeasuredCircle.Center;

Calibration using EWorldShape
Functional Guide | Reference

Calibration by Guesswork

Functional Guide | Reference: SetSensor, GetXResolution, GetYResolution

//
// This code snippet shows how to perform a calibration //
// by guesswork. //
//

// Image constructor
EImageBW8 srcImage= new EImageBW8();

// EWorldShape constructor
EWorldShape worldShape= new EWorldShape();

// ...

// Compute the calibration coefficients
// Field of view: 32x24 mm
worldShape.SetSensor(srcImage.Width, srcImage.Height, 32.0f, 24.0f);

Open eVision User Guide

eworldshape-class.htm
eworldshape-setsensor.htm
eworldshape-xresolution.htm
eworldshape-yresolution.htm

200

// Retrieve the spatial resolution
float resolutionX= worldShape.XResolution;
float resolutionY= worldShape.YResolution;

Landmark-Based Calibration

Functional Guide | Reference: EmptyLandmarks, AddLandmark, Calibrate

///
// This code snippet shows how to perform a landmark-based //
// calibration. //
///

// EWorldShape constructor
EWorldShape worldShape= new EWorldShape();

// ...

// Reset the calibration context
worldShape.EmptyLandmarks();

// Loop on the landmarks
for(int index= 0; index < numLandmarks; index++)
{

// Get the I-th landmark as a pair of EPoint(x, y)
EPoint sensorPoint, worldPoint;

// Retrieve and store the relevant data into worldPoint and sensorPoint
sensorPoint = myIthLandmark_Sensor;
worldPoint = myIthLandmark_World;

// Add the I-th pair
worldShape.AddLandmark(sensorPoint, worldPoint);

}

// Perform the calibration
worldShape.Calibrate((int)ECalibrationMode.Skewed);

Dot Grid-Based Calibration

Functional Guide | Reference: EmptyLandmarks, AddPoint, RebuildGrid, AutoCalibrate

///
// This code snippet shows how to perform a dot grid-based //
// calibration. //
///

// EWorldShape constructor
EWorldShape worldShape= new EWorldShape();

// ...

// Reset the calibration context
worldShape.EmptyLandmarks();

// Loop on the dots
for(int index= 0; index < numDots; index++)
{

Open eVision User Guide

eworldshape-emptylandmarks.htm
eworldshape-addlandmark.htm
eworldshape-calibrate.htm
eworldshape-emptylandmarks.htm
eworldshape-addpoint.htm
eworldshape-rebuildgrid.htm
eworldshape-autocalibrate.htm

201

// Get the I-th dot as an EPoint(x, y)
EPoint dotPoint;

// Retrieve and store the relevant data into dotPoint
dotPoint = myIthDot;

// Add the I-th dot
worldShape.AddPoint(dotPoint);

}

// Reconstruct the grid topology
// pitch X and Y = 5 units
worldShape.RebuildGrid(5, 5);

// Perform the calibration
// the calibration modes are computed automatically
worldShape.AutoCalibrate(true);

Coordinates Transform

Functional Guide | Reference: SensorToWorld, WorldToSensor

///
// This code snippet shows how to convert coordinates from //
// the Sensor space to the World space and conversely. //
///

// EWorldShape constructor
EWorldShape worldShape= new EWorldShape();

// EPoint constructor
EPoint sensor= new EPoint();
EPoint world= new EPoint();

// ...

// Perform the calibration
worldShape.Calibrate((int)ECalibrationMode.Scaled | (int)ECalibrationMode.Skewed);

// Retrieve the world coordinates of a point, knowing its sensor coordinates
world= worldShape.SensorToWorld(sensor);

// Retrieve the sensor coordinates of a point, knowing its world coordinates
sensor= worldShape.WorldToSensor(world);

Image Unwarping

Functional Guide | Reference: SetupUnwarp, Unwarp

//
// This code snippet shows how to unwarp an image based //
// of the computed calibration coefficients. //
//

// Images constructor
EImageBW8 srcImage= new EImageBW8();
EImageBW8 dstImage= new EImageBW8();

Open eVision User Guide

eworldshape-sensortoworld.htm
eworldshape-worldtosensor.htm
eworldshape-setupunwarp.htm
eworldshape-unwarp.htm

202

// EWorldShape constructor
EWorldShape worldShape= new EWorldShape();

// Lookup table constructor
EUnwarpingLut lut= new EUnwarpingLut();

// ...

