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1. Dealing with Pixel Containers and
Files

1.1. Pixel Container Definition

Image objects

The Open eVision image objects contain image data that represents rectangular images.

Each image object has a data buffer, accessible via a pointer, where pixel values are stored
contiguously, row by row.

Image main parameters

The rectangular array of pixels of an Open eVision image object is characterized by the EBaseROI
parameters:

● The Width is the number of pixels per row of the image.

● The Height is the number of rows of the image.

● The Size contains both the Width and the Height of the image.

The maximum size for the width and the height is:
□ 32,767 (215-1) in Open eVision 32-bit
□ 2,147,483,647 (231-1) in Open eVision 64-bit

● The Plane contains the number of color components.
□ For gray-level images: Plane = 1
□ For color images: Plane = 3
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Classes

The image and ROI classes derive from the abstract class EBaseROI and inherit all its properties.

Depth maps

A depth map represents a 3D object using a 2D grayscale image in which each pixel represents a
3D point.

□ The pixel coordinates are the X and Y coordinates of the point.
□ The gray value of the pixel is a representation of the Z coordinate of the point.
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Point clouds

A point cloud is an unstructured set of 3D points representing discrete positions on the surface
of an object.

The point clouds are produced by various 3D scanning techniques, such as laser triangulation,
time of flight or structured lighting.

2 For details, see, for example, en.wikipedia.org/wiki/Point_cloud.

1.2. Pixel Container Types

2 For the enumeration of the available types, see "EImageType Enum" on page 1.

Images

Open eVision supports the following image types according to their pixel types.

Open
eVision

Genicam
PNFC Definition Class

BW1 Mono1 1-bit black and white image (8 pixels are stored in 1 byte). EImageBW1
BW8 Mono8 8-bit grayscale image (each pixel is stored in 1 byte). EImageBW8

BW16 Mono16 16-bit grayscale image (each pixel is stored in 2 bytes). EImageBW16
BW32 Mono32 32-bit grayscale image (each pixel is stored in 4 bytes). EImageBW32

C15 RGB5 15-bit color image (each pixel is stored in 2 bytes).
Compatible with Microsoft® Windows RGB15 color images. EImageC15

C16 RGB565 16-bit color image (each pixel is stored in 2 bytes).
Compatible with Microsoft® Windows RGB16 color images. EImageC16

C24 RGB8 24-bit color image (each pixel is stored in 3 bytes).
Compatible with Microsoft® Windows RGB24 color images. EImageC24

C24A BGRa8 32-bit color image (each pixel is stored in 4 bytes).
Compatible with Microsoft® Windows RGB32 color images. EImageC24A

TIP
Easy.GetBestMatchingImageType returns the best matching image type for a
given file on disk.
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Depth Maps

Open
eVision

Genicam
PNFC Definition Class

EDepth8 Coord3D_C8 8-bit depth map
(each pixel is stored in 1 byte as an integer) EDepthMap8

EDepth16 Coord3D_C16 16-bit depth map
(each pixel is stored in 2 bytes as a fixed point) EDepthMap16

EDepth32f Coord3D_C32 32-bit depth map
(each pixel is stored in 4 bytes as a float) EDepthMap32f

TIP
8 and 16-bit depth map values are stored in buffers compatible with the 2D
Open eVision images.

Point Clouds

Open
eVision Genicam PNFC Definition Class

Point Cloud Coord3D_ABC32 Set of points coordinates
(each coordinate is stored in 4 bytes as a float) EPointCloud

1.3. Supported Image File Types

2 For the enumeration of the available types, see "EImageFileType Enum" on page 1.

Type Description
BMP Uncompressed image data format (Windows Bitmap Format).

JPEG A lossy data compression standard issued by the Joint Photographic Expert Group
registered as ISO/IEC 10918-1. The compression irretrievably loses quality.

JFIF JPEG File Interchange Format.

JPEG-2000

A data compression standard issued by the Joint Photographic Expert Group registered as
ISO/IEC 15444-1 and ISO/IEC 15444-2.
Open eVision supports only lossy compression format, file format and code stream variants.
- The code stream describes the image samples.
- The file format includes meta-information such as the image resolution and color space.

PNG Lossless data compression method (Portable Network Graphics).

Serialized The Euresys proprietary image file format obtained from the serialization of Open eVision
image objects.

TIFF

The Tag Image File Format is currently controlled by Adobe Systems and uses the LibTIFF
third-party library to process images written for the 5.0 or 6.0 TIFF specification.
- The file save operations are lossless and save the images without any compression.
- The file load operations support all the TIFF variants listed in the LibTIFF specification.
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1.4. Pixel and File Types Compatibility

For the compatible combinations in the following table, the image integrity is preserved with no
data loss (except from JPEG and JPEG2000 with lossy compression).

The other combinations are not supported and an exception occurs if you use them.

Type BMP JPEG JPEG2000 PNG TIFF Serialized

BW1 ✓ – – ✓ ✓ ✓

BW8 ✓ ✓ ✓ ✓ ✓ ✓

BW16 – – ✓ ✓ ✓ 2 ✓

BW32 – – – – ✓ 2 ✓

C15 ✓ ✓ 1 ✓ 1 ✓ 1 ✓ 1 ✓

C16 ✓ ✓ 1 ✓ 1 ✓ 1 ✓ 1 ✓

C24 ✓ ✓ ✓ ✓ ✓ 1 ✓

C24A ✓ – – ✓ – ✓

Depth8 ✓ ✓ ✓ ✓ ✓ ✓

Depth16 – – ✓ ✓ ✓ 2 ✓

Depth32f – – – – – ✓

● ✓ 1 : C15 and C16 formats are automatically converted into C24 during the save operation.

● ✓ 2 : BW16 and BW32 are not supported by Baseline TIFF readers.

1.5. Color Types

Open eVision supports the following color systems:

EISH Intensity, Saturation, Hue
ELAB CIE Lightness, a*, b*
ELCH Lightness, Chroma, Hue
ELSH Lightness, Saturation, Hue
ELUV CIE Lightness, u*, v*
ERGB NTSC/PAL/SMPTE Red, Green, Blue
EVSH Value, Saturation, Hue
EXYZ CIE XYZ
EYIQ CCIR Luma, Inphase, Quadrature
EYSH CCIR Luma, Saturation, Hue
EYUV CCIR Luma, U Chroma, V Chroma
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2. Conventions

2.1. Conventions for Strings

Since Open eVision 23.08, the only character encoding used in the Open eVision libraries and
tools is UTF-8.

□ All methods taking std.string as argument expect an UTF-8 encoded std.string.
□ All methods returning a std.string always return it as UTF-8 encoded.

Backward compatibility on Windows

On Windows (but not on Linux), there is also a sanitization process to preserve backward
compatibility with older releases that didn't use the UTF-8 encoding.

● The content of each input string is checked to ensure it is UTF-8 encoded.

If it is not the case:
□ The string is assumed to be encoded using the current Windows Language for Non-

Unicode Programs parameter.
□ It is converted to UTF-8.

● The output strings of all libraries and tools are always UTF-8.

TIP
Despite the presence of this backward compatibility layer it is recommended
to use exclusively UTF-8 to interact with Open eVision on all platforms to
ensure the best performance and compatibility.

2.2. Image Coordinate Systems

The conventions below apply to all Open eVision functions and results.
□ Pixel coordinates are usually given as integer numbers.
□ Some results can use subpixel precision with real (floating point) numbers.
□ Some exceptions apply and are documented per library.

Open eVision User Guide
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Integer coordinates

● The origin (0,0) of the coordinate system is the upper left pixel of the image.

● The lower right pixel is (width-1, height-1).

Real coordinates

● With floating point (x,y) coordinates, the origin is the upper left corner of the upper left pixel.

● The first pixel area ranges in [0,1[ for X and Y axis.

● Coordinates greater or equal than the width or the height are outside the image.

Open eVision User Guide
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2.3. Image and Depth Map Buffer

The pixels of an image and of an depth map are stored contiguously into a buffer, from left to
right and from top to bottom, in the Windows bitmap format (top-down DIB -device-
independent bitmap-).

The buffer address is a pointer to the address that contains the top left pixel of the image.

● Image buffer pitch
□ The alignment must be a multiple of 4 bytes.
□ The default pitch in Open eVision is 32 bytes for performance reasons.

Memory layout

Image format Layout Illustration

EImageBW1 Stores 8 pixels in 1 byte

EImageBW8
EDepthMap8 Store 1 pixel in 1 byte

EImageBW16 Stores 1 pixel in 2 bytes

EImageC15
Stores 1 pixel in 2 bytes
- Each color component is coded with 5 bits
- The 16th bit is unused

Open eVision User Guide
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Image format Layout Illustration

EImageC16
Stores 1 pixel in 2 bytes
- The colors 1 and 3 are coded with 5 bits
- The color 2 is coded with 6 bits

EDepthMap16 Stores 1 pixel in 2 bytes (fixed point format)

EImageC24 Stores 1 pixel in 3 bytes
- Each color component is coded with 8 bits

EImageC24A
Stores 1 pixel in 4 bytes.
- Each color component is coded with 8 bits
- The alpha channel is coded with 8 bits

EDepthMap32f Stores 1 pixel in 4 bytes (float format)

Open eVision User Guide

eimagec16-class.htm
edepthmap16-class.htm
eimagec24-class.htm
eimagec24a-class.htm
edepthmap32f-class.htm


14

3. Basic Operations

3.1. Memory Allocation

You can construct an image using an internal or an external memory allocation.

Internal memory allocation

The image object dynamically allocates and deallocates a buffer:
□ The memory management is transparent.
□ When the image size changes, a reallocation occurs.
□ When an image object is destroyed, the buffer is deallocated.

To declare an image with an internal memory allocation:

1. Construct an image object, for instance EImageBW8, either with width and height arguments or
using the SetSize function.

2. Access a given pixel using one of the multiple available functions.
For example, use GetImagePtr to retrieve a pointer to the first byte of the pixel at the given
coordinates.

External memory allocation

Control the buffer allocation or link a third-party image in the memory buffer to an Open
eVision image.

□ You must specify the image size and the buffer address.
□ When an image object is destroyed, the buffer is unaffected.

2 For details, see "Image and Depth Map Buffer" on page 12 and "Interfacing Third-Party
Images" on page 145.
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To declare an image with an external memory allocation:

1. Declare an image object, for instance EImageBW8.

2. Create a suitably sized and aligned buffer.

3. Assign the buffer to the image with SetImagePtr.

NOTE
Using the copy constructor of the EImage object to copy the externally
allocated image does not copy the buffer.
The copied image points to the same external buffer as the original image.

NOTE
If your buffer rows are not aligned on 4 bytes, use
InitializeFromUnalignedBuffer instead of SetImagePtr.
Please note that this allocates the memory internally and copies the external
buffer into the internal one instead of using the external one.

3.2. Loading a Pixel Container File

Loading images and depth maps

● Use the method Load to load image data into an image object.
□ It has only the argument path that includes the path, filename and file name extension.
□ The file type is determined by the file format.
□ The destination image is automatically resized according to the size of the image on disk.

● Load throws an exception when:
□ The file type identification fails.
□ The file type is incompatible with the pixel type of the image object.

NOTE: When loading a BW16 image (with integer values) in a depth map, the fixed point
precision set in the depth map (0 by default) is left unchanged and used.

Loading point clouds

Use the following methods to load a point cloud saved in a specific format:
□ EPointCloud.Load: Open eVision proprietary file format.
□ EPointCloud.LoadCSV: CSV file.
□ EPointCloud.LoadOBJ: OBJ file.
□ EPointCloud.LoadPCD: PCD file (supported in ASCII and binary modes).
□ EPointCloud.LoadPLY: PLY file (supported only in ASCII mode).
□ EPointCloud.LoadXYZ: XYZ file.
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3.3. Saving a Pixel Container File

Images and depth maps

● Use the method Save of an image or the method SaveImage of a depth map or a ZMap to save
image data of the object into a file.
□ The argument Path includes the path, file name and file name extension.
□ The argument Image File Type can be omitted. In this case, the file name extension is

used.

● Save throws an exception when:
□ The requested image file format is incompatible with the pixel type of the image object.
□ The file name extension is not supported while using the Auto file type selection method.

NOTE: When saving a 16-bit depth map, the fixed point precision is lost and the pixels are
considered as 16-bit integers.

TIP
The images with a width or a height larger than 65,536 must be saved in
Open eVision proprietary format.

Image File Type arguments

Argument Image file type

EImageFileType_Auto (Default) Automatically determined by the file name extension. See
below.

EImageFileType_
Euresys Open eVision Serialization

EImageFileType_Bmp Windows bitmap - BMP

EImageFileType_Jpeg JPEG File Interchange Format - JFIF

EImageFileType_
Jpeg2000 JPEG 2000 File format / Code Stream - JPEG2000

EImageFileType_Png Portable Network Graphics - PNG

EImageFileType_Tiff Tagged Image File Format - TIFF

If the argument is EImageFileType_Auto or is missing, the assigned image file type is:

File name extension
(case-insensitive) Assigned image file type

BMP Windows Bitmap format

JPEG or JPG JPEG File Interchange Format - JFIF

JP2 JPEG 2000 file format

J2K or J2C JPEG 2000 Code Stream

PNG Portable Network Graphics

TIFF or TIF Tagged Image File Format
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Saving JPEG and JPEG2000 lossy compressions

SaveJpeg and SaveJpeg2K specify the compression quality when saving compressed images. They
have two arguments:

□ Path: a string of characters including the path, filename, and file name extension.
□ Compression quality of the image file, an integer value in range [0: 100].

SaveJpeg saves image data using JPEG File Interchange Format – JFIF.
SaveJpeg2K saves image data using JPEG 2000 File format.

JPEG compression values

JPEG compression Description

JPEG_DEFAULT_QUALITY (-1) Default quality (*)

100 Superb image quality, lowest compression factor

75 Good image quality (*)

50 Normal image quality

25 Average image quality

10 Bad Image quality
(*) The default quality corresponds to the good image quality (75).

Representative JPEG 2000 compression quality values

JPEG 2000 compression Description

-1 Default quality (*)

1 Highest image quality, lowest compression factor

16 Good Image Quality (*) (16:1 rate)

512 Lowest image quality, highest compression factor
(*) The default quality corresponds to the good image quality (16:1 rate).

Saving point clouds

Use the following methods to save a point cloud in a specific format:
□ EPointCloud::Save: Open eVision proprietary file format.
□ EPointCloud::SaveCSV: CSV file.
□ EPointCloud::SaveOBJ: OBJ file.
□ EPointCloud::SavePCD: PCD file.
□ EPointCloud::SavePLY: PLY file.
□ EPointCloud::SaveXYZ: XYZ file.

TIP
The PCD format is supported in ASCII and binary modes.
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3.4. Drawing in Open eVision

Introduction

● Whenever relevant, the Open eVision tools provide methods Draw to render their contents
and/or configuration. This is, for instance, the contents of an EImage or the frame of an EROI.

● A given tool can have multiple methods Draw, usually one for each feature available.

● The Open eVision methods Draw take an object DrawAdapter as their main parameter, and
additional parameters for zoom and pan:

Tool::Draw(EDrawAdapter* adapter, float zoomX, float zoomY, float panX, float panY);
□ zoomX and zommY are expressed in percentage, 1 is the default value and means no zoom.
□ It can be different in the horizontal and vertical directions (which can be useful in the

case of non-square pixels for instance).
□ If you don’t provide a vertical zoom, or set it to 0, it will be set identical to the horizontal

one.
□ panX and panY are expressed in pixels, but in image coordinates. It means that the value

you pass to panX and panY are multiplied by the corresponding zoom before being
applied.

Example: How to draw an image and a ROI frame on a window under Windows:

EImageBW8 image;
EROIBW8 roi;
EWindowsDrawAdapter adapter(windowHdc);
image.Draw(adapter);
roi.DrawFrame(adapter);

Graphical interactions

● You can configure some of the Open eVision tools graphically and use the provided methods
to put your configuration in place.

● Graphical Interaction-enabled tools provide special parameters to some of their methods
Draw to draw handles on the tool representation.

● To capture the user interactions with those handles, these tools also provide two specialized
methods:
□ HitTest detects if a handle is under the mouse when providing it with the current cursor

coordinates. You typically use this test during a mouse button down event.
□ Drag moves the detected handle to the given coordinates. This in turn modifies the tool

configuration to match the new handle position. Drag is typically associated with the
mouse button up event.

NOTE: HitTest and Drag use the same zoom and pan parameters as Draw. You must set them
the same way (with the same values) to achieve the desired result.

Draw adapters

● The draw adapters are objects that, in addition to representing the context in which to draw,
provide methods to draw the selected primitives in that context.

● They are initialized by providing the targeted context to the constructor.

Open eVision User Guide
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● Some of the drawing methods provided by the draw adapters are (but are not limited to):
□ EDrawAdapter::Line / Lines draws one or more lines on the context
□ EDrawAdapter::Rectangle / FilledRectangle draws a rectangle, filled or not, on the context
□ EDrawAdapter::Ellipse / FilledEllipse draws an ellipse, filled or not, in the context
□ EDrawAdapter::Text / BackedText renders a text in the context, with or without background
□ EDrawAdapter::Image renders an image in the context

● For more information about the drawing primitives provided by the draw adapters, please
refer to the reference documentation.

● To set the color of the primitives, provide a pen and/or a brush and use the methods
EDrawAdapter::SetPen and EDrawAdapter::SetBrush.
□ If you do not provide a pen and/or a brush, the default colors are used.

● The set the font of the text, provide a font with the method EDrawAdapter::SetFont.

Standard draw adapters

Open eVision provides a set of off-the-shelf draw adapters that you can use in different
situations:

● EWindowsDrawAdapter allows to draw on Windows systems. To draw on a window, provide the
window’s HDC to its constructor, or, to draw in an EImage buffer, provide that EImage.
□ It relies on GDI and GDI+ to provide its services.
□ This is the preferred way to draw on Windows.

● QtDrawAdapter allows you to draw using Qt on a QPainter context. To draw on a QPainter
context, provide the QPainter to the constructor, or, to draw on an EImage buffer, provide
that EImage.
□ You can use the QtDrawAdapter both on Windows and Linux.
□ This is the preferred way to draw on Linux.

NOTE: QtDrawAdapter is using an external resource (namely Qt) and as such is provided as
source code in its own header rather than in the global Open eVision header. For
more information about external and custom draw adapters, see below.

