
Open eVision
3D Processing Tools

USER GUIDE

© EURESYS S.A. 2024 - Doc. D133ET-Using 3D Processing Tools C++-Open eVision-24.02.0.1198 built on 2024-03-26

2

This documentation is provided with Open eVision 24.02.0 (doc build 1198).
www.euresys.com

This documentation is subject to the General Terms and Conditions stated on the website of EURESYS S.A.
and available on the webpage https://www.euresys.com/en/Menu-Legal/Terms-conditions. The article 10
(Limitations of Liability and Disclaimers) and article 12 (Intellectual Property Rights) are more specifically
applicable.

Open eVision User Guide

https://www.euresys.com/
https://www.euresys.com/en/Menu-Legal/Terms-conditions

3

Contents
1. Dealing with Pixel Containers and Files 5

1.1. Pixel Container Definition 5
1.2. Pixel Container Types 7
1.3. Supported Image File Types 8
1.4. Pixel and File Types Compatibility 9
1.5. Color Types 9

2. Conventions 10
2.1. Conventions for Strings 10
2.2. Image Coordinate Systems 10
2.3. Image and Depth Map Buffer 12

3. Basic Operations 14
3.1. Memory Allocation 14
3.2. Loading a Pixel Container File 15
3.3. Saving a Pixel Container File 16
3.4. Drawing in Open eVision 18
3.5. 3D Rendering of 2D Images 21
3.6. Vector Types and Main Properties 22
3.7. ROI Main Properties 26
3.8. Arbitrarily Shaped ROI (ERegion) 28
3.9. Flexible Masks 50
3.10. Profile 54

4. 3D Tools 56
4.1. Easy3D - Using 3D Toolset 56

Basic Concepts 56
Static Methods 61
Point Cloud 64

Mapping Attributes 64
Normals and Curvatures 64
Coordinates Transformations 64
Reducing a Point Cloud 65
Managing Planes 67
Aligning 70
Using Spheres 73

Mesh 73
ZMap 75

Generating a ZMap 75
Creating a Point Cloud from a ZMap 77
Managing the Coordinates 78

3D Viewer 79
Photometric Stereo 86

Photometric Stereo and Process 86
Calibration 88
Computation and Results 90
Processing the Results with Open eVision Tools 93
Optimizing your Setup 95
Improving the Results 97

4.2. Easy3DLaserLine - Laser Line Extraction and Calibration 100
Laser Triangulation 100
The Laser Line 3D Acquisition Pipeline 101
Laser Line Extraction 102
Software vs Hardware Line Extraction 106
Calibration 109
Object-Based Calibration Guidelines 112

Open eVision User Guide

4

4.3. Easy3DObject - Extracting 3D Objects 121
Purpose and Workflow 121
Object Features 122
Extracting and Using Objects 128
Use Case - Inspecting a PCB 132

4.4. Easy3DMatch - 3D Alignment and Comparison 138
Purpose and Workflow 138
Alignment (E3DAligner) 140
Comparison (E3DComparer) 143
Alignment and Comparison (E3DMatcher) 148
3D Sensor Fusion (EPointCloudMerger) 155

5. Code Snippets 160
5.1. Basic Types 161

Loading and Saving Images 161
Interfacing Third-Party Images 161
Retrieving Pixel Values 162
ROI Placement 162
Vector Management 163
Exception Management 163

5.2. Easy3D 164
Using EFilters to Remove the Noise on a ZMap Based on the Standard Deviation 164
Using EFilters to Remove the Noise on a ZMap Based on the Derivation from Neighborhood 164
Reducing the Size of a Cloud with Random Decimation 165
Reducing the Size of a Cloud with Grid Decimation 165
Using Photometric Stereo 165
Using Flat Images to Improve Photometric Stereo 166
Performing Plane Leveling on Point Clouds 166
Using an ERegion to Crop a ZMap 167

5.3. Easy3DObject 167
Extracting 3D Objects with a Selection Criterion 167
Inspecting a Feature from the List of E3DObjects 168
Drawing a 2D Feature from the List of E3DObjects 168
Drawing 3D Features from a List of E3DObjects 168

5.4. Easy3DMatch 169
E3DAligner Minimal Code 169
E3DAligner Reprojection Plane 169
E3DAlignment Align Sample 170
E3DComparer Minimal Sample 170
E3DComparer Advanced Sample 171
E3DMatcher Minimal Sample 171
E3DMatcher Advanced Sample 172
EPointCloudMerger Sample 173

6. Application Examples 174
6.1. Measuring a Remote Controller 174
6.2. Inspecting a PCB 185
6.3. Measuring the Warpage of a PCB 187

Open eVision User Guide

5

1. Dealing with Pixel Containers and
Files

1.1. Pixel Container Definition

Image objects

The Open eVision image objects contain image data that represents rectangular images.

Each image object has a data buffer, accessible via a pointer, where pixel values are stored
contiguously, row by row.

Image main parameters

The rectangular array of pixels of an Open eVision image object is characterized by the EBaseROI
parameters:

● The Width is the number of pixels per row of the image.

● The Height is the number of rows of the image.

● The Size contains both the Width and the Height of the image.

The maximum size for the width and the height is:
□ 32,767 (215-1) in Open eVision 32-bit
□ 2,147,483,647 (231-1) in Open eVision 64-bit

● The Plane contains the number of color components.
□ For gray-level images: Plane = 1
□ For color images: Plane = 3

Open eVision User Guide

ebaseroi-class.htm
ebaseroi-width.htm
ebaseroi-height.htm
ebaseroi-setsize.htm
ebaseroi-width.htm
ebaseroi-height.htm
ebaseroi-planesperpixel.htm
ebaseroi-planesperpixel.htm
ebaseroi-planesperpixel.htm

6

Classes

The image and ROI classes derive from the abstract class EBaseROI and inherit all its properties.

Depth maps

A depth map represents a 3D object using a 2D grayscale image in which each pixel represents a
3D point.

□ The pixel coordinates are the X and Y coordinates of the point.
□ The gray value of the pixel is a representation of the Z coordinate of the point.

Open eVision User Guide

ebaseroi-class.htm

7

Point clouds

A point cloud is an unstructured set of 3D points representing discrete positions on the surface
of an object.

The point clouds are produced by various 3D scanning techniques, such as laser triangulation,
time of flight or structured lighting.

2 For details, see, for example, en.wikipedia.org/wiki/Point_cloud.

1.2. Pixel Container Types

2 For the enumeration of the available types, see "EImageType Enum" on page 1.

Images

Open eVision supports the following image types according to their pixel types.

Open
eVision

Genicam
PNFC Definition Class

BW1 Mono1 1-bit black and white image (8 pixels are stored in 1 byte). EImageBW1
BW8 Mono8 8-bit grayscale image (each pixel is stored in 1 byte). EImageBW8

BW16 Mono16 16-bit grayscale image (each pixel is stored in 2 bytes). EImageBW16
BW32 Mono32 32-bit grayscale image (each pixel is stored in 4 bytes). EImageBW32

C15 RGB5 15-bit color image (each pixel is stored in 2 bytes).
Compatible with Microsoft® Windows RGB15 color images. EImageC15

C16 RGB565 16-bit color image (each pixel is stored in 2 bytes).
Compatible with Microsoft® Windows RGB16 color images. EImageC16

C24 RGB8 24-bit color image (each pixel is stored in 3 bytes).
Compatible with Microsoft® Windows RGB24 color images. EImageC24

C24A BGRa8 32-bit color image (each pixel is stored in 4 bytes).
Compatible with Microsoft® Windows RGB32 color images. EImageC24A

TIP
Easy.GetBestMatchingImageType returns the best matching image type for a
given file on disk.

Open eVision User Guide

https://en.wikipedia.org/wiki/Point_cloud
../../../../../Content/reference/eimagetype-enum.htm
eimagebw1-class.htm
eimagebw8-class.htm
eimagebw16-class.htm
eimagebw32-class.htm
eimagec15-class.htm
eimagec16-class.htm
eimagec24-class.htm
eimagec24a-class.htm
easy-getbestmatchingimagetype.htm

8

Depth Maps

Open
eVision

Genicam
PNFC Definition Class

EDepth8 Coord3D_C8 8-bit depth map
(each pixel is stored in 1 byte as an integer) EDepthMap8

EDepth16 Coord3D_C16 16-bit depth map
(each pixel is stored in 2 bytes as a fixed point) EDepthMap16

EDepth32f Coord3D_C32 32-bit depth map
(each pixel is stored in 4 bytes as a float) EDepthMap32f

TIP
8 and 16-bit depth map values are stored in buffers compatible with the 2D
Open eVision images.

Point Clouds

Open
eVision Genicam PNFC Definition Class

Point Cloud Coord3D_ABC32 Set of points coordinates
(each coordinate is stored in 4 bytes as a float) EPointCloud

1.3. Supported Image File Types

2 For the enumeration of the available types, see "EImageFileType Enum" on page 1.

Type Description
BMP Uncompressed image data format (Windows Bitmap Format).

JPEG A lossy data compression standard issued by the Joint Photographic Expert Group
registered as ISO/IEC 10918-1. The compression irretrievably loses quality.

JFIF JPEG File Interchange Format.

JPEG-2000

A data compression standard issued by the Joint Photographic Expert Group registered as
ISO/IEC 15444-1 and ISO/IEC 15444-2.
Open eVision supports only lossy compression format, file format and code stream variants.
- The code stream describes the image samples.
- The file format includes meta-information such as the image resolution and color space.

PNG Lossless data compression method (Portable Network Graphics).

Serialized The Euresys proprietary image file format obtained from the serialization of Open eVision
image objects.

TIFF

The Tag Image File Format is currently controlled by Adobe Systems and uses the LibTIFF
third-party library to process images written for the 5.0 or 6.0 TIFF specification.
- The file save operations are lossless and save the images without any compression.
- The file load operations support all the TIFF variants listed in the LibTIFF specification.

Open eVision User Guide

edepthmap8-class.htm
edepthmap16-class.htm
edepthmap32f-class.htm
epointcloud-class.htm
../../../../../Content/reference/eimagefiletype-enum.htm

9

1.4. Pixel and File Types Compatibility

For the compatible combinations in the following table, the image integrity is preserved with no
data loss (except from JPEG and JPEG2000 with lossy compression).

The other combinations are not supported and an exception occurs if you use them.

Type BMP JPEG JPEG2000 PNG TIFF Serialized

BW1 ✓ – – ✓ ✓ ✓

BW8 ✓ ✓ ✓ ✓ ✓ ✓

BW16 – – ✓ ✓ ✓ 2 ✓

BW32 – – – – ✓ 2 ✓

C15 ✓ ✓ 1 ✓ 1 ✓ 1 ✓ 1 ✓

C16 ✓ ✓ 1 ✓ 1 ✓ 1 ✓ 1 ✓

C24 ✓ ✓ ✓ ✓ ✓ 1 ✓

C24A ✓ – – ✓ – ✓

Depth8 ✓ ✓ ✓ ✓ ✓ ✓

Depth16 – – ✓ ✓ ✓ 2 ✓

Depth32f – – – – – ✓

● ✓ 1 : C15 and C16 formats are automatically converted into C24 during the save operation.

● ✓ 2 : BW16 and BW32 are not supported by Baseline TIFF readers.

1.5. Color Types

Open eVision supports the following color systems:

EISH Intensity, Saturation, Hue
ELAB CIE Lightness, a*, b*
ELCH Lightness, Chroma, Hue
ELSH Lightness, Saturation, Hue
ELUV CIE Lightness, u*, v*
ERGB NTSC/PAL/SMPTE Red, Green, Blue
EVSH Value, Saturation, Hue
EXYZ CIE XYZ
EYIQ CCIR Luma, Inphase, Quadrature
EYSH CCIR Luma, Saturation, Hue
EYUV CCIR Luma, U Chroma, V Chroma

Open eVision User Guide

eish-struct.htm
elab-struct.htm
elch-struct.htm
elsh-struct.htm
eluv-struct.htm
ergb-struct.htm
evsh-struct.htm
exyz-struct.htm
eyiq-struct.htm
eysh-struct.htm
eyuv-struct.htm

10

2. Conventions

2.1. Conventions for Strings

Since Open eVision 23.08, the only character encoding used in the Open eVision libraries and
tools is UTF-8.

□ All methods taking std.string as argument expect an UTF-8 encoded std.string.
□ All methods returning a std.string always return it as UTF-8 encoded.

Backward compatibility on Windows

On Windows (but not on Linux), there is also a sanitization process to preserve backward
compatibility with older releases that didn't use the UTF-8 encoding.

● The content of each input string is checked to ensure it is UTF-8 encoded.

If it is not the case:
□ The string is assumed to be encoded using the current Windows Language for Non-

Unicode Programs parameter.
□ It is converted to UTF-8.

● The output strings of all libraries and tools are always UTF-8.

TIP
Despite the presence of this backward compatibility layer it is recommended
to use exclusively UTF-8 to interact with Open eVision on all platforms to
ensure the best performance and compatibility.

2.2. Image Coordinate Systems

The conventions below apply to all Open eVision functions and results.
□ Pixel coordinates are usually given as integer numbers.
□ Some results can use subpixel precision with real (floating point) numbers.
□ Some exceptions apply and are documented per library.

Open eVision User Guide

11

Integer coordinates

● The origin (0,0) of the coordinate system is the upper left pixel of the image.

● The lower right pixel is (width-1, height-1).

Real coordinates

● With floating point (x,y) coordinates, the origin is the upper left corner of the upper left pixel.

● The first pixel area ranges in [0,1[for X and Y axis.

● Coordinates greater or equal than the width or the height are outside the image.

Open eVision User Guide

12

2.3. Image and Depth Map Buffer

The pixels of an image and of an depth map are stored contiguously into a buffer, from left to
right and from top to bottom, in the Windows bitmap format (top-down DIB -device-
independent bitmap-).

The buffer address is a pointer to the address that contains the top left pixel of the image.

● Image buffer pitch
□ The alignment must be a multiple of 4 bytes.
□ The default pitch in Open eVision is 32 bytes for performance reasons.

Memory layout

Image format Layout Illustration

EImageBW1 Stores 8 pixels in 1 byte

EImageBW8
EDepthMap8 Store 1 pixel in 1 byte

EImageBW16 Stores 1 pixel in 2 bytes

EImageC15
Stores 1 pixel in 2 bytes
- Each color component is coded with 5 bits
- The 16th bit is unused

Open eVision User Guide

eimagebw1-class.htm
eimagebw8-class.htm
edepthmap8-class.htm
eimagebw16-class.htm
eimagec15-class.htm

13

Image format Layout Illustration

EImageC16
Stores 1 pixel in 2 bytes
- The colors 1 and 3 are coded with 5 bits
- The color 2 is coded with 6 bits

EDepthMap16 Stores 1 pixel in 2 bytes (fixed point format)

EImageC24 Stores 1 pixel in 3 bytes
- Each color component is coded with 8 bits

EImageC24A
Stores 1 pixel in 4 bytes.
- Each color component is coded with 8 bits
- The alpha channel is coded with 8 bits

EDepthMap32f Stores 1 pixel in 4 bytes (float format)

Open eVision User Guide

eimagec16-class.htm
edepthmap16-class.htm
eimagec24-class.htm
eimagec24a-class.htm
edepthmap32f-class.htm

14

3. Basic Operations

3.1. Memory Allocation

You can construct an image using an internal or an external memory allocation.

Internal memory allocation

The image object dynamically allocates and deallocates a buffer:
□ The memory management is transparent.
□ When the image size changes, a reallocation occurs.
□ When an image object is destroyed, the buffer is deallocated.

To declare an image with an internal memory allocation:

1. Construct an image object, for instance EImageBW8, either with width and height arguments or
using the SetSize function.

2. Access a given pixel using one of the multiple available functions.
For example, use GetImagePtr to retrieve a pointer to the first byte of the pixel at the given
coordinates.

External memory allocation

Control the buffer allocation or link a third-party image in the memory buffer to an Open
eVision image.

□ You must specify the image size and the buffer address.
□ When an image object is destroyed, the buffer is unaffected.

2 For details, see "Image and Depth Map Buffer" on page 12 and "Interfacing Third-Party
Images" on page 161.

Open eVision User Guide

eimagebw8-class.htm
ebaseroi-setsize.htm
ebaseroi-getimageptr.htm

15

To declare an image with an external memory allocation:

1. Declare an image object, for instance EImageBW8.

2. Create a suitably sized and aligned buffer.

3. Assign the buffer to the image with SetImagePtr.

NOTE
Using the copy constructor of the EImage object to copy the externally
allocated image does not copy the buffer.
The copied image points to the same external buffer as the original image.

NOTE
If your buffer rows are not aligned on 4 bytes, use
InitializeFromUnalignedBuffer instead of SetImagePtr.
Please note that this allocates the memory internally and copies the external
buffer into the internal one instead of using the external one.

3.2. Loading a Pixel Container File

Loading images and depth maps

● Use the method Load to load image data into an image object.
□ It has only the argument path that includes the path, filename and file name extension.
□ The file type is determined by the file format.
□ The destination image is automatically resized according to the size of the image on disk.

● Load throws an exception when:
□ The file type identification fails.
□ The file type is incompatible with the pixel type of the image object.

NOTE: When loading a BW16 image (with integer values) in a depth map, the fixed point
precision set in the depth map (0 by default) is left unchanged and used.

Loading point clouds

Use the following methods to load a point cloud saved in a specific format:
□ EPointCloud.Load: Open eVision proprietary file format.
□ EPointCloud.LoadCSV: CSV file.
□ EPointCloud.LoadOBJ: OBJ file.
□ EPointCloud.LoadPCD: PCD file (supported in ASCII and binary modes).
□ EPointCloud.LoadPLY: PLY file (supported only in ASCII mode).
□ EPointCloud.LoadXYZ: XYZ file.

Open eVision User Guide

eimagebw8-class.htm
ebaseroi-setimageptr.htm
eimagebw8-initializefromunalignedbuffer.htm
ebaseroi-setimageptr.htm
ebaseroi-load.htm
ebaseroi-load.htm
epointcloud-load.htm
epointcloud-loadcsv.htm
epointcloud-loadobj.htm
epointcloud-loadpcd.htm
epointcloud-loadply.htm
epointcloud-loadxyz.htm

16

3.3. Saving a Pixel Container File

Images and depth maps

● Use the method Save of an image or the method SaveImage of a depth map or a ZMap to save
image data of the object into a file.
□ The argument Path includes the path, file name and file name extension.
□ The argument Image File Type can be omitted. In this case, the file name extension is

used.

● Save throws an exception when:
□ The requested image file format is incompatible with the pixel type of the image object.
□ The file name extension is not supported while using the Auto file type selection method.

NOTE: When saving a 16-bit depth map, the fixed point precision is lost and the pixels are
considered as 16-bit integers.

TIP
The images with a width or a height larger than 65,536 must be saved in
Open eVision proprietary format.

Image File Type arguments

Argument Image file type

EImageFileType_Auto (Default) Automatically determined by the file name extension. See
below.

EImageFileType_
Euresys Open eVision Serialization

EImageFileType_Bmp Windows bitmap - BMP

EImageFileType_Jpeg JPEG File Interchange Format - JFIF

EImageFileType_
Jpeg2000 JPEG 2000 File format / Code Stream - JPEG2000

EImageFileType_Png Portable Network Graphics - PNG

EImageFileType_Tiff Tagged Image File Format - TIFF

If the argument is EImageFileType_Auto or is missing, the assigned image file type is:

File name extension
(case-insensitive) Assigned image file type

BMP Windows Bitmap format

JPEG or JPG JPEG File Interchange Format - JFIF

JP2 JPEG 2000 file format

J2K or J2C JPEG 2000 Code Stream

PNG Portable Network Graphics

TIFF or TIF Tagged Image File Format

Open eVision User Guide

ebaseroi-save.htm
edepthmap8-saveimage.htm
ebaseroi-save.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm

17

Saving JPEG and JPEG2000 lossy compressions

SaveJpeg and SaveJpeg2K specify the compression quality when saving compressed images. They
have two arguments:

□ Path: a string of characters including the path, filename, and file name extension.
□ Compression quality of the image file, an integer value in range [0: 100].

SaveJpeg saves image data using JPEG File Interchange Format – JFIF.
SaveJpeg2K saves image data using JPEG 2000 File format.

JPEG compression values

JPEG compression Description

JPEG_DEFAULT_QUALITY (-1) Default quality (*)

100 Superb image quality, lowest compression factor

75 Good image quality (*)

50 Normal image quality

25 Average image quality

10 Bad Image quality
(*) The default quality corresponds to the good image quality (75).

Representative JPEG 2000 compression quality values

JPEG 2000 compression Description

-1 Default quality (*)

1 Highest image quality, lowest compression factor

16 Good Image Quality (*) (16:1 rate)

512 Lowest image quality, highest compression factor
(*) The default quality corresponds to the good image quality (16:1 rate).

Saving point clouds

Use the following methods to save a point cloud in a specific format:
□ EPointCloud::Save: Open eVision proprietary file format.
□ EPointCloud::SaveCSV: CSV file.
□ EPointCloud::SaveOBJ: OBJ file.
□ EPointCloud::SavePCD: PCD file.
□ EPointCloud::SavePLY: PLY file.
□ EPointCloud::SaveXYZ: XYZ file.

TIP
The PCD format is supported in ASCII and binary modes.

Open eVision User Guide

ebaseroi-savejpeg.htm
ebaseroi-savejpeg2k.htm
ebaseroi-save.htm
ebaseroi-savejpeg2k.htm
epointcloud-save.htm
epointcloud-savecsv.htm
epointcloud-saveobj.htm
epointcloud-savepcd.htm
epointcloud-saveply.htm
epointcloud-savexyz.htm

18

3.4. Drawing in Open eVision

Introduction

● Whenever relevant, the Open eVision tools provide methods Draw to render their contents
and/or configuration. This is, for instance, the contents of an EImage or the frame of an EROI.

● A given tool can have multiple methods Draw, usually one for each feature available.

● The Open eVision methods Draw take an object DrawAdapter as their main parameter, and
additional parameters for zoom and pan:

Tool::Draw(EDrawAdapter* adapter, float zoomX, float zoomY, float panX, float panY);
□ zoomX and zommY are expressed in percentage, 1 is the default value and means no zoom.
□ It can be different in the horizontal and vertical directions (which can be useful in the

case of non-square pixels for instance).
□ If you don’t provide a vertical zoom, or set it to 0, it will be set identical to the horizontal

one.
□ panX and panY are expressed in pixels, but in image coordinates. It means that the value

you pass to panX and panY are multiplied by the corresponding zoom before being
applied.

Example: How to draw an image and a ROI frame on a window under Windows:

EImageBW8 image;
EROIBW8 roi;
EWindowsDrawAdapter adapter(windowHdc);
image.Draw(adapter);
roi.DrawFrame(adapter);

Graphical interactions

● You can configure some of the Open eVision tools graphically and use the provided methods
to put your configuration in place.

● Graphical Interaction-enabled tools provide special parameters to some of their methods
Draw to draw handles on the tool representation.

● To capture the user interactions with those handles, these tools also provide two specialized
methods:
□ HitTest detects if a handle is under the mouse when providing it with the current cursor

coordinates. You typically use this test during a mouse button down event.
□ Drag moves the detected handle to the given coordinates. This in turn modifies the tool

configuration to match the new handle position. Drag is typically associated with the
mouse button up event.

NOTE: HitTest and Drag use the same zoom and pan parameters as Draw. You must set them
the same way (with the same values) to achieve the desired result.

Draw adapters

● The draw adapters are objects that, in addition to representing the context in which to draw,
provide methods to draw the selected primitives in that context.

● They are initialized by providing the targeted context to the constructor.

Open eVision User Guide

19

● Some of the drawing methods provided by the draw adapters are (but are not limited to):
□ EDrawAdapter::Line / Lines draws one or more lines on the context
□ EDrawAdapter::Rectangle / FilledRectangle draws a rectangle, filled or not, on the context
□ EDrawAdapter::Ellipse / FilledEllipse draws an ellipse, filled or not, in the context
□ EDrawAdapter::Text / BackedText renders a text in the context, with or without background
□ EDrawAdapter::Image renders an image in the context

● For more information about the drawing primitives provided by the draw adapters, please
refer to the reference documentation.

● To set the color of the primitives, provide a pen and/or a brush and use the methods
EDrawAdapter::SetPen and EDrawAdapter::SetBrush.
□ If you do not provide a pen and/or a brush, the default colors are used.

● The set the font of the text, provide a font with the method EDrawAdapter::SetFont.

Standard draw adapters

Open eVision provides a set of off-the-shelf draw adapters that you can use in different
situations:

● EWindowsDrawAdapter allows to draw on Windows systems. To draw on a window, provide the
window’s HDC to its constructor, or, to draw in an EImage buffer, provide that EImage.
□ It relies on GDI and GDI+ to provide its services.
□ This is the preferred way to draw on Windows.

● QtDrawAdapter allows you to draw using Qt on a QPainter context. To draw on a QPainter
context, provide the QPainter to the constructor, or, to draw on an EImage buffer, provide
that EImage.
□ You can use the QtDrawAdapter both on Windows and Linux.
□ This is the preferred way to draw on Linux.

NOTE: QtDrawAdapter is using an external resource (namely Qt) and as such is provided as
source code in its own header rather than in the global Open eVision header. For
more information about external and custom draw adapters, see below.

● EGenericDrawAdapter is a draw adapter that can only render on an EImage, but it can do it in a
consistent manner on all supported OSes.
□ It is available on both Windows and Linux.

Drawing in an EImage

● As said above, you can draw in an EImage (usually an EImageBW8 or EImageC24) by initializing a
draw adapter with that image and using either the Open eVision methods Draw or the draw
adapter drawing primitives:

EImageBW8 image;
EMatrixCode code;
EWindowsDrawAdapter adapter(image);
code.DrawPosition(adapter);

Open eVision User Guide

edrawadapter-line.htm
edrawadapter-rectangle.htm
edrawadapter-filledrectangle.htm
edrawadapter-ellipse.htm
edrawadapter-filledellipse.htm
edrawadapter-text.htm
edrawadapter-backedtext.htm
edrawadapter-image.htm
edrawadapter-pen.htm
edrawadapter-brush.htm
edrawadapter-font.htm
ewindowsdrawadapter-class.htm
egenericdrawadapter-class.htm

20

Custom draw adapters

● If you require a draw adapter to render in a specific, unsupported type of context (for ex. a
DirectDraw surface, an OpenGL context...), you can build your own draw adapter by deriving
from the interface EExternalDrawAdapter provided by Open eVision and implementing all the
required methods.

● Once this work is done, you will be able to use your new, custom draw adapter in the same
way as the off-the-shelf ones, taking advantage of Open eVision methods Draw.

● The provided QtDrawAdapter is a draw adapter built using that mechanism, you can use it as a
reference on how to build a custom draw adapter. The sources of the QtDrawAdapter are
bundled with the Qt Samples.

Enhanced Image Display

When the enhanced image display mode is enabled, a high-quality interpolation method is used
to display the resized images.

□ Set Easy::SetEnableEnhancedImageDisplay(bool) to TRUE, to enable the enhanced image
display.

□ By default, this option is disabled.
□ Enhanced image display has a significant impact on display speed, the drawing can be 4x

to 10x slower.
□ The drawing of images with EBW8Vector or EC24Vector used as Look Up Table doesn't

support enhanced image display

EnhancedImageDisplay disabled (left) and enabled (right)

□ Open eVision Studio exposes this option in View > Option dialog:

Open eVision User Guide

eexternaldrawadapter-class.htm
easy-enableenhancedimagedisplay.htm

21

3.5. 3D Rendering of 2D Images

These images are viewed by rotating them around the X-axis, then the Y-axis.

Gray 3D rendering

Easy::Render3D prepares a 3-dimensional rendering where gray-level values are altitudes.
Magnification factors in the three directions (X = width, Y = height and Z = depth) can be given.
The rendered image appears as independent dots whose size can be adjusted to make the
surface more or less opaque.

3D rendering

Color histogram 3D rendering

Easy::RenderColorHistogram prepares a 3-dimensional rendering of a color image histogram.
The pixels are drawn in the RGB space (not XY-plane) to show clustering and dispersion of RGB
values.
This function can process pixels in other color systems (using EasyColor to convert), but the raw
RGB image is required to display the pixels in their usual colors.

Magnification factors in all three directions (X = red, Y = green and Z = blue) can be given.

Color histogram rendering

Open eVision User Guide

easy-render3d.htm
easy-rendercolorhistogram.htm

22

3.6. Vector Types and Main Properties

A vector is a one-dimensional array of pixels (taken from an image profile or contour).

EVector is the base class for all vectors. It contains all non-type-specific methods, mainly for
counting elements and serialization.

Profile in a C24 image, RGB values plot along profile and RGB values array (EC24Vector)

A vector manages an array of elements. Memory allocation is transparent, so vectors can be
resized dynamically. Whenever a function uses a vector, the vector type, size and structure are
automatically adjusted to suit the function needs.

The use of vectors is quite straightforward:

● To create a vector of the appropriate type:
□ Use its constructor and preallocate elements if required.

● To fill a vector with values:
□ Call the EVector::Empty member to empty it.
□ Call the EC24Vector::AddElement member to add elements one by one.
□ Use the indexing to access any element.

● To access a vector element, either for reading or writing:
□ Use the brackets operator EC24Vector::operator[].

● To determine the current number of elements:
□ Use the EVector::NumElements member.

● To draw the vector:
□ A pixel vector is a plot of the element values as a function of the element index, so its

graphical appearance depends on its type. You can draw a vector in a window. For
legibility, the drawing should appear on a neutral background.

□ Drawing is done in the device context associated to the desired window. By default,
curves are drawn in blue and annotations in black. You can define: graphicContext, width,
height, originX, originY, color0, color1 and color2.

□ The EC24Vector has three curves drawn instead of one, each corresponding to a color
component. By default the red, blue and green pens are used.

Open eVision User Guide

evector-class.htm
ec24vector-class.htm
evector-empty.htm
ec24vector-addelement.htm
ec24vector-operator_index.htm
evector-numelements.htm
ec24vector-class.htm

23

Vector types

● EBW8Vector: a sequence of gray-level pixel values, often extracted from an image profile
(used by EasyImage::Lut, EasyImage::SetupEqualize, EasyImage::ImageToLineSegment,
EasyImage::LineSegmentToImage, EasyImage::ProfileDerivative...).

Graphical representation of an EBW8Vector (see Draw method)

● EBW16Vector: a sequence of gray-level pixel values, using an extended range (16 bits), mainly
for intermediate computations.

