
Open eVision
Deep Learning Inspection Tools

USER GUIDE

© EURESYS s.a. 2019 - Document D136ET-Using Deep Learning Inspection Tools C++-Open eVision-2.11.1.1125 built on 2019-12-

2

Terms of Use

EURESYS s.a. shall retain all property rights, title and interest of the documentation of the hardware and the
software, and of the trademarks of EURESYS s.a.

All the names of companies and products mentioned in the documentation may be the trademarks of their
respective owners.

The licensing, use, leasing, loaning, translation, reproduction, copying or modification of the hardware or the
software, brands or documentation of EURESYS s.a. contained in this book, is not allowed without prior notice.

EURESYS s.a. may modify the product specification or change the information given in this documentation at any
time, at its discretion, and without prior notice.

EURESYS s.a. shall not be liable for any loss of or damage to revenues, profits, goodwill, data, information systems or
other special, incidental, indirect, consequential or punitive damages of any kind arising in connection with the use
of the hardware or the software of EURESYS s.a. or resulting of omissions or errors in this documentation.

This documentation is provided with Open eVision 2.11.1 (doc build 1125).
© 2019 EURESYS s.a.

Open eVision User Guide

3

Contents
1. Dealing with Pixel Containers and Files 4

1.1. Pixel Container Definition 4
1.2. Pixel Container Types 6
1.3. Supported Image File Types 7
1.4. Pixel and File Types Compatibility 8
1.5. Color Types 10

2. Manipulating Pixels Containers and Files 11
2.1. Pixel Container File Save 11
2.2. Pixel Container File Load 13
2.3. Memory Allocation 14
2.4. Image and Depth Map Buffer 14
2.5. Image Drawing and Overlay 18
2.6. 3D Rendering of 2D Images 18
2.7. Vector Types and Main Properties 19
2.8. ROI Main Properties 23
2.9. Arbitrarily Shaped ROI (ERegion) 25
2.10. Flexible Masks 31
2.11. Profile 35

3. Deep Learning Tools 37
Deep Learning Tools - Inspecting Images with Deep Learning 38
Purpose and Workflow 38
Tools and Resources 40
Hardware Support (CPU/GPU) 43
Managing the Dataset 46

Images and Labels 46

ROI and Mask 49

Training and Validation Datasets 52

Using Data Augmentation 53

EasyClassify - Classifying Images 56
EasySegment - Detecting and Segmenting Defects 63

4. Code Snippets 69
4.1. Basic Types 70

Loading and Saving Images 70
Interfacing Third-Party Images 70
Retrieving Pixel Values 70
ROI Placement 71
Vector Management 71
Exception Management 72

4.2. Deep Learning Tools 72
Creating a Dataset and Training a Classifier 72
Loading a Classifier and Classifying a New Image 73
Using Multithreading for Classification 73
Loading an Unsupervised Segmenter and Segmenting an Image 74

Open eVision User Guide

4

1. Dealing with Pixel Containers
and Files

1.1. Pixel Container Definition
Images

Open eVision image objects contain image data that represents rectangular images.

Each image object has a data buffer, accessible via a pointer, where pixel values are stored
contiguously, row by row.

Image main parameters

An Open eVision image object has a rectangular array of pixels characterized by EBaseROI
parameters .
n Width is the number of columns (pixels) per row of the image.
n Height is the number of rows of the image. (Maximum width / height is 32,767 (215-1) in Open

eVision 32-bit, and 2,147,483,647 (231-1) in Open eVision 64-bit.)
n Size is the width and height.

The Plane parameter contains the number of color components. Gray-level images = 1. Color
images = 3.

Open eVision User Guide

5

Classes

Image and ROI classes derive from abstract class EBaseROI and inherit all its properties.

Depth maps

A depth map is way to represent a 3D object using a 2D grayscale image, each pixel in the image
representing a 3D point.

The pixel coordinates are the representation of the X and Y coordinates of the point while the
grayscale value of the pixel is a representation of the Z coordinate of the point.

Point clouds

A point cloud (https://en.wikipedia.org/wiki/Point_cloud) is an unstructured set of 3D points
representing discrete positions on the surface of an object.

Open eVision User Guide

6

3D point clouds are produced by various 3D scanning techniques, such as Laser Triangulation,
Time of Flight or Structured Lighting.

1.2. Pixel Container Types
Images

Several image types are supported according to their pixel types: black and white, gray levels,
color, etc.

Easy.GetBestMatchingImageType returns the best matching image type for a given file on disk.