// Perform the calibration
worldShape.Calibrate((int)ECalibrationMode.Tilted | (int)ECalibrationMode.Radial);

// Setup the lookup table for unwarping
worldShape.SetupUnwarp(lut, srcImage, true);

// Perform the image unwarping
worldShape.Unwarp(lut, srcImage, dstImage, true);

Open eVision User Guide

203

7.4. EasyFind

Pattern Learning
Functional Guide | Reference: Learn

///
// This code snippet shows how to learn a pattern //
// defined by a region of interest (ROI). //
///

// Image constructor
EImageBW8 srcImage= new EImageBW8();

// ROI constructor
EROIBW8 pattern= new EROIBW8();

// EPatternFinder constructor
EPatternFinder finder= new EPatternFinder();

// ...

// Attach the ROI to the source image
// and set its position
pattern.Attach(srcImage);
pattern.SetPlacement(214, 52, 200, 200);

// Learn the pattern
finder.Learn(pattern);

Setting Search Parameters
Functional Guide | Reference: SetMaxInstances, SetAngleTolerance, SetMinScore, Save

//
// This code snippet shows how to tune pattern finding //
// search parameters and save them into a file. //
//

// Image constructor
EImageBW8 pattern= new EImageBW8();

// EPatternFinder constructor
EPatternFinder finder= new EPatternFinder();

// ...

// Learn the pattern
finder.Learn(pattern);

// Set the maximum number of occurrences
finder.MaxInstances= 5;

// Set the rotation tolerances
finder.AngleTolerance= 20.0f;

Open eVision User Guide

epatternfinder-learn.htm
epatternfinder-maxinstances.htm
epatternfinder-angletolerance.htm
epatternfinder-minscore.htm
eshape-save.htm

204

// Set the minimum score
finder.MinScore= 0.70f;

// Save the finding context into a model file
finder.Save("myModel.fnd");

Pattern Finding and Retrieving Results
Functional Guide | Reference: Load, Find, GetScore, GetCenter

///
// This code snippet shows how to perform pattern //
// finding operations and retrieve the results. //
///

// Image constructor
EImageBW8 srcImage= new EImageBW8();

// EPatternFinder constructor
EPatternFinder finder= new EPatternFinder();

// EFoundPattern constructor
EFoundPattern[] foundPattern= null;

// ...

// Load a model file
finder.Load("myModel.fnd");

// Perform the pattern finding
foundPattern= finder.Find(srcImage);

// Retrieve the number of instances
int numInstances= foundPattern.Length;

// Retrieve the score and the
// position of the first instance
float score= foundPattern[0].Score;
float centerX= foundPattern[0].Center.X;
float centerY= foundPattern[0].Center.Y;

Learning Using a DXF File
Functional Guide | Reference: LoadDXF, Find

///
// This code snippet shows how to perform //
// pattern learning and finding operations //
// using a DXF file. //
///
// Image constructor
EImageBW8 srcImage = new EImageBW8();
// EPatternFinder constructor
EPatternFinder finder = new EPatternFinder();
// EVectorModel constructor
EVectorModel myModel = new EVectorModel();
// Load the model from a dxf file
myModel.LoadDXF("myModel.dxf");

Open eVision User Guide

eshape-load.htm
epatternfinder-find.htm
efoundpattern-score.htm
efoundpattern-center.htm
evectormodel-loaddxf.htm
epatternfinder-find.htm

205

// Learn the model
finder.Learn(myModel);
// EFoundPattern constructor
EFoundPattern[] foundPattern = null;
// ...
// Perform the pattern finding
foundPattern = finder.Find(srcImage);

Learning Using an EPolygonShape
Functional Guide | Reference: SetPolygon, Find

///
// This code snippet shows how to perform //
// pattern learning and finding operations //
// using EPolygonShape to define the model.//
///
// Image constructor
EImageBW8 srcImage = new EImageBW8();
// EPatternFinder constructor
EPatternFinder finder = new EPatternFinder();
// EVectorModel constructor
EVectorModel myModel = new EVectorModel();
// Get the root EFrameShape of the model
EFrameShape root = myModel.Root;
// EPolygonShape constructor
EPolygonShape polygon = new EPolygonShape();
// Define the vertices of a polygon
EPoint[] vertices = new EPoint[] { new EPoint(0, 0), new EPoint(1, 0), new EPoint(1, 1), new EPoint(0, 1) };
// Define the polygon
EPolygon basePolygon = new EPolygon(vertices, true);
// Define the EPolygonShape
polygon.Polygon = basePolygon;
// Attach the EPolygonShape to the root EFrameShape
polygon.Attach(root);
// Sets the polarity of the EPolygonShape
polygon.SetProperty("polarity", "direct");
// Learn the model
finder.Learn(myModel);
// EFoundPattern constructor
EFoundPattern[] foundPattern = null;
// ...
// Perform the pattern finding
foundPattern = finder.Find(srcImage);