● EGenericDrawAdapter is a draw adapter that can only render on an EImage, but it can do it in a
consistent manner on all supported OSes.
□ It is available on both Windows and Linux.

Drawing in an EImage

● As said above, you can draw in an EImage (usually an EImageBW8 or EImageC24) by initializing a
draw adapter with that image and using either the Open eVision methods Draw or the draw
adapter drawing primitives:

EImageBW8 image;
EMatrixCode code;
EWindowsDrawAdapter adapter(image);
code.DrawPosition(adapter);
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Custom draw adapters

● If you require a draw adapter to render in a specific, unsupported type of context (for ex. a
DirectDraw surface, an OpenGL context...), you can build your own draw adapter by deriving
from the interface EExternalDrawAdapter provided by Open eVision and implementing all the
required methods.

● Once this work is done, you will be able to use your new, custom draw adapter in the same
way as the off-the-shelf ones, taking advantage of Open eVision methods Draw.

● The provided QtDrawAdapter is a draw adapter built using that mechanism, you can use it as a
reference on how to build a custom draw adapter. The sources of the QtDrawAdapter are
bundled with the Qt Samples.

Enhanced Image Display

When the enhanced image display mode is enabled, a high-quality interpolation method is used
to display the resized images.

□ Set Easy::SetEnableEnhancedImageDisplay(bool) to TRUE, to enable the enhanced image
display.

□ By default, this option is disabled.
□ Enhanced image display has a significant impact on display speed, the drawing can be 4x

to 10x slower.
□ The drawing of images with EBW8Vector or EC24Vector used as Look Up Table doesn't

support enhanced image display

EnhancedImageDisplay disabled (left) and enabled (right)

□ Open eVision Studio exposes this option in View > Option dialog:

Open eVision User Guide
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3.5. 3D Rendering of 2D Images

These images are viewed by rotating them around the X-axis, then the Y-axis.

Gray 3D rendering

Easy::Render3D prepares a 3-dimensional rendering where gray-level values are altitudes.
Magnification factors in the three directions (X = width, Y = height and Z = depth) can be given.
The rendered image appears as independent dots whose size can be adjusted to make the
surface more or less opaque.

3D rendering

Color histogram 3D rendering

Easy::RenderColorHistogram prepares a 3-dimensional rendering of a color image histogram.
The pixels are drawn in the RGB space (not XY-plane) to show clustering and dispersion of RGB
values.
This function can process pixels in other color systems (using EasyColor to convert), but the raw
RGB image is required to display the pixels in their usual colors.

Magnification factors in all three directions (X = red, Y = green and Z = blue) can be given.

Color histogram rendering

Open eVision User Guide
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3.6. Vector Types and Main Properties

A vector is a one-dimensional array of pixels (taken from an image profile or contour).

EVector is the base class for all vectors. It contains all non-type-specific methods, mainly for
counting elements and serialization.

Profile in a C24 image, RGB values plot along profile and RGB values array (EC24Vector)

A vector manages an array of elements. Memory allocation is transparent, so vectors can be
resized dynamically. Whenever a function uses a vector, the vector type, size and structure are
automatically adjusted to suit the function needs.

The use of vectors is quite straightforward:

● To create a vector of the appropriate type:
□ Use its constructor and preallocate elements if required.

● To fill a vector with values:
□ Call the EVector::Empty member to empty it.
□ Call the EC24Vector::AddElement member to add elements one by one.
□ Use the indexing to access any element.

● To access a vector element, either for reading or writing:
□ Use the brackets operator EC24Vector::operator[].

● To determine the current number of elements:
□ Use the EVector::NumElements member.

● To draw the vector:
□ A pixel vector is a plot of the element values as a function of the element index, so its

graphical appearance depends on its type. You can draw a vector in a window. For
legibility, the drawing should appear on a neutral background.

□ Drawing is done in the device context associated to the desired window. By default,
curves are drawn in blue and annotations in black. You can define: graphicContext, width,
height, originX, originY, color0, color1 and color2.

□ The EC24Vector has three curves drawn instead of one, each corresponding to a color
component. By default the red, blue and green pens are used.
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Vector types

● EBW8Vector: a sequence of gray-level pixel values, often extracted from an image profile
(used by EasyImage::Lut, EasyImage::SetupEqualize, EasyImage::ImageToLineSegment,
EasyImage::LineSegmentToImage, EasyImage::ProfileDerivative...).

Graphical representation of an EBW8Vector (see Draw method)

● EBW16Vector: a sequence of gray-level pixel values, using an extended range (16 bits), mainly
for intermediate computations.

Graphical representation of an EBW16Vector

● EBW32Vector: a sequence of gray-level pixel values, using an extended range (32 bits), mainly
for intermediate computations
(used in EasyImage::ProjectOnARow, EasyImage::ProjectOnAColumn, ...).

Graphical representation of an EBW32Vector
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● EC24Vector: a sequence of color pixel values, often extracted from an image profile
(used by EasyImage::ImageToLineSegment, EasyImage::LineSegmentToImage,
EasyImage::ProfileDerivative, ...).

Graphical representation of an EC24Vector

● EBW8PathVector: a sequence of gray-level pixel values, extracted from an image profile or
contour, with corresponding pixel coordinates
(used by EasyImage::ImageToPath, EasyImage::PathToImage, ...).

Graphical representation of an EBW8PathVector (see Draw method)

● EBW16PathVector: a sequence of gray-level pixel values, extracted from an image profile or
contour, with corresponding pixel coordinates
(used by EasyImage::ImageToPath, EasyImage::PathToImage, ...).

Graphical representation of an EBW16PathVector (see Draw method)
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● EC24PathVector: a sequence of color pixel values, extracted from an image profile or contour,
with corresponding pixel coordinates
(used by EasyImage::ImageToPath, EasyImage::PathToImage, ...).

Graphical representation of an EC24PathVector (see Draw method)

● EBWHistogramVector: a sequence of frequency counts of pixels in a BW8 or BW16 image
(used by EasyImage::IsodataThreshold, EasyImage::Histogram, EasyImage::AnalyseHistogram,
EasyImage::SetupEqualize, ...).

Graphical representation of an EBWHistogramVector (see Draw method)

● EPathVector: a sequence of pixel coordinates. The corresponding pixels need not be
contiguous
(used by EasyImage::PathToImage and EasyImage::Contour).

Graphical representation of an EPathVector (see Draw method)

● EPeakVector: peaks found in an image profile
(used by EasyImage::GetProfilePeaks).

● EColorVector: a description of colors
(used by EasyColor::ClassAverages and EasyColor::ClassVariances).
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3.7. ROI Main Properties

ROIs are defined by a width, a height, and origin x and y coordinates.
The origins are specified with respect to the top left corner in the parent image or ROI.
The ROI must be wholly contained in its parent image.
The processing/analysis time of a BW1 ROI is faster if OrgX and Width are multiples of 8.

Save and load

You can save or load an ROI as a separate image, to be used as if it was a full image. The ROIs
perform no memory allocation at all and never duplicate parts of their parent image, the parent
image provides them with access to its image data.

The image size of the new file must match the size of the ROI being loaded into it. The image
around the ROI remains unchanged.

ROI Classes

An Open eVision ROI inherits parameters from the abstract class EBaseROI.

There are several ROI types, according to their pixel type. They have the same characteristics as
the corresponding image types.

□ EROIBW1
□ EROIBW8
□ EROIBW16
□ EROIBW32
□ EROIC15
□ EROIC16
□ EROIC24
□ EROIC24A

Attachment

An ROI must be attached to a parent (image/ROI) with parameters that set the parent, position
and size, and these links are updated transparently, avoiding dangling pointers.
A normal image cannot be attached to another image or ROI.

Nesting

Set and Get functions change or query the width, height and position of the origin of an ROI,
with respect to its immediate or topmost parent image.

An image may accommodate an arbitrary number of ROIs, which can be nested in a hierarchical
way. Moving the ROI also moves the embedded ROIs accordingly. The image/ROI classes provide
several methods to traverse the hierarchy of ROIs associated with an image.
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Nested ROIs: Two sub-ROIs attached to an ROI, itself attached to the parent image

Cropping

CropToImage crops an ROI which is partially out of its image. The resized ROI never grows.
An exception is thrown if a function attempts to use an ROI that has limits that extend outside
of the parents.

NOTE
(In Open eVision 1.0.1 and earlier, an ROI was silently resized or repositioned
when placed out of its image and sometimes grew. If ROI limits extended
outside parents, they were silently resized to remain within parent limits.)

Resizing and moving

ROIs can easily be resized and positioned by two functions and dragging handles:

● EBaseROI.Drag adjusts the ROI coordinates while the cursor moves.

● EBaseROI.HitTest informs if the cursor is placed over a dragging handle.
□ Once the handle is known, the cursor shape can be changed by an OnSetCursor MFC event

handler. HitTest is unpredictable if called while dragging is in progress.
□ HitTest can be used in an OnSetCursor MFC event handler to change the cursor shape, or

before a dragging operation like OnLButtonDown,
(or EvSetCursor and EvLButtonDown in Borland/CodeGear's OWL)
(or FormMouseMove and FormMouseDown in Borland/CodeGear's VCL).
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3.8. Arbitrarily Shaped ROI (ERegion)

See also: example: Inspecting Pads Using Regions / code snippets: ERegion

Regions or arbitrarily shaped ROI

You define and use regions of interest (ROI) to restrict the area processed with your vision tool
and to reduce and optimize the processing time.

In Open eVision:
□ An ROI (EROIxxx class) designates a rectangular region of interest.
□ A region (ERegion class) designates an arbitrarily shaped ROI. With regions, you can

determine precisely which part of the image, down to a single pixel, is used for your
processing.

Currently, only the following Open eVision methods support ERegions:
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Library Method
EasyImage EasyImage::Threshold
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Library Method
EasyImage::AutoThreshold
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Library Method
EasyImage::Copy
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Library Method
EasyImage::ConvolKernel
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Library Method
EasyImage::ConvolSymmetricKernel

Open eVision User Guide

easyimage-convolsymmetrickernel.htm


34

Library Method
EasyImage::ConvolLowpass1
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Library Method
EasyImage::ConvolLowpass2
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Library Method
EasyImage::ConvolLowpass3
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Library Method
EasyImage::ConvolUniform
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Library Method
EasyImage::ConvolGaussian
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Library Method
EasyImage::ConvolHighpass1
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Library Method
EasyImage::ConvolHighpass2
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Library Method
EasyImage::ConvolGradientX
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Library Method
EasyImage::ConvolGradientY
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Library Method
EasyImage::ConvolGradient
EasyImage::ConvolSobelX
EasyImage::ConvolSobelY
EasyImage::ConvolSobel
EasyImage::ConvolPrewittX
EasyImage::ConvolPrewittY
EasyImage::ConvolPrewitt
EasyImage::ConvolRoberts
EasyImage::ConvolLaplacianX
EasyImage::ConvolLaplacianY
EasyImage::ConvolLaplacian8
EasyImage::DilateBox
EasyImage::ErodeBox
EasyImage::OpenBox
EasyImage::CloseBox
EasyImage::WhiteTopHatBox
EasyImage::BlackTopHatBox
EasyImage::MorphoGradientBox
EasyImage::ErodeDisk
EasyImage::DilateDisk
EasyImage::OpenDisk
EasyImage::CloseDisk
EasyImage::WhiteTopHatDisk
EasyImage::BlackTopHatDisk
EasyImage::MorphoGradientDisk
EasyImage::Median
EasyImage::ScaleRotate
EasyImage::DoubleThreshold
EasyImage::Histogram
EasyImage::Area
EasyImage::AreaDoubleThreshold
EasyImage::BinaryMoments
EasyImage::WeightedMoments
EasyImage::GravityCenter
EasyImage::PixelCount
EasyImage::PixelMax
EasyImage::PixelMin
EasyImage::PixelAverage
EasyImage::PixelStat
EasyImage::PixelVariance
EasyImage::PixelStdDev
EasyImage::PixelCompare
EasyImage::ImageToLineSegment
EasyImage::ImageToPath
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Library Method

Easy3D

EDepthMapToMeshConverter::Convert
EDepthMapToPointCloudConverter::Convert
EStatistics::ComputePixelStatistics
EStatistics::ComputeStatistics
E3DObjectExtractor::Extract
EZMapToPointCloudConverter::Convert

EasyObject EImageEncoder::Encode

EasyFind
EPatternFinder::Find
EPatternFinder::Learn

EasyOCR2
EOCR2::Read
EOCR2::Detect

EasyGauge

EPointGauge::Measure
ELineGauge::Measure
ERectangleGauge::Measure
ECircleGauge::Measure
EWedgeGauge::Measure

EasyMatch
EMatcher::LearnPattern
EMatcher::Match

EasyQRCode EQRCodeReader::SetSearchField
EQRCodeReader::Read

TIP
In the future Open eVision releases, the support of ERegions will be gradually
extended to all operators.

Creating regions

Open eVision offers multiple ways to create regions, depending on the shape you need:

The ERegion is the base class for all regions and the most versatile. It encodes a region using a
Run-Length Encoded (RLE) representation.

□ The RLE representation of a region is made of runs (horizontal, 1-pixel high slices).
□ The runs are stored in the form of their ordinate, starting abscissa and length.

Run-Length Encoding of a circle-shaped region
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To create a region, either:
□ Use one of the geometry-based region classes.
□ Use the result of another tool, such as EasyFind, EasyMatch or EasyObject.
□ Combine or modify other regions.
□ Use a mask image.
□ Directly provide the list of runs.

Geometry-based regions

Geometry based regions are specialized classes of regions that are encompassed in simple
geometries. Open eVision currently provides classes based on a rectangle, a circle, an ellipse or
a polygon.

Use these classes to setup geometric regions and modify them with translation, rotation and
scaling. The transformation operators return new regions, leaving the source object unchanged.

● ERectangleRegion
□ The contour of an ERectangleRegion class is a rectangle.
□ Define it using its center, width, height and angle.
□ Alternatively, use an ERectangle instance, such as one returned by an ERectangleGauge

instance.

Rectangle region separating a bar code from the background

● ECircleRegion
□ The contour of an ECircleRegion class is a circle.
□ Define it using its center and radius or 3 non-aligned points.
□ Alternatively, use an ECircle instance, such as one returned by an ECircleGauge instance.

Circle region encompassing the useful part of an X-Ray image
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● EEllipseRegion
□ The contour of an EEllipseRegion class is an ellipse.
□ Define it using its center, long and short radius and angle.

Ellipse region encompassing a waffle

● EPolygonRegion
□ The contour of an EPolygonRegion class is a polygon.
□ It is constructed using the list of its vertices.

Polygon region encompassing a key

Using the result of other tools

The ERegion class provides a set of specialized constructors to create regions from the results of
another tool.

In a tool chain, these constructors restrict the processing of a tool to the area issued from the
previous tool.

Open eVision User Guide

eellipseregion-class.htm
eellipseregion-class.htm
epolygonregion-class.htm
epolygonregion-class.htm
eregion-class.htm


47

Open eVision provides constructors for the following tools:
□ EasyFind: EFoundPattern
□ EasyMatch: EMatchPosition
□ EasyGauge: ECircle and ERectangle
□ EasyObject: ECodedElement

TIP
When compatible, Open eVision also provides specialized constructors for
the geometry-based regions. For instance, ECircleRegion provides a
constructor using an ECircle.

Combining regions

Use the following operations to create a new region by combining existing regions:

● Union
□ The ERegion::Union(const ERegion&, const ERegion&) method returns the region that is

the addition of the two regions passed as arguments.

Union of 2 circles

● Intersection
□ The ERegion::Intersection(const ERegion&, const ERegion&) method returns the region

that is the intersection of the two regions passed as argument.

Intersection of 2 circles
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● Subtraction
□ The ERegion::Subtraction(const ERegion&, const ERegion&) method returns the first

region passed as argument after removing the second one.

Subtraction of 2 circles

Morphological operations on regions

The initial arbitrary region used to illustrate the different morphological operations

● Grow
□ The ERegion::Grow(int radius) method returns a region that is the dilation of the region

by a disk with a radius equals to the argument.

Grow of the arbitrary region

● Shrink
□ The ERegion::Shrink(int radius) method returns a region that is the erosion of the region

by a disk with a radius equals to the argument.

Shrink of the arbitrary region
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● Contour
□ The ERegion::Contour(int thickness, bool centered = true) method returns a region

that is the contour of the region.

Contour of the arbitrary region

Free-hand drawing a region

● The ERegionFreeHandPainter class provides the methods that allow you to create a region by
hand, using the mouse or any other user input method.

● The RegionFreeHand sample, available both in C++ and C#, shows how to use this class to
draw a region on an image.

Using regions

The tools supporting regions provide methods that follow one of these conventions:
□ Method(const EImage& source, const ERegion& region)
□ Method(const EImage& source, const ERegion& region, EImage& destination)

NOTE
The source, the region and the destination must be compatible. It means
that the region must at least partly fit in the source, and that source and
destination must have the same size.

Preparing the region

● Open eVision automatically prepares the regions when it applies them to an image, but this
preparation can take some time.

● If you do not want your first call to a method to take longer than the next ones, you can
prepare the region in advance by using the appropriate Prepare() method.

● To manually prepare the regions, adapt the internal RLE description to your images.

Drawing regions

The ERegion classes provide several methods to display the regions:

● ERegion::Draw() draws the region area, in a semi-transparent way, in the provided device
context.

● ERegion::DrawContour() draws the region contour in the provided device context.
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● ERegion::ToImage() renders the region as a mask into the provided destination image.
□ You can configure the foreground and the background colors.
□ If you initialized your image with a width and a height, Open eVision renders the region

inside those bounds.
□ If not, Open eVision resizes the image to contain the whole region.
□ Use ToImage() to create masks for the Open eVision functions that support them.

ERegions and EROIs

● The older EROI classes of Open eVision are compatible with the new regions.

● Some tools allow the usage of regions with source and/or destinations that are ERoi instead
of EImage follow one of these conventions:
□ Method(const ERoi& source, const ERegion& region)
□ Method(const ERoi& source, const ERegion& region, ERoi& destination)

TIP
In that case, the coordinates used for the region are relative to the reduced
ROI space instead of the whole image space .

ERegion and 3D

● The new regions are compatible with the 2.5D representations of Easy3D (EDepthMap and
EZMap).

● You can also reduce the domain of processing when using these classes.