Graphical representation of an EBW16Vector

● EBW32Vector: a sequence of gray-level pixel values, using an extended range (32 bits), mainly
for intermediate computations
(used in EasyImage::ProjectOnARow, EasyImage::ProjectOnAColumn, ...).

Graphical representation of an EBW32Vector

Open eVision User Guide

ebw8vector-class.htm
easyimage-lut.htm
easyimage-setupequalize.htm
easyimage-imagetolinesegment.htm
easyimage-linesegmenttoimage.htm
easyimage-profilederivative.htm
ebw8vector-class.htm
ebw8vector-draw.htm
ebw16vector-class.htm
ebw16vector-class.htm
ebw32vector-class.htm
easyimage-projectonarow.htm
easyimage-projectonacolumn.htm
ebw32vector-class.htm

24

● EC24Vector: a sequence of color pixel values, often extracted from an image profile
(used by EasyImage::ImageToLineSegment, EasyImage::LineSegmentToImage,
EasyImage::ProfileDerivative, ...).

Graphical representation of an EC24Vector

● EBW8PathVector: a sequence of gray-level pixel values, extracted from an image profile or
contour, with corresponding pixel coordinates
(used by EasyImage::ImageToPath, EasyImage::PathToImage, ...).

Graphical representation of an EBW8PathVector (see Draw method)

● EBW16PathVector: a sequence of gray-level pixel values, extracted from an image profile or
contour, with corresponding pixel coordinates
(used by EasyImage::ImageToPath, EasyImage::PathToImage, ...).

Graphical representation of an EBW16PathVector (see Draw method)

Open eVision User Guide

ec24vector-class.htm
easyimage-imagetolinesegment.htm
easyimage-linesegmenttoimage.htm
easyimage-profilederivative.htm
ec24vector-class.htm
ebw8pathvector-class.htm
easyimage-imagetopath.htm
easyimage-pathtoimage.htm
ebw8pathvector-class.htm
ebw8pathvector-draw.htm
ebw16pathvector-class.htm
easyimage-imagetopath.htm
easyimage-pathtoimage.htm
ebw16pathvector-class.htm
ebw16pathvector-draw.htm

25

● EC24PathVector: a sequence of color pixel values, extracted from an image profile or contour,
with corresponding pixel coordinates
(used by EasyImage::ImageToPath, EasyImage::PathToImage, ...).

Graphical representation of an EC24PathVector (see Draw method)

● EBWHistogramVector: a sequence of frequency counts of pixels in a BW8 or BW16 image
(used by EasyImage::IsodataThreshold, EasyImage::Histogram, EasyImage::AnalyseHistogram,
EasyImage::SetupEqualize, ...).

Graphical representation of an EBWHistogramVector (see Draw method)

● EPathVector: a sequence of pixel coordinates. The corresponding pixels need not be
contiguous
(used by EasyImage::PathToImage and EasyImage::Contour).

Graphical representation of an EPathVector (see Draw method)

● EPeakVector: peaks found in an image profile
(used by EasyImage::GetProfilePeaks).

● EColorVector: a description of colors
(used by EasyColor::ClassAverages and EasyColor::ClassVariances).

Open eVision User Guide

ec24pathvector-class.htm
easyimage-imagetopath.htm
easyimage-pathtoimage.htm
ec24pathvector-class.htm
ec24pathvector-draw.htm
ebwhistogramvector-class.htm
easyimage-isodatathreshold.htm
easyimage-histogram.htm
easyimage-analysehistogram.htm
easyimage-setupequalize.htm
ebwhistogramvector-class.htm
ebwhistogramvector-draw.htm
epathvector-class.htm
easyimage-pathtoimage.htm
easyimage-contour.htm
epathvector-class.htm
epathvector-draw.htm
epeakvector-class.htm
easyimage-getprofilepeaks.htm
ecolorvector-class.htm
easycolor-classaverages.htm
easycolor-classvariances.htm

26

3.7. ROI Main Properties

ROIs are defined by a width, a height, and origin x and y coordinates.
The origins are specified with respect to the top left corner in the parent image or ROI.
The ROI must be wholly contained in its parent image.
The processing/analysis time of a BW1 ROI is faster if OrgX and Width are multiples of 8.

Save and load

You can save or load an ROI as a separate image, to be used as if it was a full image. The ROIs
perform no memory allocation at all and never duplicate parts of their parent image, the parent
image provides them with access to its image data.

The image size of the new file must match the size of the ROI being loaded into it. The image
around the ROI remains unchanged.

ROI Classes

An Open eVision ROI inherits parameters from the abstract class EBaseROI.

There are several ROI types, according to their pixel type. They have the same characteristics as
the corresponding image types.

□ EROIBW1
□ EROIBW8
□ EROIBW16
□ EROIBW32
□ EROIC15
□ EROIC16
□ EROIC24
□ EROIC24A

Attachment

An ROI must be attached to a parent (image/ROI) with parameters that set the parent, position
and size, and these links are updated transparently, avoiding dangling pointers.
A normal image cannot be attached to another image or ROI.

Nesting

Set and Get functions change or query the width, height and position of the origin of an ROI,
with respect to its immediate or topmost parent image.

An image may accommodate an arbitrary number of ROIs, which can be nested in a hierarchical
way. Moving the ROI also moves the embedded ROIs accordingly. The image/ROI classes provide
several methods to traverse the hierarchy of ROIs associated with an image.

Open eVision User Guide

ebaseroi-width.htm
ebaseroi-height.htm
ebaseroi-orgx.htm
ebaseroi-orgy.htm
ebaseroi-orgx.htm
ebaseroi-width.htm
ebaseroi-save.htm
ebaseroi-load.htm
ebaseroi-class.htm
eroibw1-class.htm
eroibw8-class.htm
eroibw16-class.htm
eroibw32-class.htm
eroic15-class.htm
eroic16-class.htm
eroic24-class.htm
eroic24a-class.htm
ebaseroi-attach.htm

27

Nested ROIs: Two sub-ROIs attached to an ROI, itself attached to the parent image

Cropping

CropToImage crops an ROI which is partially out of its image. The resized ROI never grows.
An exception is thrown if a function attempts to use an ROI that has limits that extend outside
of the parents.

NOTE
(In Open eVision 1.0.1 and earlier, an ROI was silently resized or repositioned
when placed out of its image and sometimes grew. If ROI limits extended
outside parents, they were silently resized to remain within parent limits.)

Resizing and moving

ROIs can easily be resized and positioned by two functions and dragging handles:

● EBaseROI::Drag adjusts the ROI coordinates while the cursor moves.

● EBaseROI::HitTest informs if the cursor is placed over a dragging handle.
□ Once the handle is known, the cursor shape can be changed by an OnSetCursor MFC event

handler. HitTest is unpredictable if called while dragging is in progress.
□ HitTest can be used in an OnSetCursor MFC event handler to change the cursor shape, or

before a dragging operation like OnLButtonDown,
(or EvSetCursor and EvLButtonDown in Borland/CodeGear's OWL)
(or FormMouseMove and FormMouseDown in Borland/CodeGear's VCL).

Open eVision User Guide

ebaseroi-croptoimage.htm
ebaseroi-drag.htm
ebaseroi-hittest.htm

28

3.8. Arbitrarily Shaped ROI (ERegion)

See also: example: Inspecting Pads Using Regions / code snippets: ERegion

Regions or arbitrarily shaped ROI

You define and use regions of interest (ROI) to restrict the area processed with your vision tool
and to reduce and optimize the processing time.

In Open eVision:
□ An ROI (EROIxxx class) designates a rectangular region of interest.
□ A region (ERegion class) designates an arbitrarily shaped ROI. With regions, you can

determine precisely which part of the image, down to a single pixel, is used for your
processing.

Currently, only the following Open eVision methods support ERegions:

Open eVision User Guide

../../../../../Content/05 Resources/03 2D Application Examples/Inspecting Pads Using Regions.htm
../../../../../Content/05 Resources/02 Code Snippets/01b ERegion/ERegion.htm
eregion-class.htm
eregion-class.htm

29

Library Method
EasyImage EasyImage::Threshold

Open eVision User Guide

easyimage-threshold.htm

30

Library Method
EasyImage::AutoThreshold

Open eVision User Guide

easyimage-autothreshold.htm

31

Library Method
EasyImage::Copy

Open eVision User Guide

easyimage-copy.htm

32

Library Method
EasyImage::ConvolKernel

Open eVision User Guide

easyimage-convolkernel.htm

33

Library Method
EasyImage::ConvolSymmetricKernel

Open eVision User Guide

easyimage-convolsymmetrickernel.htm

34

Library Method
EasyImage::ConvolLowpass1

Open eVision User Guide

easyimage-convollowpass1.htm

35

Library Method
EasyImage::ConvolLowpass2

Open eVision User Guide

easyimage-convollowpass2.htm

36

Library Method
EasyImage::ConvolLowpass3

Open eVision User Guide

easyimage-convollowpass3.htm

37

Library Method
EasyImage::ConvolUniform

Open eVision User Guide

easyimage-convoluniform.htm

38

Library Method
EasyImage::ConvolGaussian

Open eVision User Guide

easyimage-convolgaussian.htm

39

Library Method
EasyImage::ConvolHighpass1

Open eVision User Guide

easyimage-convolhighpass1.htm

40

Library Method
EasyImage::ConvolHighpass2

Open eVision User Guide

easyimage-convolhighpass2.htm

41

Library Method
EasyImage::ConvolGradientX

Open eVision User Guide

easyimage-convolgradientx.htm

42

Library Method
EasyImage::ConvolGradientY

Open eVision User Guide

easyimage-convolgradienty.htm

43

Library Method
EasyImage::ConvolGradient
EasyImage::ConvolSobelX
EasyImage::ConvolSobelY
EasyImage::ConvolSobel
EasyImage::ConvolPrewittX
EasyImage::ConvolPrewittY
EasyImage::ConvolPrewitt
EasyImage::ConvolRoberts
EasyImage::ConvolLaplacianX
EasyImage::ConvolLaplacianY
EasyImage::ConvolLaplacian8
EasyImage::DilateBox
EasyImage::ErodeBox
EasyImage::OpenBox
EasyImage::CloseBox
EasyImage::WhiteTopHatBox
EasyImage::BlackTopHatBox
EasyImage::MorphoGradientBox
EasyImage::ErodeDisk
EasyImage::DilateDisk
EasyImage::OpenDisk
EasyImage::CloseDisk
EasyImage::WhiteTopHatDisk
EasyImage::BlackTopHatDisk
EasyImage::MorphoGradientDisk
EasyImage::Median
EasyImage::ScaleRotate
EasyImage::DoubleThreshold
EasyImage::Histogram
EasyImage::Area
EasyImage::AreaDoubleThreshold
EasyImage::BinaryMoments
EasyImage::WeightedMoments
EasyImage::GravityCenter
EasyImage::PixelCount
EasyImage::PixelMax
EasyImage::PixelMin
EasyImage::PixelAverage
EasyImage::PixelStat
EasyImage::PixelVariance
EasyImage::PixelStdDev
EasyImage::PixelCompare
EasyImage::ImageToLineSegment
EasyImage::ImageToPath

Open eVision User Guide

easyimage-convolgradient.htm
easyimage-convolsobelx.htm
easyimage-convolsobely.htm
easyimage-convolsobel.htm
easyimage-convolprewittx.htm
easyimage-convolprewitty.htm
easyimage-convolprewitt.htm
easyimage-convolroberts.htm
easyimage-convollaplacianx.htm
easyimage-convollaplaciany.htm
easyimage-convollaplacian8.htm
easyimage-dilatebox.htm
easyimage-erodebox.htm
easyimage-openbox.htm
easyimage-closebox.htm
easyimage-whitetophatbox.htm
easyimage-blacktophatbox.htm
easyimage-morphogradientbox.htm
easyimage-erodedisk.htm
easyimage-dilatedisk.htm
easyimage-opendisk.htm
easyimage-closedisk.htm
easyimage-whitetophatdisk.htm
easyimage-blacktophatdisk.htm
easyimage-morphogradientdisk.htm
easyimage-median.htm
easyimage-scalerotate.htm
easyimage-doublethreshold.htm
easyimage-histogram.htm
easyimage-area.htm
easyimage-areadoublethreshold.htm
easyimage-binarymoments.htm
easyimage-weightedmoments.htm
easyimage-gravitycenter.htm
easyimage-pixelcount.htm
easyimage-pixelmax.htm
easyimage-pixelmin.htm
easyimage-pixelaverage.htm
easyimage-pixelstat.htm
easyimage-pixelvariance.htm
easyimage-pixelstddev.htm
easyimage-pixelcompare.htm
easyimage-imagetolinesegment.htm
easyimage-imagetopath.htm

44

Library Method

Easy3D

EDepthMapToMeshConverter::Convert
EDepthMapToPointCloudConverter::Convert
EStatistics::ComputePixelStatistics
EStatistics::ComputeStatistics
E3DObjectExtractor::Extract
EZMapToPointCloudConverter::Convert

EasyObject EImageEncoder::Encode

EasyFind
EPatternFinder::Find
EPatternFinder::Learn

EasyOCR2
EOCR2::Read
EOCR2::Detect

EasyGauge

EPointGauge::Measure
ELineGauge::Measure
ERectangleGauge::Measure
ECircleGauge::Measure
EWedgeGauge::Measure

EasyMatch
EMatcher::LearnPattern
EMatcher::Match

EasyQRCode EQRCodeReader::SetSearchField
EQRCodeReader::Read

TIP
In the future Open eVision releases, the support of ERegions will be gradually
extended to all operators.

Creating regions

Open eVision offers multiple ways to create regions, depending on the shape you need:

The ERegion is the base class for all regions and the most versatile. It encodes a region using a
Run-Length Encoded (RLE) representation.

□ The RLE representation of a region is made of runs (horizontal, 1-pixel high slices).
□ The runs are stored in the form of their ordinate, starting abscissa and length.

Run-Length Encoding of a circle-shaped region

Open eVision User Guide

edepthmaptomeshconverter-convert.htm
edepthmaptopointcloudconverter-convert.htm
estatistics-computepixelstatistics.htm
estatistics-computestatistics.htm
../../../../../Content/reference/e3dobjectextractor-extract.htm
../../../../../Content/reference/ezmaptopointcloudconverter-convert.htm
eimageencoder-encode.htm
epatternfinder-find.htm
../../../../../Content/reference/epatternfinder-learn.htm
../../../../../Content/reference/eocr2-read.htm
../../../../../Content/reference/eocr2-detect.htm
../../../../../Content/reference/epointgauge-measure.htm
../../../../../Content/reference/elinegauge-measure.htm
../../../../../Content/reference/erectanglegauge-measure.htm
../../../../../Content/reference/ecirclegauge-measure.htm
../../../../../Content/reference/ewedgegauge-measure.htm
../../../../../Content/reference/ematcher-learnpattern.htm
../../../../../Content/reference/ematcher-match.htm
eqrcodereader-searchfield.htm
eqrcodereader-read.htm
eregion-class.htm

45

To create a region, either:
□ Use one of the geometry-based region classes.
□ Use the result of another tool, such as EasyFind, EasyMatch or EasyObject.
□ Combine or modify other regions.
□ Use a mask image.
□ Directly provide the list of runs.

Geometry-based regions

Geometry based regions are specialized classes of regions that are encompassed in simple
geometries. Open eVision currently provides classes based on a rectangle, a circle, an ellipse or
a polygon.

Use these classes to setup geometric regions and modify them with translation, rotation and
scaling. The transformation operators return new regions, leaving the source object unchanged.

● ERectangleRegion
□ The contour of an ERectangleRegion class is a rectangle.
□ Define it using its center, width, height and angle.
□ Alternatively, use an ERectangle instance, such as one returned by an ERectangleGauge

instance.

Rectangle region separating a bar code from the background

● ECircleRegion
□ The contour of an ECircleRegion class is a circle.
□ Define it using its center and radius or 3 non-aligned points.
□ Alternatively, use an ECircle instance, such as one returned by an ECircleGauge instance.

Circle region encompassing the useful part of an X-Ray image

Open eVision User Guide

erectangle-class.htm
erectangle-class.htm
erectangle-class.htm
erectanglegauge-class.htm
ecircleregion-class.htm
ecircleregion-class.htm
ecircle-class.htm
ecirclegauge-class.htm

46

● EEllipseRegion
□ The contour of an EEllipseRegion class is an ellipse.
□ Define it using its center, long and short radius and angle.

Ellipse region encompassing a waffle

● EPolygonRegion
□ The contour of an EPolygonRegion class is a polygon.
□ It is constructed using the list of its vertices.

Polygon region encompassing a key

Using the result of other tools

The ERegion class provides a set of specialized constructors to create regions from the results of
another tool.

In a tool chain, these constructors restrict the processing of a tool to the area issued from the
previous tool.

Open eVision User Guide

eellipseregion-class.htm
eellipseregion-class.htm
epolygonregion-class.htm
epolygonregion-class.htm
eregion-class.htm

47

Open eVision provides constructors for the following tools:
□ EasyFind: EFoundPattern
□ EasyMatch: EMatchPosition
□ EasyGauge: ECircle and ERectangle
□ EasyObject: ECodedElement

TIP
When compatible, Open eVision also provides specialized constructors for
the geometry-based regions. For instance, ECircleRegion provides a
constructor using an ECircle.

Combining regions

Use the following operations to create a new region by combining existing regions:

● Union
□ The ERegion::Union(const ERegion&, const ERegion&) method returns the region that is

the addition of the two regions passed as arguments.

Union of 2 circles

● Intersection
□ The ERegion::Intersection(const ERegion&, const ERegion&) method returns the region

that is the intersection of the two regions passed as argument.

Intersection of 2 circles

Open eVision User Guide

efoundpattern-class.htm
ematchposition-struct.htm
ecircle-class.htm
erectangle-class.htm
ecodedelement-class.htm
ecircleregion-class.htm
ecircle-class.htm
eregion-union.htm
eregion-intersection.htm

48

● Subtraction
□ The ERegion::Subtraction(const ERegion&, const ERegion&) method returns the first

region passed as argument after removing the second one.

Subtraction of 2 circles

Morphological operations on regions

The initial arbitrary region used to illustrate the different morphological operations

● Grow
□ The ERegion::Grow(int radius) method returns a region that is the dilation of the region

by a disk with a radius equals to the argument.

Grow of the arbitrary region

● Shrink
□ The ERegion::Shrink(int radius) method returns a region that is the erosion of the region

by a disk with a radius equals to the argument.

Shrink of the arbitrary region

Open eVision User Guide

eregion-subtraction.htm
eregion-grow.htm
eregion-shrink.htm

49

● Contour
□ The ERegion::Contour(int thickness, bool centered = true) method returns a region

that is the contour of the region.

Contour of the arbitrary region

Free-hand drawing a region

● The ERegionFreeHandPainter class provides the methods that allow you to create a region by
hand, using the mouse or any other user input method.

● The RegionFreeHand sample, available both in C++ and C#, shows how to use this class to
draw a region on an image.

Using regions

The tools supporting regions provide methods that follow one of these conventions:
□ Method(const EImage& source, const ERegion& region)
□ Method(const EImage& source, const ERegion& region, EImage& destination)

NOTE
The source, the region and the destination must be compatible. It means
that the region must at least partly fit in the source, and that source and
destination must have the same size.

Preparing the region

● Open eVision automatically prepares the regions when it applies them to an image, but this
preparation can take some time.

● If you do not want your first call to a method to take longer than the next ones, you can
prepare the region in advance by using the appropriate Prepare() method.

● To manually prepare the regions, adapt the internal RLE description to your images.

Drawing regions

The ERegion classes provide several methods to display the regions:

● ERegion::Draw() draws the region area, in a semi-transparent way, in the provided device
context.

● ERegion::DrawContour() draws the region contour in the provided device context.

Open eVision User Guide

eregion-contour.htm
eregionfreehandpainter-class.htm
eregion-prepare.htm
eregion-class.htm
eregion-draw.htm
eregion-drawcontour.htm

50

● ERegion::ToImage() renders the region as a mask into the provided destination image.
□ You can configure the foreground and the background colors.
□ If you initialized your image with a width and a height, Open eVision renders the region

inside those bounds.
□ If not, Open eVision resizes the image to contain the whole region.
□ Use ToImage() to create masks for the Open eVision functions that support them.

ERegions and EROIs

● The older EROI classes of Open eVision are compatible with the new regions.

● Some tools allow the usage of regions with source and/or destinations that are ERoi instead
of EImage follow one of these conventions:
□ Method(const ERoi& source, const ERegion& region)
□ Method(const ERoi& source, const ERegion& region, ERoi& destination)

TIP
In that case, the coordinates used for the region are relative to the reduced
ROI space instead of the whole image space .

ERegion and 3D

● The new regions are compatible with the 2.5D representations of Easy3D (EDepthMap and
EZMap).

● You can also reduce the domain of processing when using these classes.

3.9. Flexible Masks

ROIs vs flexible masks

ROIs and masks restrict processing to part of an image:
□ "ROI Main Properties" on page 26 apply to all Open eVision functions. Using Regions of

Interest accelerates processing by reducing the number of pixels. Open eVision supports
hierarchically nested rectangular ROIs.

□ Flexible Masks are recommended to process disconnected ROIs or non-rectangular
shapes. They are supported by some EasyObject and EasyImage library functions.

Open eVision User Guide

eregion-toimage.htm
eregion-toimage.htm
edepthmap-class.htm
ezmap-class.htm
EasyObject - Analyzing Blobs.htm
EasyImage - Pre-Processing Images.htm

51

Flexible Masks

A flexible mask is a BW8 image with the same height and width as the source image. It contains
shapes of areas that must be processed and ignored areas (that will not be considered during
processing):

□ All pixels of the flexible mask having a value of 0 define the ignored areas.
□ All pixels of the flexible mask having any other value than 0 define the areas to be

processed.

Source image Associated mask Processed masked image

A flexible mask can be generated by any application that outputs BW8 images and by some
EasyObject and EasyImage functions.

Flexible Masks in EasyImage

Code Snippets

Source image (left) and mask variable (right)

Simple steps to use flexible masks in Easyimage

1. Call the functions from EasyImage that take an input mask as an argument. For instance,
one can evaluate the average value of the pixels in the white layer and after in the black
layer.

2. Display the results.

Resulting image

Open eVision User Guide

EasyObject - Analyzing Blobs.htm
EasyImage - Pre-Processing Images.htm
using-flexible-masks-easyimage.htm

52

EasyImage Functions that support flexible masks

● EImageEncoder::Encode has a flexible mask argument for BW1, BW8, BW16, and C24 source
images.

● AutoThreshold.

● Histogram (function HistogramThreshold has no overload with mask argument).

● RmsNoise, SignalNoiseRatio.

● Overlay (no overload with mask argument for BW8 source images).

● ProjectOnAColumn, ProjectOnARow (Vector projection).

● ImageToLineSegment, ImageToPath (Vector profile).

Flexible Masks in EasyObject

A flexible mask can be generated by any application that outputs BW8 images or uses the Open
eVision image processing functions.

EasyObject can use flexible masks to restrict blob analysis to complex or disconnected shaped
regions of the image.

If an object of interest has the same gray level as other regions of the image, you can define
"keep" and "ignore" areas using flexible masks and Encode functions.

A flexible mask is a BW8 image with the same height and width as the source image.
□ A pixel value of 0 in the flexible mask masks the corresponding source image pixel so it

doesn't appear in the encoded image.
□ Any other pixel value in the flexible mask causes the pixel to be encoded.

EasyObject functions that create flexible masks

Source image

1) ECodedImage2::RenderMask: from a layer of an encoded image
1. To encode and extract a flexible mask, first construct a coded image from the source image.

2. Choose a segmentation method (for the image above the default method
GrayscaleSingleThreshold is suitable).

3. Select the layer(s) of the coded image that should be encoded (i.e. white and black layers
using minimum residue thresholding).

4. Make the mask image the desired size using mask.SetSize(sourceImage.GetWidth(),
sourceImage.GetHeight()).

Open eVision User Guide

eimageencoder-encode.htm
easyimage-autothreshold.htm
easyimage-histogram.htm
easyimage-histogramthreshold.htm
easyimage-rmsnoise.htm
easyimage-signalnoiseratio.htm
easyimage-overlay.htm
easyimage-projectonacolumn.htm
easyimage-projectonarow.htm
easyimage-imagetolinesegment.htm
easyimage-imagetopath.htm
eimageencoder-encode.htm

53

5. Exploit the flexible mask as an argument to ECodedImage2::RenderMask.

BW8 resulting image that can be used as a flexible mask

2) ECodedElement::RenderMask: from a blob or hole
1. Select the coded elements of interest.

2. Create a loop extracting a mask from selected coded elements of the coded image using
ECodedElement::RenderMask.

3. Optionally, compute the feature value over each of these selected coded elements.

BW8 resulting image that can be used as a flexible mask

3) EObjectSelection::RenderMask: from a selection of blobs
EObjectSelection::RenderMask can, for example, discard small objects resulting from noise.

BW8 resulting image that can be used as a flexible mask

Open eVision User Guide

ecodedimage2-rendermask.htm
ecodedelement-rendermask.htm
eobjectselection-rendermask.htm

54

Example: Restrict the areas encoded by EasyObject

Find four circles (left) Flexible mask can isolate the central chip (right)

1. Declare a new ECodedImage2 object.

2. Setup variables: first declare source image and flexible mask, then load them.

3. Declare an EImageEncoder object and, if applicable, select the appropriate segmenter. Setup
the segmenter and choose the appropriate layer(s) to encode.

4. Encode the source image. Encoding a layer with just the area in the flexible mask is then
pretty straightforward.
We see that the circles are correctly segmented in the black layer with the grayscale single
threshold segmenter:

5. Select all objects of the coded image.

6. Select objects of interest by filtering out objects that are too small.

7. Display the blob feature by iterating over the selected objects to display the chosen feature.

3.10. Profile

Code Snippets

Profile Sampling

A profile is a series of pixel values sampled along a line/path/contour in an image.

● EasyImage::ImageToLineSegment copies the pixel values along a given line segment (arbitrarily
oriented and wholly contained within the image) to a vector. The vector length is adjusted
automatically. This function supports flexible masks.

● A path is a series of pixel coordinates stored in a vector.
EasyImage::ImageToPath copies the corresponding pixel values to the vector. This function
supports flexible masks.

Open eVision User Guide

ecodedimage2-class.htm
eimageencoder-class.htm
egrayscalesinglethresholdsegmenter-class.htm
egrayscalesinglethresholdsegmenter-class.htm
profile-sampling.htm
easyimage-imagetolinesegment.htm
epathvector-class.htm
epath-struct.htm
easyimage-imagetopath.htm

55

● A contour is a closed or not (connected) path, forming the boundary of an object.
EasyImage::Contour follows the contour of an object, and stores its constituent pixels values
inside a profile vector.

Profile Analysis

The profile can be processed to find peaks or transitions:

● A transition corresponds to an object edge (black to white or white to black). It can be
detected by taking the first derivative of the signal (which transforms transitions (edges) into
peaks) and looking for peaks in it.
EasyImage::ProfileDerivative computes the first derivative of a profile extracted from a gray-
level image.
The EBW8 data type only handles unsigned values, so the derivative is shifted up by 128.
Values under [above] 128 correspond to negative [positive] derivative (decreasing
[increasing] slope).

● A peak is the portion of the signal that is above [or below] a given threshold - the maximum
or minimum of the signal. This may correspond to the crossing of a white or black line or
thin feature. It is defined by its:
□ Amplitude: difference between the threshold value and the max [or min] signal value.
□ Area: surface between the signal curve and the horizontal line at the given threshold.

EasyImage::GetProfilePeaks detects max and min peaks in a gray-level profile. To eliminate false
peaks due to noise, two selection criteria are used. The result is stored in a peaks vector.

Profile Insertion Into an Image

EasyImage::LineSegmentToImage copies the pixel values from a vector or constant to the pixels of
a given line segment (arbitrarily oriented and wholly contained within the image).

EasyImage::PathToImage copies the pixel values from a vector or a constant to the pixels of a
given path.

Open eVision User Guide

easyimage-contour.htm
easyimage-profilederivative.htm
ebw8-struct.htm
epeak-struct.htm
epeak-amplitude.htm
epeak-area.htm
easyimage-getprofilepeaks.htm
epeakvector-class.htm
easyimage-linesegmenttoimage.htm
easyimage-pathtoimage.htm

56

4. 3D Tools

4.1. Easy3D - Using 3D Toolset

Basic Concepts

Easy3D

● Easy3D is a set of tools for solving computer vision problems using 3D acquisition and
processing.

● Easy3D introduces the depth map, the ZMap, the point cloud and the mesh representations
to Open eVision.

● Easy3D offers many operators to manipulate these 3D representations, including loading and
saving in several standard formats. Additional classes, like 3D box, 3D plane or 3D sphere, are
available in Easy3D and are used in the high level tools Easy3DObject and Easy3DMatch.
Finally, an interactive 3D viewer, E3DViewer, is part of Easy3D.

● All the Easy3D tools are placed in the Easy3D namespace.

3D representation

Open eVision uses a right-handed cartesian 3D coordinate system. In this system, each 3D point
is represented by its 3 coordinates X, Y and Z.

Open eVision provides different containers to store 3D objects.

Open eVision User Guide

57

E3DPoint

In Open eVision, the 3D points are represented by a container called E3DPoint. E3DPoints are the
basic containers for the data processing in a 3D space.

□ A E3DPoint is defined by its X, Y and Z coordinates.
□ Use the function DistanceTo to compute distances between points
□ You can combine points to form point clouds (see below).

E3DLine

To represent lines in a 3D space, Open eVision offers the object E3DLine.
□ An E3DLine is defined by two points.

E3DPlane

To represent planes in a 3D space, Open eVision offers the object E3DPlane.
□ An E3DPlane is defined by its normal vector and the signed distance to the origin of the

axes.
□ Use the function DistanceTo to compute the distance to any point.
□ Use the function ProjectPoint to project points onto planes.
□ Use the function Transform with transformation matrices to rotate and translate planes.

E3DSphere

To represent spheres in a 3D space, Open eVision offers the object E3DSphere.
□ An E3DSphere is defined by its center point and its radius.
□ Use the function DistanceTo to compute the distance to any point.
□ Use the function Transform with transformation matrices to rotate and translate spheres.

E3DBox

E3DBoxes are rectangular parallelepipeds in a 3D space. They can have any orientation and be
centered on any point in the 3D space.

□ An E3DBox is defined by a center point, 3 axes and the extension of the box along each
axis.

□ Use the function Transform with transformation matrices to rotate and translate boxes.