Open eVision User Guide

epolygonshape-polygon.htm
epatternfinder-find.htm

206

7.5. EasyMatch

Pattern Learning
Functional Guide | Reference: LearnPattern

///
// This code snippet shows how to learn a pattern //
// defined by a region of interest (ROI). //
///

// Image constructor
EImageBW8 srcImage= new EImageBW8();

// ROI constructor
EROIBW8 pattern= new EROIBW8();

// EMatcher constructor
EMatcher matcher= new EMatcher();

// ...

// Attach the ROI to the source image
// and set its position
pattern.Attach(srcImage);
pattern.SetPlacement(214, 52, 200, 200);

// Learn the pattern
matcher.LearnPattern(pattern);

Setting Search Parameters
Functional Guide | Reference: SetMaxPositions, SetMinAngle, SetMaxAngle, SetMinScore,
SetInterpolate, Save

//
// This code snippet shows how to tune pattern matching //
// search parameters and save them into a file. //
//

// Image constructor
EImageBW8 pattern= new EImageBW8();

// EMatcher constructor
EMatcher matcher= new EMatcher();

// ...

// Learn the pattern
matcher.LearnPattern(pattern);

// Set the maximum number of occurrences
matcher.MaxPositions= 5;

// Set the rotation tolerances
matcher.MinAngle= -20.0f;

Open eVision User Guide

pattern-matching-image-processing.htm
ematcher-learnpattern.htm
ematcher-maxpositions.htm
ematcher-minangle.htm
ematcher-maxangle.htm
ematcher-minscore.htm
ematcher-interpolate.htm
ematcher-save.htm

207

matcher.MaxAngle= 20.0f;

// Enable sub-pixel accuracy
matcher.Interpolate= true;

// Set the minimum score
matcher.MinScore= 0.70f;

// Save the matching context into a model file
matcher.Save("myModel.mch");

Pattern Matching and Retrieving Results
Functional Guide | Reference: Load, Match, GetNumPositions, GetPosition

///
// This code snippet shows how to perform pattern //
// matching operations and retrieve the results. //
///

// Image constructor
EImageBW8 srcImage= new EImageBW8();

// EMatcher constructor
EMatcher matcher= new EMatcher();

// ...

// Load a model file
matcher.Load("myModel.mch");

// Perform the matching
matcher.Match(srcImage);

// Retrieve the number of occurrences
uint numOccurrences= matcher.NumPositions;

// Retrieve the first occurrence
EMatchPosition myOccurrence= matcher.GetPosition(0);

// Retrieve its score and position
float score= myOccurrence.Score;
float centerX= myOccurrence.CenterX;
float centerY= myOccurrence.CenterY;

Pattern Learning with ERegion
Functional Guide | Reference: LearnPattern

///
// This code snippet shows how to learn a pattern //
// whose region of interest is defined by an ERegion //
///

EImageBW8 srcImage = new EImageBW8();
EROIBW8 pattern = new EROIBW8();
EMatcher matcher = new EMatcher();
// ...

Open eVision User Guide

pattern-matching-image-processing.htm
ematcher-load.htm
ematcher-match.htm
ematcher-numpositions.htm
ematcher-getposition.htm
pattern-matching-image-processing.htm
ematcher-learnpattern.htm

208

// Attach the ROI to the source image and set its position
pattern.Attach(srcImage);
pattern.SetPlacement(214, 52, 200, 200);

// pattern is a 200*200 square but here we are only
// interested in the inner circle

// OLD method (warning, advanced learning is not compatible with this)
matcher.DontCareThreshold = 1;
// must paint the part of pattern we are not interested in in black
matcher.LearnPattern(pattern);

// NEW method (compatible with advanced learning)
ECircleRegion region = new ECircleRegion(100.0f, 100.0f, 100.0f);
matcher.LearnPattern(pattern, region);

Open eVision User Guide

	1. Dealing with Pixel Containers and Files
	1.1. Pixel Container Definition
	1.2. Pixel Container Types
	1.3. Supported Image File Types
	1.4. Pixel and File Types Compatibility
	1.5. Color Types