BW1
1-bit black and white images (8 pixels
are stored in 1 byte)

EImageBW1

BW8
8-bit grayscale images (each pixel is
stored in 1 byte)

EImageBW8

BW16
16-bit grayscale images (each pixel is
stored in 2 bytes)

EImageBW16

BW32
32-bit grayscale images (each pixel is
stored in 4 bytes)

EImageBW32

C15

15-bit color images (each pixel is stored
in 2 bytes).
Compatible with Microsoft® Windows
RGB15 color images and MultiCam
RGB15 format.

EImageC15

Open eVision User Guide

7

C16

16-bit color images (each pixel is stored
in 2 bytes).
Compatible with Microsoft® Windows
RGB16 color images and MultiCam
RGB16 format.

EImageC16

C24

C24 images store 24-bit color images
(each pixel is stored in 3 bytes).
Compatible with Microsoft® Windows
RGB24 color images and MultiCam
RGB24 format.

EImageC24

C24A

C24A images store 32-bit color images
(each pixel is stored in 4 bytes).
Compatible with Microsoft® Windows
RGB32 color images and MultiCam
RGB32 format.

EImageC24A

Depth Maps

8 and 16-bit depth map values are stored in buffers compatible with the 2D Open eVision images.

EDepth8
8-bit depth map (each pixel is stored in
1 byte as an integer)

EDepthMap8

EDepth16
16-bit depth map (each pixel is stored
in 2 bytes as a fixed point)

EDepthMap16

EDepth32f
32-bit depth map (each pixel is stored
in 4 bytes as a float)

EDepthMap32f

Point Clouds

Point Cloud
Set of points coordinates (stored as
float)

E3DPointCloud

1.3. Supported Image File Types

Type Description

BMP Uncompressed image data format (Windows Bitmap Format)

JPEG
Lossy data compression standard issued by the Joint Photographic Expert Group
registered as ISO/IEC 10918-1. Compression irretrievably looses quality.

JFIF JPEG File Interchange Format

Open eVision User Guide

8

Type Description

JPEG-
2000

Data compression standard issued by the Joint Photographic Expert Group
registered as ISO/IEC 15444-1 and ISO/IEC 15444-2. Open eVision supports only
lossy compression format, file format and code stream variants.

- code stream describes the image samples.
- file format includes meta-information such as image resolution and color
space.

PNG Lossless data compression method (Portable Network Graphics).

Serialized
Euresys proprietary image file format obtained from the serialization of Open
eVision image objects.

TIFF

Tag Image File Format is currently controlled by Adobe Systems and uses the
LibTIFF third-party library to process images written for 5.0 or 6.0 TIFF
specification.

File save operations are lossless and use CCITT 1D compression for 1-bit binary
pixel types and LZW compression for all others.

File load operations support all TIFF variants listed in the LibTIFF specification.

1.4. Pixel and File Types Compatibility
Depth map to image conversion

For a 8- and 16-bit depth maps, the AsImage() method returns a compatible image object
(respectively EImageBW8 and EImageBW16) that can be used with Open eVision’s 2D processing
features.

Pixel and file types compatibility

Pixel access

The recommended method to access pixels is to use SetImagePtr and GetImagePtr to embed
the image buffer access in your own code. See also Image Construction and Memory Allocation
and Retrieving Pixel Values.

Use of the following methods should be limited because of the overhead incurred by each
function call:

Direct access

EROIBW8::GetPixel and SetPixel methods are implemented in all image and ROI classes to
read and write a pixel value at given coordinates. To scan all pixels of an image, you could run a
double loop on the X and Y coordinates and use GetPixel or SetPixel each iteration, but this
is not recommended.

Open eVision User Guide

9

TIP
For performance reasons, these accessors should not be used when a
significant number of pixel needs to be processed. When that is the case,
retrieving the internal buffer pointer using GetBufferPtr() and iterating
on the pointer is recommended.

Quick Access to BW8 Pixels

In BW8 images, a call to EBW8PixelAccessor::GetPixel or SetPixel will be faster than a
direct EROIBW8::GetPixel or SetPixel.

Supported structures

n EBW1, EBW8, EBW32
n EC15 (*), EC16 (*), EC24 (*)
n EC24A

n EDepth8, EDepth16, EDepth32f,

(*) These formats support RGB15 (5-5-5 bit packing), RGB16 (5-6-5 bit packing) and RGB32 (RGB +
alpha channel) but they must be converted to/from EC24 using EasyImage::Convert before
any processing.

NOTE
Transition with versions prior to eVision 6.5 should be seamless: image pixel
types were defined using typedef of integral types, pixel values were treated
as unsigned numbers and implicit conversion to/from previous types is
provided.