E3DObject

In Open eVision, an E3DObject is a geometric representation of a set of 3D points.
□ Use the E3DObject to get the characteristics such as the extend along the 3 axes, the area,

the total volume and the average position of the set of points.
□ Use the function BasePlane to get the fitted plane of the set of points.
□ Use the function BoundingBox to get the bounding box, represented by a E3DBox enclosing

the set of points.

Open eVision User Guide

e3dpoint-struct.htm
e3dpoint-struct.htm
e3dpoint-struct.htm
e3dpoint-distanceto.htm
e3dline-class.htm
e3dline-class.htm
e3dplane-class.htm
e3dplane-class.htm
e3dplane-distanceto.htm
e3dplane-projectpoint.htm
e3dplane-transform.htm
e3dsphere-class.htm
e3dsphere-class.htm
e3dsphere-distanceto.htm
e3dsphere-transform.htm
e3dbox-class.htm
e3dbox-class.htm
e3dbox-transform.htm
e3dobject-class.htm
e3dobject-class.htm
e3dobject-baseplane.htm
e3dobject-boundingbox.htm
e3dbox-class.htm

58

Depth map

A depth map is a way to represent a 3D object using a 2D grayscale image where each pixel
(u, v) in the image contains a third coordinate as its gray value.

The grayscale values of a depth map do not necessarily represent a Z metric coordinate. In the
context of a laser triangulation setup, these values represent the displacement of the laser line
profile, which is not the physical height of the 3D surface.

A depth map contains a gray scale image coded on 8, 16 or 32 bits per pixel.
□ One specific gray value, called the undefined value, is reserved for the representation of

invalid pixels.
□ By default, this value is 0 for integer depth map types (EDepthMap8 and EDepthMap16).
□ By default, this value is the lowest float value (-3.402823 e+38) for the 32 bits floating

point depth map types (EDepthMap32f).

The calibration process aims to convert the depth map representation to real, metric 3D
representations such as point clouds or meshes.

TIP
Depth maps are gray scale images where each pixel represents a
displacement in the third dimension. Because of the acquisition procedure,
they are usually not dimensionally correct. So, while Open eVision 2D image
operators are compatible with depth maps, you should not use them for
processes requiring precise measurements.

Open eVision User Guide

edepthmap8-class.htm
edepthmap16-class.htm
edepthmap32f-class.htm

59

Point cloud

A point cloud is a set of 3D points (x, y and z coordinates) representing the scanned object in the
world metric space.

In addition to the calibration process included in Easy3D, point clouds can be produced using
various 3D acquisition techniques, like stereo reconstruction or time of flight cameras.

Mesh

A Mesh is a geometric representation of a 3D surface, a set of connected 3D points.

In an EMesh object, 3 points are connected to define a triangle.

TIP
This kind of 3D representation is also called a "triangle mesh".

A point cloud and the corresponding mesh (displayed with Open eVision E3DViewer)

An EMesh object contains a point cloud and the indexes of the vertices of all mesh triangles.

EMesh uses a metric space representation that can be generated from a depth map and that can
be used to produce a ZMap.

Open eVision User Guide

60

ZMap

ZMaps are another representation for 3D data.
□ They are grayscale images like depth maps but represent metric and corrected 3D points.
□ They are convenient representations for measurement and matching.
□ They are compatible with most of the 2D processing functions.

ZMaps are generated by the orthogonal projection of a point cloud or a mesh onto an arbitrary
3D reference plane.

A depth map and the corresponding ZMap

A ZMap contains an image in which each pixel value represents a positive distance from the
reference plane.

TIP
Use the method AsEImage() to obtain a reference to the contained image.

A ZMap also contains the following information:
□ The transformation from the World coordinates to the ZMap coordinates.
□ The size of a pixel, called the "resolution".

TIP
Like in a depth map, a specific pixel value is reserved to represent undefined
pixels. To get this pixel value, use the method GetUndefinedValue().

Open eVision User Guide

61

Static Methods

EFilters class

The EFilters class contains static methods used to apply filters to ZMaps or depth maps.

RemoveNoise

The RemoveNoise method removes outliers from a depth map or a ZMap.

● It takes a depth map or a ZMap as input and generates a depth map or a ZMap respectively.

The undefined points are not taken into account.

● It is based on a square moving kernel. The size of the kernel is (2 x halfKernelSize + 1) where
halfKernelSize is a parameter of the method.

● The threshold parameter is scaled with regard to the Z resolution of the filtered depth map
or ZMap.

● There are 3 variations of this filter, depending on the method parameter:
□ ENoiseRemovalMethod_AbsoluteDifferenceFromMean removes a point when it deviates from

the average in the neighborhood, including itself. The threshold is an absolute difference.
□ ENoiseRemovalMethod_RelativeDifferenceFromMean removes a point when it deviates from

the average in the neighborhood, including itself. The threshold is a multiple of the
standard deviation.

□ ENoiseRemovalMethod_HighStandardDeviation removes a point when the standard deviation
in the neighborhood, including itself, is higher than a defined threshold.

Example: Removing points showing a high standard deviation

Open eVision User Guide

efilters-class.htm
efilters-removenoise.htm
efilters-removenoise.htm
efilters-removenoise.htm
efilters-removenoise.htm
enoiseremovalmethod-enum.htm
enoiseremovalmethod-enum.htm
enoiseremovalmethod-enum.htm

62

The code below removes pixels with a standard deviation higher than a defined threshold.

// Load the ZMap data
EZMap16 zmap;
zmap.Load(...);

// Compute the filtered ZMap. The new ZMap is called filteredZmap
// The size of the kernel is 7x7, the threshold is 30.0
EZMap16 filteredZmap;
filteredZmap.SetSize(zmap);
EFilters::RemoveNoise(zmap, filteredZmap, ENoiseRemovalMethod_HighStandardDeviation, 3, 30.0, 0.0);

Median

The Median method removes the outliers from a depth map or a ZMap.

● It takes a depth map or a ZMap as input and generates a depth map or a ZMap respectively.
□ The undefined points are not taken into account.

● There are options for this method:
□ You can adjust the width and the height of the median filter.
□ The function can ignore the undefined pixels or take them into account (as the lowest

possible value) when computing the medians.
- Taking the undefined pixels into account removes spickles in the middle of undefined
pixels and smoothens the edges between defined and undefined pixels.
- Ignoring them does not. It can also be much slower.

EStatistics class

The EStatistics class contains static methods used to compute statistics on ZMaps or depth
maps.

ComputeAverageMap

The ComputeAverageMap method computes the local average map.

● You can use this method as a low-pass filter.

● Undefined points are not taken into account.

● This method is based on a square moving kernel. The size of the kernel is (2 x halfKernelSize
+ 1) where halfKernelSize is a parameter of the method.

ComputeStandardDeviationMap

The ComputeStandardDeviationMap() method computes a map of the local standard deviation.

● You can use this method to visually determine the threshold value to use with the
RemoveNoise method when using the ENoiseRemovalMethod_HighStandardDeviation setting.

NOTE
Be aware, however, that in the generated map, a pixel with the value 0 can
either be undefined or have a standard deviation equal to zero.

Open eVision User Guide

efilters-median.htm
estatistics-class.htm
estatistics-computeaveragemap.htm
estatistics-computeaveragemap.htm
estatistics-computeaveragemap.htm
estatistics-computestandarddeviationmap.htm
efilters-removenoise.htm
enoiseremovalmethod-enum.htm

63

Example: Using a low pass filter on a ZMap, then removing points showing a deviation
larger than a defined threshold

The code below first applies a low pass filter, then removes from the result the pixels showing a
deviation from the neighborhood larger than the defined threshold.

// Load the ZMap data
EZMap16 zmap;
zmap.Load(...);

// Compute the filtered ZMap. The new ZMap is called averagedZMap
// The size of the kernel is 7x7, the threshold is 30.0
EZMap16 averagedZMap;
averagedZMap.SetSize(zmap);
EStatistics::ComputeAverageMap(zmap, averagedZMap, 3, 0.2);

// Compute the filtered ZMap. From averagedZMap, compute filteredZMap
// The size of the kernel is 31x31, the threshold is 20.0
EZMap16 filteredZMap;
filteredZMap.SetSize(zmap);

EFilters::RemoveNoise(averagedZMap, filteredZMap, ENoiseRemovalMethod_AbsoluteDifferenceFromMean, 15, 20.0,
0.2);

ComputePixelStatistics

The ComputePixelStatistics method returns basic statistical information about pixel values:
□ Minimum
□ Maximum
□ Average
□ Standard deviation
□ Number of valid (not undefined) pixels).

Use an ERegion object to specify the region of the ZMap or depth map used to compute the
statistics.

Open eVision User Guide

estatistics-computepixelstatistics.htm
eregion-eregion.htm

64

ComputeStatistics

The ComputeStatistics method returns the same information as the ComputePixelStatistics
method, but scaled with respect to the Z resolution.

Use an ERegion object to specify the region of the ZMap or depth map used to compute the
statistics.

Point Cloud

Mapping Attributes

● In addition to the (x, y, z) coordinates, you can store other components in an EPointCloud
such as normals, colors, intensities, textures, indexes, confidences, distances, curvatures and
other custom attributes.

● When you use additional components, a mapping exists between each 3D point and an
attribute and the different operations performed on the point cloud conserve this mapping.

● To add components to an EPointCloud, use the methods FillAttributeBuffer or
AddCustomAttributeBuffer.
□ To retrieve the attribute, use the method GetAttributeBuffer.
□ To allocate the attribute, use the methods AllocateAttributeBuffer and

AllocateCustomAttributeBuffer.
□ You can also save and load these attributes from point cloud files.
□ Several file formats are supported, but we recommend the formats PCD and PLY for

handling additional components.

These methods are showcased in the following code snippets:
□ "Add an Attribute to an EPointCloud with Initial Data" on page 1
□ "Add an Attribute to an EPointCloud without Initial Data" on page 1
□ "Retrieve an Attribute from an EPointCloud" on page 1

Normals and Curvatures

● Use the function EPointCloud::ComputeNormalsAndCurvatures to compute the normals and,
optionally, the curvatures of all of the points in the point cloud:
□ The normals are stored in the Normal attribute buffer.
□ The curvatures are stored in the Curvature attribute buffer.

Coordinates Transformations

Geometric transformations

Transforms allow you to reposition the point cloud inside the 3D space.

Open eVision provides you with the following basic transformations:
□ Rotation around the X, Y or Z axis

Open eVision User Guide

estatistics-computestatistics.htm
estatistics-computepixelstatistics.htm
eregion-eregion.htm
epointcloud-class.htm
epointcloud-class.htm
epointcloud-fillattributebuffer.htm
epointcloud-addcustomattributebuffer.htm
epointcloud-getattributebuffer.htm
epointcloud-allocateattributebuffer.htm
epointcloud-allocatecustomattributebuffer.htm
http://pointclouds.org/documentation/tutorials/pcd_file_format.html
http://paulbourke.net/dataformats/ply/
../../../../../Content/05 Resources/02 Code Snippets/15 Easy3D/Add an Attribute to an EPointCloud with Initial Data.htm
../../../../../Content/05 Resources/02 Code Snippets/15 Easy3D/Add an Attribute to an EPointCloud without Initial Data.htm
../../../../../Content/05 Resources/02 Code Snippets/15 Easy3D/Retrieve an Attribute from an EPointCloud.htm
epointcloud-computenormalsandcurvatures.htm

65

□ Translation along the X, Y and/or Z axis
□ Scaling, around the origin, and either isotropic (the same in all directions) or anisotropic

(different along the different axis)

It also provides you with projection transformations, both orthographic and perspective:
□ An orthographic projection transforms a volume of space in the shape of a rectangular

parallelepiped (and the points it contains) into the canonical view (a cubic space of size 2
and centered on the origin).

□ A perspective projection transforms a volume of space in the shape of a frustum (basically
a truncated pyramid) into the canonical view. This projection allows you to simulate the
perspective effect given by an eye or a camera.

□ Use the class E3DTransformMatrix to create the geometric transformations. The class
EAffineTransformer applies a transformation defined by a E3DTransformMatrix to a point
cloud.

Reducing a Point Cloud

Cropping

Cropping allows you to exclude points from the point cloud based on geometrical
considerations.

Open eVision provides the following cropping functions:
□ ESimpleCropper: simple cropping on the X, Y and/or Z coordinates (aligned rectangle 3D

region)
□ ERectangularCropper: cropping the points outside (or inside) an oriented rectangular

parallelepiped
□ ESphericalCropper: cropping the points outside (or inside) a sphere.
□ EPlaneCropper: cropping the points depending on their position with respect to a plane

These classes produce a new point cloud with the selected points.

Decimation

● Open eVision offers 2 capabilities to decimate an EPointCloud:
□ ERandomDecimator decimates the cloud by copying a specified number of points, randomly

selected, to a new point cloud.

Open eVision User Guide

e3dtransformmatrix-class.htm
eaffinetransformer-class.htm
e3dtransformmatrix-class.htm
esimplecropper-class.htm
erectangularcropper-class.htm
esphericalcropper-class.htm
eplanecropper-class.htm
epointcloud-class.htm
erandomdecimator-class.htm

66

□ EGridDecimator splits the space using a grid of given size; the new cloud is created by
averaging the points of every grid together, resulting in a regularly sampled cloud.

● To use ERandomDecimator, specify the number of points to keep as a parameter of the
constructor.

EPointCloud pc;
pc.Load("c:\\images\\data.pcd");

// Explicitly decimate the point cloud

ERandomDecimator decimator(5000);
EPointCloud pcDecimated;

decimator.Decimate(pc, pcDecimated);
pcDecimated.SavePCD("c:\\images\\decimatedData.pcd");

● To use EGridDecimator, specify the cell size, either as a E3DPoint or as a float if cell is cubic.

EPointCloud pc;
pc.Load("c:\\images\\data.pcd");

// Explicitly decimate the point cloud

EGridDecimator decimator(10.f);
EPointCloud pcDecimated;

decimator.Decimate(pc, pcDecimated);
pcDecimated.SavePCD("c:\\images\\decimatedData.pcd");

Filtering out noise

The EPointCloudFilter class filters a point cloud in the same way EFilters::RemoveNoise filters a
depth map or ZMap.

A criterion based on the neighborhood of each point is computed. The points that have a
criterion score above the threshold are removed.

● Select between the following criterions:
□ The average distance of the point from its neighborhood. It may remove some points at

the borders of a noiseless surface.
□ The standard derivation within the point neighborhood. It is more likely to remove

noiseless points that are close to noisy points.

● You can set the size of the neighborhood.

● The threshold is defined as:

“the mean of the criterion over the cloud”+

“the standard derivation of the criterion over the cloud”×“a factor provided by the user”

□ The default value for the factor is 1, as it is a good value in most cases.

● You can replace the noisy points by the average of their neighborhood instead of removing
them.

Open eVision User Guide

egriddecimator-class.htm
erandomdecimator-class.htm
egriddecimator-class.htm
e3dpoint-struct.htm
epointcloudfilter-class.htm
efilters-removenoise.htm

67

Managing Planes

E3DPlane

A plane can be represented as an E3DPlane object.

This plane is characterized by:
□ Its normal which is a vector of norm 1, perpendicular to the plane.
□ Its signed distance from the origin, which is the smallest distance from the origin to the

plane. The signed distance is positive when the vector binding the origin to the closest
point on the plane has the same direction as the normal and is negative when it has the
opposite direction.

Once a plane is defined, you can measure the signed distance between this plane and any point
in the space (using the method DistanceTo()):

□ A positive distance means that the vector connecting the plane to the point has the same
direction as the normal.

□ A negative distance means that the vector has the opposite direction.

Open eVision User Guide

e3dplane-class.htm
e3dplane-distanceto.htm

68

EPlaneFinder

You can search for a plane in a point cloud using the object EPlaneFinder object.

The main parameters of this object are:
□ The maximum distance between the searched plane and a point that belongs to this

plane.
□ The expected ratio between the numbers of inliers and the total number of points in the

point cloud.
- An inlier is a point that belongs to a plane (closer than this maximum distance).
- An outlier is a point that is not an inlier.

The picture below illustrates how points of the space are classified as inliers (in green) and
outliers (in red) according to their distance to the searched plane.

● A EPlaneFinder object produces a E3DPlane object.
□ The algorithm searches for a plane containing as many inliers as possible.
□ This plane is the biggest plane if the samples are evenly distributed.

● The maximum distance between the plane and the inliers is a mandatory parameter.
□ It should include the deviation due to the noise.
□ It should also take the warpage into account.

● The parameter that specifies the ratio of inliers with respect to the total number of points
has a default value of 0.3. This means that we estimate that about 30% of the points belong
to the plane.
□ This parameter is not as critical as the maximum distance.
□ It affects the maximum time that the algorithm spends to search a plane and its

robustness.

● For more fine-grained control, you can specify the ratio of inliers as a range.
□ The min of the range is the minimum ratio of inliers for a plane to be considered as valid.
□ The algorithm stops searching for a plane when it finds one with the max of the range

inliers.
□ The bigger the min of the range and the smaller the max, the faster the algorithm is.
□ Specifyng the range as a single value x is equivalent to setting a range of [x/2, x].

Open eVision User Guide

eplanefinder-class.htm
eplanefinder-class.htm
e3dplane-class.htm

69

● You can specify the expected normal vector to the searched plane.
□ Specify also an angular tolerance with respect to this direction.
□ The algorithm only searches for a plane that satisfies the condition.
□ Set this condition may speed up the plane search.

● You can specify 1 or 2 points contained in the searched plane.
□ These points are not specified as inliers (points closer to the plane than its maximum

distance) but as points exactly contained in the main plane.
□ They may not be exactly in the final plane after the final fitting step detailed below.
□ The algorithm only searches for a plane that satisfies the condition.
□ Set this condition may speed up the plane search.

Once the main plane is found, a fit is done on all the inliers points and the result is returned (see
EPlaneFitter below).

Decimation

By default, the EPlaneFinder decimates the input point cloud to accelerate the search.

● The default decimator reduces the input point cloud to 10,000 points.

● You can disable this decimation.

● You can change the number of points the cloud is reduced to.

● You can decimate a point cloud explicitly.
□ Use an ERandomDecimator object.
□ Use the decimated point cloud as input for the EPlaneFinder.
□ Disable the default decimator.

EPlaneFitter

The EPlaneFitter operator computes a fit on all the points of a point cloud and returns a
E3DPlane object. The “average” plane, that minimizes the orthogonal distance of the points to
the plane, is returned.

Open eVision User Guide

eplanefitter-class.htm
eplanefinder-class.htm
erandomdecimator-class.htm
eplanefinder-class.htm
eplanefitter-class.htm
e3dplane-class.htm

70

Aligning

EPrincipalAxisExtractor

The EPrincipalAxisExtractor computes the “principal axis” of an object from a point cloud
(EPointCloud) and returns a E3DTranformMatrix containing a solid transformation that defines a
new orthogonal basis.

This new orthogonal basis has the following characteristics:
□ The center is the center of gravity of the point cloud.
□ The axes are oriented along the “principal axis” of the object. This is the result of the

“PCA” calculation (principal axis analysis).
□ The directions of the axes are selected so that the new basis is as close as possible of the

basis defined by the reference transformation.

The next figure illustrates the orientation of the principal axes of an object.

The principal axes extraction is done using the Extract() method that takes a EPointCloud as
input and returns an E3DTransformMatrix. Optionally, you can pass 3 other output parameters by
reference to retrieve the value of the standard deviation along the 3 principal axes.

You can use the returned E3DTranformMatrix object to transform the 3D coordinates of a point.
For example, apply the transformation matrix to the origin (0, 0, 0) to return the center of
gravity of the object.

Open eVision User Guide

eprincipalaxisextractor-class.htm
epointcloud-class.htm
e3dtransformmatrix-class.htm
eprincipalaxisextractor-extract.htm
epointcloud-class.htm
e3dtransformmatrix-class.htm
e3dtransformmatrix-class.htm

71

Specification of a reference transformation

The reference transformation is an optional parameter of the EPrincipalAxisExtractor object. It
defines a reference basis used to select an orthogonal basis out of the principal axes. The
selected basis will be the closest to the reference basis.

TIP
If no reference transformation was supplied, the default reference basis is
((0, 0, 1), (0, 1, 0), (0, 0, 1)), that corresponds to the identity transformation.
On the figure below, the default reference basis determines the direction of
the axes ex, ey and ez.

EFeaturesAligner

A EFeaturesAligner object finds the best transformation that maps a list of points to another list
of points.

● The first list of points is called the "model". It is stored in the EFeaturesAligner object.

● The second list of points is called "measured points". It is passed as a parameter to the
Compute() method. If successful, the result of this method is a E3DTransformMatrix object.

● The 2 lists should form matching pairs. In other words, the first point of the first list matches
the first point of the second list, the second point of the first list matches the second point of
the second list, and so on…

With the Polarity parameter, you can define which transformation is returned. It can be either:
□ The one that moves one point from the first list (the model) to the second list of points

(the measured points) if the polarity parameter is set to EAlignmentPolarity_
ModelToMeasured (default).

□ The one that moves a point from the second list (the measured points) to the first list (the
model) if the polarity parameter is set to EAlignmentPolarity_MeasuredToModel.

Open eVision User Guide

eprincipalaxisextractor-class.htm
efeaturesaligner-class.htm
efeaturesaligner-class.htm
efeaturesaligner-compute.htm
e3dtransformmatrix-class.htm
efeaturesaligner-polaritytransform.htm
ealignmentpolarity-enum.htm
ealignmentpolarity-enum.htm
ealignmentpolarity-enum.htm

72

The figure below illustrates the computation of the alignment transformation. In this example a
model is aligned to an object using the coordinates of their corners.

Once the transformation is computed, use the method GetOrthoBasis of the E3DTransformMatrix
object to get the basis (ex, ey, ez) and the center point t that defines the new basis.

You can also apply the computed transformation on any 3D point as illustrated in the code
below.

E3DTransformMatrix alignBase;
E3DPoint ex, ey, ez, t;
std::vector<E3DPoint> model3d;
std::vector<E3DPoint> points3d;

// add points to model3d and points3d
// ...
AlignTool.SetModelPoints(model3d);
alignBase = alignTool.Compute(points3d);

// Get the orthogonal basis and store it in ex, ey, ez and t
alignBase.GetOrthoBasis(ex, ey, ez, t);

// Applying the transformation on point P1, results in point P1b
E3DPoint P1 = E3DPoint(...);
E3DPoint P1b = alignBase*P1;

As you can see, the application of the transformation on a point is simply done by multiplying
the transformation matrix by the point (as done in the example above).

On the other hand, if you need to transform a point cloud or a list of points, it is more efficient
to use the ApplyTransform() method of an EAffineTransformer object.

Open eVision User Guide

e3dtransformmatrix-getorthobasis.htm
e3dtransformmatrix-class.htm
eaffinetransformer-applytransform.htm
eaffinetransformer-class.htm

73

Using Spheres

E3DSphere

Use an object E3DSphere to represent a sphere characterized by:
□ Its center as a E3DPoint.
□ Its radius.

Once a sphere is defined, use the method DistanceTo to measure the distance between the
sphere and any point in the space, defined as the distance to the nearest point of the sphere.

ESphereFitter

The operator ESphereFitter computes a fit on all the points of a point cloud and returns the
object E3DSphere that minimizes the distance between the point cloud and the sphere
(calculated according to the least squares).

Mesh
A mesh is a geometric representation of a 3D surface. The surface is defined by a triangle mesh
connecting the 3D points and each of these triangles has an associated normal.

● Like a point cloud, a mesh is expressed in the metric space.

● Like a point cloud, you can generate a mesh from a depth map or a ZMap and use it to
produce a ZMap.

Generation from a depth map

● An EMesh object is generated from a depth map using the class EDepthMapToMeshConverter.

● Like EDepthMapToPointCloudConverter, this class uses a calibration model to transform the
depth map pixels to 3D world positions. In addition, the depth map pixel connectivity is used
to build the triangle mesh. Adjacent pixels produce surface triangles.

● Use the method SetCalibrationModel to select a calibration model and the method Convert to
generate an EMesh from an 8 bits or 16 bits depth map.

Generation from a ZMap

● An EMesh object is generated from a ZMap using the class EZMapToMeshConverter.

● Use the method SetMaxEdgeLength to filter out the large triangles from the mesh. These large
triangles occur when the colors of two neighboring pixels are very far apart.

Open eVision User Guide

e3dsphere-class.htm
e3dpoint-struct.htm
e3dsphere-distanceto.htm
espherefitter-class.htm
e3dsphere-class.htm
emesh-emesh.htm
edepthmaptomeshconverter-class.htm
edepthmaptopointcloudconverter-class.htm
edepthmaptomeshconverter-calibrationmodel.htm
edepthmaptomeshconverter-convert.htm
emesh-emesh.htm
emesh-emesh.htm
ezmaptomeshconverter-class.htm
ezmaptomeshconverter-maxedgelength.htm

74

Generation from a point cloud

● An EMesh object is generated from a point cloud using the class EPointCloudToMeshConverter.
□ The EPointCloud is first converted to a ZMap that is then converted to an EMesh.

● Use the method SetProjectionPlane to set the projection plane.

● Use the method SetResolution to specify the size of the triangles of the mesh.

● Use the method SetMaxEdgeLength to filter out the large triangles from the mesh.

2 This functionality is illustrated in a C++ and a C# MFC sample application called
Easy3DPointCloudToMesh.

Access and usage

● In an EMesh object the 3D world positions are stored as an EPointCloud (accessible through
the method GetPointCloud()). The triangle mesh is stored as an array of point indexes, where
3 consecutive indexes define a triangle.
□ The method GetTriangleIndexes() provides a read-only access to the triangle mesh.
□ The normals are stored as an array of E3DPoints readable through the GetNormals method.

● You can use either the Open eVision proprietary format to save and load EMesh objects using
the Save() and Load() methods, or use the STL standard file format
(https://en.wikipedia.org/wiki/STL_(file_format)) using the SaveSTL() and LoadSTL() methods
which respectively write to and read from ASCII or binary STL files.

● You can use an EMesh to produce a ZMap (see "Generating a ZMap" on page 75). Because an
EMesh represents a surface, the so generated ZMap can show better continuity and less
undefined pixels.

Open eVision User Guide

emesh-emesh.htm
epointcloudtomeshconverter-class.htm
epointcloud-class.htm
emesh-emesh.htm
epointcloudtomeshconverter-projectionplane.htm
epointcloudtomeshconverter-resolution.htm
ezmaptomeshconverter-maxedgelength.htm
emesh-emesh.htm
epointcloud-epointcloud.htm
emesh-pointcloud.htm
emesh-triangleindexes.htm
e3dpoint-e3dpoint.htm
emesh-normals.htm
emesh-emesh.htm
emesh-save.htm
emesh-load.htm
emesh-savestl.htm
emesh-loadstl.htm
emesh-emesh.htm
emesh-emesh.htm

75

ZMap

Generating a ZMap

A ZMap is the projection of a point cloud or a mesh on a reference plane, with the distance
coded as grayscale values:

□ They are grayscale images, compatible with all Open eVision 2D libraries.
□ They are distortion free, with affine transformation from/to metric coordinate system.

A depth map (left) and the corresponding ZMap (right),
with default generation parameters and undefined pixel filling enabled

All Open eVision 2D processing are available on ZMaps: filtering, thresholding, blob extraction,
measuring with EasyGauge, model matching with EasyFind or EasyMatch…

The EPointCloudToZMapConverter class implements the conversion from a point cloud to a ZMap
(EMeshToZMapConverter converts a mesh to a ZMap). With all parameters at default value, the
Convert method automatically chooses the projection plane, the orientation, the map size and
the resolution.

Several methods are available to further control the conversion:

● SetReferencePlane defines a world space projection plane. The values of the ZMap pixels are
the distance of the point cloud to that reference plane.

By default, the reference plane crosses the origin and is perpendicular to the world Z axis.
The plane is defined as a E3DPlane object.

● SetOrientationVector sets a world space vector representing the expected direction of the X
(width) axis of the ZMap.

The orientation vector allows you to “rotate” the object around the normal of the reference
plane.

● SetOrigin specifies the world position that is on the ZMap lower left pixel (0, 0).

● SetMapSize defines the resolution (number of pixels in X and Y axis) of the generated ZMap.

● SetMapXYResolution adjusts the X and Y resolution of the ZMap pixels, in world space unit per
pixel (for example mm/pixel). This value is used to compute the ZMap size (width and
height), depending on the projected size of the point cloud on the reference plane.

Open eVision User Guide

epointcloudtozmapconverter-class.htm
emeshtozmapconverter-class.htm
epointcloudtozmapconverter-convert.htm
epointcloudtozmapconverter-referenceplane.htm
e3dplane-e3dplane.htm
epointcloudtozmapconverter-orientationvector.htm
epointcloudtozmapconverter-origin.htm
epointcloudtozmapconverter-setmapsize.htm
epointcloudtozmapconverter-setmapxyresolution.htm

76

● SetMapZResolution sets the Z resolution, in world space unit per pixel unit (gray value). The Z
resolution is used to compute the transformation of the distance to the reference plan to the
integer 8, 16 or 32 bits pixel value.

● EnableFillMode and SetFillMode control the options used to fill the "hole" in the ZMap. A hole
exists when no 3D point is projected in the ZMap at a pixel position.

The methods SetReferencePlane, SetOrientationVector and SetOrigin are used to set up the
transformation between the world space and the ZMap space. This transformation is rigid
(distances are kept).

Alternatively, it is possible to directly set that transformation with the method
SetWorldToZMapTransform using a rigid matrix as parameter. In that case, the reference plane, the
orientation vector and the origin parameters are ignored.

The projection of a point cloud on a ZMap,
showing 3 coordinate systems: the world space, the ZMap space and the pixel space.

Open eVision User Guide

epointcloudtozmapconverter-mapzresolution.htm
epointcloudtozmapconverter-enablefillmode.htm
epointcloudtozmapconverter-setfillmode.htm
epointcloudtozmapconverter-referenceplane.htm
epointcloudtozmapconverter-orientationvector.htm
epointcloudtozmapconverter-origin.htm
epointcloudtozmapconverter-worldtozmaptransform.htm

77

The Convert method performs the effective projection of a point cloud (EPointCloud) or a 3D
object (EMesh) to the 8, 16 or 32 bits ZMap.

When generating a ZMap from a point cloud, only individual points are projected on the ZMap.
Depending on the point cloud density and the ZMap resolution, some regions of the ZMap may
remain “undefined”. To get around this problem, adjust the resolution of the ZMap
(SetMapXYResolution method) to remove “holes” on the ZMap.