	2. Conventions
	2.1. Conventions for Strings
	2.2. Image Coordinate Systems
	2.3. Image and Depth Map Buffer

	3. Basic Operations
	3.1. Memory Allocation
	3.2. Loading a Pixel Container File
	3.3. Saving a Pixel Container File
	3.4. Drawing in Open eVision
	3.5. 3D Rendering of 2D Images
	3.6. Vector Types and Main Properties
	3.7. ROI Main Properties
	3.8. Arbitrarily Shaped ROI (ERegion)
	3.9. Flexible Masks
	3.10. Profile

	4. Matching and Measurement Tools
	4.1. EasyObject - Analyzing Blobs
	Image Segmenters
	Image Encoder
	Holes Construction
	Normal vs. Continuous Mode
	Selecting and Sorting Blobs
	Object Template Matcher
	Advanced Features
	Computable Features
	Draw Coded Elements
	Flexible Masks in EasyObject

	4.2. EasyGauge - Measuring down to Sub-Pixel
	Workflow
	Gauge Definitions
	Find Transition Points Using Peak Analysis
	Find Shapes Using Geometric Models
	Gauge Manipulation: Draw, Drag, Plot, Group
	Calibration and Transformation
	Calibration Using EWorldShape
	Advanced Features
	Unwarp an Image

	4.3. EasyFind - Matching Geometric Patterns
	Introduction
	Purpose and Principles
	Workflow
	Using EasyFind
	Learn the Model from Images
	Learn the Model from Vectors
	Find Instances of the Model
	Open eVision Studio Tools
	Use Don't Care Areas in the Model
	Setting the Parameters
	Learning Parameters
	Finding Parameters
	Vector Model Parameters

	4.4. EasyMatch - Matching Area Patterns
	Workflow
	Learning Process
	Matching Process
	Advanced Features

	4.5. EChecker2 - Validating Golden Templates
	EChecker2
	Creating a Model
	Inspecting an Image

	5. Using Open eVision Studio
	5.1. Selecting your Programming Language
	5.2. Navigating the Interface
	5.3. Running Tools on Images
	Step 1: Selecting a Tool
	Step 2: Opening an Image
	Step 3: Managing ROIs
	Step 4: Configuring the Tool
	Step 5: Running the Tool and Checking Execution Time
	Step 6: Using the Generated Code

	5.4. Pre-Processing and Saving Images

	6. Tutorials
	6.1. EasyObject
	Removing Non-Significant Objects After Image Segmentation
	Detecting Differences Between Images Using Min-Max References
	Detecting Printing Errors Using a Flexible Mask

	6.2. EasyGauge
	Measuring the Rotation Angle of an Object
	Measuring the Diameter of a Circle
	Measuring a Distorted Rectangle
	Locating Points Regarding to a Coordinate System
	Unwarping a Distorted Image

	6.3. EasyFind
	Detecting Highly-Degraded Occurrences of a Reference Model in Multiple Files
	Improving the Score of Found Instances by Using Don't Care Areas

	6.4. EasyMatch
	Learning a Pattern and Creating an EasyMatch Model File
	Matching a Pattern According to a Model File
	Learning a Pattern According to an ROI
	Improving the Score of Matching Instances by Using Don't Care Areas

	7. Code Snippets
	7.1. Basic Types
	Loading and Saving Images
	Interfacing Third-Party Images
	Retrieving Pixel Values
	ROI Placement
	Vector Management
	Exception Management

	7.2. EasyObject
	Constructing the Blobs
	Image Encoder
	Image Segmenter
	Holes Extraction
	Continuous Mode

	Computing Blobs Features
	Selecting and Sorting Blobs
	Using Flexible Masks
	Constructing Blobs
	Generating a Flexible Mask from an Encoded Image
	Generating a Flexible Mask from a Blob Selection

	Using the Object Template Matcher

	7.3. EasyGauge
	Point Location
	Line Fitting
	Circle Fitting
	Rectangle Fitting
	Wedge Fitting
	Gauge Grouping
	Gauge Hierarchy
	Complex Measurement

	Calibration using EWorldShape
	Calibration by Guesswork
	Landmark-Based Calibration
	Dot Grid-Based Calibration
	Coordinates Transform
	Image Unwarping

	7.4. EasyFind
	Pattern Learning
	Setting Search Parameters
	Pattern Finding and Retrieving Results
	Learning Using a DXF File
	Learning Using an EPolygonShape

	7.5. EasyMatch
	Pattern Learning
	Setting Search Parameters
	Pattern Matching and Retrieving Results
	Pattern Learning with ERegion