3.9. Flexible Masks

ROIs vs flexible masks

ROIs and masks restrict processing to part of an image:
□ "ROI Main Properties" on page 26 apply to all Open eVision functions. Using Regions of

Interest accelerates processing by reducing the number of pixels. Open eVision supports
hierarchically nested rectangular ROIs.

□ Flexible Masks are recommended to process disconnected ROIs or non-rectangular
shapes. They are supported by some EasyObject and EasyImage library functions.
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Flexible Masks

A flexible mask is a BW8 image with the same height and width as the source image. It contains
shapes of areas that must be processed and ignored areas (that will not be considered during
processing):

□ All pixels of the flexible mask having a value of 0 define the ignored areas.
□ All pixels of the flexible mask having any other value than 0 define the areas to be

processed.

Source image Associated mask Processed masked image

A flexible mask can be generated by any application that outputs BW8 images and by some
EasyObject and EasyImage functions.

Flexible Masks in EasyImage

Code Snippets

Source image (left) and mask variable (right)

Simple steps to use flexible masks in Easyimage

1. Call the functions from EasyImage that take an input mask as an argument. For instance,
one can evaluate the average value of the pixels in the white layer and after in the black
layer.

2. Display the results.

Resulting image
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EasyImage Functions that support flexible masks

● EImageEncoder.Encode has a flexible mask argument for BW1, BW8, BW16, and C24 source
images.

● AutoThreshold.

● Histogram (function HistogramThreshold has no overload with mask argument).

● RmsNoise, SignalNoiseRatio.

● Overlay (no overload with mask argument for BW8 source images).

● ProjectOnAColumn, ProjectOnARow (Vector projection).

● ImageToLineSegment, ImageToPath (Vector profile).

Flexible Masks in EasyObject

A flexible mask can be generated by any application that outputs BW8 images or uses the Open
eVision image processing functions.

EasyObject can use flexible masks to restrict blob analysis to complex or disconnected shaped
regions of the image.

If an object of interest has the same gray level as other regions of the image, you can define
"keep" and "ignore" areas using flexible masks and Encode functions.

A flexible mask is a BW8 image with the same height and width as the source image.
□ A pixel value of 0 in the flexible mask masks the corresponding source image pixel so it

doesn't appear in the encoded image.
□ Any other pixel value in the flexible mask causes the pixel to be encoded.

EasyObject functions that create flexible masks

Source image

1) ECodedImage2.RenderMask: from a layer of an encoded image
1. To encode and extract a flexible mask, first construct a coded image from the source image.

2. Choose a segmentation method (for the image above the default method
GrayscaleSingleThreshold is suitable).

3. Select the layer(s) of the coded image that should be encoded (i.e. white and black layers
using minimum residue thresholding).

4. Make the mask image the desired size using mask.SetSize(sourceImage.GetWidth(),
sourceImage.GetHeight()).
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5. Exploit the flexible mask as an argument to ECodedImage2.RenderMask.

BW8 resulting image that can be used as a flexible mask

2) ECodedElement.RenderMask: from a blob or hole
1. Select the coded elements of interest.

2. Create a loop extracting a mask from selected coded elements of the coded image using
ECodedElement.RenderMask.

3. Optionally, compute the feature value over each of these selected coded elements.

BW8 resulting image that can be used as a flexible mask

3) EObjectSelection.RenderMask: from a selection of blobs
EObjectSelection.RenderMask can, for example, discard small objects resulting from noise.

BW8 resulting image that can be used as a flexible mask
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Example: Restrict the areas encoded by EasyObject

Find four circles (left) Flexible mask can isolate the central chip (right)

1. Declare a new ECodedImage2 object.

2. Setup variables: first declare source image and flexible mask, then load them.

3. Declare an EImageEncoder object and, if applicable, select the appropriate segmenter. Setup
the segmenter and choose the appropriate layer(s) to encode.

4. Encode the source image. Encoding a layer with just the area in the flexible mask is then
pretty straightforward.
We see that the circles are correctly segmented in the black layer with the grayscale single
threshold segmenter:

5. Select all objects of the coded image.

6. Select objects of interest by filtering out objects that are too small.

7. Display the blob feature by iterating over the selected objects to display the chosen feature.

3.10. Profile

Code Snippets

Profile Sampling

A profile is a series of pixel values sampled along a line/path/contour in an image.

● EasyImage.ImageToLineSegment copies the pixel values along a given line segment (arbitrarily
oriented and wholly contained within the image) to a vector. The vector length is adjusted
automatically. This function supports flexible masks.

● A path is a series of pixel coordinates stored in a vector.
EasyImage.ImageToPath copies the corresponding pixel values to the vector. This function
supports flexible masks.
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● A contour is a closed or not (connected) path, forming the boundary of an object.
EasyImage.Contour follows the contour of an object, and stores its constituent pixels values
inside a profile vector.

Profile Analysis

The profile can be processed to find peaks or transitions:

● A transition corresponds to an object edge (black to white or white to black). It can be
detected by taking the first derivative of the signal (which transforms transitions (edges) into
peaks) and looking for peaks in it.
EasyImage.ProfileDerivative computes the first derivative of a profile extracted from a gray-
level image.
The EBW8 data type only handles unsigned values, so the derivative is shifted up by 128.
Values under [above] 128 correspond to negative [positive] derivative (decreasing
[increasing] slope).

● A peak is the portion of the signal that is above [or below] a given threshold - the maximum
or minimum of the signal. This may correspond to the crossing of a white or black line or
thin feature. It is defined by its:
□ Amplitude: difference between the threshold value and the max [or min] signal value.
□ Area: surface between the signal curve and the horizontal line at the given threshold.

EasyImage.GetProfilePeaks detects max and min peaks in a gray-level profile. To eliminate false
peaks due to noise, two selection criteria are used. The result is stored in a peaks vector.

Profile Insertion Into an Image

EasyImage.LineSegmentToImage copies the pixel values from a vector or constant to the pixels of a
given line segment (arbitrarily oriented and wholly contained within the image).

EasyImage.PathToImage copies the pixel values from a vector or a constant to the pixels of a given
path.
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4. Deep Learning Tools

Deep Learning Tools - Inspecting Images with Deep
Learning

Purpose and Workflow

Tools

The deep learning tools are based on deep convolutional neural networks (CNNs):

● EasyClassify classifies images into a predefined set of classes. Use this tool to identify a
product in an image or to detect if the product is good or defective.

● EasySegment Supervised segments defects and/or various elements in images. In the
supervised mode, the training images must be precisely annotated with their expected
segmentation (also called the ground truth).

● EasySegment Unsupervised detects and segments defects in images. This tool works in an
unsupervised way. This means that it is trained on good products only.

As you build only a model of what a good product is and not a model of what a defective
product is:
□ The advantages are that the tool can detect and segment defects that are not in your

dataset or that are unexpected and that it doesn’t require to annotate the images with
their expected segmentation (this can be very time consuming).

□ The drawback is that the type of defects that the tool can detect and segment is more
limited than when you build an explicit model of the defects.

□ You can use EasySegment Unsupervised to produce a rough annotation of the images
required by EasySegment Supervised.

● EasyLocate locates objects and/or defects in images. The neural network predicts the
location and the label of the object and/or defect.
□ EasyLocate has two modes:

- With EasyLocate Axis Aligned Bounding Box, the location of the object is represented by
its bounding box.
- With EasyLocate Interest Point, the location of the object is represented by its position
only.

□ EasyLocate works well with partially occulted objects.
□ You can use it for defect detection, package verification and counting applications.
□ Compared to EasySegment, it detects two objects or defects with the same label and that

are overlapping or touching each other as two different objects or defects and not as a
single blob.
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By opposition to traditional machine vision techniques, the deep learning tools do not require
an explicit model of what to recognize and/or segment inside an image. Instead, they learn this
model from a set of example images. Thus the deep learning tools can solve machine vision
problems where an explicit model is too complex to build.

Specifications

EasyClassify EasySegment
Unsupervised

EasySegment
Supervised EasyLocate

Minimum image
size 128 × 128 64 × 64 128 × 128

Maximum image
size 1024 × 1024 10 000 × 10 000

500 000 pixels
(for ex.

707 × 707 for
square image)

Best image size 256 × 256 -
600 × 600 n.a. n.a.

Number of
channels 1 or 3 (grayscale and color images)

Bit depth 8 bits, 16 bits
Number of labels 2 - 1000 2 (good and

defective) 2 - 64

Minimum
number of
images per label

2

1 for the good
label

0 for the defective
label

1

Supported
formats bmp, png, jpeg, j2k, tiff

TIP
To accelerate computations, we strongly recommend running the deep
learning tools on a recent NVIDIA GPU. Refer to the section "Engines and
Hardware Support (CPU/GPU)" on page 63 for installing the required NVIDIA
CUDA and deep learning library.
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Workflow

To create an application based on the deep learning tools:

1. Capture a dataset of images representative of the problem you want to solve.
□ The capture conditions must be as close as possible to the production conditions.
□ Preferably, all images should have the same resolution.
□ The number of images needed to obtain a good performance depends on the complexity

of the task and the tool used.
□ With EasyClassify, you can use the training with as few as 10 images per label.

Nevertheless, complex tasks may require more than 100 images per label.
□ With EasySegment Unsupervised, you can use less than 10 “good” images. Nevertheless,

complex tasks may require more than 100 “good” images.
□ With EasySegment Supervised, the required number of images depends on the size and

the number of elements to segment in each image. You can use as few as 10 elements per
label. Nevertheless, complex tasks may require more than 100 elements per label.

□ With EasyLocate, the number of images depends on the number of objects/defects in the
images. You can use as few as 10 objects per label. Nevertheless, complex tasks may
require more than 100 objects per label.

□ Please refer to the specifications of each tool for the constraints on the resolution and the
number of images.

2. Manually label the images in the dataset with the different categories you want to recognize.

These categories depend on the tool:
□ EasyClassify:

- Each image must correspond to one and only one category.
- There must be at least 2 categories.

□ EasySegment Unsupervised:
- A single category for images of good samples.
- As many categories as you want (including none) for images of defective samples.

□ EasySegment Supervised:
- You must annotate the pixels of the images with a ground truth segmentation
- There must be at least one segmentation label in addition to the Background label.
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□ EasyLocate:
- For EasyLocate Axis Aligned Bounding Box, you must annotate the defects or the
objects with a bounding box and a label.
- For EasyLocate Interest Point, you must annotate the defects or the objects with their
position and a label.

Use the class EClassificationDataset to compile your labeled images.

3. Choose the deep learning tool that suits your needs.

All deep learning tools are child classes of the class EDeepLearningTool:
□ EasyClassify: class EClassifier.
□ EasySegment: classes EUnsupervisedSegmenter and ESupervisedSegmenter.
□ EasyLocate: classes ELocator and EInterestPointLocator.

4. Train the deep learning tool on the dataset.

5. Apply the trained tool in production.

Each tool returns a specific object.

Deep Learning Studio and Additional Resources

Deep Learning Studio

Deep Learning Studio is a graphical user interface that you can use to create datasets and train
your deep learning tools,

Deep Learning Studio is organized around the concept of projects.

A project consists in:
□ A tool type.
□ A dataset (images and their annotations).
□ Several dataset splits.
□ The data augmentation settings.
□ The tools that you can train on the dataset.
□ The results and metrics for each tool to analyze their performance.

The project is stored as a folder containing:
□ The project file with the .edlproject extension.
□ The Images folder with the imported images.
□ A dedicated folder for each tool.

By default, the projects are stored in the folder named Euresys Deep Learning Studio Projects
located in your Documents folder. After loading a project, the project file is automatically locked
when it is used. This means that when a program opens a Deep Learning project file, this
project file is inaccessible by other programs as long as the initial program doesn’t explicitly
close the project.

Here are the various file extension used within a project:
□ .edlproject: the project file containing the dataset, the splits, the list of tools and the

data augmentation settings.
□ .edlsettings (previously .ecl): the settings for a tool.
□ .edlmodel (previously .ecl): a deep learning model for the tool.

- The training model is the model obtained after the last training iteration.
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- The inference model is the model that is applied to images. It is the model that gave the
best performances during the training.

□ .edltool (previously .ecl): a complete usable tool (obtained by exporting the tool from
Deep Learning Studio).

□ .edlmetrics (previously .edl): the metrics for the tools.
□ .edlresult: a result for a given image and tool.
□ .edldataset (previously .eds): a dataset (obtained by exporting the dataset from the

project).

TIP
The Deep Learning Studio is available in the installation folder of Open
eVision.

Deep Learning Studio workflow illustration

1. Load or create a project.

● Quickly go back to your work with the recent project lists.
□ Open existing projects or create new projects.

● Create a new project.
□ Specify the name and the type of the project.
□ If necessary, change the path to save the project.
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2. Import images in the project dataset and annotate the images.

3. Split your dataset into training, validation, and test images (for more details, refer to
"Managing the Dataset Splits" on page 80).

4. Configure and view the data augmentation settings (for more details, refer to "Using Data
Augmentation" on page 83).
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5. Create, configure, and train your tools

6. Analyze the performance and the results of the trained tools.

7. Benchmark your tools to optimize the execution settings and maximize the inference speed
on your hardware.

2 See "Benchmarking a Deep Learning Tool" on page 90.
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Resources and code snippets

● The Deep Learning Additional Resources package, separate from the Open eVision installer,
provide several sample datasets as well as Deep Learning Studio projects containing a
trained tool for these datasets:
□ For EasyClassify: the MiniWaffle, Stone Tiles and CopperSilverTape datasets.
□ For EasySegment Unsupervised: the Fabric dataset.
□ For EasySegment Supervised: the Coffee dataset.
□ For EasyLocate Axis Aligned Bounding Box: the ElectronicComponentsBag dataset.
□ For EasyLocate Interest Point: the CeramicCapacitor dataset.

● Some sample programs in the folder Sample Programs show how to train and use a deep
learning tool.

● Some code snippets are also available for illustration and reference.

Engines and Hardware Support (CPU/GPU)

Engines

● Starting with Open eVision 23.04, running (inference) or training a Deep Learning tool is
done through an engine. The engines are specified through their names.
□ To set an engine for a tool, use EDeepLearningTool.Engine
□ To list the available engines, use EDeepLearningTool.AvailableEngines

● An engine can support different devices:
□ To list the detected devices for the current engine, use

EDeepLearningTool.AvailableDevices
□ To list the detected devices for another engine, use

EDeepLearningTool.GetAvailableDevicesForEngine. Note that this actually loads the engine
in memory.

□ The devices are represented by the class EDeepLearningDevice or directly through their
name (EDeepLearningDevice.Name) that are guaranteed to be unique for a given engine.

□ To set a device, use EDeepLearningTool.ActiveDevices or
EDeepLearningTool.ActiveDevicesByName. You can pass multiple devices for multi-GPU
training for example.

□ To know if a device supports inference and/or training, use
EDeepLeanringDevice.HasInferenceCapability and
EDeepLearningDevice.HasTrainingCapability. Check the matrix below for each engine and
device type support.

● A device or an engine can support various inference precision (FLOAT32 or FLOAT16).
□ By default, the precision is FLOAT32.
□ Use EDeepLearningTool.InferencePrecision to set or retrieve the current precision.
□ A lower precision (for example FLOAT16 instead of FLOAT32) can improve the speed.

● The main engine is named default:
□ It is always available and always supports the CPU of the computer on which it is running.
□ It always supports both inference and training.
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● The other engines:
□ They are mainly used to increase the inference speed.
□ The other engines and the support for a GPU are provided by the package named deep-

learning-redist (previously cuda-redist).

Engine name Supported
devices

Supported
platforms Training Inference Inference

precision

default CPU NVIDIA
GPU * All ** Yes Yes FLOAT32

EasyDeepLearningEngine_
OpenVINO *

CPU Intel
GPU

Windows
64-bit No Yes FLOAT16

FLOAT32

EasyDeepLearningEngine_
TensorRT * NVIDIA GPU

Windows
64-bit

Linux x64
Linux

aarch64

No Yes FLOAT16
FLOAT32

* Requires the deep-learning-redist package

** The Windows 32-bit support is only for CPU and the limitation to 2 GB of the application
memory can be a problem for the training or the inference on large images.

In Deep Learning Studio

● In the Execution settings panel, select the Engine, Device and Precision that you want to use
for inference.

Legacy API for selecting CPU and GPU

● The API calls EDeepLearningTool.EnableGPU and EDeepLearningTool.GPUIndexes are deprecated.

● They can only be used with the default engine, otherwise, an exception is thrown.

Additional consideration for NVIDIA CUDA® GPU

TIP
Using a recent NVIDIA GPU greatly accelerates the processing speeds. Refer
to the benchmarks for each tool type to compare the GPU and CPU speeds.

To use an NVIDIA GPU with the Deep Learning tools, install the deep-learning-redist package
for your operating system. It is not recommended to use a system-wide installation of the CUDA
libraries for GPU support.
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1. To use an NVIDIA GPU with the Deep Learning tools, install the deep-learning-redist
package for your operating system.

NOTE: It is not recommended to use a system-wide installation of the CUDA libraries for the
GPU support.

In this version of Open eVision, the GPU acceleration is based on:
□ For Windows and Linux Intel x64:

- NVIDIA CUDA® Toolkit version v11.8
- NVIDIA CUDA® Deep Neural Network library (cuDNN) v8.6

□ For Linux ARM (aarch64 Jetson platforms):
- The CUDA and cuDNN packages distributed with the platforms.

NOTE: The following versions have been tested:
- JetPack 4.6 (L4T 32.6.1)
- JetPack 5.0 (L4T 34.1)
- JetPack 5.1.2 (L4T 35.4.1)

2. Check that you have or install the up-to-date NVIDIA drivers.

2 Refer to your GPU documentation to install recent drivers for your operating system.

3. For Linux ARM (aarch64 Jetson platforms), install the NVIDIA JetPack SDK 4.6 minimum that
includes the NVIDIA Jetson Linux Driver Package (L4T) 32.6.

Starting from NVIDIA JetPack SDK 4.3, it is possible to upgrade without flashing the device to
the version 32.6 of the NVIDIA Jetson Linux Driver Package:
□ Edit the file /etc/apt/sources.list.d/nvidia-l4t-apt-source.list so that its content is:

 deb https://repo.download.nvidia.com/jetson/common r32.6 main
 deb https://repo.download.nvidia.com/jetson/t194 r32.6 main

□ Upgrade the system using apt:
$ sudo apt update
$ sudo apt upgrade

4. Use the engine default for training and inference or the engine EasyDeepLearningEngine_
TensorRT for inference only.

TIP
For recent NVIDIA GPUs or Jetson Orin boards (NVIDIA GPUs with a compute
capability higher than 8.0 on Intel x64 and 7.2 on aarch64), using Deep
Learning triggers a long initialization (over a minute).