By default, the point cloud to ZMap converter performs a filling algorithm. This process tries to
replace undefined pixels with locally interpolated values.

Left: high resolution ZMap, the pixel scale exceeds the point cloud density
Center: the same generator parameters with the filling enabled

Right: a reduced ZMap scale/resolution, without filling

As a mesh defines a surface, its triangles are projected onto the ZMap plane. Thus, the
generated image shows better continuity and less undefined pixels. However, the generation of
a ZMap from an EMesh is slower than from an EPointCloud.

Creating a Point Cloud from a ZMap

To generate a point cloud from a ZMap, use the EZMapToPointCloudConverter class.

The Convert()method takes:

● A ZMap source

● A EPointCloud destination.

● 3 optional parameters:
□ An ERegion that defines the domain of the ZMap to convert.

By default, Open eVision uses all the defined pixels of the ZMap generate the point cloud.
□ A parameter to select the world space (by default) or the ZMap space to store the

resulting positions in the point cloud.
□ Whether to compute the normals of the points of the point cloud during the conversion.

This is not done by default.

Open eVision User Guide

epointcloudtozmapconverter-convert.htm
epointcloud-epointcloud.htm
emesh-emesh.htm
epointcloudtozmapconverter-setmapxyresolution.htm
emesh-emesh.htm
epointcloud-epointcloud.htm
ezmaptopointcloudconverter-class.htm
ezmaptopointcloudconverter-convert.htm
epointcloud-class.htm
eregion-class.htm

78

Managing the Coordinates

Coordinate systems on a ZMap

A ZMap has multiple coordinate systems:
□ The world space system is the original, metric space from which the ZMap has been

generated. Point clouds and meshes are expressed in the world coordinate system.
□ The ZMap space is defined by a rigid transformation of the world space. The basis linked

to this transformation is attached to the lower left corner of the ZMap.
□ The image space is the system attached to the image representation of the ZMap. Its

origin is the upper left corner of the ZMap and its unit length is one pixel along the X and
Y axis.

The transformations between:
□ The image space and the ZMap space include a scale factor.
□ The ZMap space and the world space are solid transformations.

EZMap

The EZMap object exposes a set of methods to convert coordinates between world, ZMap and
image spaces:

□ ImageToZMap converts a 2D position in the image to ZMap coordinates.
□ ZMapToImage is the reciprocal operation and converts a ZMap position to an image

position.
□ ZMapToWorld is a method to transform positions from the 3D ZMap space to the 3D world

space. The world space is the original point cloud or mesh space.
□ WorldToZMap is the reciprocal operation, converting from world space to ZMap.
□ ImageToWorld and WorldToImage combine the functions above to transform directly from

image space to world space (or the other way).

These methods only perform geometric transformations between the various coordinate
systems and do not access the actual ZMap gray scale values.

Open eVision User Guide

ezmap-class.htm
ezmap-imagetozmap.htm
ezmap-zmaptoimage.htm
ezmap-zmaptoworld.htm
ezmap-worldtozmap.htm
ezmap-imagetoworld.htm
ezmap-worldtoimage.htm

79

The functions that access the pixel values are:
□ GetWorldPositionFromPixelPosition is a method transforming the actual pixel value at

integer position (u, v) to the original world space. This method queries the ZMap internal
representation to get the pixel value w and transform the pixel space (u, v, w) coordinates
to a world space position.

□ GetPixelPositionFromWorldPosition is a method to get a pixel value from a world position.
The world position is projected on the ZMap and the pixel value is returned. If the world
position is outside the ZMap domain, the method returns FALSE.

□ GetWorldPositionFromMapPosition is a method to get a 3D world position corresponding to
a ZMap 2D coordinate. The world position is in the original point cloud space. If the 2D
coordinate is undefined, an exception is thrown.

3D Viewer
The class E3DViewer is an interactive 3D viewer for point clouds, ZMaps, meshes and basic
shapes (lines, planes, boxes and spheres).

□ It features multiple sources display, color ramps, 3D point picking and text label display.
□ It is compatible with Windows and Linux and can be integrated to Win32, MFC and QT

frameworks.

Creating a 3D viewer

● The general constructor of a 3D viewer is:
E3DViewer(EUIAPI uiApi, int orgX, int orgY, int width, int height, void* parent)

● The way to use it depends on the Operating System and the User Interface API.

Windows only

● To create a 3D viewer stand-alone window:
□ Use E3DViewer(EUIAP::EUIAPI_Win32, orgX, orgY, width, height)

● To create a 3D viewer as a part of another window in an MFC application:
□ Use E3DViewer(EUIAP::EUIAPI_Win32, orgX, orgY, width, height, handle to the parent

window)
□ See the MsVc or MsVcs Easy3DViewer sample.

Windows and Linux

● To create a 3D viewer in a Qt application:
□ Use E3DViewer(EUIAP::EUIAPI_Qt, orgX, orgY, width, height)
□ You must instance the class inside a QOpenGLWidget object.
□ See the Easy3DViewer Qt sample.

Open eVision User Guide

ezmap-getworldpositionfrompixelposition.htm
ezmap8-getpixelpositionfromworldposition.htm
ezmap-getworldpositionfrommapposition.htm
e3dviewer-class.htm

80

Managing the render sources

● A render source is a displayed entity. It can be an EPointCloud, an EZMap, an EMesh, an E3DBox,
an E3DLine, an E3DPlane or and E3DSphere. You can display one or several render sources
simultaneously in the 3D viewer.

A point cloud displayed in gray scale and a mesh in false colors in the 3D viewer

● To manage the list of render sources, use the methods:
□ AddRenderSource to add another render source to the current list. The render source has a

name for further reference.
□ SetRenderSource to change the content of the render source.
□ RemoveRenderSource to remove a render source from the current list.

● The render sources API exposes several display attributes:
□ Visibility (controlled by ShowRenderSource/ HideRenderSource)
□ Color mode (SetRenderSourceColorMode): choose between constant color (the only option

for basic shapes), color ramp or point cloud color attributes.
□ Color (SetRenderSourceConstantColor) for render sources with constant color.
□ Opacity (SetRenderSourceOpacity)
□ Point size (SetRenderSourcePointSize): applies to point clouds and ZMaps only.
□ Wire frame (SetRenderSourceWireFrame): applies to meshes, boxes and planes.

A point cloud displayed with constant color, color ramp or color attributes
(data courtesy of Zivid)

Open eVision User Guide

epointcloud-class.htm
ezmap8-class.htm
emesh-class.htm
e3dbox-class.htm
e3dline-class.htm
e3dplane-class.htm
e3dsphere-class.htm
e3dviewer-addrendersource.htm
e3dviewer-setrendersource.htm
e3dviewer-removerendersource.htm
e3dviewer-showrendersource.htm
e3dviewer-hiderendersource.htm
e3dviewer-setrendersourcecolormode.htm
e3dviewer-setrendersourceconstantcolor.htm
e3dviewer-setrendersourceopacity.htm
e3dviewer-setrendersourcepointsize.htm
e3dviewer-setrendersourcewireframe.htm

81

A mesh with wireframe and transparency, combined with a point cloud with color ramp

Shading

E3DViewer can shade rendering sources using a custom version of the Eye Dome Lighting (EDL)
technique.

● Use SetEnableEDLShading to enable the shading.

● Use SetEDLShadingFactor to adjust the shading between 0 and 1:
□ 0 means no chasding.
□ 1 means strong shading.and 1, respectively meaning no shading and strong shading.

EDL is a post processing technique. It impacts all opaque render sources all together. With EDL,
pixels that are closer to the camera occlude neighbor pixels that are further away from the
camera.

A mesh without and with EDL enabled

Using a color ramp

● When the color mode of a render source is ESourceColorMode_Ramp, the color of each point is
calculated from the position or the attribute of the point.

● Use SetColorRampMode to choose the color ramp:
□ EColorRampMode_HueFromX/Y/Z computes the colors from respectively X/Y/Z point

coordinates (EColorRampMode_HueFromZ is the default color ramp mode).
□ EColorRampMode_RGBCube computes the colors by mixing X,Y,Z point coordinates.

Open eVision User Guide

e3dviewer-class.htm
e3dviewer-enableedlshading.htm
e3dviewer-edlshadingfactor.htm
esourcecolormode-enum.htm
e3dviewer-colorrampmode.htm
ecolorrampmode-enum.htm
ecolorrampmode-enum.htm
ecolorrampmode-enum.htm

82

□ EColorRampMode_HueFromIntensity computes the colors from the intensity attribute of the
point.

□ EColorRampMode_HueFromNormal computes the colors from the normal attribute of the point.
□ EColorRampMode_HueFromConfidence computes the colors from the confidence attribute of

the point.
□ EColorRampMode_HueFromDistance computes the colors from the distance attribute of the

point.

Color ramp modes Hue from X/Y/Z and RGB cube

● When a color ramp is defined, you can display a legend at the right side of the window
(default position). To control the color ramp legend aspect, use the methods
Show/HideColorRampLegend, SetColorRampGraduationColor and SetColorRampLocation.

● When the “Smart color ramp” is enabled with the method SetEnableSmartColorRamp, an
outlier filtering processing is applied to remove the noise and spread the colors on the main
part of the object. The outliers are then displayed with constant red or blue colors.

To keep the same color ramp bounds instead of adaptive ones, use SetFixColorRampBounds.

A color ramp EColorRampMode_HueFromZ with outlier removal process:
- The extreme points with Z coordinate between 8.3 and 18.8 are drawn in red

- The Z coordinate of 98% of the points are between -6.7 and 8.3

Open eVision User Guide

ecolorrampmode-enum.htm
ecolorrampmode-enum.htm
ecolorrampmode-enum.htm
ecolorrampmode-enum.htm
e3dviewer-showcolorramplegend.htm
e3dviewer-hidecolorramplegend.htm
e3dviewer-colorrampgraduationcolor.htm
e3dviewer-setcolorramplocation.htm
e3dviewer-enablesmartcolorramp.htm
e3dviewer-setfixcolorrampbounds.htm

83

Interactive controls

On Windows, the interactive controls are built in the class E3DViewer.

● The following interactions are possible:

Intercation Control
Rotate the view left-click + mouse move
Translate the view right-click + mouse move
Change the view distance mouse wheel
Reset the view r
View along the positive / negative X axis x / Shift+x
View along the positive / negative Y axis y / Shift+y
View along the positive / negative Z axis z / Shift+z
Show / hide the axis a
Enable / disable the wireframe mode w
Increase / decrease the point size plus sign (+) / minus sign (-)

● Use the following methods to implement custom view controls:
□ LockRotationInitialPosition, UpdateRotationPosition and LockRotationFinalPosition

correspond to the sequence click-drag-release to change the viewpoint by rotation.
□ LockTranslationInitialPosition, UpdateTranslationPosition and

LockTranslationFinalPosition correspond to the sequence click-drag-release to change
the viewpoint by translation.

□ UpdateViewDistance changes the view distance, usually controlled by the mouse wheel.
□ ResetView restores the default viewpoint.

See the Qt Easy3DViewer sample for a use case of this view control API.

● You can also directly configure the view position with the methods:
□ SetViewTarget (by default, it is the center of the object).
□ SetViewAngle to choose the orientation of the view.
□ SetViewDistance to choose the distance to the view target.

View parameters

You can customize the 3D view and:
□ Change the field of view with SetFieldOfView.
□ Switch between the perspective and the orthographic view with SetProjectionType.
□ Enable or disable the display of the X, Y and Z axis with SetRenderAxis.
□ Switch the axis origin between the world origin and the object center with SetAxisOrigin.
□ Enable or disable the display of a grid with SetRenderGrid.

Open eVision User Guide

e3dviewer-class.htm
e3dviewer-lockrotationinitialposition.htm
e3dviewer-updaterotationposition.htm
e3dviewer-locktranslationfinalposition.htm
e3dviewer-locktranslationinitialposition.htm
e3dviewer-updatetranslationposition.htm
e3dviewer-locktranslationfinalposition.htm
e3dviewer-updateviewdistance.htm
e3dviewer-resetview.htm
e3dviewer-setviewtarget.htm
e3dviewer-setviewangle.htm
e3dviewer-viewdistance.htm
e3dviewer-fieldofview.htm
e3dviewer-projectiontype.htm
e3dviewer-renderaxis.htm
e3dviewer-axisorigin.htm
e3dviewer-rendergrid.htm

84

□ Activate an auto rotate animation with SetAutoRotate.
□ Use a decimation level (remove some points to speed up the rendering) with

SetRenderDecimationLevel.

No axis / world centered axis / bounding box axis / axis with grid

Picking a 3D point

● Picking a point means detecting the point closest to the given coordinates in a E3DViewer
window. You can then display the detected 3D point, with attributes, as a text label.

Displayed coordinates and attributes of a picked point on the 3D view

● The distance threshold used to select a picked point is defined by
SetPickingDistanceThreshold. There is no picked point if the point cloud distance to the
picked position is greater than this threshold.

Open eVision User Guide

e3dviewer-setautorotate.htm
e3dviewer-renderdecimationlevel.htm
e3dviewer-class.htm
e3dviewer-pickingdistancethreshold.htm

85

● On the Win32 interface framework, the built-in control for the picking is Ctrl + mouse button.
□ To control the picking, use the methods Pick3DPoint, GetLastPickedPoint and

ResetPicking.
□ To configure the E3DViewer to call a specified function when you pick a point, use the

method SetPickedPointCallBack.

● To configure the display of the picking label, use SetPickingDisplay, SetPickingLabelSize,
SetPickingLabelColor and SetPickingLabelFixed.

Text labels and 3D objects

● You can add custom text labels and 3D objects to the current view of the 3D viewer.

A screen label in the top left corner and a text label with 3D anchor

● To control the text label display, use:
□ AddTextLabel to add a text label with or without a 3D anchor. AddTextLabel returns an ID

used for further reference.
□ EditTextLabel to change the position, color, size or text of a label.
□ GetTextLabel to get the attributes of a label.
□ RemoveTextLabel to remove a label.
□ ClearTextLabels to remove all labels.

● The class E3DViewer can also display E3DObject over a point cloud, a ZMap or a mesh. Use the
tools Easy3DObject and Easy3DMatch to create the E3DObjects.

Open eVision User Guide

e3dviewer-pick3dpoint.htm
e3dviewer-lastpickedpoint.htm
e3dviewer-resetpicking.htm
e3dviewer-class.htm
e3dviewer-setpickedpointcallback.htm
e3dviewer-pickingdisplay.htm
e3dviewer-pickinglabelsize.htm
e3dviewer-pickinglabelcolor.htm
e3dviewer-pickinglabelfixed.htm
e3dviewer-addtextlabel.htm
e3dviewer-addtextlabel.htm
e3dviewer-edittextlabel.htm
e3dviewer-gettextlabel.htm
e3dviewer-removetextlabel.htm
e3dviewer-cleartextlabels.htm
e3dviewer-class.htm
e3dobject-class.htm
e3dobject-class.htm

86

● Use the methods Register3DObjects and RemoveCurrent3DObjects to manage the list of
E3DObjects that you want to display.

An E3DObject contains several features (center point, bounding box, base plane…). Use the
methods Show / HideFeatureFor3DObject and Show / HideFeatureForAll3DObjects to select the
displayed features.

See the Easy3DObjectExtract MSCV sample as an example for the display of E3DObjects.

3D objects drawn with a point cloud displaying the bounding boxes and the top positions

Photometric Stereo

Photometric Stereo and Process

Introduction

The Photometric Stereo is a technique used to estimate the normals at the surface of an object.

Photometric stereo setup
Source: https://www.researchgate.net/figure/Principle-of-photometric-stereo_fig7_222422584

Open eVision User Guide

e3dviewer-register3dobjects.htm
e3dviewer-removecurrent3dobjects.htm
e3dobject-class.htm
e3dobject-class.htm
e3dviewer-showfeaturefor3dobject.htm
e3dviewer-hidefeaturefor3dobject.htm
e3dviewer-showfeatureforall3dobjects.htm
e3dviewer-hidefeatureforall3dobjects.htm
e3dobject-class.htm

87

● It takes at least 3 images of the same object taken under different known light directions.

Inputs: images with different light directions

● It produces an image containing the fraction of light reflected (called albedo) and the normal
of the surface at each pixel.

Outputs: albedos - normals

● The normals are processed to compute gradients and curvatures, allowing to easily see
bumps and holes. You can also integrate the normals to compute the height map.

Outputs: gradients X - gradients Y - Gaussian curvatures

Outputs: mean curvatures - height map

Open eVision User Guide

88

Process

You can use the object Easy3D::PhotometricStereoImager in a 4-step process:

1. Calibrate the setup from a sphere or from predefined angles (once per setup).

2. Perform the photometric stereo computation on the object images.

3. Retrieve the results.

4. Use and apply the Open eVision tools on the results.

Photometric stereo process

Resources

● The example described here demonstrates how to perform photometric stereo with Open
eVision 3D libraries and tools.

● A sample application is also distributed with the source code. You can find it in …\Sample
Programs\MsVc samples\3D Processing\Easy3DPhotometricStereo.

● This example and the sample application are based on the following resources:
□ Open eVision 2.15
□ Microsoft Visual Studio 2017

NOTE
The license for Easy3D is necessary to use the photometric stereo tools.

Calibration

● You can perform the calibration either:
□ By setting the calibration angles.
□ By computing the calibration angles from images of a (hemi)sphere.

Open eVision User Guide

ephotometricstereoimager-class.htm

89

Azimuth and elevation

● To define a light direction, two angles are necessary, the azimuth and the elevation.

● When facing the image, the X-axis points right, Y points top and Z points towards the camera.

● The azimuth angles are oriented trigonometrically around the Z-axis.
□ A light source on the right of the image has an azimuth of 0°.
□ A light source on the top of the image has an azimuth of 90°.

● The elevation is the angle formed by the base plane and the light source.
□ A light source on the horizon has an elevation of 0°.
□ A light source on the camera has an elevation of 90°.

Code snippet

● The following code snippet shows how to perform the calibration from a (hemi)sphere.

EPhotometricStereoImager photometricStereo;

std::vector<EImageBW8> calibrationImages;
// Load calibration images (Todo)

std::vector<EROIBW8> calibrationROIs;
// Set the calibration ROIs (Todo)// Calibrate
float score = photometricStereo.CalibrateFromSphere(calibrationROIs);

● If the sphere is not detected, the calibration fails and generates an EException (EError
EError_SphereDetectionFailed).

In that case, you can pass the position of the circle to the method:

ECircle circle;

// Define circle (Todo)

photometricStereo.CalibrateFromSphere(calibrationROIs, circle)

● The method returns a score that indicates the reliability of the calibration.
□ The higher the value, the better the calibration.
□ The score range is [0, 1].
□ The scores above 0.75 are considered as good.
□ The scores below 0.50 are considered as bad.
□ The scores in between are considered as acceptable.
□ The method never fails. A bad score does not mean that you will not get good results on

your images. It means that, if you do not, it is probably due to the calibration.

Open eVision User Guide

eexception-class.htm
eexception-error.htm
eerror-enum.htm

90

● The score is composed of 2 factors:
□ The lambertian (matte) of your sphere (the more lambertian the better).
□ The plausibility of the detected light directions.

The following figure shows the scores for 2 examples.

2 images from different spheres:
left: a high reflection and a score of 0.70 - right: perfectly lambertian and a score of 0.96

● You can also directly set the calibration angles and retrieve them.

Use Easy::SetAngleUnit to define the angle unit.

Easy::SetAngleUnit(EAngleUnit_Degrees);

std::vector<float> azimuths, elevations;

// Define the values of the angles (Todo)

photometricStereo.SetCalibrationAngles(azimuths, elevations);

Computation and Results

Computation

● Once the calibration is done, you can perform the photometric stereo computation on the
object images.

std::vector<EImageBW8> objectImages;

// Load object images in the same order than the calibration images/angles (Todo)

std::vector<EROIBW8> objectROIs;

// Set the object ROIs (Todo)

// Compute
photometricStereo.Compute(objectROIs);

Open eVision User Guide

easy-angleunit.htm

91

● You can also use an ERegion.

ECircleRegion circle;

// Define the ERegion (Todo)

// Compute
photometricStereo.Compute(objectROIs, circle);

● The computation time is proportional to the number of pixels in the image.

To reduce this time, you can:
□ Set a smaller ROI.
□ Use an ERegion.
□ Use several threads.

The following table shows the computation time in different configurations (when
computing albedos, mean and Gaussian curvatures with high contrast, see below).

Number of
lights Image size Number of

threads
Computation

time (ms)

4 4096 × 3072
1 479 ⤸/ 1.4 ⤸/ 11
4 337

4 1024 × 768
1 52 ⤸/ 1.2
4 42

Retrieving the results

● Use the method Get… or Compute… of PhotometricStereoImager to retrieve your results.

// Retrieve the results
EImageC24 normals = photometricStereo.GetNormals();

EImageBW8 albedos = photometricStereo.GetAlbedos(Easy3D::EPhotometricStereoContrast_HighContrast);

EImageBW8 gradientsX = photometricStereo.GetGradientsX();
EImageBW8 gradientsY = photometricStereo.GetGradientsY();

EImageBW8 gaussianCurvatures = photometricStereo.ComputeGaussianCurvatures(Easy3D::EPhotometricStereoContrast_
HighContrast);

EImageBW8 meanCurvatures = photometricStereo.ComputeMeanCurvatures(Easy3D::EPhotometricStereoContrast_
HighContrast);

EZMap8 heightMap = photometricStereo.ComputeHeightMap();

● The normals EImageC24 represents the x,y,z normals of the surface at each pixel.
□ A RGB pixel intensity of (0, 128, 255) corresponds to a x,y,z normal of (-1, 0, 1)

● The albedos EImageBW8 represents the fraction of light reflected at each pixel.
□ Compared to the input image, the albedo is independent of the lighting direction and

intensity.
□ The albedos are normalized to the full image range.

Open eVision User Guide

eregion-class.htm
eregion-class.htm
ephotometricstereoimager-class.htm
eimagec24-class.htm
eimagebw8-class.htm

92

● The gradientsX and the gradientsY EImageBW8 represent the gradients of the surface along the
X- and Y-axis.
□ The gradients are clipped to +/- 3.715 before being mapped to the full image range.

● The gaussianCurvatures and the meanCurvatures EImageBW8 represent the local curvature of the
surface at each pixel.
□ The Gaussian curvatures are important when the curvature of the object is big in 2

orthogonal directions.
□ The mean curvatures only need an important change in 1 direction.
□ You can think of the Gaussian and the mean curvatures as a corner detector and an edge

detector.

The Gaussian curvature highlights the corners and the mean curvature highlights the edges

● Each pixel of the height map EZMap8 represents the height of the object.
□ The pixel furthest from the camera has a height of 1.
□ The pixel closest to the camera has a height of 255.

GetAlbedos, ComputeMeanCurvatures, ComputeGaussianCurvatures, ComputeHeightMap

Most of the computations are done in the method Compute, however:

1. The last computations required for the curvatures and the height map are only performed
when retrieving them to avoid computing them unnecessarily.
□ This is why these methods are named ComputeXXX instead of GetXXX.
□ Intermediary results common to the mean and the Gaussian curvatures are cached to

avoid computing them several times.

2. Albedos, mean and Gaussian curvatures are intrinsically floating point images. To convert
them to EImageBW8, you can choose between several arguments:
□ EPhotometricStereoContrast_HighContrast to ignore outliers and produce images with a

high contrast.
□ EPhotometricStereoContrast_FullRange to produce images where no data is ignored.
□ EPhotometricStereoContrast_FixedRange to produce images where the range is specified

using an additional argument. This is especially useful when processing several different
objects with a fixed threshold.

Open eVision User Guide

eimagebw8-class.htm
eimagebw8-class.htm
ezmap-type.htm
ephotometricstereoimager-compute.htm
eimagebw8-class.htm
ephotometricstereocontrast-enum.htm
ephotometricstereocontrast-enum.htm
ephotometricstereocontrast-enum.htm

93

Processing the Results with Open eVision Tools

As the computation results are EImageBW8, you can process them with the various tools of Open
eVision.

Here are some examples:

● Reading an embossed code with EasyBarCode2, EasyMatrixCode and EasyQRCode.

Mean curvatures of an engraved matrix code and EasyMatrixCode2 reading

● Reading an engraved text with EasyOCR2.

EasyOCR2 reading on the mean curvatures

● Finding patterns on embossed surfaces with EasyFind, EasyMatch and EasyObject.

EasyFind results on the Gaussian curvatures to detect braille characters

Open eVision User Guide

eimagebw8-class.htm

94

● Measuring shapes with EasyGauge.

Rectangle measurement with EasyGauge on the mean curvatures

● Finding defects in objects with EasySegment.

Gaussian curvatures of a blister pack with 3 holes
and EasySegment supervised potential results

Open eVision User Guide

95

Optimizing your Setup

Photometric stereo is based on two main assumptions:

1. The light has the same intensity and direction for each pixel of the image.

2. The object is mostly matte and not too specular.
□ Matte surfaces send back light in all directions (wood is a good example).
□ Specular surfaces send all the light in a single direction (mirrors are a good example).

While these conditions are never met in practice, deviating too much from them often causes
poor results.

Uniformity of the lights

Ideally, all pixels of interest should be lit with the same intensity and from the same direction.

To achieve this:
□ We recommend using bar lights or ring lights designed for photometric stereo.
□ They should be larger than the objects you want to acquire.

NOTE: The sample images were taken with a bar light of around 15 cm in length and a ring
light of around 15 cm of diameter. Both gave similar results.

● The image of the sheet of paper is whiter on the left when, ideally, it should be uniformly
white.

● If you are interested in curvatures, this does not prevent acquiring good images, while the
albedos and normals images are more affected by this.

Open eVision User Guide

96

● In the mean curvature and albedo image above, you see artifacts on the left and on the right
of the object, while not at the top and the bottom. This is because the object is large and not
so high, so the lights are mostly uniform on the object when coming from the top or bottom
but not when coming from left or right.

● It can be alleviated by using Flat Images, as shown in the next section but it does not solve
the problem completely.

TIP
In practice, you can measure the uniformity of your lights by acquiring an
image of a matte sheet of paper.

Specularity of the object

Photometric Stereo works better on matte surfaces as the reflection of the source light by the
object causes artifacts. Please note however that a little reflection is not necessarily a problem.
This is something to keep in mind when analyzing results.

This also applies to the calibration (hemi-)sphere. The current calibration algorithm is designed
to handle a bit of reflection but too much of it induces calibration errors. Nevertheless, tough
there is reflection in our sample images, the calibration still works on them.

TIP
We recommend using a wooden hemisphere or one covered in matte paint.
Alternatively, you can measure and specify your angles manually as no loss
of quality is observed in the images in that case.

Open eVision User Guide

97

Improving the Results

Using a dark image to account for ambient lighting

The photometric stereo assumes that each image is lit from a single light source.

● This assumption is not valid if the setup is exposed to (non-negligible) ambient lighting.

● To handle this issue, the EPhotometricStereoImager provides an EImageBW8 dark image to the
methods Calibration and Compute.
□ This dark image is an image of the object under ambient light only (all setup lights are

off).

The dark image

The object image: raw (left) and after correction with the dark image (right)

Using flat images to correct non-uniform lighting

Photometric stereo assumes that each image is lit from an intensity uniform light source.

● This means that each pixel is lit by the same quantity of light.

● This assumption is not valid in physical setups using leds, where the part of the image
closest to the leds receives more light.

● To handle this issue, the EPhotometricStereoImager provides a method to register a flat image
used by the method Compute.
□ This flat image is an image of a uniform background taken in the same lighting

configuration.

// calibrate imager or sets its angles (Todo)

std::vector<EImageBW8> flatImages;

// Load flat images in the same order than the calibration images/angles (Todo)

Open eVision User Guide

ephotometricstereoimager-class.htm
eimagebw8-class.htm
ephotometricstereoimager-compute.htm
ephotometricstereoimager-class.htm
ephotometricstereoimager-compute.htm

98

std::vector<EROIBW8> flatROIs;

// Set the flat images ROIs (Todo)

// Configure flat images, this could optionally be done with a dark image as well
photometricStereo.ConfigureNonUniformLightingCorrection(flatROIs);

// Perform one or more computations, each will use the flat images (Todo)
photometricStereo.Compute(objectROIs);

// Optional: non uniform lighting correction could be disabled or (re-)enabled
// using SetEnableNonUniformLightingCorrection

● The following example illustrates the effect of a non-uniform lighting correction on the
object images.
□ The proximity of the light source generates a lighting effect on the left of the image that is

visible on both the flat and the raw images.
□ This effect is corrected on the last image, where the brightest pixels are those oriented

towards the surface.

The flat image

The object image: raw (left) and after correction with the flat image (right)

Open eVision User Guide

99

● The following examples illustrate the effects of a non-uniform lighting correction on 2
albedos images.
□ The corrected albedos show less burning on the extremities of the images.

The albedos images: raw (left) and after correction with the flat images (right)

● The following examples illustrate the effects of a non-uniform lighting correction on a
normals images.
□ The normals fields is more uniform.

The normals image: raw (left) and after correction with the flat image (right)

Effect of the distance between lights and object

There is a tradeoff in the distance between the light and the object (that is the elevation angle).

● When the elevation angle is high, the lighting is more uniform. This means that:
□ The “burning” effects visible on some images is less important.
□ The shadows are also less of a problem.

● When the lighting source is close, the lighting directions are more diverse. This means that:
□ The quantity of information used to build the photometric stereo is higher.

TIP
We recommend using elevation angles between 30 and 70°.
We achieve our best results around 40°.

Open eVision User Guide

100

4.2. Easy3DLaserLine - Laser Line Extraction and
Calibration

Laser Triangulation
In a laser-line triangulation system, a laser line is projected on the object to measure. A camera
is looking at the laser line from a different point of view. The line deformation observed by the
camera contains the shape information of the measured object.

The scanning of the object consists in moving it under the laser line and recording multiple
images.

From the scanning you can reconstruct its 3D shape.

Occlusions

Using the laser triangulation method, the laser may be unable to reach some parts of the object
or the camera may be unable to view them. This is called occlusion.

□ On the left illustration, the camera does not see the bottom of the hole, inducing camera
occlusion.

□ On the right illustration, the laser does not reach the bottom of the hole, inducing laser
occlusion.

TIP
You can limit or avoid occlusions by using advanced scanning methods, for
example by using two cameras or two lasers.

Open eVision User Guide

101

The Laser Line 3D Acquisition Pipeline
The 3D acquisition pipeline starts with the acquisition of a laser line profile and ends up with
the point cloud, mesh or ZMap.