Pixel and File Type compatibility during Load or Save operations

Type BMP JPEG JPEG2000 PNG TIFF Serialized

BW1 Ok N/A N/A Ok Ok Ok

BW8 Ok Ok Ok Ok Ok Ok

BW16 N/A N/A Ok Ok Ok (***) Ok

BW32 N/A N/A N/A N/A Ok (***) Ok

C15 Ok Ok (**) Ok (**) Ok (**) Ok (**) Ok

C16 Ok Ok (**) Ok (**) Ok (**) Ok (**) Ok

C24 Ok Ok Ok Ok Ok (**) Ok

C24A Ok N/A N/A Ok N/A Ok

Depth8 Ok Ok Ok Ok Ok Ok

Depth16 N/A N/A Ok Ok Ok (***) Ok

Depth32f N/A N/A N/A N/A N/A Ok

Open eVision User Guide

10

N/A: Not supported. An exception occurs if you use the combination.

Ok: Image integrity is preserved with no data loss (apart from JPEG and JPEG2000, lossy
compression).

(**) C15 and C16 formats are automatically converted into C24 during the save operation.

(***) BW16 and BW32 are not supported by Baseline TIFF readers.

1.5. Color Types
EISH: Intensity, Saturation, Hue color system.

ELAB: CIE Lightness, a*, b* color system.

ELCH: Lightness, Chroma, Hue color system.

ELSH: Lightness, Saturation, Hue color system.

ELUV: CIE Lightness, u*, v* color system.

ERGB: NTSC/PAL/SMPTE Red, Green, Blue color system.

EVSH: Value, Saturation, Hue color system.

EXYZ: CIE XYZ color system.

EYIQ: CCIR Luma, Inphase, Quadrature color system.

EYSH: CCIR Luma, Saturation, Hue color system.

EYUV: CCIR Luma, U Chroma, V Chroma color system.

Open eVision User Guide

11

2. Manipulating Pixels Containers
and Files

2.1. Pixel Container File Save
Images and Depth Maps

The Save method of an image or the SaveImage method of a depth map or a ZMap saves the
image data of an image or of a depth map or a ZMap object into a file using two arguments:
n Path: path, filename, and file name extension.
n Image File Type. If omitted, the file name extension is used.

Images bigger than 65,536 (either width or height) must be saved in Open eVision proprietary
format.

Save throws an exception when:
n The requested image file format is incompatible with the image pixel types
n The Auto file type selection method and the file name extension is not supported

TIP
When saving a 16-bit depth map, the fixed point precision is lost and the
pixels are considered as 16-bit integers.

image file type arguments

Argument Image File Type

EImageFileType_Auto(*) Automatically determined by the filename extension. See below.

EImageFileType_Euresys Open eVision Serialization.

EImageFileType_Bmp Windows bitmap - BMP

EImageFileType_Jpeg JPEG File Interchange Format - JFIF

EImageFileType_Jpeg2000 JPEG 2000 File format/Code Stream -JPEG2000

EImageFileType_Png Portable Network Graphics - PNG

EImageFileType_Tiff Tagged Image File Format - TIFF

(*) Default value.

Open eVision User Guide

12

Assigned image file type if argument is ImageFileType_Auto or missing

File name extension(*) Automatically assigned image file type

BMP Windows Bitmap Format

JPEG, JPG JPEG File Interchange Format - JFIF

JP2 JPEG 2000 file format

J2K, J2C JPEG 2000 Code Stream

PNG Portable Network Graphics

TIFF, TIF Tagged Image File Format

(*) Case-insensitive.

Saving JPEG and JPEG2000 lossy compressions

SaveJpeg and SaveJpeg2K specify the compression quality when saving compressed images.
They have two arguments:
n Path: a string of characters including the path, filename, and file name extension.
n Compression quality of the image file, an integer value in range [0: 100].

SaveJpeg saves image data using JPEG File Interchange Format – JFIF.
SaveJpeg2K saves image data using JPEG 2000 File format.

JPEG compression values

JPEG compression Description

JPEG_DEFAULT_QUALITY (-1) Default quality (*)

100 Superb image quality, lowest compression factor

75 Good image quality (*)

50 Normal image quality

25 Average image quality

10 Bad Image quality

(*) The default quality corresponds to the good image quality (75).

Representative JPEG 2000 compression quality values

JPEG 2000 compression Description

-1 Default quality (*)

1 Highest image quality, lowest compression factor

Open eVision User Guide

13

JPEG 2000 compression Description

16 Good Image Quality (*) (16:1 rate)

512 Lowest image quality, highest compression factor

(*) The default quality corresponds to the good image quality (16:1 rate).