To avoid this initialization each time you use Deep Learning, we recommend
to increase the CUDA cache max size to 1024 MB:

● On Linux, set the environment variable CUDA_CACHE_MAXSIZE to 1073741824
before launching Deep Learning Studio or your program.

In a terminal, this means executing:

$ CUDA_CACHE_MAXSIZE=1073741824 /path/to/your/program

● On Windows, launch the Advanced System settings, go to the Environment
variables dialog and add or modify the CUDA_CACHE_MAXSIZE variable with
the value 1073741824.

Open eVision User Guide



66

Using multiple GPUs

You can use multiple NVIDIA GPUs with the default engine for the training and the batch
classification by specifying multiple NVIDIA GPUs devices with EDeepLearningTool.ActiveDevices.

NOTE: Be careful to only set multiple GPUs that have similar performances: the performances
are limited by the slowest device.

NOTE
● Using multiple GPUs increases the training and batch classification speed

only if these GPUs are Quadro or Tesla models with the TCC driver model

2 see https://docs.nvidia.com/gameworks/content/developertools/
desktop/nsight/tesla_compute_cluster.htm

● Using multiple GeForce GPUs does not yield the same performance gain.

● In Deep Learning Studio, to choose the training devices, check all the devices that you want
to use for training.

● You can configure these execution profiles to match your needs.

● GPU processing is not possible with 32-bit applications.

Image cache

The image cache is the part of the memory reserved for storing images during training.

● The default size is 1 GB.

● The training speed is higher when the image cache is big enough to hold all the images of
your dataset.

● With dataset too big to fit in the image cache, we recommend using a SSD drive to hold your
images and project files as a SSD drive improves the training speed.
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To specify the cache size in bytes:

● In the API, use the EDeepLearningTool::SetImageCacheSize method.

● In Deep Learning Studio, click on the Hardware settings button in the Execution settings
panel and select Image cache in the menu.

● When there is enough memory to increase the image cache so that it can hold all the images
in the dataset, Deep Learning Studio displays a recommendation next to the training button.
□ Click on the recommendation to change the image cache size and improve the training

speed.

Open eVision User Guide

edeeplearningtool-imagecachesize.htm


68

Multicore processing

The deep learning tools support multicore processing with the engines default and
EasyDeepLeanringEngine_OpenVINO (see "Multicore Processing" on page 1):

● In the API, use the multicore processing helper function from Open eVision (that is
Easy.MaxNumberOfProcessingThreads with a value greater than 1).

● In Deep Learning Studio, click on the Configure button below the Execution profile control
and select CPU Settings in the menu.

Managing the Dataset and the Annotations

Images and Labels
Images

● In the API, a dataset is represented by an object of the EClassificationDataset type.

● The supported image file types are:
□ PNG
□ TIFF
□ JPEG
□ BMP
□ J2K

● The supported Open eVision image object types are:
□ EImageType_BW8
□ EImageType_BW16
□ EImageType_C24
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● The supported image size depends on the type of the deep learning tool.
□ EasyClassify and EasyLocate require that all images have the same size. Images that do

not have the size configured for the tool are automatically resized before being processed
by the neural network.

□ EasySegment splits images into patches. As such, the tools can process images of
different size and the images are processed at their native resolution.

□ In all cases, your dataset should cover the variability of sizes that you want to process in
production.

File formats

The supported standard file formats for the dataset and image annotation are:

● The COCO Json for EasySegment Supervised and EasyLocate Axis Aligned Bounding Box
annotations.
□ A COCO json file contains the annotation for a dataset (several images).
□ In Deep Learning Studio, use the Import feature to import COCO datasets.

2 See https://cocodataset.org/#format-data for a description of the COCO Json dataset
format.

● The YOLO TXT annotation format for EasyLocate Axis Aligned Bounding Box annotations.
□ For each image, the annotations are in a file with the same filename as the image and the

.txt extension.
□ In Deep Learning Studio, if the annotation files are located in the same folder as their

corresponding images, use the Add images feature to import the images and their
annotations.

2 See https://pjreddie.com/darknet/yolo for the original YOLO source code.

● PASCAL VOC XML annotation for EasyLocate Axis Aligned Bounding Box annotations.
□ For each image, the annotations are in a file with the same filename as the image and the

.xml extension.
□ In Deep Learning Studio, if the annotation files are located in the same folder as their

corresponding images, use the Add images feature to import the images and their
annotations.

2 See http://host.robots.ox.ac.uk/pascal/VOC for resources on the PASCAL VOC XML
annotations.

Labels

● There are 3 types of labels:
□ The image labels represent a characteristic of an image and its content. Use them to

annotate images for EasyClassify or EasySegment Unsupervised.
□ The segmentation labels represent a characteristics of pixels. Use them to annotate

image pixels for EasySegment Supervised.
□ The object labels represent a characteristic of a region of an image delimited by a

bounding box. Use them to annotate images for EasyLocate.

NOTE: Deep Learning Studio only displays the labels for the tool type of the project.
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● Images have the following labeling states:
□ Labeled or Unlabeled if the image is or is not associated with an image label.

- Only labeled images are used to train an EasyClassify or an EasySegment Unsupervised
tool.
- In the API, use EClassificationDataset::HasLabel(imageIndex).

□ With or without segmentation if the image has or has not a ground truth segmentation.
- Only images with segmentation are used to train an EasySegment Supervised tool.
- In the API, use EClassificationDataset::HasSegmenation(imageIndex).

□ With or without object labeling if the image has or has not a ground truth object labeling.
- Only images with object labeling are used to train an EasyLocate tool.
- In the API, use EClassificationDataset::HasObjectLabeling(imageIndex).

● The ground truth segmentation of an image has the following state:
□ Background when all the pixels of the image are associated with the Background

segmentation label.
- In defect detection applications, a background segmentation means that the image
contains no defect.

□ With foreground blobs when the segmentation contains at least one pixel associated with
a segmentation label different from Background.
- In defect detection applications, a segmentation with foreground blobs means that the
image contains defects.
- In the API, use EClassificationDataset::HasForegroundSegments(imageIndex).

● The ground truth object labeling of an image has the following state:
□ No objects when there is no object in the image.

- In defect detection applications, an image with no object means that the image contains
no defect.

□ With objects when there is at least one object in the image.
- In defect detection applications, an image with objects means that the image contains
defects.
- In the API, use EClassificationDataset::GetImageNumObjects(imageIndex) to determine if
the image has objects or not.

● In Deep Learning Studio, the icons (visible) and (hidden) represent the visibility state
of the images with the corresponding state and/or image label in the image list.
□ Click on these icons to toggle the visibility state.
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Adding Images
● In Deep Learning Studio, add image files (PNG, TIFF, JPEG, BMP and J2K types) to your datasets

in one of the following ways:
□ Click on the Add images button to add images without any label nor segmentation.

□ Right-click on an image label and click Add images to label or Add folder to label to
directly associate these images to the label.
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□ Drag and drop your files directly on an image label to directly associate these images to
the label.

TIP
If there is an .txt or .xml file with the same filename as the image next to it,
Deep Learning Studio tries to load these files as YOLO TXT or PASCAL VOC XML
annotations.

● Add a single image to a EClassificationDataset, in one of the following ways:
□ EClassificationDataset::AddImage(path[, label]) for an image file,
□ EClassificationDataset::AddImage(img[, label]) for an Open eVision image object.
□ You can specify a label to immediately associate the image with the label. Otherwise, the

image is unlabeled.

● Add several images with the EClassificationDataset::AddImages(filter[, label]) method.

filter is a glob pattern with the wildcard characters:
□ * means "zero or more characters"
□ ? means "a single character"

For example, EClassificationDataset::AddImages("*good*.png", "good") adds all PNG image
files that contain “good” in their filename.

● Import YOLO TXT and PASCAL VOC XML annotations with
EClassificationDataset::ImportYOLOTXTAnnotations(imgId) or
EClassificationDataset::ImportPascalVOCXMLAnnotations(imgId).
□ Check the available annotations for a file with

EClassificationDataset::GetAvailableImageAnnotationFormat(filepath).

TIP
The EClassificationDataset class automatically generates the set of labels
from the labels of the images that you add to the dataset.

NOTE
By default, all images are unlabeled and have no ground truth segmentation.
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Editing the Label of an Image
In Deep Learning Studio:

● To change the label of images:

a. Select one or more images in the image list.

b. Right click on the selection.

c. Click on Set label and select the new label.

● To change the label of a single image:

a. Click on the image in the list to open the image in the viewer.

b. In the Ground truth tab on the right, select the new label.

c. Or use the keyboard keys F1 ... F10 to assign the 1st ... 10th label to the image.
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Editing the Segmentation of an
Image
In Deep Learning Studio:

● To initialize or reset the segmentation of an image to all Background pixels:

a. Select one or more images in the image list.

b. Right click on the selection.

c. Click on Enable/Reset segmentation.

● To edit the segmentation:

a. Double click on the image to open it in the image editor.

b. Click on the Segmentation button (ALT + S).

c. To enable or unset the segmentation, check or uncheck the Segmentation checkbox
(CTRL + S).
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d. Select a segmentation label, a drawing tool and enclose the segmentation.

e. Change the segmentation label of a blob by right-clicking on it

● The following drawing tools are available:

□ Rectangle: click and drag to create a rectangle.

□ Ellipse: click and drag to create an ellipse.

□ Polygon: click to create new vertices and double-click to close the polygon. When the
polygon is closed, double click on an edge ton add a new vertex.

□ Assisted segmentation: click and drag to draw a rectangle around the zone you want
to segment. To refine the segmentation, mark the pixels (click and drag) to include in the
segmentation.

□ Lines: click and drag to draw a line with a pen of the specified width.

□ Free-form drawing: click and draw any shape with a pen of the specified width.
□ Eraser: same as free-form drawing but it assigns a background label instead of the

selected segmentation label.

□ Shrink: shrinks the blobs of the selected segmentation label.
□ Grow: grows the blobs of the selected segmentation label.
► Except for the eraser tool, all the tools operate on the label specified in the segmentation

tool bar.

Editing the Objects of an Image
In Deep Learning Studio:

● To initialize or reset the object labeling of an image:
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a. Select one or more images in the image list.

b. Right click on the selection.

c. Click on Reset object labeling.

● To edit the objects:

a. Double click on the image to open it in the image editor.

b. Click on the Objects button (ALT + O).

c. To reset or unset the object labeling, uncheck the Object labeling checkbox (CTRL + L).

d. Click on the Add objects button to add new objects with the label indicated next to the
button.
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e. Click on the Edit objects button to modify the label of an object and the bounding box or
the position, according to the EasyLocate mode.

ROI and Mask
Setting a ROI

Use an ROI (region of interest) to crop an image or a whole dataset to a rectangular area aligned
with the axis.

In the API:

● To define an ROI for an image:
□ Specify the ROI when you add the image to the dataset.
□ Or use EClassificationDataset::SetRegionOfInterest.

In Deep Learning Studio:

● To change the ROI:

a. Select an image from the dataset.

b. Click on the ROI button (ALT+I).
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c. Drag the ROI green box, or directly set the ROI origin (x and y), Width and Height.

● To set the same ROI for all the images of the dataset:

a. Set the ROI for one of the image.

b. Click on the Apply to All Images button (CTRL+SHIFT+A).

● To visualize the ROI within its parent image:

a. Click on the button.
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Setting a mask

Set a mask on an image in a dataset to remove the pixels in the mask area from any
computation. The mask works as a “don’t care area”.

In the API:

● To define a mask for an image:
□ Specify the mask when you add the image to the dataset.
□ Or use EClassificationDataset::SetMask.

In Deep Learning Studio:

● To change the mask:

a. Select an image from the dataset.

b. Click on the Mask button (ALT+M).

c. Select a drawing tool to draw the mask.

d. Draw the mask.

TIP
Click on the Open mask button to use an image to specify a mask. All the
pixels of the image (such as an EROIBW8) that are over 127 are considered as
part of the mask.
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● To set the same mask for all the images of the dataset:

a. Specify the mask for one of the images.

b. Click on the Apply to All Images button (CTRL+SHIFT+A).

Managing the Dataset Splits

It is important to split the dataset into 3 sets:
□ The training set contains the images that are used during training to update and optimize

the deep learning model.
□ The validation set contains the images that are used during training to select the model

that gives the best performance.
□ The test set contains images that are not used during training and that are used to

evaluate the final performance of your classifier.

The following picture shows how and when each set is used.

WARNING
These sets MAY NOT contain:
- Images of the other sets.
- Images of an object for which there are other images in other sets.

Why is it important?

Deep learning techniques can suffer from overfitting; this means that the trained classifier is too
focused on the specific images present in the training set and it is not able to learn a general
model of your data. For example, an overfitted model can learn to recognize the exact images
present in the training set and not the underlying defects that you want to detect. Such tools
perform poorly in production.

The validation set is used during training to prevent and know when overfitting occurs. This
keeps the tool in a state that gives the best performance on the validation set. Without the
validation set, it is impossible to know if a tool that performs well on its training set can also
perform well in production.

Open eVision User Guide



81

Thus, a tool that gives high performance on the training set but much lower performance on the
validation set has overfitted.

The training algorithm is designed to avoid overfitting by keeping the model at the iteration that
gives the highest performance on the validation set.

To minimize overfitting and increase the performances:
□ You can add more images to your dataset.
□ Or, in some cases, you can use data augmentation.

TIP
Data augmentation generates random transformations of the images in the
training dataset to make the tool robust to geometric, luminosity or noise
differences that are not present in the original training dataset.

Splitting the dataset in Deep Learning Studio

In Deep Learning Studio, open the Dataset split tab:

1. To create new dataset splits, click on New.
□ A new split is created randomly according to the specified proportion or number of

images.
□ The default proportion of images is 70% of training images, 20% of validation images and

10% of test images.
□ Images without a proper annotation must be in the test set.
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2. The dataset splits can be locked or unlocked . A dataset split is locked when it was
used to train a tool. When a dataset split is locked:
□ You cannot move images out of the training or validation sets.
□ You can only move images from the test set to either the training set or the validation set.

3. Select a dataset split to display the set of the images.
□ Use the icons or to filter the image list according to the set type.

□ If an image is unlocked , you can move it to another split by clicking on its split or by
right-clicking on the image and selecting the set.

4. Double-click on a split to change its name.

NOTE
Images added to the dataset after you have created a split are automatically
assigned to the test set of that split.

TIP
We recommend to experiment with several different splits to see how the
training behaves with different training sets.
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Splitting the dataset in the API

● Create directly EClassificationDataset objects for your training, validation and test sets.

● Randomly split an EClassificationDataset dataset into a training set and a validation set
with the methods:
□ For EasyClassify and EasySegment Unsupervised:

EClassificationDataset::SplitDataset(trainingDataset, validationDataset,
trainingProportion)

□ For EasySegment Supervised:
EClassificationDataset::SplitDatasetForSegmentation(trainingDataset,
validationDataset, trainingProportion)

□ For Easylocate:
EClassificationDataset::SplitDatasetForLocator(trainingDataset, validationDataset,
trainingProportion)

● Or randomly split an EClassificationDataset dataset using EClassificationDataset::GetSplit
to get a EDatasetSplit object.
□ Use EClassificationDataset::ExtractSplit with the EDatasetSplit object to get a

EClassificationDataset object containing only the images of a given type

Using Data Augmentation

Data augmentation performs random transformations on images given to a deep learning tool
(EClassifier, EUnsupervisedSegmenter or ESupervisedSegmenter object) during the training.

● Experiment different settings to choose the best parameters for your data augmentation.

● Configure data augmentation according to your problem. However, flips, shifts (20 - 40 px),
brightness (5%), contrast (0.95 to 1.05) or salt and pepper noise (2%) can be useful on many
datasets.

● Check that the transformations do not change the label of an image (for example a defect
that disappears because of a rotation or a contrast change).

NOTE
With EasyLocate, we do not recommend to use rotation and shear data
augmentation as it is not possible to compute the minimal bounding box
surrounding the object after these geometric transformations.
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In Deep Learning Studio

● Create and configure the data augmentation settings in the Data augmentation tab.

● Display and review the data augmented images with the minimum settings (Lower limits
augmentation), the maximum settings (Upper limits augmentation) or the random settings
(Random augmentation).

In the API

Use EClassificationDataset::SetEnableDataAugmentation(true/false) to enable or disable these
transformations or directly use an object EDataAugmentation that you give to the method
EDeepLearningTool::Train.

The transformations

Geometric transformations

● Horizontal and vertical flips (enabled with EClassificationDataset::SetEnableHorizontalFlip
and EClassificationDataset::SetEnableVerticalFlip)

● Scaling (between a minimum and maximum value defined with
EClassificationDataset::SetMinScale and EClassificationDataset::SetMaxScale)

● Horizontal and vertical shifts (between –maxValue and maxValue defined with
EClassificationDataset::SetMaxHorizontalShift(maxValue) and
EClassificationDataset::SetMaxVerticalShift(maxValue))
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● Rotations (between 0 and a maximum value defined with
EClassificationDataset::SetMaxRotationAngle)

● Horizontal and vertical shear (between –maxValue and maxValue defined with
EClassificationDataset::SetMaxHorizontalShear and
EClassificationDataset::SetMaxVerticalShear)

Color and luminosity transformations

● Brightness offset (between –maxValue and maxValue defined with
EClassificationDataset::SetMaxBrightnessOffset)

● Contrast gain (between a minimum and maximum value defined with
EClassificationDataset::SetMinContrastGain and
EClassificationDataset::SetMaxContrastGain)

● Gamma corrections (between a minimum and maximum value defined with
EClassificationDataset::SetMinGamma and EClassificationDataset::SetMaxGamma)

● Hue offset (between –maxValue and maxValue defined with
EClassificationDataset::SetMaxHueOffset)

● Saturation gain (between a minimum and maximum value defined with
EClassificationDataset::SetMinSaturationGain and
EClassificationDataset::SetMaxSaturationGain)

Noise transformations

Open eVision User Guide

eclassificationdataset-maxrotationangle.htm
eclassificationdataset-maxhorizontalshear.htm
eclassificationdataset-maxverticalshear.htm
eclassificationdataset-maxbrightnessoffset.htm
eclassificationdataset-mincontrastgain.htm
eclassificationdataset-maxcontrastgain.htm
eclassificationdataset-mingamma.htm
eclassificationdataset-maxgamma.htm
eclassificationdataset-maxhueoffset.htm
eclassificationdataset-minsaturationgain.htm
eclassificationdataset-maxsaturationgain.htm


86

TIP
The standard deviation is expressed as a percentage of the maximum pixel
value.