The source material for 3D processing is the depth map, coming from a Coaxlink Quad 3D-LLE or
generated from a list of images.

3 types of depth map are available, one for each different pixel coding scheme (8, 16 or 32 bits).

The generation of a depth map, from a hardware or a software source

Some processing methods can use the depth map directly, but most measurement and
matching processes need metric, distortion-free representations. Calibration of the laser
triangulation setup is therefore required. Calibration is used to turn the depth map into a point
cloud or mesh expressed in a metric space that we call “world space”.

The generation of an object based calibration model, from a scan of the reference object

A point cloud is a list of 3D points, expressed in a world space coordinate system. The point
cloud can be projected on a plane, producing a ZMap, which is a convenient and effective
representation for 2D processing with a metric scale.

The workflow from the depth map to the ZMap

The following sections describe the classes and methods useful for a 3D workflow. The
"Measuring a Remote Controller" on page 174 goes through this processing pipeline.

Open eVision User Guide

102

Laser Line Extraction
A Laser Line Extraction (LLE) algorithm is required to create a depth map from a sequence of
profiles of the object captured by the camera sensor.

The objective of an LLE algorithm is to measure the line position along a vertical profile in every
column of a sensor frame, within a user-defined region of interest (ROI).

For every step of the object position, the detection analyzes each column of a frame individually
and produces a row of output positions, stored as gray values.

The figure below illustrates a depth map generation.

The class ELaserLineExtractor provides the laser line extraction functionality in Open eVision.

Uses the method ELaserLineExtractor.AnalysisMode to select one of the following algorithms to
extract the laser line (see below for more details):

□ Maximum detection returns the position of the pixel of maximum intensity. It’s the fastest
method but it doesn’t support sub-pixel precision.

□ Peak detection approach detects local maxima. If several maxima are detected, the one
with the highest intensity is returned. The position is returned with sub-pixel precision.

□ Center of gravity algorithm is suitable when the laser line is spread over several pixels.
The position is returned with sub-pixel precision.

TIP
You can also set a threshold to exclude pixels with low intensity.

Open eVision User Guide

elaserlineextractor-class.htm
elaserlineextractor-analysismode.htm

103

The line position returned by the laser line extraction algorithms is relative to the bottom of the
region of interest. So, values in the depth map range from 0 (bottom of the ROI) to the height of
the ROI.

Laser line extraction methods

Maximum detection

The maximum detection algorithm analyzes all the pixels in a ROI column to determine the one
with the maximum intensity. The figure below shows the laser line position on a given ROI
column.

Maximum detection on a ROI profile

We also recommend to include in the processing chain:
□ A low-pass filter to reduce the high frequency variations in the image.
□ A threshold to eliminate the background noise from the sensor.

Open eVision User Guide

104

Peak detection

The peak detection algorithm relies on a discrete simplification of the first derivative function.

The f'(x)outputs the slope of a given f(x)along the x.

f(x)and f'(x)plots

We compute the line position by detecting where f’(x)changes its signal based on the two-point
form line equation:

where (x1,y1)and (x2,y2)are two points on the line with x2≠ x1, we obtain the following
equation for y = 0:

Open eVision User Guide

105

Center of gravity

The center of gravity (CoG) method uses an algorithm that calculates the center of mass of an
image object. Also known as "centroid of plane figures", the CoG is obtained by the following
equations:

where and are the coordinates of the CoG and a is the pixel intensity along the x and y
axes.

Center of gravity on a ROI profile

Low-pass linear filter

Optionally, you can apply a low-pass linear filter in front of the line extraction in order to reduce
noise and high frequencies in the image.

The low-pass filter applies a convolution operator on a 1 x 3 sliding window. The 3 elements of
the convolution kernel (A, B and C) are configurable, accepting any positive integer. The figure
below illustrates the positioning of the convolution kernel elements within a given ROI.

You can activate the low-pass filter for any of the laser line extraction methods with the method
ELaserLineExtractor::SetEnableSmoothing(true/false). Parameters A, B and C are set with
ELaserLineExtractor::SetSmoothingParameters(A, B, C).

Open eVision User Guide

elaserlineextractor-enablesmoothing.htm
elaserlineextractor-setsmoothingparameters.htm

106

Depth map Z resolution

● As explained above, the laser line extraction computes the sub-pixel position of the laser line
profile for each column of the region of interest.
□ This position is encoded in a 16-bit depth map (EDepthMap16).
□ The resolution controls the way the sub-pixel positions are converted to 16-bit fixed point

values (that is how many bits are allocated to represent the fractional part of the sub-
pixel position).

□ On a EDepthMap16, use the method EDepthMap16.ZResolution to retrieve the resolution. It is
a floating-point value used to convert the integer pixel value to a real depth value.

● By default, ELaserLineExtractor computes the best resolution depending on the height of the
region of interest. The following table lists typical resolution values depending on the height
of the processed frame or region of interest.

Frame or ROI height Bits used for the fractional part Z resolution
100 8 1/256 = 0.00390625
200 8 1/256 = 0.00390625
400 7 1/128 = 0.0078125
800 6 1/64 = 0.015625

2500 4 1/16 = 0.0625

● Use the optional parameter zResolution of the constructor
ELaserLineExtractor.ElaserLineExtractor to fix the Z resolution.
□ If you do not set the parameter zResolution, an algorithm computes the optimal value.

Use ElaserLineExtractor.DepthMap to query the returned depth map and get the effective
resolution.

● If you are using the hardware laser line extraction with the Coaxlink Quad 3D-LLE, the fixed
point format is set by the configuration: 8_8 or 11_5 for 8- or 5-bit fractional part.

2 See documentation.euresys.com/Products/COAXLINK/COAXLINK/en-us/Content/03_
Interfaces/functional-guide/lle/LLE_Processing_Core_Characteristics.htm

Software vs Hardware Line Extraction

Hardware line extraction on a Coaxlink

● The Coaxlink Quad 3D-LLE frame grabber features hardware line extraction.

The performances are as follows, for all methods - Maximum detection (Max), Center of
gravity detection (CoG) and Peak detection (Peaks):
□ 9500 profiles/s for a 2048 × 256 or a 4096 × 128 region
□ 19000 profiles/s for a 2048 × 128 region
□ 38000 profiles/s for a 1024 × 128 region
□ 76000 profiles/s for a 1024 × 64 region

● As a result, the hardware-based line extraction is 2× to 15× faster than the software
implementation in Open eVision running on an Intel Core i7-10850H CPU at 2.70 GHz (see
below).

Open eVision User Guide

edepthmap16-class.htm
edepthmap16-class.htm
edepthmap16-zresolution.htm
elaserlineextractor-class.htm
elaserlineextractor-elaserlineextractor.htm
elaserlineextractor-depthmap.htm
https://documentation.euresys.com/Products/COAXLINK/COAXLINK/en-us/Content/03_Interfaces/functional-guide/lle/LLE_Processing_Core_Characteristics.htm
https://documentation.euresys.com/Products/COAXLINK/COAXLINK/en-us/Content/03_Interfaces/functional-guide/lle/LLE_Processing_Core_Characteristics.htm

107

Software line extraction on an Intel CPU

● The tables below present benchmarks for software line extraction for various region sizes (in
pixels) and configurations. The extraction speed is expressed in profiles per second.

The measurement setup is:
□ Intel Core i7-10850H CPU at 2.70 GHz
□ Generation of 16-bit depth maps
□ Methods used: Maximum detection (Max), Center of gravity detection (CoG) and Peak

detection (Peaks)

Using 1 thread, without low pass filter

Region size Max COG Peaks
3072 × 512 368 298 248
3072 × 256 752 593 497
3072 × 128 1488 1179 966
3072 × 64 3764 2723 2169

1024 × 512 1142 891 771
1024 × 256 2226 1777 1479
1024 × 128 4266 3324 2752
1024 × 64 11130 8533 6400

Using 1 thread, with low-pass filter

Region size Max COG Peaks
3072 × 512 241 200 183
3072 × 256 468 403 357
3072 × 128 920 790 703
3072 × 64 2169 1765 1610

1024 × 512 707 600 561
1024 × 256 1406 1219 1057
1024 × 128 2723 2370 2048
1024 × 64 6400 5333 4830

Using 2 threads, without low-pass filter

Region size Max COG Peaks
3072 × 512 731 576 474
3072 × 256 1406 1094 941
3072 × 128 2813 2226 1868
3072 × 64 7314 5224 3240

1024 × 512 2000 1718 1446
1024 × 256 4129 3368 2844
1024 × 128 8533 6564 4654
1024 × 64 21333 15058 10666

Using 4 threads, without low-pass filter

Region size Max COG Peaks
3072 × 512 1108 885 703
3072 × 256 2438 1765 1273
3072 × 128 4740 3459 2639
3072 × 64 9481 7757 6564

1024 × 512 3605 2694 2031
1024 × 256 6400 5446 4063
1024 × 128 13473 11636 9846
1024 × 64 36571 19692 19692

Software line extraction on a Jetson Nano

● The tables below present benchmarks for software line extraction for various region sizes (in
pixels) and configurations. The extraction speed is expressed in profiles per second.

The measurement setup is:
□ Jetson Nano (4 available cores)

2 See developer.nvidia.com/embedded/jetson-nano
□ Generation of 16-bit depth maps
□ Methods used: Maximum detection (Max), Center of gravity detection (CoG) and Peak

detection (Peaks)

Using 1 thread, without low pass filter Using 1 thread, with low-pass filter

Open eVision User Guide

http://developer.nvidia.com/embedded/jetson-nano

108

Region size Max COG Peaks
3072 × 512 34 30 30
3072 × 256 126 106 102
3072 × 128 248 210 199
3072 × 64 479 409 374

1024 × 512 110 98 97
1024 × 256 383 321 308
1024 × 128 736 623 587
1024 × 64 1426 1229 1114

Region size Max COG Peaks
3072 × 512 30 28 27
3072 × 256 112 94 93
3072 × 128 220 188 183
3072 × 64 413 356 333

1024 × 512 90 83 82
1024 × 256 337 285 280
1024 × 128 658 567 543
1024 × 64 1226 1065 987

Using 2 threads, without low-pass filter

Region size Max COG Peaks
3072 × 512 61 56 56
3072 × 256 206 180 181
3072 × 128 423 367 365
3072 × 64 864 740 711

1024 × 512 185 170 168
1024 × 256 596 530 517
1024 × 128 1203 1065 1035
1024 × 64 2403 2106 2000

Using 4 threads, without low-pass filter

Region size Max COG Peaks
3072 × 512 95 91 90
3072 × 256 257 234 240
3072 × 128 515 470 489
3072 × 64 1092 992 1029

1024 × 512 269 260 259
1024 × 256 689 678 675
1024 × 128 1383 1352 1356
1024 × 64 2820 2716 2745

Software line extraction on a Jetson AGX Orin

● The tables below present benchmarks for software line extraction for various region sizes (in
pixels) and configurations. The extraction speed is expressed in profiles per second.

The measurement setup is:
□ Jetson AGX Orin (12 available cores)

2 See www.nvidia.com/en-il/autonomous-machines/embedded-systems/jetson-orin
□ Generation of 16-bit depth maps
□ Methods used: Maximum detection (Max), Center of gravity detection (CoG) and Peak

detection (Peaks)

Using 1 thread, without low pass filter

Region size Max COG Peaks
3072 × 512 222 192 181
3072 × 256 449 386 362
3072 × 128 898 766 710
3072 × 64 1796 1521 1391

1024 × 512 671 579 546
1024 × 256 1336 1155 1075
1024 × 128 2680 2301 2106
1024 × 64 5278 4511 4079

Using 1 thread, with low-pass filter

Region size Max COG Peaks
3072 × 512 198 174 164
3072 × 256 401 351 332
3072 × 128 801 697 653
3072 × 64 1592 1380 1261

1024 × 512 600 525 498
1024 × 256 1197 1049 987
1024 × 128 2386 2085 1935
1024 × 64 4697 4096 3696

Open eVision User Guide

http://www.nvidia.com/en-il/autonomous-machines/embedded-systems/jetson-orin

109

Using 2 threads, without low-pass filter

Region size Max COG Peaks
3072 × 512 444 382 362
3072 × 256 897 772 723
3072 × 128 1790 1528 1416
3072 × 64 3543 3002 2745

1024 × 512 1338 1158 1088
1024 × 256 2659 2311 2142
1024 × 128 5224 4471 4112
1024 × 64 9941 8533 7529

Using 4 threads, without low-pass filter

Region size Max COG Peaks
3072 × 512 876 763 720
3072 × 256 1790 1530 1436
3072 × 128 3447 3011 2745
3072 × 64 6649 5752 5069

1024 × 512 2687 2321 2178
1024 × 256 5251 4571 4213
1024 × 128 10138 8752 8000
1024 × 64 18618 16516 14422

Calibration
The calibration is used to apply the transformation between a depth map and a point cloud or a
mesh.

There are 3 ways to set up this conversion:
□ Apply a simple scale on the pixel coordinates of the depth map (EScaleCalibrationModel

class)
□ Use the explicit geometric model (EExplicitGeometricCalibrationModel class)
□ Use the object-based calibration approach (EObjectBasedCalibrationModel class)

These models share the same base class ECalibrationModel and exposes the method Apply(),
which is used to apply the conversion between a depth map pixel and a 3D point. It takes as
input the coordinates of one point in a depth map and it returns the coordinates of the
corresponding point in the 3D space.

The method Apply is not aware of the possible mirroring of the corresponding depth map and
cannot make use of EDepthMap::AxisSystemType (see below). If necessary (when the
corresponding depth map is vertically mirrored) the y coordinates should be flipped before
calling the Apply method.

□ The class EDepthMapToPointCloudConverter generates a point cloud from a depth map,
using one of the calibration models.

□ The class EDepthMapToMeshConverter generates a mesh from a depth map, using one of the
calibration models.

By convention:
□ The origin of the referential is the lower-left corner of the depth map.
□ The center of the first pixel at the lower-left corner is at x = 0.5 and y = 0.5.
□ The center of the pixel at the upper-right corner is at x = width - 0.5 and y = height - 0.5

where width is the width of the depth map and height is its height.

Open eVision User Guide

escalecalibrationmodel-class.htm
eexplicitgeometriccalibrationmodel-class.htm
eobjectbasedcalibrationmodel-class.htm
ecalibrationmodel-class.htm
ecalibrationmodel-apply.htm
ecalibrationmodel-apply.htm
edepthmap-axissystemtype.htm
edepthmaptopointcloudconverter-class.htm
edepthmaptomeshconverter-class.htm

110

Mirrored depth maps

By default, Easy3D considers that the origin of the 3D axis of the depth map is the bottom left of
the internal image buffer, and the Y axis is pointing up. This means that the depth map image is
not seen as vertically mirrored compared to the real world image of the scanned object.

Nevertheless, depending on your acquisition setup this mirroring can happen (for example if the
direction of the scan is inverted).

If this is your case, you can set the EDepthMap::SetAxisSystemType to EAxisSystem_
UpperLeftCorner, meaning that the origin of the 3D axis is on the upper left corner and the Y axis
is pointing down.

This value changes the behavior of the methods :
□ EObjectBasedCalibrationGenerator.Compute
□ EDepthMapToPointCloudConverter.Convert
□ EDepthMapToMeshConverter.Convert

Scale calibration

The scale model (EScaleCalibrationModel) only applies a simple factor on the X, Y and Z axis.
These factors are the only parameters of EScaleCalibrationModel.

For depth maps coming from laser triangulation setup, this transformation does not produce
corrected, metric points. It’s main use is to display depth maps as 3D data with the E3DViewer
class.

Open eVision User Guide

edepthmap-axissystemtype.htm
eaxissystemtype-enum.htm
eaxissystemtype-enum.htm
eobjectbasedcalibrationgenerator-compute.htm
edepthmaptopointcloudconverter-convert.htm
edepthmaptomeshconverter-convert.htm
escalecalibrationmodel-class.htm
escalecalibrationmodel-class.htm
e3dviewer-class.htm

111

Explicit geometric calibration

The explicit geometric model (EExplicitGeometricCalibrationModel) defines a simple and ideal
laser triangulation setup. The explicit calibration makes some strong assumptions on the setup
geometry and can only be used when a minimum set of parameters are known:

□ The angles of the camera and the laser plane, in the counter clockwise direction. The
camera angle must be positive.

□ The height of the camera above the scanned object.
□ The field of view of the camera defined by the sensor size (mm) and the optical focal

length (mm).
□ The physical distance between two line scans of the depth map (depends on acquisition

rate and motion speed).
□ The size of the image and the ROI origin used in laser line extraction (between the top (0)

and the bottom (height) of the image).

TIP
Use the "Easy3D_Setup_Configuration.xlsx" spreadsheet to compute and
check your setup configuration and parameters.

Explicit calibration setup with camera angle, laser angle and camera height

The setup of an explicit geometric calibration uses the constructor of the
EExplicitGeometricCalibrationModel class.

Open eVision User Guide

eexplicitgeometriccalibrationmodel-class.htm
Easy3D_Setup_Configuration.xlsx
eexplicitgeometriccalibrationmodel-class.htm

112

Object-based calibration

Object-based calibration gives real world, metric, coordinates from an arbitrary laser
triangulation setup. From the scan of a reference object, the calibration process tries to
calculate all the parameters required for the transformation to the world space (position and
attributes of the camera, position of the laser plane, relative motion of the object, optical
distortion…).

For more details, please refer to the "Object-Based Calibration Guidelines" on page 112 section.

Object-Based Calibration Guidelines
Easy3D calibration is a powerful process that uses a single scan of a calibration object to
calibrate a laser triangulation setup.

1. The calibration process generates a calibration model.

2. Easy3D uses this calibration model to transform the laser profile scans (or depth maps) into
metric, distortion free point clouds.

● The calibration model includes all the geometric parameters required for this
transformation:
□ The relative position of the laser and the camera.
□ The projection and the distortion model of the camera.
□ The relative motion of the object.

This document explains all the steps involved in the calibration process, from the design of the
calibration object to the Open eVision API.

Open eVision User Guide

113

The calibration object

The general principle of Easy3D calibration is to match a scan of a known calibration object to
its true geometric dimensions.

The double pyramid

TIP
In Open eVision 2.7 the “double truncated pyramid” calibration object is
recommended over the "double pyramid" model.

The dimensions of the “double pyramid” calibration object along the X-, Y- and Z-axes are
named A, B and C respectively.

The "double pyramid" calibration model

Open eVision User Guide

114

The truncated double pyramid

● The dimensions of the “double truncated pyramid” calibration object the X-, Y- and Z-axes
are named A, B and C respectively.

● The design of the double truncated pyramid must follow the ratios given in the illustration
below.

The "double truncated pyramid" calibration model (recommended)

● For example, the provided CAD files of the calibration object use A = 4 cm, B = 6 cm and
C = 1 cm. The Calibration Object Size, required for the calibration process, are the values A, B
and C.

The "double truncated pyramid" calibration model with A = 4, B = 6 and C = 1

Open eVision User Guide

115

Building a calibration object

Overall dimensions

● Manufacture a calibration object that fits the working area of the project.

● For example, if the project targets the inspection of a PCB (a printed circuit board as
illustrated), design your calibration object with:

a. The dimension A or B (it does not matter) similar to the width of the PCB.

b. The height (C) of only several millimeters.

TIP
This is not a strict requirement, if the scanned object is slightly larger or
smaller than the calibration object, the calibration process is still valid.

A PCB scanning setup with the associated calibration object
The calibration object dimensions (A, B and C) match the width and the height of the PCB

TIP
There is no constraint on the orientation of the calibration object during the
scan:
- The X-axis can be aligned with the motion direction or with the laser line.
- After the calibration process, the origin and axes of the 3D calibrated point
cloud follow the conventions of the reference design.

A calibrated point cloud with the origin and the axis of the coordinates system
The 3D origin is located at the external corner of the higher pyramid

Open eVision User Guide

116

Precision and tolerance

The relevant dimensions of the calibration object are the width, the length and the height of the
pyramids (called A, B and C in the illustrations).

□ The relative dimensions to A, B and C (B/2, A/4…) are important and you must execute
them with the same precision.

□ The dimensional tolerances are related to the overall expected precision.
If you want to achieve measurements on the point cloud with a precision of 0.01 mm, the
manufacturing of the calibration object must have the same precision.

□ These tolerances only apply to the pyramids geometry, the calibration process does not
use the dimensions of the support.

□ The planar surfaces must be flat between 2 parallel planes separated by the target
tolerance, as illustrated.

The tolerance of the pyramids sides is defined as the smallest distance between two parallel planes that
contain the entire surface

Material and surface finishing

TIP
The goal is to obtain the laser profile as thinnest as possible over the whole
object surface with the largest reflected energy.

The build material and the surface finishing are also important and must have:
□ A good reflectance, with diffuse reflection (no specular reflections).
□ No transmission and limited diffusion inside the material.

TIP
You can obtain a good surface finishing using aluminum material and
blasting. Blasting gives the surfaces a satin gray finish.

2 aluminum machined calibration objects with a micro-abrasive blasting surface treatment

Open eVision User Guide

117

3D CAD models

The calibration object models are available in various 3D CAD formats like STEP, OBJ and STL.

Download these files from the Open eVision download area in the Additional Resources section
(www.euresys.com/Support).

Download the calibration object models

Scanning the calibration object

● The scan of the calibration object produces a depth map.

● To ensure a correct detection of the calibration object and a precise calibration model, you
must fulfill the following criteria:
□ All faces of the calibration object must be visible on the depth map (this affects the

orientation of both the camera and the laser).
□ No other object can be higher than the calibration object in the depth map.
□ The depth map must have at least 200 x 200 pixels.
□ The calibration object must cover at least 50% of the defined pixels of the depth map.

● Examples of bad scans:

Missing pixels on the side faces

Not enough lines

Open eVision User Guide

https://www.euresys.com/Support/Software,-drivers-and-documentation?Series=f97da39d-3c25-404c-aee7-73de1d1867fc

118

The calibration object is too small on the depth map

Calibration with Easy3D Studio

Easy3D Studio is a free application that helps you to set up a laser triangulation scanner. You
can easily set the acquisition parameters of the Coaxlink Quad 3D LLE frame grabber and
perform the calibration.

The DepthMap panel

This panel displays:
□ The scanned image.
□ The acquisition parameters on the right side.

Open eVision User Guide

119

The PointCloud panel

This panel displays:
□ The depth map of the scanned image.
□ The object-based calibration parameters on the right side.
□ The Calibrate button computes the calibration model using the last scanned depth map.
□ When the calibration model is ready, the depth map is transformed into a point cloud.
□ You can export the calibration model for later use.

Required parameters

The calibration based on a calibration object requires several parameters:

● Set the Object Type as DoublePyramid or TruncatedDoublePyramid.
□ The DoublePyramid object type is deprecated and not recommended.

● Set the Object Size to represent the real size of the calibration object.
□ If your calibration object has a base of 20 mm by 30 mm and a height of 5 mm, set these

values in the Object Size A/B/C parameters.
□ The point cloud after the calibration uses coordinates in millimeters.

● Set the parameter Precision Vs Speed Trade Off to define the time spent on the calibration
process.
□ The 3 possible values are Fast, Balanced and Precise.

● Set the parameter Passes count to define the number of iterations used to refine the
calibration model.
□ Use 1 for the fastest processing.
□ Use up to 3 for slower but potentially better calibration model.

Open eVision User Guide

120

Using the calibration with Open eVision

● The class EObjectBasedCalibrationModel is the container for the object based calibration
model.

● The class EObjectBasedCalibrationGenerator performs the computation of such a model using
an EDepthMap8/16/32f as input.

The following code snippet illustrates the calculation of a calibration model:

// Initialize a depth map from an image of a double truncated pyramid

EDepthMap16 depth_map;
depth_map.LoadImage("ctx1 calibration object.png"); // from Easy3D sample images
depth_map.SetZResolution(1.f / (1 << 5)); // 11.5 fixed point pixel format

// Initialize the calibration generator
EObjectBasedCalibrationGenerator calib_generator;
calib_generator.SetCalibrationObjectType(EObjectBasedCalibrationType_TruncatedDoublePyramid, 40.f, 60.f, 10.f);
// Type and size of the calibration object

// Compute the calibration modelEObjectBasedCalibrationModel calib_model;
calib_model = calib_generator.Compute(depth_map);
float error = calib_model.GetCalibrationError();

// Save the calibration model
calib_model.Save("calib.model");.

The following code snippet illustrates the use of a saved calibration model:

// Load the calibration model
EObjectBasedCalibrationModel calib_model;

calib_model.Load("calib.model");

// Load a depth map (captured in the same context)EDepthMap16 depth_map;
depth_map.LoadImage("ctx1 shapes.png");
depth_map.SetZResolution(1.f / (1 << 5));

// Initialize a converter, use the loaded modelEDepthMapToPointCloudConverter converter;
converter.SetCalibrationModel(calib_model);

// Convert the depth map to a metric point cloud and save itEPointCloud point_cloud;
converter.Convert(depth_map, point_cloud);
point_cloud.SavePCD("point_cloud.pcd");.

To experiment and learn about the Easy3D calibration, a C++ sample called
Easy3DLaserLineCalibration is provided with the source code in the Open eVision distribution.

Open eVision User Guide

eobjectbasedcalibrationmodel-class.htm
eobjectbasedcalibrationgenerator-class.htm
edepthmap8-class.htm
edepthmap16-class.htm
edepthmap32f-class.htm

121

4.3. Easy3DObject - Extracting 3D Objects

Purpose and Workflow

Introduction

● The Easy3DObject tool extracts objects and their features from a ZMap.
□ The E3DObjectExtractor class uses a set of criteria to select the objects to extract.
□ The extracted objects are instances of the ED3Object class.

● Open eVision provides a demo application with C++ source code and 2 C++ / C# samples:

This demo application exposes most of the features of the Easy3DObject tool.

Library workflow

1. Load or build a ZMap (from an image or a point cloud).

2. Construct an E3DObjectExtractor instance.

3. Set the selection criteria of the E3DObjectExtractor instance.

4. Extract the 3D objects, with or without an ERegion.

5. Get and process the extracted objects list.

Open eVision User Guide

e3dobjectextractor-class.htm
e3dobject-class.htm
e3dobjectextractor-class.htm
e3dobjectextractor-class.htm
eregion-class.htm

122

Load or build a ZMap

A ZMap is a grayscale image with a metric coordinate system. It is sometimes referred to as a
“height map”.

You can create a ZMap from an 8- or a 16-bit image or generate it from a point cloud.
□ Before using an image as a ZMap, set the resolution.

TIP
The resolution is the metric size of a pixel (for example in mm / pixel) and
the height difference between 2 consecutive grayscale levels.

□ From a point cloud, use the EPointCloudToZMapConverter class to generate a ZMap. Choose
the target ZMap resolution according to the point cloud sampling.

□ Depending on the 3D scan precision, you can use a ZMap with 8- or 16-bit per pixel.

TIP
A 16-bit processing is more accurate but slower than an 8-bit processing.

Object Features

Units

Both the E3DObjectExtractor parameters and the E3DObject features are expressed in metric
units.

□ For example: if the resolution of the input EZMap is expressed in mm / pixel, the length
parameter is expressed in mm.

□ Use the Resolution accessors of the EZMap to query and change its resolution.

Angles are expressed in the unit defined by Easy.AngleUnit.

TIP
In this documentation, we use the default setting and all angles are
expressed in degrees.

Open eVision User Guide

epointcloudtozmapconverter-class.htm
e3dobjectextractor-class.htm
e3dobject-class.htm
ezmap-class.htm
ezmap-setresolution.htm
ezmap-class.htm
easy-angleunit.htm

123

Object plane and base plane

The E3DObjectExtractor fits a plane to the pixels of each E3DObject output:
□ Use E3DObject.Plane to access this plane.

The E3DObjectExtractor also tries to fit a plane to the pixels surrounding an E3DObject
□ This plane is called the base plane.
□ It is an estimation of the local background around the object.
□ If there are too many undefined pixels in this area, the base plane is equal to the

reference plane of the input EZMap.

Bounding box

The bounding box is the minimal enclosing rectangle for all the object positions.
□ It is oriented in the XY plane of the ZMap space (rotation around the Z axis of the ZMap).
□ Its rotation is used as the orientation of the object (see E3DObject.GetOrientation).
□ Its X and Y sizes are the object length and width (see E3DObject.GetLength and

E3DObject.GetWidth).
□ Its Z size is always in the Z axis of the ZMap direction.

Open eVision User Guide

e3dobjectextractor-class.htm
e3dobject-class.htm
e3dobject-plane.htm
e3dobjectextractor-class.htm
e3dobject-class.htm
ezmap-class.htm
e3dobject-orientation.htm
e3dobject-length.htm
e3dobject-width.htm

124

Length and width

The length of an object is the largest dimension on the XY plane in the ZMap space. It is the
same as the size of the major axis of the bounding box.

The width of an object is the smallest dimension on the XY plane in the ZMap space. It is the
same as the size of the minor axis of the bounding box.

Use the E3DObjectExtractor.LengthRange and the E3DObjectExtractor.WidthRange accessors to set
the ranges of allowed values for the length and the width.

Local and reference top positions and heights

The local top position of an object is the position (3D coordinates) of the point in the E3DObject
that is the furthest from the base plane.

The local height of an object is the distance between the local top position and the base plane.

The reference top position of an object is the position (3D coordinates) of the point in the
E3DObject that is the furthest from the reference plane.

The reference height of an object is the distance between the reference top position and the
reference plane.

If there are too many undefined pixels in the object surroundings:
□ The base plane is equal to the reference plane of the input EZMap.
□ The local top position is equal to the reference top position.
□ The local height is equal to the reference height.

Use the E3DObjectExtractor.LocalHeightRange and the E3DObjectExtractor.ReferenceHeightRange
accessors to set the ranges of allowed values for the local and the reference height.

Open eVision User Guide

e3dobjectextractor-lengthrange.htm
e3dobjectextractor-widthrange.htm
e3dobject-class.htm
e3dobject-class.htm
ezmap-class.htm
e3dobjectextractor-localheightrange.htm
e3dobjectextractor-referenceheightrange.htm

125

Average position

The average position is the arithmetic mean of the 3D positions of the object, also known as the
barycenter.

In the illustration below:
□ The average position is displayed in blue.
□ The top position is displayed in red.
□ On the left object, the average and the top positions are at the same place.
□ On the center object the average position is “inside” the object.

Aspect ratio

The aspect ratio is the width (the smallest dimension on the XY plane) divided by the length (the
largest dimension).

