


### **2D APPLICATION EXAMPLE**

# Open eVision

**Inspecting Pads Using Regions** 



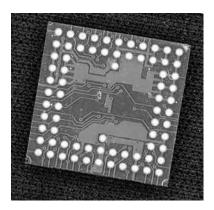




This documentation is provided with **Open eVision 24.02.0** (doc build **1198**). www.euresys.com

This documentation is subject to the General Terms and Conditions stated on the website of **EURESYS S.A.** and available on the webpage <a href="https://www.euresys.com/en/Menu-Legal/Terms-conditions">https://www.euresys.com/en/Menu-Legal/Terms-conditions</a>. The article 10 (Limitations of Liability and Disclaimers) and article 12 (Intellectual Property Rights) are more specifically applicable.




## 1. Inspecting Pads Using Regions

See also: Arbitrary-Shaped ROI (ERegion) / code snippets: ERegion

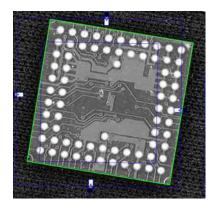
The code of this application is available in the GGeRegion sample installed with **Open eVision**.

#### Application objective

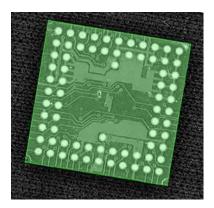
This application demonstrates how to use regions to inspect the pads on the underside of a non-aligned electronic chip package.



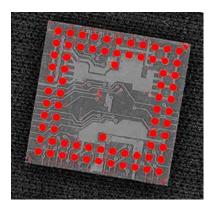



#### NOTE

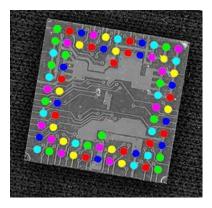
To run this program, you need the EasyObject and EasyGauge licenses.


#### **Processing**

To do this, we will use EasyGauge to detect the position of the package, then perform an EasyObject segmentation on the detected position:


1. Use ERectangleGauge from the EasyGauge library to detect the package and its position.




2. Use the ERectangleRegion::ERectangleRegion(ERectangle&) constructor with the ERectangle returned by ERectangleGauge to create an ERegion.



3. Use the EImageEncoder::Encode(EImage&, ERegion&, ECodedImage&) method from the EasyObject library to perform the blob detection within the region.



- **4.** Filter the blobs using EObjectSelection.
- 5. Perform any required measurement and check.