● Gaussian noise, also called additive white noise, generated with a standard deviation
(between a minimum and maximum value defined with
EClassificationDataset::SetGaussianNoiseMinimumStandardDeviation and
EClassificationDataset::SetGaussianNoiseMaximumStandardDeviation)

● Speckle noise, a multiplicative noise, generated from a Gamma distribution with a mean of 1
and a standard deviation (between a minimum and a maximum value defined with
EClassificationDataset::SetSpeckleNoiseMinimumStandardDeviation and
EClassificationDataset::GetSpeckleNoiseMinimumStandardDeviation).

● Salt and pepper noise generated from a pixel density (between a minimum and a maximum
value defined with EClassificationDataset:: SetSaltAndPepperNoiseMinimumDensity and
EClassificationDataset::SetSaltAndPepperNoiseMaximumDensity).

Training a Deep Learning Tool

In Deep Learning Studio

1. Create a new tool.

2. Configure the tool settings.

3. Select the dataset split to use for this tool.

4. Configure the training settings and click on Train.

In the API

In the API, to train a deep learning tool, call the method EDeepLearningTool::Train
(trainingDataset, validationDataset, numberOfIterations).
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The training settings

● The Number of iterations. An Iteration corresponds to going through all the images in the
training set once.
□ The training process requires a large number of iterations to obtain good results.
□ The larger the number of iterations, the longer the training is and the better the results

you obtain.
□ The default number of iterations is 50.

TIP
We recommend to use more iterations than the default value:

□ For EasyClassify without pretraining, EasyLocate and EasySegment.
□ For smaller dataset because the training is harder (for example, 100

iterations for a dataset with 100 images, 200 iterations for a dataset
with 50 images, 400 iterations for a dataset with 25 images...).

● The Batch size corresponds to the number of image patches that are processed together.
□ The training is influenced by the batch size.
□ A large batch size increases the processing speed of a single iteration on a GPU but

requires more memory.
□ The training process is not able to learn a good model with too small batch sizes.
□ By default, the batch size is determined automatically during the training to optimize the

training speed with respect to the available memory.
- Use EDeepLearningTool::SetOptimizeBatchSize(false) to disable this behavior.
- Use EDeepLearningTool::SetBatchSize to change the size of your batch.

□ EDeepLearningTool::GetBatchSizeForMaximumInferenceSpeed gets the batch size that
maximizes the batch classification speed on a GPU according to the available memory.

□ It is common to choose powers of 2 as the batch size for performance reasons.

● The Data augmentation.

● Whether to use Deterministic training or not.
□ The deterministic training allows to reproduce the exact same results when all the

settings are the same (tool settings, dataset split and training settings).
□ The deterministic training fixes random seeds used in the training algorithm and uses

deterministic algorithms.
□ The deterministic training is usually slower than a non-deterministic training.
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□ In Deep Learning Studio, the option to use deterministic training and the random seed
are available in the advanced parameters.

□ In the API, use EDeepLearningTool::EnableDeterministicTraining. and
EDeepLearningTool::DeterministicTrainingRandomSeed.

Continue the training

You can continue to train a tool that is already trained.

In Deep Learning Studio, the dataset split associated with a trained tool is locked.
□ You can only continue training a tool with the same dataset split.
□ You can still add new training or validation images to the split by moving test images to

the training set or the validation set of that split.

Asynchronous training

The training process is asynchronous and performed in the background.

● In Deep Learning Studio:
□ The training processes are queued.
□ They are automatically executed one after the other.
□ You can manually reorder the training in the processing queue.
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● In the API:
□ EDeepLearningTool::Train launches a new thread that does the training in the

background.
□ EDeepLearningTool::WaitForTrainingCompletion suspends the program until the whole

training is completed.
□ EDeepLearningTool::WaitForIterationCompletion suspends the program until the current

iteration is completed.
□ During the training, EDeepLearningTool::GetCurrentTrainingProgression shows the

progression of the training.

Using a Deep Learning Tool

In the API

● The API to use a Deep Learning tool on a new image or on a set of images is different for
each tool:
□ EasyClassify > "Classifying New Images" on page 101
□ EasySegment > Unsupervised > "Applying the Tool to New Images" on page 114
□ EasySegment > Supervised > "Using the Supervised Segmenter" on page 120
□ EasyLocate > "Locating Objects" on page 135

● You can apply each tool to individual images or to sets of images.
□ With a set of images and with GPU processing enabled, the tool processes

EDeepLearningTool::BatchSize at the same time.
□ EasySegment can automatically split individual images in sub-images according to the

patch size, the scaling and the sampling density parameters. These sub-images are
processed by batch.

NOTE: The processing of the first prediction after loading a model, changing the batch size or
with a different number of images (smaller than the batch size), is slower than the
previous one because the tool must perform various initializations that can be very
slow.

□ Use the methods EDeepLearningTool::InitializeInference with an image or a set of
images to perform these initializations before actually using the tool.
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Benchmarking a Deep Learning Tool

In Deep Learning Studio, if you have a Deep Learning license, you can benchmark your trained
tools to measure their speed according to various execution parameters.

1. Open the Benchmark tab.

2. To add a benchmark, click on the Add benchmark button.
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In the Add benchmark window:

3. Select the Tool that you want to benchmark. Only trained tool appear in the list.

4. Name your benchmark.

5. Set the Number of images/iterations to perform in the benchmark. The more images, the
better the precision.

6. In the Execution settings tab, set the parameters that control how the neural network runs:
□ The engine, device and inference precision.
□ The threading parameters.

&

Use the threading parameters when running the neural network on the CPU:
□ The internal threading can improve the processing speed for a single image. It also

improves both the throughput (number of images processed by seconds) and the latency
(time taken to process one image).

□ The external threading involves using the same tools in different threads on different
images. This can greatly improve the throughput but it decreases the latency (it means
that the number of images processed each seconds increases but the time to process a
single image is longer on average).

□ Check the code samples referenced in the dialog for how to implement internal and
external multithreading.
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7. In the Image settings tab, set the the parameters that control how the images are
preprocessed and given to the neural network:
□ Simulate camera framerate: When checked, the benchmark does not try to perform

inference at the maximum speed. Instead, images are produced at the specified frame
rate.
Use this setting to check if your execution settings can match the speed of your camera.
Simulating a camera frame rate also gives you an estimation of the time spent between
the acquisition of an image and the moment the result is available.

□ Batch size: Increasing the batch size can greatly improve the throughput, especially for
GPU processing. However, it also increases the latency.

□ Image size: By default, when applying a tool on an image that has a size different from
the input size of the tool, the image is automatically resized by the tool. The time spent
performing this resizing is part of the inference time.
Check Avoid internal resize to avoid the resizing performed during inference and
slightly accelerate the tool.
In a real application, you can configure your camera to capture images directly of the
input size of the tool to avoid this automatic resizing step.

Benchmark results

The following benchmark results are available:

● In the Summary tab:
□ The settings of the benchmark.
□ The troughput (number of images processed by seconds).
□ The minimum/ mean / maximum inference time per image.
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● In the Processing time per inference call:
□ A table and a graph with the processing times.

NOTE: An inference call means calling the inference API with a batch of images (see batch
size setting).

● In addition in the Summary tab, if you are simulating a camera frame rate:

□ Whether all images could be processed in time.
□ The number of images that were dropped because the frame rate was too fast compared

to the inference speed.
□ The minimum/ mean / maximum latency (the time between the acquisition of the image

and the moment the result for this image is available).
□ The camera simulation details tab that contains a table showing the various timings for

each image (acquisition time, inference start time, inference end / latency, inference
time).
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EasyClassify - Classifying Images

Tool and Images

EasyClassify is the deep learning classification library of Open eVision (EClassifier class).

Deep Learning Studio

To create an EasyClassify project in Deep Learning Studio:

1. Start Deep Learning Studio.

2. Create a new project and select EasyClassify in the New deep learning project dialog.

Tool properties
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Capacity

● The Capacity of the neural network (default: Normal) represents the quantity of information
that it is capable of learning.
□ We recommend you to first train a Normal network on your dataset.

► If the learning is working:
□ Try to use the Small or the Large network to get the performance (inference speed and

accuracy) that best matches your application.

► If the learning does not work it means either that:
□ Your dataset image resolution is too small (below 128 × 128): try to use the Extra Small

network that specifically targets such cases.
□ Your dataset is complex and difficult: try to use the Extra Large network that specifically

targets such cases.

● In the API:
□ Use the string parameter EClassifier::ModelType to select the model capacity.
□ Use EClassifier::SetModelType to set the capacity of your tool.
□ Use EClassifier::GetAvailableModelTypes to list the available models for training.

Use pretrained model

● A pretrained model should give faster convergence time and better accuracy for all the
datasets except for extremely large datasets (> 10 000 images).

● A pretrained model works by initializing the neural network with the weights learned on a
large and complex dataset.
□ This allows to transfer the knowledge of some universal features (such as edges,

corners...) learned on this dataset to your dataset.
□ If you do not use a pretrained model, the neural network is initialized randomly.

● In the API, use EClassifier::SetUsePretrainedModel(false) to disable the user of pretrained
models.

NOTE: You cannot use the histogram equalization with pretrained weights as it would lead to
poor training results.

Compute the heatmap

● If this option is checked, the tool computes the heatmap along with each result.
□ The heatmap is available with EClassificationResult::GetHeatmap or with

EClassificationResult::GetHeatmap.

► Note that this option makes the computation of the results a bit slower but twice faster
than computing the result and then computing the heatmap separately.

● In the API, use EClassifier::SetComputeHeatmapWithResult to enable or disable this option.

● If this option is disabled, use the method EClassifier::GetHeatmap to get the heatmap for an
image.
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Image format and normalization

Width, Height, Image type and Enable automatic image reformat

● The input image format must have the width, height and number of channels corresponding
to the input of the neural network.

● By default, a classifier uses the image format of the first image inserted in the training
dataset:
□ All other images are automatically reformatted (anisotropic rescaling and conversion

between color and grayscale).
□ If EClassifier::SetEnableAutomaticImageReformat(false) is called, the classifier throws an

exception when attempting to train or classify an image that does not have the correct
image format.

TIP
It is recommended to use a width and heigh of at least 224 × 224, as the
performances may start to deteriorate if the height or/and the width are
smaller.

● In Deep Learning Studio, you can set the input image format in the Classifier properties of
the tools that you create in the Tools tab.

● In the API, you can also set manually the input image format with the methods SetWidth,
SetHeight and SetChannels (1 channel for grayscale images and 3 channels for color images).

Image resolution

The input image format must have a resolution of at least 128 x 128 for the normal and the large
capacity or 64 x 64 for the small capacity and at most 1024 x 1024.

For the best processing speed, use the lowest resolution at which your "objects of interest" are
still recognizable.

● If your original images are smaller than the minimum resolution, upscale them to a
resolution higher or equal to 128 x 128.

● If your original images are larger than the maximum resolution, lower the resolution:
□ If the "objects of interest" are still recognizable, explicitly set the input image format of

the classifier to this lower resolution.
□ If the "objects of interest" are not recognizable, divide your original images into sub-

windows and use these sub-windows to train the classifier and make predictions. This
presents the additional advantage of localizing the "object of interest" inside the original
image.
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Enable histogram equalization

The classifier can also apply an histogram equalization to every input image:
□ In Deep Learning Studio, activate it in the image format controls in the Image properties

and augmentation tab.
□ In the API, use EClassifier::SetEnableHistogramEqualization(true) to activate it.

NOTE: You cannot use the histogram equalization with pretrained weights as it would lead to
poor training results.

Training

To train your tool, see "Training a Deep Learning Tool" on page 86.
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Validating the Results

In Deep Learning Studio:

● The metrics are always computed without applying data augmentation on the images.

● In the Tools tab, the metrics Best validation error and Best validation accuracy are
computed during the training using the label weights. The evolution of several metrics
during the training is also available.

● In the Validation and results tab, there are 3 metrics displayed:
□ The weighted error and the weighted accuracy (normalized with respect to the label

weights instead of being dependent of the number of images for each label).
□ The dataset accuracy (it does not use the label weights).

TIP
If your dataset has a very different number of images for each of the labels,
it is called unbalanced. In this case, the dataset accuracy is biased towards
the labels containing the most images (the dataset accuracy mainly reflects
the accuracy of these labels).

Open eVision User Guide



100

● In the Validation and results tab, the confusion matrix shows the number of images
according to their true labels and their label predicted by the classifier.
□ The diagonal elements of the matrix shown in green are the correctly classified images.
□ All the other elements of the matrix are badly classified images.
□ Select one or more elements of the matrix to show the corresponding images.

● In the Validation and results tab, you can export the results using the 2 buttons below the
metrics and confusion matrix.
□ The Export heatmaps button exports the heatmap for each image of your dataset.

- The heatmaps are saved in the PNG format under the name ImageName_ToolName_
heatmap_UniqueId.png.
- This feature requires a Deep Learning license.

□ The Export results to CSV button exports the results for each image of your dataset as
rows of a CSV file.
- Each record contains the image filename, the ground truth label, the predicted label, the
prediction probability and the probabilities for all the labels recognized by the tool.
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In the API:

● After the completion of each iteration, EasyClassify automatically computes several
performance metrics about the training and validation dataset:
□ Call the methods EClassifier::GetTrainingMetrics(iteration) and

EClassifier::GetValidationMetrics(iteration) to read these metrics.
□ The iterations are indexed between 0 and EDeepLearningTool::GetNumTrainedIterations()-

1.
□ Call EDeepLearningTool::GetBestIteration() to retrieve the iteration that produced the

best performance.
□ After the training, the classifier is back in the state corresponding to this best iteration.

● The metrics are represented by an EClassificationMetrics object that contains the following
performance metrics:
□ The classification error (EClassificationMetrics::GetError()), also called the cross-

entropy loss: the quantity that is minimized during the training. It is computed from the
probabilities computed by the classifier.
- The error for a single image is the negative of the logarithm of the probability
corresponding to the true label of the image. So, if this probability is low, the error for the
image is high.
- The error of the dataset is the average of the errors of each image in the dataset.

□ The classification accuracy (EClassificationMetrics::GetAccuracy()): the number of
images correctly classified divided by the total number of images in the dataset.

□ The confusion matrix (EClassificationMetrics::GetConfusion(groundtruthLabel,
predictedLabel)): the number of images labeled as groundtruthLabel that are classified as
predictedLabel.

TIP
Call EClassifier::Evaluate to evaluate a dataset independently of the
training.

Classifying New Images

● In Deep Learning Studio:
□ Add new images to the dataset and refresh the results.

□ Open the Inference tests tab to classify the new images and display the detailed results
for these images.

□ You can also export the results to CSV or export the heatmap from this tab.
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□ In the image viewer, you can enable or disable the heatmap visualization and configure
how the heatmap is displayed (color map and transparency).

● Once the classifier is trained, call EClassifier::Classify to classify an Open eVision image.

This method returns a EClassificationResult object:
□ EClassificationResult::GetBestLabel() returns the most probable label for the image.
□ EClassificationResult::GetBestProbability() returns the probability associated with the

most probable label.
□ EClassificationResult::GetProbability(label) returns the probability associated with the

given label.
□ EClassificationResult::GetRanking(label) returns the ranking of the given label. The

ranking goes from 1 (most probable) to EClassifier::GetNumLabels() (least probable).
□ EClassificationResult::GetHeatmap and EClassificationResult::GetColorizedHeatmap

return a heatmap highlighting the pixels that have contributed the most to get the most
probable label.
- The heatmap is only available when the classifier property
EClassifier::ComputeHeatmapWithResult is set to True.
- Use EClassificationResult::HasHeatmap to check if the result contains a heatmap.
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● You can also do batch classification or directly classify a vector of Open eVision images:
□ Images are processed together in groups determined by the batch size.
□ On a GPU, it is usually much faster to classify a group of images than a single image.
□ On a CPU, implement a multithread approach to accelerate the classification. In that

case, each thread must have its own instance of EClassifier (see code snippets).

TIP
The batch classification has a tradeoff between the throughput (the number
of images classified per second) and the latency (the time needed to obtain
the result of an image): on a GPU, the higher the batch size, the higher the
throughput and the latency. So, use batch classification to improve the
classification speed at the cost of a longer time before obtaining the
classification result of an image.

● Use EClassifier::GetHeatmap(img, label) to obtain a heatmap highlighting the pixels that
contribute the most to a label.
□ In some cases, this heatmap can provide a rough localization of the object corresponding

to the label.
□ The heatmap is colored, and the important parts are displayed in red.

TIP
Since large memory allocations take a lot of time, a classification does not
release its memory and the next classifications can reuse it as long as the
width, height, batch size and computation device remain the same. As such,
the first classification is always slower due to the memory allocations.
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Benchmarks for EasyClassify

Test conditions
□ These numbers are only indicative and represent only the memory required for the neural

network.
□ Your actual memory requirements may be bigger or lower according to your GPU model.
□ The GPU must have more memory than the indicated amount to work because storing

images and results may require additional GPU memory and because of memory
fragmentation.

□ The training time is approximately twice the inference time per image. An iteration is
equivalent to a loop over all the images in the dataset.

□ The GPU memory requirements indicated below are approximate and can vary according
to the GPU model.
- These values were obtained for a NVIDIA GeForce 3080 Ti on Windows 11.
- The GPU inference can be 10 to 50% faster on Linux for GeForce GPUs.

□ On Windows:
- When using the WDDM driver mode (always on for a GeForce GPU), the inference times
can vary quite a lot.
- When using the TCC mode on a Quadro GPU, the inference times are more stable.

□ In the tables below 'n/a' means that the value could not be computed for this specific
configuration (for example because there is not enough memory).

□ In the tables below, a '=' means that the value is equal to the one above it.