□ It lies between 0 and 1.
□ The smaller the ratio, the more elongated the object is.
□ A square has an aspect ratio of 1.

Use the E3DObjectExtractor.AspectRatioRange accessor to set the range of allowed values for the
aspect ratio.

Open eVision User Guide

e3dobjectextractor-aspectratiorange.htm

126

Orientation angle

The orientation angle is the angle between the X axis of the EZMap and the longest axis (the
length) of the object.

□ The angle is measured in the clockwise direction.
□ The value must lie between -90° and +90°.

Use the E3DObjectExtractor.OrientationRange accessor to set the range of allowed values for the
orientation angle.

Local and reference tilt angles

The local tilt angle is the angle between the base plane and the object plane.
□ A value of 0 means that the object top surface is parallel to its base.
□ The value must lie between 0° and +90°.

The reference tilt angle is the angle between the object plane and ZMap XY plane.
□ A value of 0 means that the object top surface is parallel to its base.
□ The value must lie between 0° and +90°.

Use the E3DObjectExtractor.LocalTiltRange and the E3DObjectExtractor.ReferenceTiltRange
accessors to set the range of allowed values for the tilt angles.

Open eVision User Guide

ezmap-class.htm
e3dobjectextractor-orientationrange.htm
e3dobjectextractor-localtiltrange.htm
e3dobjectextractor-referencetiltrange.htm

127

Area

The object area is the area of the top surface of the object projected on the reference plane of
the EZMap.

□ It is equal to [the number of pixels in the object] × [the x-resolution of the EZMap] × [the
y-resolution of the EZMap].

Use the E3DObjectExtractor.AreaRange accessor to set the range of allowed values for the area.

Volume

The object volume is the volume that lies between the top surface and the base plane of the
object.

Use the E3DObjectExtractor.VolumeRange accessor to set the range of allowed values for the
volume.

Sphere

This feature is disabled by default.

When enabled, a sphere is an object E3DSphere that represents the sphere that best fits the
object (calculated according to the least squares).

Open eVision User Guide

ezmap-class.htm
ezmap-class.htm
ezmap-class.htm
e3dobjectextractor-class.htm
e3dobjectextractor-volumerange.htm
e3dsphere-class.htm

128

Extracting and Using Objects

Extracting the objects

Use the E3DObjectExtractor.Extract method to perform the objects extraction.

You can limit the extraction to an ERegion, for example to ignore parts of the ZMap that are not
interesting and/or to speed up the extraction process.

The processing speed of the extraction depends directly on:
□ The number of pixels in the ZMap or in the ERegion.
□ The number of segmented objects.
□ The computer features for each segmented object.

TIP
To speed up the extraction process:
- Adjust the extraction ranges to reduce the number of objects.
- Disable the features you do not need.

Overlapped objects

By default, the extraction does not produce objects that overlap on the ZMap. You must enable
the SetOverlappedObject option to extract “stacked” objects.

The area ratio and the height difference parameters control how overlapped objects are
extracted:

● The area ratio is configured by SetOverlappedAreaRatio. The area of the bottom object
divided by the area of the top object must be larger or equal than that ratio.

Open eVision User Guide

e3dobjectextractor-extract.htm
eregion-class.htm
e3dobjectextractor-overlappedobject.htm
e3dobjectextractor-overlappedarearatio.htm

129

Overlapped extraction is disabled.

Overlapped extraction is enabled, with OverlappedAreaRatio = 4.

Overlapped extraction is enabled, with OverlappedAreaRatio = 4.
The top object is too large to be extracted, the ratio of the areas is lower than 4.

● The height difference is configured by SetOverlappedHeightDifference. This represent the
minimum height difference between the top and the bottom object

Overlapped extraction is enabled, with OverlappedHeightDifference = 2.
The height of the top object (red) from the bottom object (green) is too small, the object is not

extracted.

Open eVision User Guide

e3dobjectextractor-overlappedheightdifference.htm

130

Overlapped extraction is enabled, with OverlappedHeightDifference = 2.
The height of the top object from the bottom object is larger than 2, the object is extracted.

Controlling the object detection

Two optional parameters affect the detection of the object:

● SetExtractionSensitivity controls the sensitivity of the extraction.
□ A higher value increases the ability to detect objects that are mixed with their

surrounding, because their grey values are close to the background or because the
transition (the gradient) between the object and the background is smooth.

□ This parameter value ranges from 0 to 1 (the default value is 0.6).

Extraction sensitivity: 0.5 (left) and 0.8 (right)

● SetContourReinforce affects the extraction of the objects.
□ As the extraction can fail when objects are close or touch each other, this parameter

enables a filter to enhance the frontiers between objects and enable the extraction of
such objects.

□ The filter can affect the measurements.

Contour reinforcement: OFF (left) and ON (right)

Open eVision User Guide

e3dobjectextractor-extractionsensitivity.htm
e3dobjectextractor-contourreinforce.htm

131

Using the objects

The E3DObjectExtractor.Extract method populates a list of E3DObject fulfilling your set criteria.
□ Each E3DObject is a collection of descriptive features of the associated 3D points in the

EZMap, such as its oriented bounding box, its local height and its volume.
□ Call the associated E3DObject method to access a feature.
□ The E3DObject list is sorted from the smallest area to the largest area.
□ Use GetObjectsMask to get the mask of all the extracted E3DObjects.

The code snippet below provides an example for extracting features from the E3DObject list.

// get the extracted objects and loop over them

std::vector<Easy3D::E3DObject> objects = extractor.GetObjects();
int nObjects = objects.size();
for (int index = 0; index < nObjects; ++index)
{
// inspect bounding box dimensions
E3DPoint bbCenter = objects[index].GetBoundingBox().GetCenter();
float bbHeight = objects[index].GetBoundingBox().GetXSize();
float bbLength = objects[index].GetBoundingBox().GetYSize();

// inspect object plane and base plane
Easy3D::E3DPlane opjPlane = objects[index].GetPlane();
Easy3D::E3DPlane basePlane = objects[index].GetBasePlane();

// inspect the ERegion that exactly contains the object
ERegion objRegion = objects[index].GetRegion();

}

Visualizing the objects

To visualize some of these features in 2D or 3D:
□ Use the E3DObject.Draw method.
□ Or submit a list of E3DObject to an E3DViewer.

TIP
In an E3DViewer, use the ERenderStyle structure to choose your rendering
style.

The following code snippets illustrate how to draw some object features:
□ In a 2D graphic context: "Drawing a 2D Feature from the List of E3DObjects" on page 168

Open eVision User Guide

e3dobjectextractor-extract.htm
e3dobject-class.htm
e3dobject-class.htm
ezmap-class.htm
e3dobject-class.htm
e3dobject-class.htm
e3dobjectextractor-objectsmask.htm
e3dobject-class.htm
e3dobject-class.htm
e3dobject-draw.htm
e3dobject-class.htm
e3dviewer-class.htm
e3dviewer-class.htm
erenderstyle-struct.htm

132

□ In a 3D viewer: "Drawing 3D Features from a List of E3DObjects" on page 168

Use Case - Inspecting a PCB
The purpose of this use case is to test if all the components are present and correctly placed on
the PCB.

TIP
This example uses the sample image Sample
Images\Easy3D\Easy3DObject\PCB.png and the illustrations are based on the
Easy3DObject demo application.

1. Load the PCB image.

2. Set the resolution.
□ The provided PCB sample is an 8-bit gray scale image.
□ Use a Z resolution of 0.3 metric unit per gray scale level for a realistic proportion.

3. Keep the suggested parameters for a first extraction.
□ The suggested parameters are set from the ZMap width, height and resolution.

Open eVision User Guide

133

4. Click on the Extract button to perform the extraction.

When the extraction is done:
□ The object list is filled.
□ Click on a column title to sort the object list.
□ The various measures are displayed.
□ The 2D View and the 3D View show the extracted object bounding boxes.

Open eVision User Guide

134

5. Use a polygon region of interest to restrict the searched area.
□ You can limit the extraction to a region defined as a rectangle, a polygon or an ellipse in

the demo application.
□ Use the Open eVision API, to define and use any ERegion.

6. Press again the Extract button to generate a new list of objects. Now, only the objects
located inside the region are extracted.

7. The 2D View and 3D View automatically focus on the object selected in the list. You can also
select an object by clicking on a bounding box in the 2D View.

Open eVision User Guide

eregion-class.htm

135

8. Use the size ranges to discard the smaller components.

To add or remove objects:
□ Change the extraction parameters, like the length and width ranges.
□ In the illustration below, objects smaller than 10x10 metric unit are not extracted.

NOTE
After changing a parameter, press the Extract button to perform a new
extraction.

Open eVision User Guide

136

9. Check or uncheck the boxes at the top of the views to toggle the display of most of the
object features, either in the 2D View or the 3D View.
□ In the illustration below, the object list is sorted by local height.
□ The first object is selected and displayed in both views.

10.Adjust the extraction parameters to accept or reject objects based on the results.

Open eVision User Guide

137

11.Open the Help menu and click on Generate code snippet to generate the C++ code
corresponding to the current configuration.

The generated code illustrates how you can:
□ Load a ZMap.
□ Define a region.
□ Set the configuration parameters of the extraction.
□ Start the extraction process.
□ Iterate through the resulting objects list.

Open eVision User Guide

138

4.4. Easy3DMatch - 3D Alignment and Comparison

Purpose and Workflow

Purpose

Easy3DMatch allows you to:

● Align a scanned object with another scan or with a reference mesh.
□ The Easy3DMatch tool features alignment functions to find the exact pose (position and

orientation) of acquired 3D objects using a reference model.
□ You can specify this model as a reference point cloud or as a 3D mesh from CAD software

(using the stl file format).

CAD model — sample point cloud — model and sample aligned
(3D models courtesy of Direct Dimensions)

● Compare an aligned scan with a reference model or mesh:

a. Compute the local distances between 3D scans and a golden sample or a reference mesh.

b. Detect anomalies such as misplaced features, geometric distortions, gaps and bumps.

Reference — sample
(3D CAD models courtesy of Direct Dimensions)

Open eVision User Guide

139

Result of the comparison

Workflow

1. Load a reference as:
□ A mesh (define its viewpoints)
□ A point cloud (with one viewpoint)
□ A ZMap

2. Load a sample, either as:
□ A point cloud (with one viewpoint)
□ A ZMap

3. Perform alignment and/or matching:
□ Optionally, align the sample and get its E3DAlignment with respect to the reference

(E3DAligner).
□ Optionally, compare the sample to the reference by defining ROIs as 3DBox (E3DComparer).
□ Align the sample and compare it directly to the reference by defining ROIs as an ERegion

(E3DMatcher).

4. Use the transformation from sample to model to locate the sample and/or process the
detected E3DAnomalies.

Resources

● The example described here demonstrates how to use Easy3DMatch with Open eVision 3D
tools.

● You can also find a sample application, with its source code, in …\Sample Programs\MsVc
samples\3D Processing\Easy3DMatchMatch.

NOTE: Most of the illustrations are screenshots from this sample.

● The example and the sample application are based on the following resources:
□ Open eVision 2.16
□ Microsoft Visual Studio 2017

● You need the Easy3DMatch license to use it.

Open eVision User Guide

e3dalignment-class.htm
e3daligner-class.htm
e3dbox-class.htm
e3dcomparer-class.htm
eregion-class.htm
e3dmatcher-class.htm
e3danomaly-class.htm

140

Alignment (E3DAligner)

Base case

Use the class E3DAligner to load a reference and a sample and to find the transformation from
the sample to the reference.

1. The first step is to set the reference using the method SetReference.
□ In addition to the mesh or the cloud, this method also takes one or several E3DPlane or

azimuth and elevation angles (see "Calibration" on page 88 for a definition of the azimuth
and the elevation).

□ The angles are used to compute the plane and are just an easier way to specify it.

2. The goal of the plane is to specify the face(s) of the object that can be visible on the sample.
□ You must do this only once for the reference and once for the sample(s), assuming they

are all taken with the same scanner.

Here is an illustration of the process:

View of the CAD

Bottom face, corresponding to the plane of the normal (0, 0, -1) and equation z = 15
or an azimuth of 0° and an elevation of -90°

Open eVision User Guide

e3daligner-class.htm

141

Top face of the object, corresponding to the plane of the normal (0, 0, 1) and equation z = -15
or an azimuth of 0° and an elevation of 90°.

3. Call the method Align with a point cloud or a zmap and get an object E3DAlignment that
contains:
□ The pose, an E3DTransformMatrix mapping the sample to the reference.
□ The error, indicating the quality of the matching.
□ The index of the reference pose that was matched. This is useful when several poses are

defined (in the example above, there are 2 poses defined).

Defining a reprojection plane to improve the results

Ideally, the sample (and the point cloud or the ZMap used as reference) should be aligned on
the viewpoint. This is however not always true, for example when the scanner does not lay on
top of the object. In these cases, the user may specify the plane on which the object lays, either
by giving an E3DPlane or a flat scan on which only the plane is visible.

In both cases, the plane normal must have the correct orientation (pointing upwards or
downwards), that is if the plane is above the normal (z object > z plane), the z coordinate of the
normal should be positive. This is specified either directly in the E3DPlane or by a boolean
argument objectAbovePlane when giving a flat scan.

Code samples

Base sample

//
// This code snippet shows how to compute the //
// alignment between a sample and a cad reference.//
//

// load the reference mesh and define the pose
Easy3D::E3DAligner aligner;
Easy3D::EMesh cad;
cad.Load(“…”);
float azimuthReference = 0.f, elevationReference = 90.f;
aligner.SetReference(cad, azimuthReference, elevationReference);

// load the sample

Open eVision User Guide

e3daligner-align.htm
e3dalignment-class.htm
e3dtransformmatrix-class.htm
e3dplane-class.htm
e3dplane-class.htm

142

Easy3D::EPointCloud sample;
sample.Load(“…”);
float azimuthSample = 0.f, elevationSample = 90.f;

// perform alignment
Easy3D::E3DAlignment alignment = aligner.Align(sample, azimuthSample, elevationSample);

Use a reprojection plane

//
// This code snippet shows how to set the //
// reprojection plane when performing alignment. //
//

// load the reference mesh and define the pose
Easy3D::E3DAligner aligner;
Easy3D::EMesh cad;
cad.Load(“…”);
Easy3D::E3DPlane refPlane(Easy3D::E3DPoint(0, 0, 1), 0);
aligner.SetReference(cad, refPlane);

// define the reprojection plane
bool userKnowsPlaneAZEl = false; // depending on the user
if (userKnowsPlaneEquation)
{
Easy3D::E3DPlane reprojectionPlane(Easy3D::E3DPoint(0, 0, -1), -15);
aligner.SetScanReprojectionPlane(reprojectionPlane);

}
else
{
Easy3D::EPointCloud cloud;
cloud.Load(“…”);
bool objectAbovePlane = true; // is the object above the plane on the cloud
aligner.SetFlatScan(cloud, objectAbovePlane);

}

// load the sample
Easy3D::EPointCloud sample;
sample.Load(“…”);
float azimuthSample = 0.f, elevationSample = 90.f;

// perform alignment
Easy3D::E3DAlignment alignment = aligner.Align(sample, azimuthSample, elevationSample);

Use E3DAlignment to align a sample on the reference

//
// This code snippet shows how to apply the //
// transformation of the E3DAlignment to the //
// sample to overlap it on the reference //
//

// perform alignment (see previous examples)
Easy3D::E3DAlignment alignment;
EPointCloud sample;

// align sample on reference
Easy3D::EPointCloud alignedSample;
Easy3D::EAffineTransformer::ApplyMatrix(alignment.GetPose(), sample, alignedSample);

Open eVision User Guide

143

Computation Time

The following table shows the computation time on a representative object. The first step of an
alignment is to decimate the given EPointCloud (a very large cloud may explain important
computation times).

Number of threads Computation times

1 780 ms

2 520 ms

4 383 ms

Comparison (E3DComparer)

Base case

Use the class E3DComparer to load a reference and an already aligned sample (for example by
using E3DAligner) and to find the distance map between both as well as anomalies.

● To use the E3DComparer:
□ Use the method SetMeshReference or SetPointCloudReference to specify the reference with

either an EMesh or an EPointCloud.
□ Set the options of the comparison (ROIs, mode and thresholds).
□ Call the method Compare with the sample EPointCloud.
□ Use ComputesAnomalies to retrieve the list of E3DAnomaly.
□ Use GetComparisonPointCloud to retrieve the EPointCloud containing the distances.

● An E3DAnomaly represents a specific area in which the discrepancies between the sample and
the reference are important. They are represented by:
□ An EPointCloud containing all the points of the anomaly and their distance to the sample.
□ The area of the anomaly.
□ Its center of gravity.
□ A bounding box around the anomaly.

NOTE: The E3DAnomaly represents points on the reference (except on NoExtraMaterial regions
and when the distance mode is set to EComparisonDistanceMode_Euclidian_Advanced or or
EComparisonDistanceMode_Normals_Advanced).

● Use GetComparisonPointCloud to retrieve an EPointCloud containing distance and/or colors
that represent the distance to the sample or the reference for each of these points.

SetROI and SetDontCare

● The class E3DComparer can perform the comparison on only a subset of the object. This has
two benefits: it is faster and it allows to ignore false-positives when detecting anomalies.
□ Use SetROI with a vector of E3DBox to define the zones on which to perform a comparison.
□ Use SetDontCare to specify areas that are excluded from the comparison.
□ A point belonging to SetROI and SetDontCare boxes is not compared. By default, all points

are compared.

Open eVision User Guide

e3dcomparer-class.htm
e3daligner-class.htm
e3dcomparer-class.htm
e3dcomparer-meshreference.htm
e3dcomparer-pointcloudreference.htm
emesh-class.htm
epointcloud-class.htm
e3dcomparer-compare.htm
epointcloud-class.htm
e3dcomparer-computesanomalies.htm
e3danomaly-class.htm
e3dcomparer-getcomparisonpointcloud.htm
epointcloud-class.htm
e3danomaly-class.htm
epointcloud-class.htm
e3danomaly-class.htm
e3dcomparer-noextramaterial.htm
ecomparisondistancemode-enum.htm
ecomparisondistancemode-enum.htm
e3dcomparer-getcomparisonpointcloud.htm
epointcloud-class.htm
e3dcomparer-class.htm
e3dcomparer-roi.htm
e3dbox-class.htm
e3dcomparer-dontcare.htm
e3dcomparer-roi.htm
e3dcomparer-dontcare.htm

144

SetNoExtraMaterial

● The class E3DComparer checks, for each point of the reference (in the ROI), the distance to its
nearest neighbor in the sample.
□ This avoids false positives, where we would use points of the sample that are not part of

the object (the plane on which the object lays for example).
□ This allows to detect missing points on the sample.
□ A drawback of this approach is that extra material, that is points that should not be in the

sample (for example, a hole that is filled) are not detected. You can solve this problem by
specifying a list of E3DBox containing the areas that should not contain extra material.

SetAnomalyThresholds

● An anomaly is a sufficiently large contiguous area of points whose distance to the scan is
above a threshold.
□ To specify the two thresholds (distance and area), use the method SetAnomalyThresholds.
□ By default, these two thresholds are set relatively to the model size.
□ Aa a more advanced anomaly detection method, use SetAnomalyHysteresis.

Illustration of the thresholds

SetAnomalyHysteresis

● You can use the method SetAnomalyHysteresis that is a more specific anomaly detection
method.
□ With this method, a cluster of points should have a large enough subset of its points with

an even larger distance to the sample to be an anomaly.
□ This may be useful if you do not want to consider as an anomaly the points with a

medium distance unless they are close to points with a high distance.

Illustration of the hysteresis thresholds

Open eVision User Guide

e3dcomparer-class.htm
e3dbox-class.htm
e3dcomparer-setanomalythresholds.htm
e3dcomparer-setanomalyhysteresis.htm
e3dcomparer-setanomalyhysteresis.htm

145

SetComparisonDistanceMode

● By default, the aligned scan and the reference comparison is based on the euclidean
distance between their corresponding points.
□ Use SetComparisonDistanceMode(EComparisonDistanceMode_Euclidean) to enable it.

● Another possibility is to base the comparison on the angular distance between the
corresponding normals of the scan and of the reference.
□ This works better to detect scratches.
□ Use SetComparisonDistanceMode(EComparisonDistanceMode_Normals) to enable it.

● There is a variant that is more robust towards false positives near the edges.
□ Use SetComparisonDistanceMode(EComparisonDistanceMode_Normals_Advanced) to enable it.

The Normals comparison mode

Results when using normals to detect scratches.
(left) scratch is not visible using the euclidean distance mode

(center) scratch and false positives on the edges are visible using normals distance mode
(right) only scratch is detected using the advanced normals distance mode

SetEnableAutomaticEdgeCropping and SetEdgeCroppingParameters

● Sharp edges in the reference can lead to false positives, especially when using normals (see
SetComparisonDistanceMode).

A solution is to remove them automatically:
□ Use SetEnableAutomaticEdgeCropping(true) to enable this.
□ Use SetEdgeCroppingParameters to adjust this function.
□ By default, the edge cropping is disabled.

Open eVision User Guide

e3dcomparer-comparisondistancemode.htm
e3dcomparer-comparisondistancemode.htm
e3dcomparer-comparisondistancemode.htm
e3dcomparer-comparisondistancemode.htm
e3dcomparer-enableautomaticedgecropping.htm
e3dcomparer-setedgecroppingparameters.htm

146

SetAutomaticCropFactor

● By default, the sample clouds are automatically cropped around the reference plus a margin
to avoid computing distance for points that are not on the object (for example, the plane on
which the object lays).

● The margin is obtained by multiplying the anomaly distance threshold by the automatic crop
factor (set with SetAutomaticCropFactor).
□ By default, the factor is 1.

Prepare the reference

● If not called explicitly, the first call to Compare automatically computes the internal data
structures.

Code samples

Minimal code

///
// This code snippet shows how to compare a sample //
// with a golden scan reference. //
///

// load the reference golden scan and set reference
Easy3D::E3DComparer comparer;
Easy3D::EPointCloud cloud;
cloud.Load(“…”);
comparer.SetPointCloudReference(cloud);

// set thresholds
float distanceThresh = .2f, areaThresh = 1.f;
comparer.SetAnomalyThresholds(distanceThresh, areaThresh);

// prepare data structures (optional)
comparer.PrepareReference();

// load the sample and perform comparison
Easy3D::EPointCloud sample;
sample.Load(“…”);
comparer.Compare(sample);

// compute anomalies
std::vector<Easy3D::E3DAnomaly> anomalies = comparer.ComputesAnomalies();

// TODO: if (anomalies.size() != 0u): an anomaly was detected: inspect the sample manually? throw it away?

// get cloud to inspect it manually
Easy3D::EPointCloud visualisationCloud;
comparer.GetComparisonPointCloud(visualisationCloud);

Advanced code

//
// This code snippet shows how to set the options //
// when comparing two elements with E3DComparer. //
//

Open eVision User Guide

e3dcomparer-automaticcropfactor.htm

147

// load the reference golden scan and set reference
Easy3D::E3DComparer comparer;
Easy3D::EPointCloud cloud;
cloud.Load(“…”);
comparer.SetPointCloudReference(cloud);

// set thresholds
float distanceThresh = .2f, areaThresh = 1.f;
float hystDistanceThresh = 1.5f, hystAreaThresh = .5f;
comparer.SetAnomalyThresholds(distanceThresh, areaThresh);
comparer.SetAnomalyHysteresis(hystDistanceThresh, hystAreaThresh); // defined relatively to base thresholds

// set ROIs
std::vector<Easy3D::E3DBox> rois = { Easy3D::E3DBox(15, 15, 15) };
comparer.SetROI(rois);
std::vector<Easy3D::E3DBox> dontCare = { Easy3D::E3DBox(5, 5, 5) };
comparer.SetDontCare(dontCare);
std::vector<Easy3D::E3DBox> noExtraMaterial = { Easy3D::E3DBox(Easy3D::E3DPoint(10, 15, 20), 0, 0, 0, 5, 5, 5)
};
comparer.SetNoExtraMaterial(noExtraMaterial);

// prepare data structures (optional)
comparer.PrepareReference();

// load the sample and perform comparison
Easy3D::EPointCloud sample;
sample.Load(“…”);
comparer.Compare(sample);

// compute anomalies
std::vector<Easy3D::E3DAnomaly> anomalies = comparer.ComputesAnomalies();

// TODO: if (anomalies.size() != 0u): an anomaly was detected: inspect the sample manually? throw it away?

// get cloud to inspect it manually
Easy3D::EPointCloud visualisationCloud;
comparer.GetComparisonPointCloud(visualisationCloud);

Computation time

The following table shows the computation time on a representative object. The first step of a
comparison is to decimate the given EPointCloud (a very large cloud may explain important
computation times).

If you are using a mesh as reference without a specific ROI, the mesh contains many points that
have no correspondence in the scan (hidden faces), this can increase processing time a
hundred-fold.

Number of threads Computation times

1 503 ms

2 454 ms

4 395 ms

Open eVision User Guide

148

Alignment and Comparison (E3DMatcher)

Base Case

Use the class E3DMatcher to load a reference and a sample and to align and compare them at the
same time.

E3DMatcher inherits from E3DAligner (see "Alignment (E3DAligner)" on page 140)and implements
an API close to the one of E3DComparer (see "Comparison (E3DComparer)" on page 143)with
some extra capabilities due to the usage of the reference points of view used in E3DAligner.

To use the E3DMatcher:

1. The first step is to set the reference using the method SetReference.
□ In addition to the mesh or the cloud, this method also takes one or several E3DPlane or

azimuth and elevation angles (see "Calibration" on page 88 for a definition of the azimuth
and the elevation).

□ The angles are used to compute the plane and are just an easier way to specify it.

2. Set the options of the comparison (ROIs, thresholds, mode...) and optionally a reference
plane.

3. Call the Match method with the sample point cloud and its reference plane.
□ This returns an E3DMatch object containing the anomalies and the E3DAlignment (E3DMatch

inherits from E3DAlignment)

4. Optionally, use GetComparisonPointCloud to retrieve an EPointCloud that contains the
distances.

● You can perform all these steps interactively in the Easy3DMatchMatch sample.

● The main difference between E3DMatcher and E3DComparer is that the ROIs are defined using
ERegion on the EZMap corresponding to the projection of the reference on the given E3DPlane.

This also allows for more advanced comparisons (see ComparisonDistanceMode and
SetEnableMissingPointAsAnomaly).

SetComparisonDistanceMode

Use SetComparisonDistanceMode to select one of the methods available in the class E3DMatcher to
compute the distances:

□ EcomparisonDistanceMode_Euclidean_Fast: the fastest method based on the euclidean
distance between points. It is less precise on the edges.

□ EcomparisonDistanceMode_Euclidean: the default method. It is based on the euclidean
distance between corresponding points.

□ EcomparisonDistanceMode_Euclidean_Advanced: the slowest method based on the euclidean
distances. It penalizes more the bumps.

□ EcomparisonDistanceMode_Normals: the same as EcomparisonDistanceMode_Euclidean except
that the comparison is based on the angular distance between the points normals instead
of the euclidean distance between the points. It works better to detect scratches.

□ EcomparisonDistanceMode_Normals_Advanced: a variant of EcomparisonDistanceMode_Normals
that is more robust towards false positives near the edges.

Open eVision User Guide

e3dmatcher-class.htm
e3dmatcher-class.htm
e3daligner-class.htm
e3dcomparer-class.htm
e3daligner-class.htm
e3dmatcher-class.htm
e3dplane-class.htm
e3dmatch-class.htm
e3dalignment-class.htm
e3dmatch-class.htm
e3dalignment-class.htm
e3dcomparer-getcomparisonpointcloud.htm
epointcloud-class.htm
e3dmatcher-class.htm
eregion-class.htm
ezmap8-class.htm
e3dplane-class.htm
e3dmatcher-comparisondistancemode.htm
e3dmatcher-enablemissingpointasanomaly.htm
e3dmatcher-comparisondistancemode.htm
e3dmatcher-class.htm
ecomparisondistancemode-enum.htm
ecomparisondistancemode-enum.htm
ecomparisondistancemode-enum.htm
ecomparisondistancemode-enum.htm
ecomparisondistancemode-enum.htm
ecomparisondistancemode-enum.htm
ecomparisondistancemode-enum.htm

149

The Normals comparison mode

Results when using normals to detect scratches.
(left) scratch is not visible using the euclidean distance mode

(center) scratch and false positives on the edges are visible using normals distance mode
(right) only scratch is detected using the advanced normals distance mode

SetEnableAutomaticEdgeCropping and SetEdgeCroppingParameters

● Sharp edges in the reference can lead to false positives, especially when using normals (see
SetComparisonDistanceMode).

A solution is to remove them automatically:
□ Use SetEnableAutomaticEdgeCropping(true) to enable this.
□ Use SetEdgeCroppingParameters to adjust this function.
□ By default, the edge cropping is disabled.

SetAllComparisonROI

● The class E3DMatcher can perform the comparison on only a subset of the object. This has
two benefits: it is faster and it allows to ignore false-positives when detecting anomalies.
□ Use SetAllComparisonROI with one on several Eregion to define the zones on which to

perform a comparison.
□ These Eregion should be interpreted as a masking part of the object on a projected view.

Use RetrieveReferencePoses to retrieve the corresponding view.

Open eVision User Guide

e3dcomparer-comparisondistancemode.htm
e3dcomparer-enableautomaticedgecropping.htm
e3dcomparer-setedgecroppingparameters.htm
e3dmatcher-class.htm
e3dmatcher-allcomparisonroi.htm
eregion-class.htm
eregion-class.htm
e3daligner-retrievereferenceposes.htm

150

Only the areas on the ROI are compared

Illustration of setting ROI on a projection of the reference

SetAllComparisonNoExtraMaterial

● The class E3DMatcher checks, for each point of the reference (in the ROI), the distance to its
nearest neighbor in the sample.
□ This avoids false positives, where we would use points of the sample that are not part of

the object (the plane on which the object lays for example).
□ This allows to detect missing points on the sample.
□ A drawback of this approach is that extra material, that is points that should not be in the

sample (for example, a hole that is filled) are not detected. You can solve this problem by
specifying a list of E3DBox containing the areas that should not contain extra material.

Open eVision User Guide

e3dmatcher-class.htm
e3dbox-class.htm

151

We do not want the holes to be filled

A filled hole is reported as an anomaly

SetEnableMissingPointAsAnomaly

● By default, the points missing on the scan are considered as defaults.
□ In some case this may lead to false positives (a shadow on the sample is not necessarily a

default, just the absence of information).
□ In other cases these points should be taken into account (for example, a deep hole in the

object can result in the absence of points instead of the presence of misplaced points).
□ Use the method SetEnableMissingPointAsAnomaly to select one of these behaviors.