Point Clouds

● Use the Save method to save the point cloud in Open eVision proprietary file format.

● Use the SavePCD method to save the point cloud in a ASCII or a binary file compatible with
other software such as PCL (Point Cloud Library).

TIP
The PCD format is supported in ASCII and binary modes.

2.2. Pixel Container File Load
Images and Depth Maps

● Use the Load method to load image data into an image object:

□ It has one argument: the path: path, filename, and file name extension.

□ File type is determined by the file format.

□ The destination image is automatically resized according to the size of the image on disk.

● The Load method throws an exception when:

□ File type identification fails

□ File type is incompatible with pixel type of the image object

TIP
Serialized image files of Open eVision 1.1 and newer are incompatible with
serialized image files of previous Open eVision versions.

TIP
When loading a BW16 image (with integer values) in a depth map, the fixed
point precision set in the depth map (0 by default) is left unchanged and
used.

Point Clouds

● Use the Load method to save the point cloud in Open eVision proprietary file format.

Open eVision User Guide

14

● Use the LoadPCD method to save the point cloud in a ASCII or a binary file compatible with
other software such as PCL (Point Cloud Library).

2.3. Memory Allocation
An image can be constructed with an internal or external memory allocation.

Internal Memory Allocation

The image object dynamically allocates and unallocates a buffer. Memory management is
transparent.
When the image size changes, re-allocation occurs.
When an image object is destroyed, the buffer is unallocated.
To declare an image with internal memory allocation:
1. Construct an image object, for instance EImageBW8, either with width and height arguments,

OR using the SetSize function.
2. Access a given pixel. There are several functions that do this. GetImagePtr returns a pointer

to the first byte of the pixel at given coordinates.

External Memory Allocation

The user controls buffer allocation, or links a third-party image in the memory buffer to an Open
eVision image.
Image size and buffer address must be specified.
When an image object is destroyed, the buffer is unaffected.
To declare an image with external memory allocation:
1. Declare an image object, for instance EImageBW8.
2. Create a suitably sized and aligned buffer (see Image Buffer).
3. Set the image size with the SetSize function.
4. Access the buffer with GetImagePtr. See also Retrieving Pixel Values.

2.4. Image and Depth Map Buffer
Image and depth map pixels are stored contiguously, from top row to bottom, from left to right,
in Windows bitmap format (top-down DIB1) into an associated buffer.

The buffer address is a pointer to the start address of the buffer, which contains the top left pixel
of the image.

1device-independent bitmap

Open eVision User Guide

15

Image Buffer pitch

● Alignment must be a multiple of 4 bytes.

● Open eVision 1.2 onwards default pitch is 32 bytes for performance reasons (Open eVision
1.1.5 was 8 bytes).

Memory Layout

● EImageBW1 stores 8 pixels in one byte.

Example memory layout of the first 2 pixels of a BW1 image buffer:

● EImageBW8 and EDepthMap8 store each pixel in one byte.

Open eVision User Guide

16

Example memory layout of the first pixels of a BW8 image buffer:

● EImageBW16 stores each pixel in a 16-bit word (two bytes).

Example memory layout of the first pixels of a BW16 image buffer:

● EImageC15 stores each pixel in 2 bytes. Each color component is coded with 5-bits.
The 16th bit is left unused.

Example memory layout of the first pixels of a C15 image buffer:

● EImageC16 stores each pixel in 2 bytes. The first and third color components are coded with
5-bits.
The second color component is coded with 6-bits.

Open eVision User Guide

17

Example memory layout of the first pixels of a C16 image buffer:

● EDepthMap16 store each pixel in 2 bytes using a fixed point format.

● EImageC24 stores each pixel in 3 bytes. Each color component is coded with 8-bits.

Example memory layout of the first pixels of a C24 image buffer:

● EImageC24A stores each pixel in 4 bytes. Each color component is coded with 8-bits.
The alpha channel is also coded with 8-bits.

Example memory layout of the first pixels of a C24A image buffer:

● EDepthMap32f store each pixel in 4 bytes using a float format.

Open eVision User Guide

18

2.5. Image Drawing and Overlay
n Drawing uses Windows GDI1 system calls.

MFC2 applications normally use OnDraw event handler to draw, where a pointer to a device
context is available.
Borland/CodeGear's OWL or VCL use a Paint event handler.

n The color palette in 256-color display mode gives optimal rendering. Gray-level images can be
improved using LUT3s (using histogram stretching techniques or pseudo-coloring).

n The zoom can be different horizontally and vertically.
n DrawFrameWithCurrentPen method draws a frame.
n Non-destructive overlaying drawing operations do not alter the image contents, such as

MoveTo/LineTo.
n Destructive overlaying drawing operations alter the image contents by drawing inside the

image such as Easy::OpenImageGraphicContext. Gray-level [color] images can only
receive a gray-level [color] overlay.