Capacity Extra Small

Image size Batch

Inference time / image (ms)
GPU

NVIDIA
GeForce 3080Ti

CPU
Intel Core i9

7900X

GPU
NVIDIA Jetson

Xavier NX (ARM)

CPU
Raspberry Pi 4

Model B

128 × 128

1 2.72 1.42 15.14 19.58
4 0.97 = 2.38 = 

16 0.72 = 1.69 = 
64 0.55 = 0.96 = 

256 × 256

1 5.36 3.95 8.29 65.00
4 2.58 = 5.27 = 

16 1.91 = 3.26 = 
64 0.54 = 2.24 = 

512 × 512

1 5.10 19.20 19.76 311.00
4 7.52 = 12.11 = 

16 2.01 = 7.49 = 
64 2.73 = 7.40 = 
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Image size Batch GPU memory
for inference (MB)

GPU memory
for training (MB)

128 × 128

1 132 n/a
4 139 159

16 166 242
64 276 571

256 × 256

1 139 n/a
4 166 241

16 275 569
64 712 1 879

512 × 512

1 166 n/a
4 275 568

16 711 1 877
64 2 455 7 114

Capacity Small

Image size Batch

Inference time / image (ms)
GPU

NVIDIA
GeForce 3080Ti

CPU
Intel Core i9

7900X

GPU
NVIDIA Jetson

Xavier NX (ARM)

CPU
Raspberry Pi 4

Model B

128 × 128

1 3.26 2.65 22.99 33.00
4 1.67 = 3.81 =

16 0.88 = 2.02 =
64 0.53 = 1.38 =

256 × 256

1 3.89 7.40 11.85 108.00
4 3.00 = 7.95 =

16 1.59 = 3.80 =
64 0.59 = 3.35 =

512 × 512

1 6.58 34.50 27.94 521.00
4 5.84 = 14.47 =

16 2.19 = 10.82 =
64 2.79 = 10.02 =

Image size Batch GPU memory
for inference (MB)

GPU memory
for training (MB)

128 × 128

1 137 n/a
4 147 180

16 188 304
64 350 799

256 × 256

1 147 n/a
4 187 303

16 349 796
64 996 2 766
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Image size Batch GPU memory
for inference (MB)

GPU memory
for training (MB)

512 × 512

1 187 n/a
4 349 795

16 995 2 763
64 3 579 10 635

Capacity Normal

Image size Batch

Inference time / image (ms)
GPU

NVIDIA
GeForce 3080Ti

CPU
Intel Core i9

7900X

GPU
NVIDIA Jetson

Xavier NX (ARM)

CPU
Raspberry Pi 4

Model B

128 × 128

1 5.61 4.65 15.26 47.30
4 4.01 = 4.45 =

16 1.55 = 2.27 =
64 0.52 = 1.23 =

256 × 256

1 5.74 14.40 36.33 179.00
4 5.87 = 8.73 =

16 2.11 = 4.54 =
64 0.67 = 3.74 =

512 × 512

1 7.75 60.00 49.12 760.00
4 7.63 = 17.72 =

16 2.74 = 15.28 =
64 2.97 = 14.44 =

Image size Batch GPU memory
for inference (MB)

GPU memory
for training (MB)

128 × 128

1 142 n/a
4 153 201

16 199 357
64 383 983

256 × 256

1 153 n/a
4 199 357

16 381 980
64 1 110 3 473

512 × 512

1 199 n/a
4 381 979

16 1 109 3 470
64 4 021 13 433
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Capacity Large

Image size Batch

Inference time / image (ms)
GPU

NVIDIA
GeForce 3080Ti

CPU
Intel Core i9

7900X

GPU
NVIDIA Jetson

Xavier NX (ARM)

CPU
Raspberry Pi 4

Model B

128 × 128

1 3.75 8.50 40.42 94.00
4 2.44 = 6.49 =

16 1.64 = 2.61 =
64 0.29 = 2.26 =

256 × 256

1 4.25 25.60 55.36 367.00
4 5.45 = 8.80 =

16 0.84 = 6.46 =
64 0.89 = 6.53 =

512 × 512

1 6.06 128.00 32.07 1 630.00
4 3.12 = 23.61 =

16 3.17 = 21.72 =
64 3.25 = 20.43 =

Image size Batch GPU memory
for inference (MB)

GPU memory
for training (MB)

128 × 128

1 152 n/a
4 178 272

16 281 611
64 695 1 965

256 × 256

1 178 n/a
4 281 610

16 693 1 960
64 2 341 7 360

512 × 512

1 281 n/a
4 692 1 959

16 2 338 7 355
64 9 075 29 094

Capacity Extra Large

Image size Batch

Inference time / image (ms)
GPU

NVIDIA
GeForce 3080Ti

CPU
Intel Core i9

7900X

GPU
NVIDIA Jetson

Xavier NX (ARM)

CPU
Raspberry Pi 4

Model B

128 × 128

1 6.05 13.30 37.56 181.50
4 3.78 = 8.91 =

16 1.71 = 3.42 =
64 0.40 = 3.80 =
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Image size Batch

Inference time / image (ms)
GPU

NVIDIA
GeForce 3080Ti

CPU
Intel Core i9

7900X

GPU
NVIDIA Jetson

Xavier NX (ARM)

CPU
Raspberry Pi 4

Model B

256 × 256

1 6.81 50.00 28.23 726.00
4 6.07 = 12.64 =

16 1.25 = 10.76 =
64 1.57 = 11.17 =

512 × 512

1 10.24 244.00 50.34 3 233.00
4 4.76 = 42.70 =

16 5.88 = 39.70 =
64 – = – =

Image size Batch GPU memory
for inference (MB)

GPU memory
for training (MB)

128 × 128

1 170 n/a
4 251 442

16 577 1 295
64 1 879 4 705

256 × 256

1 251 n/a
4 576 1 293

16 1 875 4 698
64 7 074 18 333

512 × 512

1 576 n/a
4 1 874 4 696

16 7 070 18 326
64 28 004 73 212

EasySegment - Detecting and Segmenting Defects

Unsupervised vs Supervised Modes

EasySegment is the deep learning segmentation library of Open eVision.

It contains 2 different modes:

● The unsupervised mode:
□ The tool is trained only with good images (EUnsupervisedSegmenter class).
□ This mode does not require a ground truth segmentation and the creation of the dataset

is thus much quicker than for the supervised mode.
□ This mode can detect unexpected defects while the supervised mode is only capable of

detecting defects similar to those in the dataset.

● The supervised mode:
□ The tool is trained using the ground truth segmentation defined for the images

(ESupervisedSegmenter class).
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□ This mode can detect and segment more types of defects with better accuracy than the
unsupervised mode. It directly builds a model for the defects while the unsupervised
mode builds a model of the good images and tries to detect variations from this model.

□ You can also use this mode to segment other types of objects than defects.

EasySegment Unsupervised

Tool and Configuration
EasySegment Unsupervised is the deep learning tool part of the EasySegment segmentation
library of Open eVision. It detects and segments defects in images.

This tool trains in an unsupervised way. This means that it is trained only with good images. So
it does not require any ground truth segmentation of the defects.

Deep Learning Studio

To create an EasySegment Unsupervised project in Deep Learning Studio:

1. Start Deep Learning Studio.

2. Create a new project and select EasySegment Unsupervised in the New deep learning project
dialog.
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The following dialog is displayed when clicking on New in the Open a project dialog displayed at
the start of Deep Learning Studio or when you click on New in the toolbar.

Configuration
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The unsupervised segmenter tool has 6 parameters:

1. The Good label is the name of the class that contains the good images.

In Deep Learning Studio, the Good label is a project property that you must select in the
Dataset and annotations tab below the list of labels.

2. The Capacity of the neural network (default: Normal) represents the quantity of information it
is capable of learning. A larger capacity makes the tool slower.

In the API:
□ The capacity is represented by the enumerate type EUnsupervisedSegmenterCapacity.
□ EUnsupevisedSegmenter::Capacity sets the capacity of the tool.

3. The Image type (default: Monochrome (1 channel)):

In the API:
□ To use monochrome (grayscale, 1 channel) images, set

EUnsupervisedSegmenter::ForceGrayscale to true.
□ To use color (3 channels) images, set EUnsupervisedSegmenter::ForceGrayscale to false.

4. The Sampling density (EUnsupervisedSegmenter::SamplingDensity) is the parameter of the
sliding window algorithm used to process whole images using patches of size
(EUnsupervisedSegmenter::PatchSize).
□ It indicates how much overlap there is between the image patches:

100 - 100 / SamplingDensity (%)
□ In practice, the stride between 2 consecutive patches is:

PatchSize / SampleDensity (pixels)
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5. The Patch size (EUnsupervisedSegmenter::PatchSize) is the size of the patches processed by
the neural network.
□ By default, the patch size is determined automatically from the images in the training

dataset.
□ You can also select the resolution of the patch size from the drop down list.

6. Use the Scale (EUnsupervisedSegmenter::Scale) to automatically resize your images to a lower
resolution and accelerate the processing.

In Deep Learning Studio:
□ If the dataset contains images with different resolutions, the Input width and the Input

height indicate the range of the resolutions with the given scale.
□ If all the images in the dataset have the same resolution, set either the Input width or the

Input height to change the scale.

Training

To train your tool, see "Training a Deep Learning Tool" on page 86.

Validating the Results
There are 2 types of metric for the unsupervised segmentation tool:

□ Unsupervised metric only uses the results of the tool on good images. There is only one
unsupervised metric: the error.

□ Supervised metrics require both good and defective images. The supervised metrics are
the AUC (Area Under ROC Curve), the ROC curve, the accuracy, the good detection rate
(also called the true negative rate), the defect detection rate (also called the true positive
rate).

The unsupervised segmentation tool computes a score for each image (see
EUnsupervisedSegmenterResult::ClassificationScore). The label of a result is obtained by
thresholding this score with the segmenter classification threshold
(EUnsupervisedSegmenter::ClassificationThreshold). So, the supervised metrics also depends on
the value of this classification threshold.

The ROC curve (Receiver Operating Characteristic) is the plot of the defect detection rate (the
true positive rate) against the rate of good images classified as defective (also called the false
positive rate). It is obtained by varying the classification threshold. The ROC curve shows the
possible tradeoffs between the good detection rate and the defect detection rate.

The area under the ROC curve (AUC) is independent of the chosen classification threshold and
represents the overall performance of the tool. Its value is between 0 (bad performance) and 1
(perfect performance).
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In Deep Learning Studio:

● In the Tools tab, the metrics Best validation error and Best validation AUC are computed
during the training on the validation dataset without using data augmentation. The
validation error, the training error and the validation AUC are plotted for each iteration.

● In the Validation and results tab, various metrics, the confusion matrix, a cumulative score
histogram, and the ROC curve are displayed. You can also change the classification threshold
directly in this tab.
□ The cumulative score histogram shows the cumulative proportion of good (in green) and

defective (in red) images with respect to the scores of the image.
□ You can change the classification threshold in 3 ways : direct input, dragging the

threshold line in the score histogram and selecting a point on the ROC curve.

In the API:

● The metrics are represented by an EUnsupervisedSegmenterMetrics object that contains the
following performance metrics:
□ The error on good image (EUnsupervisedSegmenterMetrics::GetError)
□ The confusion matrix (EDeepLearningDefectDetectionMetrics::GetConfusion)
□ If the results for bad images are included in the metrics,

EUnsupervisedSegmenterMetrics::IsTotallyUnsupervised is false and the following metrics
are also be accessible:
- The accuracy (EDeepLearningDefectDetectionMetrics::GetAccuracy)
- The Area under ROC curve
(EDeepLearningDefectDetectionMetrics::GetAreaUnderROCCurve)
- The ROC point corresponding to the classification threshold
(EDeepLearningDefectDetectionMetrics::GetROCPoint)

Open eVision User Guide

eunsupervisedsegmentermetrics-class.htm
eunsupervisedsegmentermetrics-error.htm
edeeplearningdefectdetectionmetrics-getconfusion.htm
eunsupervisedsegmentermetrics-istotallyunsupervised.htm
edeeplearningdefectdetectionmetrics-getaccuracy.htm
edeeplearningdefectdetectionmetrics-areaunderroccurve.htm
edeeplearningdefectdetectionmetrics-getrocpoint.htm


114

Applying the Tool to New Images
In Deep Learning Studio:

● Add new images to the dataset and refresh the results.

● Open the Inference tests tab to apply the segmenter to new images and display detailed
results for these images.

● Once the unsupervised segmenter is trained, call EUnsupervisedSegmenter::Apply to detect
and segment defects in an Open eVision image.

This method returns a EUnsupervisedSegmenterResult object:
□ EUnsupervisedSegmenterResult::IsGood and EUnsupervisedSegmenterResult::IsDefective

returns whether the tool has decided that the image is good or defective according to the
EUnsupervisedSegmenterResult::ClassificationScore and the
EUnsupervisedSegmenter::ClassificationThreshold.

□ EUnsupervisedSegmenterResult::GetSegmentationMap returns an EImageBW8 image where all
pixels with a value different than 0 are defective pixels.
The value of a defective pixel is proportional to the importance of the defect at that
position.

□ EUnsupervisedSegmenterResult::GetRegion returns an ERegion object corresponding to the
segmented region of the image (all the pixels of
EUnsupervisedSegmenterResult::GetSegmentationMap that have a value strictly higher than
0).

□ EUnsupervisedSegmenterResult::Draw draws the segmentation mask.
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Benchmarks for EasySegment
Unsupervised
Test conditions

□ These numbers are only indicative and represent only the memory required for the neural
network.

□ Your actual memory requirements may be bigger or lower according to your GPU model.
□ The GPU must have more memory than the indicated amount to work because storing

images and results may require additional GPU memory and because of memory
fragmentation.

□ The training time is approximately twice the inference time per image. An iteration is
equivalent to a loop over all the images in the dataset.

□ The GPU memory requirements indicated below are approximate and can vary according
to the GPU model.
- These values were obtained for a NVIDIA GeForce 3080 Ti on Windows 11.
- The GPU inference can be 10 to 50% faster on Linux for GeForce GPUs.

□ On Windows:
- When using the WDDM driver mode (always on for a GeForce GPU), the inference times
can vary quite a lot.
- When using the TCC mode on a Quadro GPU, the inference times are more stable.

□ In the tables below 'n/a' means that the value could not be computed for this specific
configuration (for example because there is not enough memory).

□ In the tables below, a '=' means that the value is equal to the one above it.

Image size
□ The inference times are reported for 1024 × 1024 RGB images with all other settings at

their default values.
□ The inference times increase linearly with the width and height of the image. The

inference times of a 512 × 512 image will be approximately 25% of the time reported
below.

Capacity Small

Patch size Batch

Inference time / image (ms)
GPU

NVIDIA
GeForce 3080Ti

CPU
Intel Core i9

7900X

GPU
NVIDIA Jetson

Xavier NX (ARM)

CPU
Raspberry Pi 4

Model B

64 × 64

1 722.34 1 280 949.36 9 314
4 237.25 = 344.92 =

16 97.55 = 221.60 =
64 68.11 = 191.46 =
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Patch size Batch

Inference time / image (ms)
GPU

NVIDIA
GeForce 3080Ti

CPU
Intel Core i9

7900X

GPU
NVIDIA Jetson

Xavier NX (ARM)

CPU
Raspberry Pi 4

Model B

128 × 128

1 289.34 1 472 619.84 6 946
4 96.46 = 286.99 =

16 51.83 = 201.88 =
64 40.60 = 167.90 =

256 × 256

1 92.99 896 325.74 6 509
4 48.62 = 214.72 =

16 34.67 = 164.97 =
64 38.92 = 150.79 =

Patch size Batch GPU memory
for inference (MB)

GPU memory
for training (MB)

64 × 64

1 5 n/a
4 8 11

16 13 26
64 52 101

128 × 128

1 12 n/a
4 23 41

16 60 117
64 221 430

256 × 256

1 44 n/a
4 80 151

16 233 454
64 869 1 690

Capacity Normal

Patch size Batch

Inference time / image (ms)
GPU

NVIDIA
GeForce 3080Ti

CPU
Intel Core i9

7900X

GPU
NVIDIA Jetson

Xavier NX (ARM)

CPU
Raspberry Pi 4

Model B

64 × 64

1 851.08 2 533 1 379.48 18 734
4 245.62 = 532.91 =

16 106.22 = 357.82 =
64 70.44 = 271.87 =

128 × 128

1 312.90 3 216 1 095.83 17 763
4 104.09 = 557.38 =

16 55.60 = 369.82 =
64 42.79 = 275.37 =

256 × 256

1 103.61 2 246 740.05 13 881
4 53.91 = 421.52 =

16 38.22 = 309.25 =
64 46.27 = 257.49 =
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Patch size Batch GPU memory
for inference (MB)

GPU memory
for training (MB)

64 × 64

1 3 n/a
4 8 15

16 26 50
64 102 192

128 × 128

1 37 n/a
4 53 98

16 126 240
64 441 834

256 × 256

1 145 n/a
4 211 386

16 487 935
64 1 588 3 128

Capacity Large

Patch size Batch

Inference time / image (ms)
GPU

NVIDIA
GeForce 3080Ti

CPU
Intel Core i9

7900X

GPU
NVIDIA Jetson

Xavier NX (ARM)

CPU
Raspberry Pi 4

Model B

64 × 64

1 965.58 6 178 2 183.06 40 833
4 278.08 = 938.51 =

16 117.13 = 622.66 =
64 75.41 = 387.08 =

128 × 128

1 361.31 8 882 2 824.60 57 329
4 129.73 = 1 394.44 =

16 66.03 = 798.73 =
64 53.80 = 470.68 =

256 × 256

1 187.35 7 254 2 969.24 38 020
4 79.50 = 1 461.80 =

16 51.84 = 667.86 =
64 67.15 = 544.54 =

Patch size Batch GPU memory
for inference (MB)

GPU memory
for training (MB)

64 × 64

1 11 n/a
4 20 36

16 56 103
64 209 383
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Patch size Batch GPU memory
for inference (MB)

GPU memory
for training (MB)

128 × 128

1 133 n/a
4 164 293

16 300 561
64 840 1 632

256 × 256

1 523 n/a
4 654 1 163

16 1 180 2 208
64 3 664 6 768

EasySegment Supervised

Tool and Configuration
Deep Learning Studio

To create an EasySegment Supervised project in Deep Learning Studio:

1. Start Deep Learning Studio.

2. Create a new project and select EasySegment Supervised in the New deep learning project
dialog. .
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The following dialog is displayed when clicking on New in the Open a project dialog displayed at
the start of Deep Learning Studio or when you click on New in the toolbar.