Open eVision User Guide

e3dmatcher-enablemissingpointasanomaly.htm

152

False anomalies due to shadows in the sample

SetAnomalyThresholds

● An anomaly is a sufficiently large contiguous area of points whose distance to the scan is
above a threshold.
□ To specify the two thresholds (distance and area), use the method SetAnomalyThresholds.
□ By default, these two thresholds are set relatively to the model size.
□ Aa a more advanced anomaly detection method, use SetAnomalyHysteresis.

Illustration of the thresholds

Open eVision User Guide

e3dmatcher-setanomalythresholds.htm
e3dmatcher-setanomalyhysteresis.htm

153

SetAnomalyHysteresis

● You can use the method SetAnomalyHysteresis that is a more specific anomaly detection
method.
□ With this method, a cluster of points should have a large enough subset of its points with

an even larger distance to the sample to be an anomaly.
□ This may be useful if you do not want to consider as an anomaly the points with a

medium distance unless they are close to points with a high distance.

Illustration of the hysteresis thresholds

SetEnableAutomaticDecimation

● By default, the clouds are automatically decimated in such a way that the decimation error
does not impact the anomalies detection.
□ This has the benefit of speeding up processing.
□ If the resolution of your point clouds is small with respect to your distance threshold,

calling SetEnableAutomaticDecimation(false) could improve the speed as it will avoid
useless decimation.

SetAutomaticCropFactor

● By default, the sample clouds are automatically cropped around the reference plus a margin
to avoid computing distance for points that are not on the object (for example, the plane on
which the object lays).

● The margin is obtained by multiplying the anomaly distance threshold by the automatic crop
factor (set with SetAutomaticCropFactor).
□ By default, the factor is 1.

Prepare the reference

● If not called explicitly, the first call to Compare automatically computes the internal data
structures.

Open eVision User Guide

e3dmatcher-setanomalyhysteresis.htm
e3dmatcher-enableautomaticdecimation.htm
e3dmatcher-automaticcropfactor.htm

154

Code samples

Minimal sample

//
// This code snippet shows how to match a sample //
// with a golden scan reference. //
//

// load the reference golden scan and set reference
Easy3D::E3DMatcher matcher;
Easy3D::EPointCloud reference;
float azimuthReference = 0.f, elevationReference = 90.f;
reference.Load(“…”);
matcher.SetReference(reference, azimuthReference, elevationReference);

// set thresholds
float distanceThresh = .2f, areaThresh = 1.f;
matcher.SetAnomalyThresholds(distanceThresh, areaThresh);

// prepare data structures (optional)
matcher.PrepareReference();

// load the sample and perform comparison
Easy3D::EPointCloud sample;
float azimuthSample = 0.f, elevationSample = -90.f;
sample.Load(“…”);
Easy3D::E3DMatch match = matcher.Match(sample, azimuthSample, elevationSample);
std::vector<Easy3D::E3DAnomaly> anomalies = match.GetAnomalies();

// TODO: if (anomalies.size() != 0u): an anomaly was detected: inspect the sample manually? throw it away?

// get cloud to inspect it manually
Easy3D::EPointCloud visualisationCloud;
matcher.GetComparisonPointCloud(visualisationCloud);

Advanced sample

//
// This code snippet shows how to set the options //
// when matching two elements with E3DMatcher. //
//

// load the reference golden scan and set reference
Easy3D::E3DMatcher matcher;
Easy3D::EPointCloud reference;
float azimuthReference = 0.f, elevationReference = 90.f;
reference.Load(“…”);
matcher.SetReference(reference, azimuthReference, elevationReference);

// use advanced comparison mode
matcher.SetComparisonDistanceMode(EComparisonDistanceMode_Advanced);

// ignore shadows
matcher.SetEnableMissingPointAsAnomaly(false);

// set thresholds
float distanceThresh = .2f, areaThresh = 1.f;
float hystDistanceThresh = 1.5f, hystAreaThresh = .5f;
matcher.SetAnomalyThresholds(distanceThresh, areaThresh);
matcher.SetAnomalyHysteresis(hystDistanceThresh, hystAreaThresh); // defined relatively to base thresholds

Open eVision User Guide

155

// retrieve reference poses (reference must have been set)
std::vector<Easy3D::EZMap8> referencePoseProjections;
matcher.RetrieveReferencePosesProjections(referencePoseProjections);

// set ROI on the left half of the object
ERectangleRegion roiRegion(0.f, 0.f, float(referencePoseProjections[0].GetWidth()) / 2.f, float
(referencePoseProjections[0].GetHeight()));
matcher.SetComparisonROI(&roiRegion);

// set No Extra material on the whole object
ERectangleRegion noExtraMatRegion(0.f, 0.f, float(referencePoseProjections[0].GetWidth()) / 2.f, float
(referencePoseProjections[0].GetHeight()));
matcher.SetComparisonNoExtraMaterial(&noExtraMatRegion);

// prepare data structures (optional)
matcher.PrepareReference();

// load the sample and perform comparison
Easy3D::EPointCloud sample;
float azimuthSample = 0.f, elevationSample = -90.f;
sample.Load(“…”);
Easy3D::E3DMatch match = matcher.Match(sample, azimuthSample, elevationSample);
std::vector<Easy3D::E3DAnomaly> anomalies = match.GetAnomalies();

// TODO: if (anomalies.size() != 0u):an anomaly was detected: inspect the sample manually? throw it away?

// get cloud to inspect it manually
Easy3D::EPointCloud visualisationCloud;
matcher.GetComparisonPointCloud(visualisationCloud);

Computation time

The following table shows the computation time on a representative object. The first step of an
alignment is to decimate the given EPointCloud (a very large cloud may explain important
computation times).

Number of threads Computation times

1 683 ms

2 642 ms

4 587 ms

3D Sensor Fusion (EPointCloudMerger)
NOTE: You need a license for Easy3DMatch to use the sensor merging tools.

3D sensor fusion

The 3D sensor fusion is a technique to merge the output of different 3D sensors together. In this
case, these are different views of the same object.

Use the class EPointCloudMerger:

1. Choose how many sensors to use and position them.

2. Acquire scans of the calibration cube (that must be 3D printed).

Open eVision User Guide

epointcloudmerger-class.htm

156

3. Use the method Calibrate to perform the calibration.

4. For each new object:

a. Acquire the scans of the object.

b. Use the method Merge to merge the scans together.

TIP
You can perform all these steps interactively in the C++ and C#
Easy3DMatchPointCloudMerger samples.

Several sensors acquiring different views of the calibration object

Scans of the calibration cube (displayed as ZMaps)

Scans of the object (displayed as ZMaps)

Open eVision User Guide

epointcloudmerger-calibrate.htm
epointcloudmerger-merge.htm

157

Merged calibration scans

Merged cloud scans

3D CAD model

● The calibration cube model is available in the STL file format.

● Download this file from the Open eVision download area in the Additional Resources section
(www.euresys.com/Support).

Download the calibration object model

Open eVision User Guide

https://www.euresys.com/en/Support/Download-area?Series=f97da39d-3c25-404c-aee7-73de1d1867fc

158

● Once downloaded, we recommend using a specialized subcontractor to print the 3D
calibration cube as 3D filament printing is not really suitable to produce the cube.

For reference, we worked with a company using Selective Laser Sintering and printing a
10×10×10 cm cube using PA12 material costed 220 €.

The calibration cube

Removing duplicate points

A physical point seen by two sensors should not be present two times in the output cloud.

● By default, these points are removed. As this takes most of the processing time, you can
disable the process if speed is an issue.

● Set the cloud resolution with the parameter SetMergedCloudResolution to control this
process. The parameter value is computed automatically but you can increase it to reduce
the size of the output cloud and speed-up the processing.

Code samples

///
// This code snippet shows how to perform sensor fusion. //
///

// Calibration
Easy3D::EPointCloudMerger merger;
std::vector<EPointCloud> calibrationClouds; // TODO: load or grab
float calibrationObjectSize = 100.f; // size of an edge of the cube in the calibrationClouds
float calibrationScore = merger.Calibrate(calibrationClouds, calibrationObjectSize, true);

// Merging
std::vector<EPointCloud> clouds; // TODO: load or grab, must be in same order as CalibrationClouds
EPointCloud mergedCloud;

merger.Merge(clouds, mergedCloud);

Open eVision User Guide

epointcloudmerger-mergedcloudresolution.htm

159

Computation Time

The following table shows the computation time on 4 clouds of around 200,000 points each.

Nb of
threads

Calibration
(ms)

Merging @ res
(ms)

Merging @ 4 x res
(ms)

Merging
w/o decimation

1 3386 73 44 15

2 2298 64 46 9

4 1752 52 47 9

Where Res is the resolution computed by the Calibrate method when its argument
computeMergedCloudResolution is set to true.

Open eVision User Guide

epointcloudmerger-calibrate.htm

160

5. Code Snippets

Open eVision User Guide

161

5.1. Basic Types

Loading and Saving Images
Functional Guide | Reference: Load, Save, SaveJpeg

//
// This code snippet shows how to load and save an image. //
//

// Images constructor
EImageBW8 srcImage;
EImageBW8 dstImage;

// Load an image file
srcImage.Load("mySourceImage.bmp");

// ...

// Save the destination image into a file
dstImage.Save("myDestImage.bmp");

// Save the destination image into a jpeg file
// The default compression quality is 75
dstImage.Save("myDestImage.jpg");

// Save the destination image into a jpeg file
// set the compression quality to 50
dstImage.SaveJpeg("myDestImage50.jpg", 50);

Interfacing Third-Party Images
Functional Guide | Reference: SetImagePtr

///
// This code snippet shows how to link an Open eVision image //
// to an externally allocated buffer. //
///

// Images constructor
EImageBW8 srcImage;

// Size of the third-party image
int sizeX;
int sizeY;

//Pointer to the third-party image buffer
EBW8* imgPtr;

// ...

// Link the Open eVision image to the third-party image
// Assuming the corresponding buffer is aligned on 4 bytes
srcImage.SetImagePtr(sizeX, sizeY, imgPtr);

Open eVision User Guide

ebaseroi-load.htm
ebaseroi-save.htm
ebaseroi-savejpeg.htm
ebaseroi-setimageptr.htm

162

Retrieving Pixel Values
Functional Guide | Reference: GetImagePtr

///
// This code snippet shows the recommended method (fastest) //
// to access the pixel values in a BW8 image //
///

EImageBW8 img;

OEV_UINT8* pixelPtr;
OEV_UINT8* rowPtr;
OEV_UINT8 pixelValue;
OEV_UINT32 rowPitch;
int x, y;

rowPtr = reinterpret_cast <OEV_UINT8*>(img.GetImagePtr());
rowPitch = img.GetRowPitch();

for (y = 0; y < height; y++)
{
 pixelPtr = rowPtr;

for (x = 0; x < width; x++)
{

 pixelValue = *pixelPtr;

 // Add your pixel computation code here

 *pixelPtr = pixelValue;
 pixelPtr++;
 }

 rowPtr += rowPitch;
}

ROI Placement
Functional Guide | Reference: Attach, SetPlacement

///
// This code snippet shows how to attach an ROI to an image //
// and set its placement. //
///

// Image constructor
EImageBW8 parentImage;

// ROI constructor
EROIBW8 myROI;

// ...

// Attach the ROI to the image
myROI.Attach(&parentImage);

//Set the ROI position
myROI.SetPlacement(50, 50, 200, 100);

Open eVision User Guide

ebaseroi-getimageptr.htm
ebaseroi-attach.htm
ebaseroi-setplacement.htm

163

Vector Management
Functional Guide | Reference: Empty, AddElement

///
// This code snippet shows how to create a vector, fill it //
// and retrieve the value of a given element. //
///

// EBW8Vector constructor
EBW8Vector ramp;

// Clear the vector
ramp.Empty();

// Fill the vector with increasing values
for(int i= 0; i < 128; i++)
{

ramp.AddElement((EBW8)i);
}

// Retrieve the 10th element value
EBW8 value= ramp[9];

Exception Management
Functional Guide | Reference: GetPixel, What

//
// This code snippet shows how to manage //
// Open eVision exceptions. //
//

try
{

// Image constructor
EImageC24 srcImage;

// ...

// Retrieve the pixel value at coordinates (56, 73)
EC24 value= srcImage.GetPixel(56, 730);

}

catch(Euresys::Open_eVision_1_1::EException exc)
{

// Retrieve the exception description
std::string error = exc.What();

}

Open eVision User Guide

evector-empty.htm
ebw8vector-addelement.htm
eroic24-getpixel.htm
eexception-what.htm

164

5.2. Easy3D

Using EFilters to Remove the Noise on a ZMap Based on
the Standard Deviation

///
// The code below removes pixels with a standard deviation //
// higher than a defined threshold in a ZMap. //
///

// Load the ZMap data
EZMap16 zmap;
zmap.Load("");

// Compute the filtered ZMap. The new ZMap is called filteredZmap
// The size of the kernel is 7x7, the threshold is 30.0
EZMap16 filteredZmap;
filteredZmap.SetSize(zmap);

EFilters::RemoveNoise(zmap, filteredZmap, ENoiseRemovalMethod_HighStandardDeviation, 3, 30.0, 0.0);

Using EFilters to Remove the Noise on a ZMap Based on
the Derivation from Neighborhood

//
// The code below first applies a low pass filter to a ZMap. //
// It then removes from the result the pixels showing a deviation //
// from the neighborhood larger than the defined threshold. //
//

// Load the ZMap data
EZMap16 zmap;
zmap.Load("");

// Compute the filtered ZMap. The new ZMap is called averagedZMap
// The size of the kernel is 7x7, the threshold is 30.0
EZMap16 averagedZMap;
averagedZMap.SetSize(zmap);

EStatistics::ComputeAverageMap(zmap, averagedZMap, 3, 0.2f);

// Compute the filtered ZMap. From averagedZMap, compute filteredZMap
// The size of the kernel is 31x31, the threshold is 20.0
EZMap16 filteredZMap;
filteredZMap.SetSize(zmap);

EFilters::RemoveNoise(averagedZMap, filteredZMap, ENoiseRemovalMethod_AbsoluteDifferenceFromMean, 15, 20.0,
0.2f);

Open eVision User Guide

165

Reducing the Size of a Cloud with Random Decimation

///
// The code reduce the size of a cloud by removing points randomly //
///

EPointCloud pc;
pc.Load("");

// Explicitly decimate the point cloud to keep 5000 points
ERandomDecimator decimator(5000);
EPointCloud pcDecimated;

decimator.Decimate(pc, pcDecimated);

Reducing the Size of a Cloud with Grid Decimation

//
// The code reduce the size of a cloud by removing points //
// to keep at most one per cell of a regular grid //
//

EPointCloud pc;
pc.Load("");

// Explicitly decimate the point cloud to keep
// one point in every cube of 10*10*10
EGridDecimator decimator(10.f);
EPointCloud pcDecimated;

decimator.Decimate(pc, pcDecimated);

Using Photometric Stereo

//
// The code shows how to use Photometric Stereo //
// from calibration to retrieve the results //
//

EPhotometricStereoImager photometricStereo;

std::vector<EImageBW8> calibrationImages;
// Load calibration images (Todo)
std::vector<EROIBW8> calibrationROIs;
// Set the calibration ROIs (Todo)

// Calibrate
float score = photometricStereo.CalibrateFromSphere(calibrationROIs);

std::vector<EImageBW8> objectImages;
// Load object images in the same order than the calibration images/angles (Todo)

std::vector<EROIBW8> objectROIs;
// Set the object ROIs (Todo)

Open eVision User Guide

166

// Compute
photometricStereo.Compute(objectROIs);

// Retrieve the results
EImageC24 normals = photometricStereo.GetNormals();
EImageBW8 albedos = photometricStereo.GetAlbedos(Easy3D::EPhotometricStereoContrast_HighContrast);
EImageBW8 gradientsX = photometricStereo.GetGradientsX();
EImageBW8 gradientsY = photometricStereo.GetGradientsY();
EImageBW8 gaussianCurvatures = photometricStereo.ComputeGaussianCurvatures(Easy3D::EPhotometricStereoContrast_
HighContrast);
EImageBW8 meanCurvatures = photometricStereo.ComputeMeanCurvatures(Easy3D::EPhotometricStereoContrast_
HighContrast);
EZMap8 heightMap = photometricStereo.ComputeHeightMap();

Using Flat Images to Improve Photometric Stereo

//
// The code shows how to use flat images to //
// improve photometric stereo's results //
//

EPhotometricStereoImager photometricStereo;
// calibrate imager or sets its angles (Todo)

// Load flat images in the same order than the calibration images/angles (Todo)

std::vector<EROIBW8> flatROIs;
// Set the flat images ROIs (Todo)

// Configure flat images, this could optionally be done with a dark image as well
photometricStereo.ConfigureNonUniformLightingCorrection(flatROIs);

std::vector<EROIBW8> objectROIs;
// Set the object ROIs (Todo)

// Perform one or more computations, each will use the flat images (Todo)
photometricStereo.Compute(objectROIs);

// Optional: non uniform lighting correction could be disabled or (re-)enabled
// using SetEnableNonUniformLightingCorrection

Performing Plane Leveling on Point Clouds

//
// The code shows how to perform plane leveling //
// on point clouds //
//

// find the reference plane on the point cloud
E3DPlane ref_plane;
EPointCloud point_cloud;

// define the ground plane as the plane Z=0
E3DPlane ground_plane(E3DPlane::ZPlane());

Open eVision User Guide

167

// get the transformation that moves
// the reference plane to the ground plane
E3DTransformMatrix transformation;
transformation = ref_plane.GetTransformationTo(ground_plane);

// apply the transformation to the point cloud
EAffineTransformer transformer;
transformer.ApplyMatrix(transformation, point_cloud);

Using an ERegion to Crop a ZMap

//
// The code shows how to perform cropping on a zmap //
//

EZMap8 zmap;
zmap.Load("");

// prepare an ERegion
std::vector<EPoint> points = { EPoint(90, 76), EPoint(432, 87),
EPoint(466, 91), EPoint(502, 122), EPoint(513, 169),
EPoint(485, 218), EPoint(436, 231), EPoint(86, 215) };
EPolygonRegion region(points); // could be any type of ERegion

EZMap8 zmapCropped(zmap.GetWidth(), zmap.GetHeight());
EUtils::Copy(zmap.GetUndefinedValue(), zmapCropped);
EUtils::Copy(zmap, region, zmapCropped);

5.3. Easy3DObject

Extracting 3D Objects with a Selection Criterion

// EZmap constructor
EZMap8 zMap;

// Extractor constructor
E3DObjectExtractor extractor;

// Setting a selection criterion
extractor.SetWidthRange(EFloatRange(10, 500));

// Extracts the objects from the EZMap
int regionNB = extractor.Extract(zMap);

// Retrieve the extracted objects
std::vector<E3DObject> objects = extractor.GetObjects();

Open eVision User Guide

168

Inspecting a Feature from the List of E3DObjects

// Get the list of E3DObjects
std::vector<E3DObject> objects = extractor.GetObjects();

// Get the volume of the first object
float volume = objects[0].GetVolume();

// Get the ERectangleRegion of the last (the largest) object
ERectangleRegion region = objects.back().GetRectangleRegion();

Drawing a 2D Feature from the List of E3DObjects

// Get the list of E3DObjects
std::vector<E3DObject> objects = extractor.GetObjects();

// Get a render context
HDC drawHDC;

// Draw the ERegion of each object
int nObjects = (int)objects.size();
for (int i = 0; i < nObjects; i++)
objects[i].Draw(drawHDC, E3DObjectFeature_ERegion, ERGBColor(0, 255, 0));

Drawing 3D Features from a List of E3DObjects

// Get the list of E3DObjects
std::vector<E3DObject> objects = extractor.GetObjects();

// Register the list of E3DObjects to the 3D viewer
E3DViewer viewer3D(0,0,640,480);
viewer3D.Register3DObjects(objects);

// Define and use a render style for the ReferenceTopPosition feature
ERenderStyle renderStyle;
renderStyle.pointRGB = EC24A(100, 0, 0);
viewer3D.SetFeatureStyleForAll3DObjects(renderStyle, E3DObjectFeature_ReferenceTopPosition);

// Set a different rendering color for the first object
ERenderStyle selectedRenderStyle;
selectedRenderStyle.pointRGB = EC24A(255, 255, 0);
viewer3D.SetFeatureStyleFor3DObject(0, selectedRenderStyle, E3DObjectFeature_ReferenceTopPosition);

// Enable the display of the TopZPosition feature
viewer3D.ShowFeatureForAll3DObjects(E3DObjectFeature_ReferenceTopPosition);

Open eVision User Guide

169

5.4. Easy3DMatch

E3DAligner Minimal Code

//
// This code snippet shows how to compute the //
// alignment between a sample and a cad reference.//
//

// load the reference mesh and define the pose
Easy3D::E3DAligner aligner;
Easy3D::EMesh cad;
cad.Load(“…”);
float azimuthReference = 0.f, elevationReference = 90.f;
aligner.SetReference(cad, azimuthReference, elevationReference);

// load the sample
Easy3D::EPointCloud sample;
sample.Load(“…”);
float azimuthSample = 0.f, elevationSample = 90.f;

// perform alignment
Easy3D::E3DAlignment alignment = aligner.Align(sample, azimuthSample, elevationSample);

E3DAligner Reprojection Plane

//
// This code snippet shows how to set the //
// reprojection plane when performing alignment. //
//

// load the reference mesh and define the pose
Easy3D::E3DAligner aligner;
Easy3D::EMesh cad;
cad.Load(“…”);
Easy3D::E3DPlane refPlane(Easy3D::E3DPoint(0, 0, 1), 0);
aligner.SetReference(cad, refPlane);

// define the reprojection plane
bool userKnowsPlaneAZEl = false; // depending on the user
if (userKnowsPlaneEquation)
{
Easy3D::E3DPlane reprojectionPlane(Easy3D::E3DPoint(0, 0, -1), -15);
aligner.SetScanReprojectionPlane(reprojectionPlane);

}
else
{
Easy3D::EPointCloud cloud;
cloud.Load(“…”);
bool objectAbovePlane = true; // is the object above the plane on the cloud
aligner.SetFlatScan(cloud, objectAbovePlane);

}

// load the sample
Easy3D::EPointCloud sample;

Open eVision User Guide

170

sample.Load(“…”);
float azimuthSample = 0.f, elevationSample = 90.f;

// perform alignment
Easy3D::E3DAlignment alignment = aligner.Align(sample, azimuthSample, elevationSample);

E3DAlignment Align Sample

//
// This code snippet shows how to apply the //
// transformation of the E3DAlignment to the //
// sample to overlap it on the reference //
//

// perform alignment (see previous examples)
Easy3D::E3DAlignment alignment;
EPointCloud sample;

// align sample on reference
Easy3D::EPointCloud alignedSample;
Easy3D::EAffineTransformer::ApplyMatrix(alignment.GetPose(), sample, alignedSample);

E3DComparer Minimal Sample

///
// This code snippet shows how to compare a sample //
// with a golden scan reference. //
///

// load the reference golden scan and set reference
Easy3D::E3DComparer comparer;
Easy3D::EPointCloud cloud;
cloud.Load(“…”);
comparer.SetPointCloudReference(cloud);

// set thresholds
float distanceThresh = .2f, areaThresh = 1.f;
comparer.SetAnomalyThresholds(distanceThresh, areaThresh);

// prepare data structures (optional)
comparer.PrepareReference();

// load the sample and perform comparison
Easy3D::EPointCloud sample;
sample.Load(“…”);
comparer.Compare(sample);

// compute anomalies
std::vector<Easy3D::E3DAnomaly> anomalies = comparer.ComputesAnomalies();

// TODO: if (anomalies.size() != 0u): an anomaly was detected: inspect the sample manually? throw it away?

// get cloud to inspect it manually
Easy3D::EPointCloud visualisationCloud;
comparer.GetComparisonPointCloud(visualisationCloud);

Open eVision User Guide

171

E3DComparer Advanced Sample

//
// This code snippet shows how to set the options //
// when comparing two elements with E3DComparer. //
//

// load the reference golden scan and set reference
Easy3D::E3DComparer comparer;
Easy3D::EPointCloud cloud;
cloud.Load(“…”);
comparer.SetPointCloudReference(cloud);

// set thresholds
float distanceThresh = .2f, areaThresh = 1.f;
float hystDistanceThresh = 1.5f, hystAreaThresh = .5f;
comparer.SetAnomalyThresholds(distanceThresh, areaThresh);
comparer.SetAnomalyHysteresis(hystDistanceThresh, hystAreaThresh); // defined relatively to base thresholds

// set ROIs
std::vector<Easy3D::E3DBox> rois = { Easy3D::E3DBox(15, 15, 15) };
comparer.SetROI(rois);
std::vector<Easy3D::E3DBox> dontCare = { Easy3D::E3DBox(5, 5, 5) };
comparer.SetDontCare(dontCare);
std::vector<Easy3D::E3DBox> noExtraMaterial = { Easy3D::E3DBox(Easy3D::E3DPoint(10, 15, 20), 0, 0, 0, 5, 5, 5)
};
comparer.SetNoExtraMaterial(noExtraMaterial);

// prepare data structures (optional)
comparer.PrepareReference();

// load the sample and perform comparison
Easy3D::EPointCloud sample;
sample.Load(“…”);
comparer.Compare(sample);

// compute anomalies
std::vector<Easy3D::E3DAnomaly> anomalies = comparer.ComputesAnomalies();

// TODO: if (anomalies.size() != 0u): an anomaly was detected: inspect the sample manually? throw it away?

// get cloud to inspect it manually
Easy3D::EPointCloud visualisationCloud;
comparer.GetComparisonPointCloud(visualisationCloud);

E3DMatcher Minimal Sample

//
// This code snippet shows how to match a sample //
// with a golden scan reference. //
//

// load the reference golden scan and set reference
Easy3D::E3DMatcher matcher;
Easy3D::EPointCloud reference;
float azimuthReference = 0.f, elevationReference = 90.f;
reference.Load(“…”);
matcher.SetReference(reference, azimuthReference, elevationReference);

Open eVision User Guide

172

// set thresholds
float distanceThresh = .2f, areaThresh = 1.f;
matcher.SetAnomalyThresholds(distanceThresh, areaThresh);

// prepare data structures (optional)
matcher.PrepareReference();

// load the sample and perform comparison
Easy3D::EPointCloud sample;
float azimuthSample = 0.f, elevationSample = -90.f;
sample.Load(“…”);
Easy3D::E3DMatch match = matcher.Match(sample, azimuthSample, elevationSample);
std::vector<Easy3D::E3DAnomaly> anomalies = match.GetAnomalies();

// TODO: if (anomalies.size() != 0u): an anomaly was detected: inspect the sample manually? throw it away?

// get cloud to inspect it manually
Easy3D::EPointCloud visualisationCloud;
matcher.GetComparisonPointCloud(visualisationCloud);

E3DMatcher Advanced Sample

//
// This code snippet shows how to set the options //
// when matching two elements with E3DMatcher. //
//

// load the reference golden scan and set reference
Easy3D::E3DMatcher matcher;
Easy3D::EPointCloud reference;
float azimuthReference = 0.f, elevationReference = 90.f;
reference.Load(“…”);
matcher.SetReference(reference, azimuthReference, elevationReference);

// use advanced comparison mode
matcher.SetComparisonDistanceMode(EComparisonDistanceMode_Advanced);

// ignore shadows
matcher.SetEnableMissingPointAsAnomaly(false);

// set thresholds
float distanceThresh = .2f, areaThresh = 1.f;
float hystDistanceThresh = 1.5f, hystAreaThresh = .5f;
matcher.SetAnomalyThresholds(distanceThresh, areaThresh);
matcher.SetAnomalyHysteresis(hystDistanceThresh, hystAreaThresh); // defined relatively to base thresholds

// retrieve reference poses (reference must have been set)
std::vector<Easy3D::EZMap8> referencePoseProjections;
matcher.RetrieveReferencePosesProjections(referencePoseProjections);

// set ROI on the left half of the object
ERectangleRegion roiRegion(0.f, 0.f, float(referencePoseProjections[0].GetWidth()) / 2.f, float
(referencePoseProjections[0].GetHeight()));
matcher.SetComparisonROI(&roiRegion);

// set No Extra material on the whole object
ERectangleRegion noExtraMatRegion(0.f, 0.f, float(referencePoseProjections[0].GetWidth()) / 2.f, float
(referencePoseProjections[0].GetHeight()));
matcher.SetComparisonNoExtraMaterial(&noExtraMatRegion);

Open eVision User Guide

173

// prepare data structures (optional)
matcher.PrepareReference();

// load the sample and perform comparison
Easy3D::EPointCloud sample;
float azimuthSample = 0.f, elevationSample = -90.f;
sample.Load(“…”);
Easy3D::E3DMatch match = matcher.Match(sample, azimuthSample, elevationSample);
std::vector<Easy3D::E3DAnomaly> anomalies = match.GetAnomalies();

// TODO: if (anomalies.size() != 0u):an anomaly was detected: inspect the sample manually? throw it away?

// get cloud to inspect it manually
Easy3D::EPointCloud visualisationCloud;
matcher.GetComparisonPointCloud(visualisationCloud);

EPointCloudMerger Sample

///
// This code snippet shows how to perform sensor fusion. //
///

// Calibration
Easy3D::EPointCloudMerger merger;
std::vector<EPointCloud> calibrationClouds; // TODO: load or grab
float calibrationObjectSize = 100.f; // size of an edge of the cube in the calibrationClouds
float calibrationScore = merger.Calibrate(calibrationClouds, calibrationObjectSize, true);

// Merging
std::vector<EPointCloud> clouds; // TODO: load or grab, must be in same order as CalibrationClouds
EPointCloud mergedCloud;

merger.Merge(clouds, mergedCloud);

Open eVision User Guide

174

6. Application Examples

6.1. Measuring a Remote Controller

This topic presents a complete 3D processing workflow, featuring a TV remote controller as
sample object.

Introduction

The remote controller on the laser triangulation acquisition setup

The remote controller after 3D processing and projection on a 2D image

The proposed process is the sequence of the following operations:

One time calibration process:

1. Load a depth map representing the calibration object.

2. Perform the calibration model computation.

3. Store the calibration model.

For each object:

1. Load the object depth map.

Open eVision User Guide

175

2. Apply the calibration model to get the world point cloud.

3. (Optional) Save the point cloud to a PCD file.