Configuration

The supervised segmenter tool has 5 parameters:

1. The Capacity of the neural network (default: Normal) represents the quantity of information it
is capable of learning. A larger capacity makes the tool slower.

In the API:
□ The capacity is represented by the enumerate type ESupervisedSegmenterCapacity.
□ ESupevisedSegmenter::Capacity sets the capacity of the tool.

2. The Image type (default: Monochrome (1 channel)):

In the API:
□ To use monochrome (grayscale, 1 channel) images, set

ESupervisedSegmenter::ForceGrayscale to true.
□ To use color (3 channels) images, set EUnsupervisedSegmenter::ForceGrayscale to false.
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3. The Sampling density (ESupervisedSegmenter::SamplingDensity) is the parameter of the
sliding window algorithm used to process whole images using patches of size
(ESupervisedSegmenter::PatchSize).
□ It indicates how much overlap there is between the image patches:

100 - 100 / SamplingDensity (%)
□ In practice, the stride between 2 consecutive patches is:

PatchSize / SampleDensity (pixels)

4. The Patch size (ESupervisedSegmenter::PatchSize) is the size of the patches processed by the
neural network.
□ By default, the patch size is determined automatically from the images in the training

dataset.
□ You can also select the resolution of the patch size from the drop down list.

5. Use the Scale (ESupervisedSegmenter::Scale) to automatically resize your images to a lower
resolution and accelerate the processing.

In Deep Learning Studio:
□ If the dataset contains images with different resolutions, the Input width and the Input

height indicate the range of the resolutions with the given scale.
□ If all the images in the dataset have the same resolution, set either the Input width or the

Input height to change the scale.

Training

To train your tool, see "Training a Deep Learning Tool" on page 86.

Using the Supervised Segmenter
To get the result, a supervised segmenter follows these steps:

1. For each pixel, the supervised segmenter tool computes the probabilities that it belongs to
each of the segmentation labels.

2. From these probabilities, it extracts a set of potential foreground blobs (groups of
contiguous pixels for which the highest probability corresponds to the same foreground
segmentation label).

3. For each one of these potential foreground blobs:
□ It computes a score.
□ It removes, from the predicted segmentation map, the blobs with a score that is below or

equal to the threshold of the supervised segmenter tool.
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4. The score of an image is the maximum among the scores of the potential foreground blobs.

NOTE
In the context of defect detection, an image is considered to be without
defect when its score is below or equal to the threshold of the supervised
segmenter tool.

In Deep Learning Studio:

● Add new images to the dataset and refresh the results.

● Open the Inference tests tab to apply the segmenter to new images and display detailed
results for these images.

● To visualize the segmentation of an image, check the Predicted segmentation option
(CTRL + P) in the Result menu (ALT + R) of the image viewer.

● If the image has a ground truth, check the Ground truth segmentation option (CTRL + G) to
display it. It appears with a green pattern drawn over it.

Ground truth (left) and prediction on top of ground truth (right)
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● To accept the whole predicted segmentation as ground truth, click on the Use prediction as
ground truth button (CTRL + U).

● To accept a single predicted blob as ground truth, right click on the blob and select Accept
into ground truth in the menu.

● A list of blobs with various characteristics is available in the Results tab of the image viewer.

In the API:

● To apply the supervised segmenter to an image use ESupervisedSegmenter::Apply. This
method returns a ESupervisedSegmenterResult object.
□ Use ESupervisedSegmenterResult::GetProbabilityMap to retrieve the probability map for a

given label. The probability map pixels contain the index of the predicted label.
□ Use ESupervisedSegmenterResult::Draw to draw the segmentation with the segmentation

label colors of the dataset used for training.
□ Use ESupervisedSegmenterResult::GetBlobs to retrieve the filtered list of blobs.
□ Use e ESupervisedSegmenterResult::Score to retrieve the score of an image.
□ Use ESupervisedSegmenterResult::GetRegionForLabel to obtain an ERegion object

containing the pixels of the specified label.
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Evaluating the Results
There are 3 types of metrics for the supervised segmentation tool:

□ The pixel-based metrics that quantify the performance of the tool at the pixel level.
□ The blob-based metrics that quantify the performance of the tool at the blob level. A blob

is a contiguous region of pixels that have the same foreground segmentation label. By
definition, there is no background blob.

□ The image-based metrics that quantify the performance of the tool at the image level.
These metrics are related to the capacity of the tool to correctly detect background
images (images with no blobs) and foreground images (images with blobs).

● In Deep Learning Studio:
□ The metrics are available in the Dataset results tab.
□ Most metrics depends on the value of the Classification threshold.

● In the API:
□ The metrics are represented by an ESupervisedSegmenterMetrics object.

The pixel-based metrics

● The pixel-based metrics are:
□ The weighted Intersection over Union (IoU) that is the weighted average of the IoU over

all the labels (see per-label metrics).
□ The weighted pixel accuracy that is the weighted average of the accuracy over all the

labels (see per-label metrics).
□ The pixel confusion matrix that shows the number of pixels from a given label that are

predicted to belong to another label.
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● The per label metrics are:
□ The Intersection over Union (IoU) that is the ratio of the intersection between the ground

truth and the prediction for the label to the union of the ground truth and prediction for
the label.

□ The accuracy that is the proportion of the pixels of the label that are correctly predicted.

The blob-based metrics

● The metrics related to the correct prediction of blobs are:
□ The recall that is the ratio of the correctly predicted blobs to the total number of ground

truth blobs.
□ The precision that is the ratio of correctly predicted blobs to the total number of

predicted blobs.
□ The F1-Score that is the harmonic mean of the recall and the precision.
□ The average precision that is the average of the precision for different threshold weighted

by the recall values.
□ The best achievable F1-Score that is the maximum F1-Score achievable by selecting an

appropriate threshold.
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● The confusion matrix:
□ It shows the number of blobs of a given true label that are predicted to be of the

corresponding predicted label.
□ The image list of the Dataset results tab only shows the images containing the blobs

corresponding to the selected cells of the matrix.
□ Each matrix element shows the number of ground truth blob and the number of

corresponding predicted blobs separated by a "/" as a ground truth blob can correspond
to one or more blobs in the prediction and inversely.
A dash (-) indicates that blobs are not defined for this category.

□ For example, in the screenshot below, there are:
- 3 predicted blobs of the label Defect that correspond to the Background.
- 1 ground truth blob of the label Defect that does not correspond to any predicted blob.
- 12 predicted blobs of the label Defect that correspond to 12 ground truth blob of the
same label.

● The metrics for each individual foreground label are:
□ Recall
□ Precision
□ F1-Score

The image-based metrics

● The metrics related to the correct detection of the class of the images (background /
foreground or good / defective in the context of defect detection):
□ The image detection accuracy that is the proportion of image correctly predicted to have

foreground blobs or not.
□ The foreground image detection rate that is the proportion of correctly predicted images

with foreground blobs.
□ The background image detection rate that is the proportion of correctly predicted images

with no foreground blobs.
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□ The image detection AUC (Area under the ROC Curve, see ROC Curve below).
□ The best achievable image detection accuracy that is the maximum image detection

accuracy obtained by changing the threshold.

● The confusion matrix:
□ It shows the number of images of a given true label that are predicted to be of the

corresponding predicted label.
□ The image list of the Dataset results tab only shows the images corresponding to the

selected cells of the matrix.

● The 2 available graphics are:
□ The ROC curve that plots the true positive rate (foreground image detection rate) versus

the false positive rate (1 minus the background image detection rate) for various
threshold values.
Click on a point on the plot to set the threshold at the corresponding value.

□ The score histogram that plots:
- In green: the cumulative histogram of the scores of the background images.
- In orange: the cumulative histogram of the scores of the foreground images.
- The blue line corresponds to the current value of the threshold.
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Benchmarks for EasySegment
Supervised
Test conditions

□ These numbers are only indicative and represent only the memory required for the neural
network.

□ Your actual memory requirements may be bigger or lower according to your GPU model.
□ The GPU must have more memory than the indicated amount to work because storing

images and results may require additional GPU memory and because of memory
fragmentation.

□ The training time is approximately twice the inference time per image. An iteration is
equivalent to a loop over all the images in the dataset.

□ The GPU memory requirements indicated below are approximate and can vary according
to the GPU model.
- These values were obtained for a NVIDIA GeForce 3080 Ti on Windows 11.
- The GPU inference can be 10 to 50% faster on Linux for GeForce GPUs.

□ On Windows:
- When using the WDDM driver mode (always on for a GeForce GPU), the inference times
can vary quite a lot.
- When using the TCC mode on a Quadro GPU, the inference times are more stable.

□ In the tables below 'n/a' means that the value could not be computed for this specific
configuration (for example because there is not enough memory).

□ In the tables below, a '=' means that the value is equal to the one above it.

Image size
□ The inference times are reported for 1024 × 1024 RGB images with all other settings at

their default values.
□ The inference times increase linearly with the width and height of the image. The

inference times of a 512 × 512 image will be approximately 25% of the time reported
below.

Capacity Small

Patch size Batch

Inference time / image (ms)
GPU

NVIDIA
GeForce 3080Ti

CPU
Intel Core i9

7900X

GPU
NVIDIA Jetson

Xavier NX (ARM)

CPU
Raspberry Pi 4

Model B

64 × 64

1 583 2 008 669 32 443
4 196 = 418 =

16 90 = 354 =
64 71 = 325 =
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Patch size Batch

Inference time / image (ms)
GPU

NVIDIA
GeForce 3080Ti

CPU
Intel Core i9

7900X

GPU
NVIDIA Jetson

Xavier NX (ARM)

CPU
Raspberry Pi 4

Model B

128 × 128

1 216 2 122 444 28 278
4 92 = 359 =

16 65 = 331 =
64 64 = 358 =

256 × 256

1 105 2 435 435 28 811
4 74 = 390 =

16 66 = 365 =
64 94 = 470 =

Patch size Batch GPU memory
for inference (MB)

GPU memory
for training (MB)

64 × 64

1 7 n/a
4 22 41

16 85 154
64 288 560

128 × 128

1 33 n/a
4 85 164

16 310 604
64 1 217 2 371

256 × 256

1 119 n/a
4 344 669

16 1 257 2 466
64 5 770 10 516

Capacity Normal

Patch size Batch

Inference time / image (ms)
GPU

NVIDIA
GeForce 3080Ti

CPU
Intel Core i9

7900X

GPU
NVIDIA Jetson

Xavier NX (ARM)

CPU
Raspberry Pi 4

Model B

64 × 64

1 651 5 771 1 080 67 544
4 212 = 768 =

16 104 = 661 =
64 90 = 599 =

128 × 128

1 246 6 390 1 039 73 102
4 113 = 862 =

16 90 = 737 =
64 89 = 815 =

256 × 256

1 125 8 120 1 127 86 212
4 104 = 990 =

16 95 = 873 =
64 135 = 1 068 =
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Patch size Batch GPU memory
for inference (MB)

GPU memory
for training (MB)

64 × 64

1 143 n/a
4 168 209

16 157 297
64 604 1 145

128 × 128

1 193 n/a
4 191 362

16 644 1 240
64 2 486 4 780

256 × 256

1 304 n/a
4 750 1 453

16 2 642 5 092
64 10 208 19 648

Capacity Large

Patch size Batch

Inference time / image (ms)
GPU

NVIDIA
GeForce 3080Ti

CPU
Intel Core i9

7900X

GPU
NVIDIA Jetson

Xavier NX (ARM)

CPU
Raspberry Pi 4

Model B

64 × 64

1 703 17 220 3 025 191 224
4 263 = 2 367 =

16 174 = 1 857 =
64 164 = 1 694 =

128 × 128

1 321 22 050 3 392 264 352
4 219 = 2 839 =

16 188 = 2 158 =
64 176 = 2 125 =

256 × 256

1 273 28 420 4 188 312 504
4 219 = 3 459 =

16 203 = 2 569 =
64 – = – =

Patch size Batch GPU memory
for inference (MB)

GPU memory
for training (MB)

64 × 64

1 57 n/a
4 223 319

16 422 716
64 1 281 2 369
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Patch size Batch GPU memory
for inference (MB)

GPU memory
for training (MB)

128 × 128

1 229 n/a
4 528 929

16 1 437 2 681
64 5 388 10 007

256 × 256

1 915 n/a
4 1 830 3 467

16 5 880 10 991
64 20 545 39 553

EasyLocate - Locating Objects and Defects

Tool and Configuration

Deep Learning Studio

To create an EasyLocate tool in Deep Learning Studio:

1. Start Deep Learning Studio.

2. Create a new project and select EasyLocate Axis Aligned Bounding Box or EasyLocate
Interest Point in the New deep learning project dialog.
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The following dialog is displayed when clicking on New in the Open a project dialog displayed at
the start of Deep Learning Studio or when you click on New in the toolbar.

Configuration (main parameters)

The EasyLocate tool has 3 main parameters:

1. The Capacity of the neural network (default: Normal) represents the quantity of information it
is capable of learning. A larger capacity makes the tool slower.

In the API:
□ The capacity is represented by the enumerate type ELocatorCapacity.
□ ELocator::Capacity sets the capacity of the tool.

2. The Image type (default: Monochrome (1 channel) if the dataset contains only grayscale
images, otherwise color (3 channels)):

In the API:
□ To use monochrome (grayscale, 1 channel) images, set ELocatorBase::Channels to 1.
□ To use color (3 channels) images, set ELocatorBase::Channels to 3.
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3. The size of the images (Width and Height). You must configure EasyLocate for a specific
image size.
□ The image must contain less than 500 000 pixels (about 707 × 707 pixels for a square

image).
□ The width and the height must be at least 128 pixels.
□ The images are automatically resized to the specified size before EasyLocate processes

them.
□ The lower the image size, the faster EasyLocate is.
□ EasyLocate works best with objects equal to or bigger than 16 × 16 pixels.

In Deep Learning Studio:
□ Use the Width and Height controls to change the size of the images.
□ Uncheck Keep aspect ratio if you want to control the width and height independently of

each other.
□ By default, the width and height are set to the size of the images in the dataset. or, when

they are bigger than 500 000 pixels, to the maximum possible size so that the aspect ratio
of the image is kept and it contains at most 500 000 pixels.

□ A warning is displayed when the selected size makes the ground truth objects smaller
than 16 × 16 pixels.

In the API:
□ Use ELocatorBase::Width and ELocatorBase::Height to specify the image size.

EasyLocate Axis Aligned Bounding Box configuration (advanced parameters)

The EasyLocate Axis Aligned Bounding Box tool has 4 advanced parameters linked to
EasyLocate neural network design.

● The EasyLocate neural network works as an image pyramid where the size of the input
image is halved at each level. EasyLocate attempts to detect objects using one or more
pyramid levels depending on the size of the objects to detect.

● To do so, EasyLocate uses a set of typical object size, called anchors, that are assigned to
pyramid levels according to their surface. Then, for each pixel and anchor of a pyramid level,
EasyLocate predicts whether there is an object or not located around that pixel and whose
size approximately matches the anchor.

● EasyLocate then performs a post-processing on the prediction of the neural network. Indeed,
the neural network can predict the same object several times using different levels of the
pyramid, different anchors or neighboring positions in the image. EasyLocate keeps only the
prediction with the highest probability and removes duplicates based on the overlap
between objects.
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The advanced parameters are:

1. The Anchors. By default, the anchors are determined automatically from the objects in your
dataset. The set of anchors must reflect the variety of object sizes that must be detected.

To check or manually edit the anchors, click on See/edit anchors to open the following
dialog:

The dialog lists the current anchors and enables the following operations:
□ To edit an existing anchor, double-click on its width or on its heightin the list.
□ To add or remove an anchor, click on the corresponding button.
□ To generate a new set of anchors, specify the number of subscales, the minimum and the

maximum dimensions of the anchors and one or more aspect ratios.

► The dimension of an anchor is the square root of its surface and determines the pyramid
level assigned to the anchor. The number of subscales represent the number of
dimensions to generate for each pyramid level. For each of those dimensions, the anchors
with the specified aspect ratios are generated.

TIP
The anchors must be defined with respect to the width and height of the
current tool. Thus, when specifying the anchors manually, the width and
height parameters are locked.

In the API:
□ Use ELocator::SetPredictionAnchors and ELocator::GenerateAnchors.

2. The Maximum number of objects in an image. By default the value is 100. A lower value can
speed up the post-processing of the results.

In the API:
□ Use ELocatorBase::MaxNumberOfObjects.

3. The Same label maximum overlap is the maximum overlap between objects with the same
label. By default the value is 0.5.

In the API:
□ Use ELocator::SameLabelMaxOverlap.
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4. The Absolute maximum overlap is the maximum overlap between objects, regardless of their
label. By default the value is 1 and it means that the tool can predict two objects with
different labels but with the exact same bounding box.

In the API:
□ Use ELocator::SameLabelMaxOverlap.

The overlap between two objects is their intersection over union (IoU), defined as the ratio
between the surface of the intersection of their bounding boxes and the surface of the union of
their bounding boxes.

EasyLocate Interest Point configuration (advanced parameters)

The EasyLocate Interest Point tool has 4 advanced parameters.

1. The Object size is the size of the objects that you want to detect in the image.
□ By default, the value of this parameter is the object size specified for the dataset.
□ The object size has the same role as the anchors for EasyLocate Axis Aligned Bounding

Box.
□ The object size is defined with respect to the size of the images in the dataset. When

training a tool with a different input resolution, the object size parameters should not
change (they are internally adapted according to the resolution of the training images
and the width and height set for the tool).

In the API:
□ Use EInterestPointLocator::ObjectSize

2. The Maximum number of objects in an image.
□ By default the value is 100.
□ A lower value can speed up the post-processing of the results.

In the API:
□ Use ELocatorBase::MaxNumberOfObjects.
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3. The Same label minimum distance is the minimum distance between objects with the same
label.
□ By default the value is a third of the object size.

In the API:
□ Use EInterestPointLocator::SameLabelMinDistance

4. The Absolute minimum distance is the minimum distance between objects, regardless of their
label.
□ By default the value is 0 and it means that the tool can predict two objects with different

labels but with the exact same position.

In the API:
□ Use EInterestPointLocator::AbsoluteMinDistance

Training

To train your tool, see "Training a Deep Learning Tool" on page 86.