4. Search for a reference plane by either:
□ Choosing 3 points on the remote depth map to be used to compute a plane.
□ Using the 3DPlaneFitter function.

5. Choose 2 points to define an orientation.

6. Build a ZMap using the reference plane and the orientation vector.

7. (Optional) Save the ZMap as an image.

8. Query the ZMap to get world space measurement.

9. Process the ZMap with 2D image function.

TIP
For easier reading, the code snippets in this example do not show exception
catching and error checking.

Calibration

The calibration process is mandatory to find the exact transformation from the depth map to
the real world, metric, coordinate system.

Open eVision features an object based calibration process: the scan of a reference object of
known geometry is used in the calibration calculation.

TIP
The recommended calibration object is the double truncated pyramid.

CAD model of the double pyramid and calibration object scanned

Using a Euresys Coaxlink 3D LLE frame grabber, the captured image is directly a depth map.
Depth maps are 8 bits or 16 bits grayscale images with the pixel values representing the height
of the laser profile.

Open eVision User Guide

176

A depth map (gray scale image) of a double pyramid, used as the calibration object

The code snippet below shows how to load the depth map representing the double pyramid
object, using it to compute a calibration model and save the result for later use.

// Load the depthmap used for the calibration process
EDepthMap16 calibration_depthmap;
calibration_depthmap.Load("calibration.tiff");
// Set the Z resolution from the number of bits for the fractional part, depends on the depth map acquisition
calibration_depthmap.SetZResolution(1.f / (1<<5));

// Declare the object based calibration generator
EObjectBasedCalibrationGenerator calibrator;
// set the real world scale of the scanned object
calibrator.SetCalibrationObjectType(EObjectBasedCalibrationType_DoublePyramid);
calibrator.SetCalibrationObjectScale(10.f);

// Declare an object based calibration model
EObjectBasedCalibrationModel calibration_model;

// Perform the calibration process (can take some time, like 10 seconds)
calibration_model = calibrator.Compute(calibration_depthmap);

// Check the calibration result
if(calibration_model.IsInitialized())
{

printf("Calibration succeeded with score: %g\n", calibration_model.GetCalibrationError());
// Save the model for later use
ESerializer* serializer = ESerializer::CreateFileWriter("calibration.model");
calibration_model.Save(serializer);
delete serializer;

}
else
{

printf("Calibration failed\n");
}

Processing the object in 3D

This section exposes the 3D workflow, from the source depth map to metric measurement.

Acquiring and calculating the 3D point cloud
The calibration model previously calculated is used to transform the depth map data to real
world 3D point cloud.

Open eVision User Guide

177

A depth map of the TV remote controller
(the object is distorted and scaled while black pixels represent undefined regions, that is parts of the

object that were not seen by the camera or lit by the laser)

The code snippet below:

1. Loads a calibration model.

2. Transforms the depth map to a 3D point cloud.

3. Saves the point cloud to a PCD file.

// Read an abstract calibration model from file
ECalibrationModel* calibration_model;
ESerializer* serializer = ESerializer::CreateFileReader("calibration.model");
// must be desallocated later
calibration_model = ECalibrationModel::Create(serializer);
delete serializer;

// Declare a depth map to point cloud converter
EDepthMapToPointCloudConverter dm2pc;
// attach a calibration model to the converter
dm2pc.SetCalibrationModel(*calibration_model);

// Generate the point cloud
EPointCloud point_cloud;
dm2pc.Convert(object_depthmap, point_cloud);

printf("Point cloud size : %d\n", point_cloud.GetNumPoints());

// Save to point cloud to a PCD file
point_cloud.SavePCD("point_cloud.pcd");

TIP
The PCD file is a simple 3D point container, used by the PCL framework
(www.pointclouds.org). Such file can be loaded in the PCL viewer of other
tools like Cloud Compare (www.cloudcompare.org).

Open eVision User Guide

http://www.pointclouds.org/
http://www.cloudcompare.org/

178

As shown on the screen shots below, data in point cloud are in world coordinate system,
expressed in the calibration object units. Distances and angles are correct and then metric
measures are possible. However, processing on point clouds can be difficult and costly and then
the ZMap representation is an alternative allowing 2D processing on metric world space.

The resulting point cloud viewed in the Cloud Compare application

Open eVision User Guide

179

The resulting point cloud in the PCL viewer; the color ramp shows that the main body plane of the
remote is not aligned with an axis

Searching for a reference plane
To perform measurements and processing, it is usually mandatory to transform the data to a
reference frame. For the remote controller, we want to level to the main plane supporting the
keys and orient the points along the remote edge.

If the depth map has been previously registered (by a consistent acquisition process or by the
detection of fiducial markers), it may be possible to build the reference plane from 3 chosen
points (points to be known as part of the reference plane).

// Use 3 known points to build the reference plane
E3DPoint p1(600.5, 450.5, object_depthmap.GetZValue(600, 450));
E3DPoint p2(1700.5, 470.5, object_depthmap.GetZValue(1700, 470));
E3DPoint p3(840.5, 2300.5, object_depthmap.GetZValue(840, 2300));

// convert these points from depth map space to world space, using the calibration model
E3DPoint w1, w2, w3;
w1 = calibration_model.Apply(p1);
w2 = calibration_model.Apply(p2);
w3 = calibration_model.Apply(p3);

// build the world plane using 3 points
E3DPlane reference_plane(w1, w2, w3);

The original object depth map and the position of 3 points used for the reference plane calculation

Another option, if the depth map is not registered, is to use the E3DPlaneFitter class. This
function tries to find the main plane from a point cloud using a probabilistic approach. It finds a
subset of the point cloud that lies on a plane, given a user defined threshold tolerance.

The distance tolerance is a parameter of E3DPlaneFitter and must be adapted depending on the
scale, noise and curvature of the plane in the point cloud.

// Use a E3DPlaneFinder with a distance tolerance of 0.1 (world space coordinate)
float distance_tolerance=0.1f;
EPlaneFinder plane_finder(distance_tolerance);
E3DPlane reference_plane=plane_finder.Find(point_cloud);

Open eVision User Guide

180

The principal plane (in green) extracted from the point cloud by E3DPlaneFinder class

Building the ZMap
The ZMap is a gray scale 2D image, representing the projection of the 3D points to a reference
plane. The value of the pixels of the ZMap is the distance of the 3D point to the reference plane,
coded in a fixed point representation.

The ZMap also supports the “undefined pixel” specific value, when no point is projected on a
pixel and there is no valid value at that position.

As shown below, the point cloud to ZMap conversion can be made using default values for all
parameters: resolution and scale of the ZMap, reference plane, orientation, origin will all be
chosen automatically.

// Create the converter
EPointCloudToZMapConverter pc2zmap;

// Create a 16 bits ZMap and fill it with point cloud points
EZMap16 zmap;
pc2zmap.Convert(point_cloud, zmap);

// Save the ZMap as a PNG image
zmap.SaveImage("zmap.png");

Open eVision User Guide

181

The generated depth map with default parameters

The body of the remote is not leveled and the object is not aligned. Nevertheless, comparing to
the depth map, the ZMap is a calibrated representation of the object. Metric distances can be
evaluated on the ZMap.

The current implementation of the ZMap converter simply projects 3D points on the ZMap
image. Thus, depending on the point density and projection parameters, undefined pixels and
region may appear in the ZMap.

The ZMap converter automatically perform a filling algorithm on undefined pixels. Disable it
with the EnableFillMode(false).

EnableFillMode(false) and EnableFillMode(true)

To avoid undefined pixels, choose a target scale for the ZMap. The method SetScale() changes
the target X and Y resolution (in metric unit per pixel).

With the default configuration, the ZMap generator uses a horizontal reference plane. Use the
SetReferencePlane() method to “level” the object and use the main body as the reference plane.
SetOrientationVector() specifies the direction of the X (width) axis of the ZMap. The orientation
vector allow to “rotate” the object around the reference plane normal.

Open eVision User Guide

182

// level the object by defining a reference plane
pc2zmap.SetReferencePlane(reference_plane);

// align to the world Y axis
pc2zmap.SetOrientationVector(E3DPoint(-0.07501, 0.9964, -0.03761));

// choose a resolution of 0.2mm per pixel
pc2zmap.SetMapXYResolution(0.2f);

// generate the ZMap
pc2zmap.Convert(point_cloud, zmap);

The ZMap with a reference plane previously calculated, an orientation to align the object and a reduced
resolution

Use queries on ZMap to retrieve metric coordinates (for example, to measure the size and/or the
height of a feature). Useful functions are GetWorldPositionFromPixelPosition(x,y) and GetZValue
(x,y).

float h1 = zmap.GetZValue(638, 128); // get “height” at position P1
float h2 = zmap.GetZValue(595, 128); // get “height” at position P2

E3DPoint p3 = zmap.GetWorldPositionFromPixelPosition(437, 98); // get world position at p3
E3DPoint p4 = zmap.GetWorldPositionFromPixelPosition(437, 288); // get world position at p4
float d = p3.DistanceTo(p4); // world distance between p3 and p4

● h1 (1.15601) and h2 (1.83618) are distance above the ZMap reference plane. These are values
in millimeters, the difference evaluates the “curvature” of the key.

● P1 (58.843, 84.7838, 32.1084) and P2 (20.9479,81.9271, 32.0041) are positions in the original
3D world space.

● The distance d (38.0028) represents the width of the remote keyboard in millimeters.

Open eVision User Guide

183

The reference plane can be shifted (translated) to remove the remote controller body and keep
only the keys in the ZMap. An 8 bits ZMap must be used to be compatible the other Open
eVision 2D libraries.

// shift the plane by 1mm in the normal direction
float d = reference_plane.GetSignedDistanceFromOrigin();
reference_plane.SetSignedDistanceFromOrigin(d + 1.f);
pc2zmap.SetReferencePlane(reference_plane);
// choose the scale for the Z axis (2mm for 256 grey scale values)
pc2zmap.SetMapZResolution(2.f / 256);
// convert the point cloud to a 8 bits ZMap
EZMap8 zmap8;
pc2zmap.Convert(point_cloud, zmap8);

ZMap with shifted reference plane: only the keys remain visible while other pixels are set to 0 (undefined
value)

TIP
This image can be used in 2D libraries like EasyImage, EasyObject or
EasyGauge.

Processing the ZMap
On a ZMap, the gray value of a pixel is the distance (height) above the reference plane.
Threshold, filters, morphology and other image operators can be used directly.

Here is an example of a region segmentation using EasyObject:

// segment the objects of the ZMap (default is Minimum Residue segmentation method)
ECodedImage2 coded_image;
EImageEncoder image_encoder;
image_encoder.Encode(zmap8.AsEImage(), coded_image);

// filter the object by area
EObjectSelection object_selection;
object_selection.AddObjects(coded_image);
object_selection.RemoveUsingUnsignedIntegerFeature(EFeature_Area, 100, ESingleThresholdMode_Less);

Open eVision User Guide

184

The extracted objects with EasyObject on the ZMap image

The ZMap includes a EWorldShape object that you can use for EasyGauge measurement. The
EWorldShape class represents the scale between the image space and the world space.

// get the world shape from the ZMap
const EWorldShape& world_shape = zmap8.GetWorldShape();

// setup a point gauge using that world shape
EPointGauge pointGauge;
pointGauge.Attach(&world_shape);

// set gauge center point and tolerances in world space (mm)
pointGauge.SetCenterXY(128.f, 25.f); // 128mm and 25mm from the upper left corner
pointGauge.SetTolerances(15.f, 0.f); // 15mm, half gauge size

// perform the measurement on the ZMap
pointGauge.Measure(&zmap8.AsEImage());

// get the 2 points and calculate the length of the key, values are in millimeters
EPoint p1 = pointGauge.GetMeasuredPoint(0);
EPoint p2 = pointGauge.GetMeasuredPoint(1);
float length = p1.Distance(p2); // return 21.619mm

Open eVision User Guide

185

A point gauge on a ZMap in Open eVision Studio: the parameters are the same as the code snippet above

6.2. Inspecting a PCB

With Easy3D, it is possible to use depth maps for PCB inspection. This section presents a simple
detection of missing or misplaced components on a PCB. The processing is done entirely with
2D images but use depth maps as inputs.

The workflow is as follow:

1. Perform a 3D acquisition or create the depth map with software laser line extraction
(ELaserLineExtractor class). Retrieve the grayscale image corresponding to the depth map
(EDepthMapROI8.AsEImageBW8() method).

2. Align the image using fiducial markers (EMatcher class).

3. Search for the PCB plane and subtract it from the aligned image, only the components and
the connectors remain (EasyImage::Oper(EArithmeticLogicOperation_Subtract…) function).

4. Compare the processed image to a golden sample to detect missing or misplaced
components (EasyImage::Oper(EArithmeticLogicOperation_Compare…) or EChecker).

The source depth map of a PCB, outputs of CoaxLink Quad 3D-LLE

The same depth map displayed as a 3D point cloud with false colors

Open eVision User Guide

186

Align the image using fiducial markers (2 holes)

The image with reference plane subtracted, leaving only the components

Open eVision User Guide

187

The comparison of the image (left) with the golden sample (right, processed with the same workflow)
shows the missing component (in red)

6.3. Measuring the Warpage of a PCB

Source code and images

This application example is provided as a C++ sample program, named 3DPCBWarpage:
□ The source code is located in Sample Programs\MsVc samples\3DPCBWarpage.
□ The sample images are located in Sample Images\Easy3D\PCB Warpage.

NOTE
To run this program, you need the Easy3D and EasyGauge licenses.

Display output of the 3D PCB Warpage application example

NOTE
The calibration process is not described in this document. We assume that a
calibration has been done and that the metric unit used is the mm.

Open eVision User Guide

188

Application objective

This application demonstrates how to measure the warpage of a PCB.

TIP
In this application, we define the warpage as the difference between the
highest and the lowest surface points when the PCB regression plane is
oriented horizontally. In other words, we fit a plane through the PCB points
and take the perpendicular distance between the highest point above and
the lowest point below this regression plane.

The main steps of the process are:

1. Making an initial ZMap using a first estimation of an average PCB plane.

2. Filtering the data by:
□ Removing the points that show a large height deviation with respect to their neighbors.
□ Applying a smooth filter on the remaining points.

For the generation of the final ZMap, the application will fit a regression plane through the
remaining / filtered data.

3. On the ZMap, detecting the corners of the PCB for the alignment (optional).

4. Producing the final ZMap that the application will use to compute the warpage of the PCB.

TIP
The (optional) alignment on the PCB edges ensures that the resulting ZMap
is always the same, independently of the orientation of the PCB during the
measurement.

TIP
Moreover, on the final ZMap, the horizon is parallel with the PCB regression
plane. This is necessary to have a well-defined warpage value.

Open eVision User Guide

189

Generating the initial ZMap

1. Using a calibration model (model_ in the code) and a depth map (« dm_ »), the application
produces a point cloud (« pc_ »).

TIP
Alternatively, you can load directly a point cloud from a file.

2. In this point cloud, the application localizes the PCB plane by searching for the largest plane,
using a plane finder object of the type E3DPlaneFinder. As we want to handle a curved PCB, a
large tolerance (+/- 1mm) is used by the plane finder object.

This step produces a reference plane called refPlane_1 of the type E3DPlane.

3. The application crops any data point that is farther from the reference plane than 1 mm.

4. It uses refPlane_1 » to generate the first ZMap (called zmapBeforeAlignment). Actually, the
reference plane used for the ZMap generation is 10 mm below refPlane_1 so that all pixel
values of the ZMap are positive. This is illustrated on the figure below.

The code to produce the ZMap zmapBeforeAlignment is shown below.

// Apply calibration to the depth map, a metric 3D point cloud is generated
E3DDepthMapToPointCloudConverter converter;

Open eVision User Guide

190

converter.SetCalibrationModel(model_);
converter.Convert(dm_, pc_);

// Search for the PCB plane
float maximumDistanceToPlane = 1.0f; // 1.0 mm
E3DPlaneFinder finder(maximumDistanceToPlane); // tolerance for plane search = 1.0 mm
E3DPlane refPlane_1 = finder.Find(pc_); // finds the largest plane in the point cloud

// Crop any point distant from PCB plane
E3DPlaneCropper cropperPCB(refPlane_1); // 'refPlane_1' = ref. plane for the cropper
EPointCloud pcPlaneOnly; // only keep points close to the ref. plane

cropperPCB.Crop(pc_, pcPlaneOnly, EPlaneCropperType_KeepClose, maximumDistanceToPlane);

// ZMap projection of PCB plane, using reference plane and fixed resolution
float zMapPixelSize = 0.050f; // ZMap horizontal resolution: 1 pixel = 50µm = 0.050 mm
float zMapVerticalResolution = 0.001f; // ZMap vertical resol.: 1 gray value = 1µm (= 0.001 mm)
float zMapOffset = 10.0f; // 10 mm
E3DZMapGenerator zmapGenerator;
EZMap16 zmapBeforeAlignment;

zmapGenerator.SetScale(zMapPixelSize); // horizontal resolution = 50µm/pixel
zmapGenerator.SetZScale(zMapVerticalResolution); // vertical resolution = 1 µm/GV
zmapGenerator.SetReferencePlane(refPlane_1 - zMapOffset); // 10mm below refPlane_1
zmapGenerator.SetOrientationVectorMode(EZMapOrientationVectorMode_XAxis);
zmapGenerator.SetExtension(1.f); // add a 1mm 3D extension, create a border around the ZMap
zmapGenerator.Convert(pcPlaneOnly, zmapBeforeAlignment);

int zmapWidth = zmapBeforeAlignment.GetWidth();
int zmapHeight = zmapBeforeAlignment.GetHeight();

The following image shows this first ZMap with a 16-bit per pixel resolution.

Open eVision User Guide

191

ZMap zmapBeforeAlignement

In this image:
□ Background pixels have the value "0" (black). This value is reserved for “undefined pixels”

(nothing detected). Pixels having a value different from zero are “valid pixels”.
□ The horizontal resolution is set to 50 µm/pixel and the vertical resolution is set to 1 µm

for one gray value.
Because the reference plane of the ZMap is 10 mm below the PCB, the average gray value
in the image is 10000 (10000 gray values = 10000 µm).

□ The size of this ZMap is not specified; it is automatically computed from the size of the
bounding box, enlarged by 1 mm so that there is a black border around the PCB. This
enlargement is specified by the method SetExtension of the ZMap generator. The black
border around the PCB helps for the detection of the edges.

Reducing and filtering the noise

On the ZMap, the application should ignore the following points during the computation of the
warpage:

□ Isolated noisy points on the background.
□ Noisy points inside the holes or on the pads.

The application removes points and applies a low-pass filter on the remaining points to detect
only the slow / global PCB deformations. This filtering is done in 2 steps.

Filter 1: removing the outliers

1. The filter RemoveNoise defines a kernel window that is moved over every pixel of the ZMap.

2. For each pixel of the ZMap image, the kernel window is centered on this pixel and the filter
condition determines if the center pixel is either kept or removed.

The filter condition used here is E3DNoiseRemovalMethod_AbsoluteDifferenceFromMean; it
compares the value of the pixel in the center with the average of all valid pixels in the kernel
window.

Open eVision User Guide

192

This is illustrated on the figure below.

The application evaluates the condition to keep or remove the center pixel as follow :
□ If a window has less than 25% of defined pixels (see ratioValidPixelsFilter in the code)

or if the center pixel is already undefined, this center pixel is marked as undefined.
□ The application computes the height deviation of the center point with respect to all the

valid points in the kernel window and, if the resulting height deviation exceeds 30 µm
(see thresholdFilter in the code), the application removes the pixel in the center of the
kernel window (it actually replaces it by 0, meaning « undefined pixel »).

Filter 2: applying an averaging filter

1. In a second step, the application applies an averaging filter (low-pass) in order to remove the
random noise.

2. The filter ComputeAverageMap also defines a kernel window that is moved over every pixel.

3. If there are enough valid pixels within the window (at least 25% in this case) and if the center
pixel is valid, this center pixel is replaced by the average of all pixels within the kernel
window.

Open eVision User Guide

193

Filtering code

The code used for the filtering of the ZMap data is:

// Process the ZMap to remove noise and small scale structures
// Filters parameters
int halfKernelSizeFilter = 25; // kernel size = 2 x halfKernelSizeFilter + 1 pixel = 51
float thresholdFilter = 0.030f; // threshold = maximum deviation from mean
float ratioValidPixelsFilter = 0.25f; // requires at least 25% of valid points in the kernel

// Apply noise removal filter
EZMap16 zmapBeforeAlignmentFilter1; // output of the filter
zmapBeforeAlignmentFilter1.SetSize(zmapBeforeAlignment);
Easy3D::RemoveNoise(zmapBeforeAlignment, zmapBeforeAlignmentFilter1,

E3DNoiseRemovalMethod_AbsoluteDifferenceFromMean,
halfKernelSizeFilter, thresholdFilter, ratioValidPixelsFilter, false);

// Apply low-pass filter
EZMap16 zmapBeforeAlignmentFilter2; // output of the second filter
zmapBeforeAlignmentFilter2.SetSize(zmapBeforeAlignment);
Easy3D::ComputeAverageMap(zmapBeforeAlignmentFilter1, zmapBeforeAlignmentFilter2,

halfKernelSizeFilter, ratioValidPixelsFilter);

The different steps of the filtering are illustrated below:

The 2 steps of the ZMap filtering

Open eVision User Guide

194

Aligning the ZMap on the PCB edges (optional)

This optional step consists in finding the orientation of the PCB (detection of a rectangle).

TIP
We could skip this step for the computation of the warpage but aligning on
the edges makes the comparison of different ZMaps with each other easier.

To generate a ZMap aligned on the PCB edges:

1. The application converts the ZMap to an 8-bit image. This is necessary to use the 2D tool set
of Open eVision.

2. Using EasyGauge, it detects the edges of the PCB by fitting a rectangle on the ZMap image.

The application uses the transitions between the undefined (0) and the valid (non-zero) pixels to
detect the position of the edges of the rectangle.

The use of a rectangular gauge on the ZMap image is illustrated below:

The corresponding code is:

// From the ZMap create an 8-bit image for alignment
EImageBW8 imageBeforeAlignment8(zmapWidth, zmapHeight);
// conversion 16-bits to 8-bits
EasyImage::Convert(&zmapBeforeAlignmentFilter2.AsEImage(), &imageBeforeAlignment8);

// Search for the PCB "rectangle" in 8-bits image

Open eVision User Guide

195

float rectangleDimTolerance = 500.f; // 500 pixels tolerance on the rectangle's dimension
ERectangleGauge ERectangleGauge1;
ERectangle measuredRectangle;
ERectangleGauge1.SetTolerance(rectangleDimTolerance);
ERectangleGauge1.SetSize((float)(zmapWidth), (float)(zmapHeight));
ERectangleGauge1.SetThreshold(20);
ERectangleGauge1.SetCenterXY((float)(zmapWidth / 2.0), (float)(zmapHeight / 2.0));
ERectangleGauge1.SetTransitionChoice(ETransitionChoice_NthFromBegin);
ERectangleGauge1.SetTransitionIndex(0); // take the first transition ...
ERectangleGauge1.SetTransitionType(ETransitionType_Bw); // ... from black to white
ERectangleGauge1.SetNumFilteringPasses(10);
ERectangleGauge1.SetFilteringThreshold(5.0f); // threshold = 5 x the mean deviation
ERectangleGauge1.Measure(&imageBeforeAlignment8);
measuredRectangle = ERectangleGauge1.GetMeasuredRectangle();
float rectangleSizeX = ceil(measuredRectangle.GetSizeX()); // will be the width of the final ZMap
float rectangleSizeY = ceil(measuredRectangle.GetSizeY()); // will be the height of the final ZMap

// Store the 3D coordinates of the aligned rectangle corners
EPoint corner_2D[4];
E3DPoint corner_3D[4];
measuredRectangle.GetCorners(corner_2D[0], corner_2D[1], corner_2D[2], corner_2D[3]);
for (int i = 0; i<4; i++)
{
E3DPoint cornerPtZMap;
cornerPtZMap = E3DPoint(corner_2D[i].GetX(), // X pixel position

corner_2D[i].GetY(), // Y pixel position
zMapOffset / zMapVerticalResolution); // = 10000 (height of the ZMap reference plane)

zmapBeforeAlignmentFilter2.PixelToWorld(cornerPtZMap, corner_3D[i]);
}

Creating the filtered point cloud

1. In order to create a new ZMap with a well-defined reference plane (parallel with the
regression plane through the filtered points), the application generates a point cloud from
the smoothed ZMap.

In the code below, the filtered point cloud is named filteredPc:

// From the filtered ZMap, generate a new 3D point cloud
// Use that point cloud to estimate a better reference plane
EPointCloud filteredPc;
zmapBeforeAlignmentFilter2.ToPointCloud(filteredPc);
E3DPlaneFitter planeFitter;
E3DPlane refPlane_2 = planeFitter.Fit(filteredPc); // find the best fit plane

2. The application fits a plane (the final regression plane called refPlane_2) through the filtered
data points.

3. This new reference plane, that is very close to refPlane_1, is the new « horizontal » reference
for the generation of the final ZMap on which the warpage is computed.

This plane is much less sensitive to the noise and outliers found in the original data.

Open eVision User Guide

196

Computing the warpage of the PCB

1. The application creates the final ZMap using the filtered point cloud.

The position of this new ZMap is based on:
□ The plane Ref_plane2 minus 10 mm as the reference plane.
□ The 3D position of the corners to determine the reference (lower-left) corner and the new

horizontal orientation (X axis). Using the corner positions, we specify the origin and the
orientation vector for the generation of the new ZMap, assuming that the two planes are
very close to each other.

The code that generates this aligned ZMap is:

// Generate the new ZMap with the filtered data
EZMap16 zmap_;
zmapGenerator.SetOrigin(corner_3D[2]);
zmapGenerator.SetReferencePlane(refPlane_2 - zMapOffset); // refPlane_2 – 10mm
E3DPoint horizDirection(corner_3D[1].X - corner_3D[0].X,

corner_3D[1].Y - corner_3D[0].Y,
corner_3D[1].Z - corner_3D[0].Z);

zmapGenerator.SetOrientationVector(horizDirection);
zmapGenerator.SetResolution((int)rectangleSizeX, (int)rectangleSizeY);
zmapGenerator.SetExtension(0.f); // no border
zmapGenerator.Convert(filteredPc, zmap_);

2. To compute the warpage of the PCB, the application only needs the maximum and the
minimum height from the aligned ZMap.

It retrieves these values with the static method ComputeStatistics in the class Easy3D.

The corresponding code is:

// Calculate warpage in metric unit
UINT32 validCount;
float minValue, maxValue, averageValue;
Easy3D::ComputeStatistics(zmap_, validCount, minValue, maxValue, averageValue);
float warpage = maxValue - minValue;

● The sample application displays the PCB in 3D and applies a color map.

● The 3D viewer applies a scale factor of 10 on Z axis to emphasize the warpage.

Open eVision User Guide

197

Sample 3D renderings of the resulting depth maps (showing the warpage) and their
corresponding warpage measurement are illustrated below:

Warpage = 0.145 mm

Warpage = 0.407 mm

Warpage = 0.620 mm

Open eVision User Guide

	1. Dealing with Pixel Containers and Files
	1.1. Pixel Container Definition
	1.2. Pixel Container Types
	1.3. Supported Image File Types
	1.4. Pixel and File Types Compatibility
	1.5. Color Types

	2. Conventions
	2.1. Conventions for Strings
	2.2. Image Coordinate Systems
	2.3. Image and Depth Map Buffer

	3. Basic Operations
	3.1. Memory Allocation
	3.2. Loading a Pixel Container File
	3.3. Saving a Pixel Container File
	3.4. Drawing in Open eVision
	3.5. 3D Rendering of 2D Images
	3.6. Vector Types and Main Properties
	3.7. ROI Main Properties
	3.8. Arbitrarily Shaped ROI (ERegion)
	3.9. Flexible Masks
	3.10. Profile

	4. 3D Tools
	4.1. Easy3D - Using 3D Toolset
	Basic Concepts
	Static Methods
	Point Cloud
	Mapping Attributes
	Normals and Curvatures
	Coordinates Transformations
	Reducing a Point Cloud
	Managing Planes
	Aligning
	Using Spheres

	Mesh
	ZMap
	Generating a ZMap
	Creating a Point Cloud from a ZMap
	Managing the Coordinates

	3D Viewer
	Photometric Stereo
	Photometric Stereo and Process
	Calibration
	Computation and Results
	Processing the Results with Open eVision Tools
	Optimizing your Setup
	Improving the Results

	4.2. Easy3DLaserLine - Laser Line Extraction and Calibration
	Laser Triangulation
	The Laser Line 3D Acquisition Pipeline
	Laser Line Extraction
	Software vs Hardware Line Extraction
	Calibration
	Object-Based Calibration Guidelines

	4.3. Easy3DObject - Extracting 3D Objects
	Purpose and Workflow
	Object Features
	Extracting and Using Objects
	Use Case - Inspecting a PCB

	4.4. Easy3DMatch - 3D Alignment and Comparison
	Purpose and Workflow
	Alignment (E3DAligner)
	Comparison (E3DComparer)
	Alignment and Comparison (E3DMatcher)
	3D Sensor Fusion (EPointCloudMerger)

	5. Code Snippets
	5.1. Basic Types
	Loading and Saving Images
	Interfacing Third-Party Images
	Retrieving Pixel Values
	ROI Placement
	Vector Management
	Exception Management

	5.2. Easy3D
	Using EFilters to Remove the Noise on a ZMap Based on the Standard Deviation
	Using EFilters to Remove the Noise on a ZMap Based on the Derivation from Nei...
	Reducing the Size of a Cloud with Random Decimation
	Reducing the Size of a Cloud with Grid Decimation
	Using Photometric Stereo
	Using Flat Images to Improve Photometric Stereo
	Performing Plane Leveling on Point Clouds
	Using an ERegion to Crop a ZMap

	5.3. Easy3DObject
	Extracting 3D Objects with a Selection Criterion
	Inspecting a Feature from the List of E3DObjects
	Drawing a 2D Feature from the List of E3DObjects
	Drawing 3D Features from a List of E3DObjects

	5.4. Easy3DMatch
	E3DAligner Minimal Code
	E3DAligner Reprojection Plane
	E3DAlignment Align Sample
	E3DComparer Minimal Sample
	E3DComparer Advanced Sample
	E3DMatcher Minimal Sample
	E3DMatcher Advanced Sample
	EPointCloudMerger Sample

	6. Application Examples
	6.1. Measuring a Remote Controller
	6.2. Inspecting a PCB
	6.3. Measuring the Warpage of a PCB