Locating Objects

In Deep Learning Studio:

● To apply EasyLocate to new images:
□ Add new images to the dataset and refresh the results.

□ Open the Inference tests tab to apply the tool to new images and display detailed results
for these images.
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● To visualize the predicted objects of an image:

a. Open the Results menu (ALT + R) of the image viewer.

b. Check the Predicted objects option (CTRL + P).

● If the image has a ground truth, check the Missing ground truth object option (CTRL + G) to
display missing objects. They appear with a yellow pattern drawn over it.

● In the Results tab on the right side:
□ The list of detected objects shows their label, their score, whether they are matched to a

ground truth object and their predicted bounding box or position.
□ To see how close a predicted object is to a ground truth object, select the object in the

list on the right side of the image.
For EasyLocate Axis Aligned Bounding Box, the ground truth object is displayed on top of
the predicted object with the following color code:

● To accept all the predicted objects as ground truth:
□ Click on the Use prediction as ground truth button (CTRL + U).
□ Note that it removes any previous ground truth object already present in the image.
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● To accept a single predicted object as ground truth:

a. Right click on the object.

b. Select Accept into ground truth in the menu.

In the API

● To apply EasyLocate to an image, use ELocatorBase::Apply.

This method returns an object ELocatorResult.

● Use ELocatorResult::GetDetectedObjects to retrieve the predicted objects as an array of
ELocatorPredictedObject.

● Use ELocatorResult::Draw to draw all the predicted objects.

● Use ELocatorResult::LocatorFeatures to check if the result was computed by EasyLocate Axis
Aligned Bounding Box or EasyLocate Interest Point.

The value of ELocatorResult::LocatorFeatures is a combination (using the binary OR (|)
operator) of one or more ELocatorFeature values. It indicates the type of information
predicted by the tool:
□ For EasyLocate Interest Point: ELocatorFeature_Position.
□ For EasyLocate Axis Aligned Bounding Box: ELocatorFeature_Position | ELocatorFeature_

Size.

● With EasyLocate Interest Point, for each predicted object, use:
□ ELocatorObject::PositionX to get the X coordinate of the object.
□ ELocatorObject::PositionY to get the Y coordinate of the object.
□ ELocatorObject::Label to get its label.
□ ELocatorPredictedObject::Probability to get its predicted probability.

● With EasyLocate Axis Aligned Bounding Box, for each predicted object, use:
□ ELocatorObject::PositionX to get the X coordinate of the center of the bounding box.
□ ELocatorObject::PositionY to get the Y coordinate of the center of the bounding box.
□ ELocatorObject::OrgX to get the X coordinate of the top left origin of the bounding box.
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□ ELocatorObject::OrgY to get the Y coordinate of the top left origin of the bounding box.
□ ELocatorObject::Width to get its width.
□ ELocatorObject::Height to get its height.
□ ELocatorObject::Label to get its label.
□ ELocatorPredictedObject::Probability to get its predicted probability.

Validating the Results

The EasyLocate tool exposes 2 types of metrics. These object-based metrics quantify the
performance of the tool :

□ At the object level.
□ At the image level. These metrics are related to the tool ability to correctly detect images

without object and images with objects.

In Deep Learning Studio:

● The metrics are available in the Dataset results tab.

● Most metrics depends on the value of the Detection threshold.

In the API:

● The metrics are represented by an object ELocatorMetrics.
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The object-based metrics

The object-based metrics are computed by matching actual, ground truth objects to detected
objects.

A ground truth object and a detected object are matched together if:

● They have the same label.

● With EasyLocate Axis Aligned Bounding Box:
□ Their overlap ("Intersection over Union") is higher or equal to the Same label maximum

overlap parameter of the tool.
□ There is no other ground truth that has a higher overlap with the detected object and

there is no other detected object that has a higher overlap with the ground truth object.

● With EasyLocate Interest Point:
□ Their distance is lower than the Same label minimum overlap parameter of the tool
□ There is no other ground truth that has a smaller distance with the detected object and

there is no other detected object that has a smaller distance with the ground truth object.

The object-based metrics are:

● The Average precision (AP) is the average of the precision (proportion of detected objects
that are matched to a ground truth objects) for different values of recall (true positive rate,
proportion of ground truth objects that are matched to detected objects) obtained by
varying the Detection threshold.
□ Its value is between 0 (bad detector) and 1 (good detector).
□ It is a standard metric for evaluating object detector.

● The recall, also called the "true positive rate", is the proportion of ground truth objects
matched with a predicted object.

● The weighted recall is the weighted average of the recall for each label.

● The precision, also called the "positive predicted value", is the proportion of predicted
objects matched with a ground truth object.

● The weighted precision is the weighted average of the precision for each label.

● The F-Score is the harmonic mean of the recall and the precision.

● The weighted F-Score is the weighted average of the F-Score for each label.

● The Per label metrics table shows various metrics of the objects of each label. The columns
starting with a “#” indicate the number of objects in the corresponding category.
□ Selecting one or more cells from these columns filters the image list to show only the

images that have objects falling in the corresponding categories.
□ If there is no selection, all the images are listed.
□ Use CTRL + Left Click to add cells to the current selection.
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The image-based metrics

The metrics related to the correct detection of the class of the images (background / with object
or good / defective in the context of defect detection) are:

● The image detection accuracy is the proportion of images correctly predicted to have objects
or not.

● A Confusion matrix listing the number of images in each category.
□ Selecting one or more cells of the confusion matrix filters the image list to show only the

images in the corresponding categories.

Benchmarks for EasyLocate

Test conditions
□ These numbers are only indicative and represent only the memory required for the neural

network.
□ Your actual memory requirements may be bigger or lower according to your GPU model.
□ The GPU must have more memory than the indicated amount to work because storing

images and results may require additional GPU memory and because of memory
fragmentation.

□ The training time is approximately twice the inference time per image. An iteration is
equivalent to a loop over all the images in the dataset.

□ The GPU memory requirements indicated below are approximate and can vary according
to the GPU model.
- These values were obtained for a NVIDIA GeForce 3080 Ti on Windows 11.
- The GPU inference can be 10 to 50% faster on Linux for GeForce GPUs.

□ On Windows:
- When using the WDDM driver mode (always on for a GeForce GPU), the inference times
can vary quite a lot.
- When using the TCC mode on a Quadro GPU, the inference times are more stable.

□ In the tables below 'n/a' means that the value could not be computed for this specific
configuration (for example because there is not enough memory).

□ In the tables below, a '=' means that the value is equal to the one above it.

□ The benchmarks were obtained using EasyLocate Axis Aligned Bounding Box.
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□ For EasyLocate Interest Point, the training and inference speeds are approximately the
same. The small variations (a few percent slower or faster) in the processing speed
depend on the parameters of the tool.

Capacity Small

Image size Batch

Inference time / image (ms)
GPU

NVIDIA
GeForce 3080Ti

CPU
Intel Core i9

7900X

GPU
NVIDIA Jetson

Xavier NX (ARM)

CPU
Raspberry Pi 4

Model B

128 × 128

1 4.19 30.13 18.55 504
4 4.44 = 7.43 =

16 1.81 = 4.16 =
64 0.41 = 3.45 =

256 × 256

1 4.85 84 32.02 1 959
4 6.88 = 16.74 =

16 1.45 = 13.51 =
64 1.37 = 14.19 =

512 × 512

1 11.32 341 66.10 9 314
4 5.70 = 60.85 =

16 5.38 = 53.89 =
64 – = 56.28 =

Image size Batch GPU memory
for inference (MB)

GPU memory
for training (MB)

128 × 128

1 175 n/a
4 241 354

16 503 879
64 1 553 2 979

256 × 256

1 241 n/a
4 503 879

16 1 553 2 979
64 5 884 11 511

512 × 512

1 503 n/a
4 1 553 2 979

16 5 884 11 511
64 23 455 45 885
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Capacity Normal

Image size Batch

Inference time / image (ms)
GPU

NVIDIA
GeForce 3080Ti

CPU
Intel Core i9

7900X

GPU
NVIDIA Jetson

Xavier NX (ARM)

CPU
Raspberry Pi 4

Model B

128 × 128

1 3.75 32 19.03 645
4 2.43 = 8.14 =

16 1.90 = 4.48 =
64 0.42 = 3.69 =

256 × 256

1 7.00 91 32.36 2 717
4 6.83 = 18.14 =

16 1.59 = 14.88 =
64 1.54 = 15.47 =

512 × 512

1 8.93 391 71.63 12 646
4 5.62 = 66.94 =

16 5.39 = 58.83 =
64 – = 61.78 =

Image size Batch GPU memory
for inference (MB)

GPU memory
for training (MB)

128 × 128

1 178 n/a
4 248 369

16 528 929
64 1 648 3 168

256 × 256

1 248 n/a
4 528 929

16 1 648 3 168
64 6 256 12 255

512 × 512

1 528 n/a
4 1 648 3 168

16 6 256 12 255
64 24 937 48 849

Capacity Large

Image size Batch

Inference time / image (ms)
GPU

NVIDIA
GeForce 3080Ti

CPU
Intel Core i9

7900X

GPU
NVIDIA Jetson

Xavier NX (ARM)

CPU
Raspberry Pi 4

Model B

128 × 128

1 6.31 76 48.57 1 194
4 4.99 = 14.32 =

16 1.08 = 10.05 =
64 0.85 = 7.34 =
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Image size Batch

Inference time / image (ms)
GPU

NVIDIA
GeForce 3080Ti

CPU
Intel Core i9

7900X

GPU
NVIDIA Jetson

Xavier NX (ARM)

CPU
Raspberry Pi 4

Model B

256 × 256

1 8.80 205 65.37 5 694
4 3.46 = 38.04 =

16 2.25 = 30.14 =
64 2.32 = 29.54 =

512 × 512

1 25.93 866 168.90 26 320
4 9.11 = 128.96 =

16 8.52 = 115.15 =
64 – = – =

Image size Batch GPU memory
for inference (MB)

GPU memory
for training (MB)

128 × 128

1 288 n/a
4 421 714

16 952 1 776
64 3 075 6 023

256 × 256

1 421 n/a
4 952 1 776

16 3 075 6 023
64 11 701 23 144

512 × 512

1 952 n/a
4 3 075 6 023

16 11 701 23 144
64 46 450 91 874
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5. Code Snippets
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5.1. Basic Types

Loading and Saving Images
Functional Guide | Reference: Load, Save, SaveJpeg

////////////////////////////////////////////////////////////
// This code snippet shows how to load and save an image. //
////////////////////////////////////////////////////////////

// Images constructor
EImageBW8 srcImage= new EImageBW8();
EImageBW8 dstImage= new EImageBW8();

// Load an image file
srcImage.Load("mySourceImage.bmp");

// ...

// Save the destination image into a file
dstImage.Save("myDestImage.bmp");

// Save the destination image into a jpeg file
// The default compression quality is 75
dstImage.Save("myDestImage.jpg");

// Save the destination image into a jpeg file
// set the compression quality to 50
dstImage.SaveJpeg("myDestImage50.jpg", 50);

Interfacing Third-Party Images
Functional Guide | Reference: SetImagePtr

///////////////////////////////////////////////////////////////
// This code snippet shows how to link an Open eVision image //
// to an externally allocated buffer. //
///////////////////////////////////////////////////////////////

// Images constructor
EImageBW8 srcImage= new EImageBW8();

// Size of the third-party image
int sizeX = bufferSizeX;
int sizeY = bufferSizeY;

//Pointer to the third-party image buffer
IntPtr imgPtr = bufferPointer;

// ...

// Link the Open eVision image to the third-party image
// Assuming the corresponding buffer is aligned on 4 bytes
srcImage.SetImagePtr(sizeX, sizeY, imgPtr);
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Retrieving Pixel Values
Functional Guide | Reference: GetImagePtr

///////////////////////////////////////////////////////////////
// This code snippet shows the recommended method to access  //
// the pixel values in a BW8 image.                          //
///////////////////////////////////////////////////////////////

using System.RunTime.InteropServices;

IntPtr pixAddr;
byte pix;

//...

for(int y = 0; y < height; ++y)
{

pixAddr = bw8Image.GetImagePtr(0,y);
for(int x = 0; x < width; ++x)

pix = Marshal.ReadByte(pixAddr,x);
}

ROI Placement
Functional Guide | Reference: Attach, SetPlacement

///////////////////////////////////////////////////////////////
// This code snippet shows how to attach an ROI to an image //
// and set its placement. //
///////////////////////////////////////////////////////////////

// Image constructor
EImageBW8 parentImage= new EImageBW8();

// ROI constructor
EROIBW8 myROI= new EROIBW8();

// Attach the ROI to the image
myROI.Attach(parentImage);

//Set the ROI position
myROI.SetPlacement(50, 50, 200, 100);

Vector Management
Functional Guide | Reference: Empty, AddElement

///////////////////////////////////////////////////////////////
// This code snippet shows how to create a vector, fill it //
// and retrieve the value of a given element. //
///////////////////////////////////////////////////////////////

// EBW8Vector constructor
EBW8Vector ramp= new EBW8Vector();
EBW8 bw8 = new EBW8();
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// Clear the vector
ramp.Empty();

// Fill the vector with increasing values
for(int i= 0; i < 128; i++)
{

bw8.Value = (byte)i;
ramp.AddElement(bw8);

}

// Retrieve the 10th element value
EBW8 value = ramp.GetElement(9);

Exception Management
Functional Guide | Reference: GetPixel, What

////////////////////////////////////////////
// This code snippet shows how to manage //
// Open eVision exceptions. //
////////////////////////////////////////////

try
{

// Image constructor
EImageC24 srcImage= new EImageC24();

// ...

// Retrieve the pixel value at coordinates (56, 73)
EC24 value= srcImage.GetPixel(56, 73);

}

catch(EException exc)
{

// Retrieve the exception description
string error = exc.What();

}

5.2. Deep Learning Tools

Creating a Dataset and Training a Classifier

//////////////////////////////////////////////////////////////
// This code snippet shows how to create a dataset, train a //
// classifier and get the best performance metrics obtained //
// during the training. //
//////////////////////////////////////////////////////////////

// Creating dataset and classifier objects
EClassificationDataset dataset= new EClassificationDataset();
EClassificationDataset trainingDataset= new EClassificationDataset();
EClassificationDataset validationDataset= new EClassificationDataset();
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EClassifier classifier= new EClassifier();

// Adding images using a glob pattern
dataset.AddImages("*good*.png", "good");
dataset.AddImages("*defective*.png", "defective");

// Enabling data augmentation on the dataset
dataset.EnableDataAugmentation= true;

// Rotation of up to 90°
dataset.MaxRotationAngle= 90.0F;

// Enabling horizontal flips
dataset.EnableHorizontalFlip= true;

// Splitting the dataset with 80% of images for the training dataset
// and 20% for the validation dataset
dataset.SplitDataset(trainingDataset, validationDataset, 0.8F);

// Training the classifier for 50 epochs
classifier.Train(trainingDataset, validationDataset, 50);
classifier.WaitForTrainingCompletion();

// Get the best metrics obtained on the validation dataset
EClassificationMetrics bestMetrics = classifier.GetValidationMetrics(classifier.BestEpoch);

// Dispose of objects
dataset.Dispose();
trainingDataset.Dispose();
validationDataset.Dispose();
classifier.Dispose();

Loading a Classifier and Classifying a New Image

///////////////////////////////////////////////////////////////
// This code snippet shows how load a trained classifier and //
// classify a new image. //
///////////////////////////////////////////////////////////////

// Image and classifier constructor
EClassifier classifier= new EClassifier();
EImageBW8 srcImage= new EImageBW8();

// String and probability for the most probable result
string label;
float probability;

// Load classifier and image
classifier.Load(...);
srcImage.Load(...);

// Classify image
EClassificationResult result = classifier.Classify(srcImage);

// Get the most probable label
label = result.BestLabel;
probability = result.BestProbability;

// Dispose of objects
classifier.Dispose();
srcImage.Dispose();
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Using Multithreading for Classification

///////////////////////////////////////////////////////////////
// This code snippet shows how to parallelize the //
// classification of new images on the CPU. //
// This code snippet requires the .NET Framework 4.0 //
///////////////////////////////////////////////////////////////

using System.Collections.Threading;
using System.Collections.Concurrent;

...

static void ClassificationLoop(Object obj)
{

BlockingCollection<EImageC24> queue = obj as BlockingCollection<EImageC24>;

EClassifier c = new EClassifier();
c.Load("classifier.ecl");

while (!queue.IsCompleted)
{

EImageC24 image = queue.Take();

EClassificationResult result = c.Classify(image);
// Get the most probable label
string label = result.BestLabel;
float probability = result.BestProbability;

// Perform other actions based on the result
...

}
}

...

int NUM_THREADS = 2;

// Queue holding the image to classify
BlockingCollection<EImageC24> imageQueue = new BlockingCollection<EImageC24>(new ConcurrentQueue<EImageC24>(),
2 * NUM_THREADS);

// Create and start the thread pool
Thread[] threads = new Thread[NUM_THREADS];
for (int i = 0; i < NUM_THREADS; i++)
{

threads[i] = new Thread(ClassificationLoop);
threads[i].Start(imageQueue);

}

bool hasImage = true;
while (hasImage)
{

EImageC24 image = new EImageC24();

// Load or set the data pointer of the image
...

// Add the image to the queue
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imageQueue.Add(image);

// Check that we still have an image to process and change the status
// of "hasImage" if necessary.
...

}

// Tell the threads that they won't have any new image coming.
imageQueue.CompleteAdding();

// Wait for the threads to finish
for (int i = 0; i < NUM_THREADS; i++)

threads[i].Join();

Loading an Unsupervised Segmenter and Segmenting an
Image

///////////////////////////////////////////////////////////////
// This code snippet shows how to load a trained //
// unsupervised segmenter and how to segment a new image. //
///////////////////////////////////////////////////////////////

// Image and segmenter constructor
EUnsupervisedSegmenter segmenter = new EUnsupervisedSegmenter();
EImageBW8 image = new EImageBW8();

// Load segmenter and image
segmenter.Load(...);
image.Load(...);

// Apply the segmenter on the image
EUnsupervisedSegmenterResult result = segmenter.Apply(image);

// Retrieve the segmentation map
EImageBW8 segmentationMap = result.SegmentationMap() ;

// Dispose of objects
segmenter.Dispose();
image.Dispose();
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