2.6. 3D Rendering of 2D Images
These images are viewed by rotating them around the X-axis, then the Y-axis.

Gray 3D Rendering

Easy::Render3D prepares a 3-dimensional rendering where gray-level values are altitudes.
Magnification factors in the three directions (X = width, Y = height and Z = depth) can be given.
The rendered image appears as independent dots whose size can be adjusted to make the surface
more or less opaque.

3D rendering

Color Histogram 3D Rendering

Easy::RenderColorHistogram prepares a 3-dimensional rendering of a color image histogram.
The pixels are drawn in the RGB space (not XY-plane) to show clustering and dispersion of RGB

1Graphics Device Interface
2Microsoft Foundation Class
3LookUp Tables

Open eVision User Guide

19

values.
This function can process pixels in other color systems (using EasyColor to convert), but the raw
RGB image is required to display the pixels in their usual colors.

Magnification factors in all three directions (X = red, Y = green and Z = blue) can be given.

Color histogram rendering

2.7. Vector Types and Main Properties
A vector is a one-dimensional array of pixels (taken from an image profile or contour).

EVector is the base class for all vectors. It contains all non-type-specific methods, mainly for
counting elements and serialization.

Profile in a C24 image RGB values plot along profile
RGB values array
(EC24Vector)

A vector manages an array of elements. Memory allocation is transparent, so vectors can be
resized dynamically. Whenever a function uses a vector, the vector type, size and structure are
automatically adjusted to suit the function needs.

The use of vectors is quite straightforward:
1. Create a vector of the appropriate type, using its constructor and pre-allocate elements if

required.

Vector types

n EBW8Vector: a sequence of gray-level pixel values, often extracted from an image profile
(used by EasyImage::Lut, EasyImage::SetupEqualize,
EasyImage::ImageToLineSegment, EasyImage::LineSegmentToImage,
EasyImage::ProfileDerivative, ...).

Open eVision User Guide

20

Graphical representation of an EBW8Vector (see Draw method)

n EBW16Vector: a sequence of gray-level pixel values, using an extended range (16 bits),
mainly for intermediate computations.

Graphical representation of an EBW16Vector

n EBW32Vector: a sequence of gray-level pixel values, using an extended range (32 bits),
mainly for intermediate computations
(used in EasyImage::ProjectOnARow, EasyImage::ProjectOnAColumn, ...).

Graphical representation of an EBW32Vector

n EC24Vector: a sequence of color pixel values, often extracted from an image profile
(used by EasyImage::ImageToLineSegment, EasyImage::LineSegmentToImage,
EasyImage::ProfileDerivative, ...).

Open eVision User Guide

21

Graphical representation of an EC24Vector

n EBW8PathVector: a sequence of gray-level pixel values, extracted from an image profile or
contour, with corresponding pixel coordinates
(used by EasyImage::ImageToPath, EasyImage::PathToImage, ...).

Graphical representation of an EBW8PathVector (see Draw method)

n EBW16PathVector: a sequence of gray-level pixel values, extracted from an image profile
or contour, with corresponding pixel coordinates
(used by EasyImage::ImageToPath, EasyImage::PathToImage, ...).

Graphical representation of an EBW16PathVector (see Draw method)

n EC24PathVector: a sequence of color pixel values, extracted from an image profile or
contour, with corresponding pixel coordinates
(used by EasyImage::ImageToPath, EasyImage::PathToImage, ...).

Open eVision User Guide

22

Graphical representation of an EC24PathVector (see Draw method)

n EBWHistogramVector: a sequence of frequency counts of pixels in a BW8 or BW16 image
(used by EasyImage::IsodataThreshold, EasyImage::Histogram,
EasyImage::AnalyseHistogram, EasyImage::SetupEqualize, ...).

Graphical representation of an EBWHistogramVector (see Draw method)

n EPathVector: a sequence of pixel coordinates. The corresponding pixels need not be
contiguous
(used by EasyImage::PathToImage and EasyImage::Contour).

Graphical representation of an EPathVector (see Draw method)

n EPeakVector: peaks found in an image profile
(used by EasyImage::GetProfilePeaks).

n EColorVector: a description of colors
(used by EasyColor::ClassAverages and EasyColor::ClassVariances).

2. Fill a vector with values. First empty it, using the EVector::Empty member, then add
elements one at a time by calling the EC24Vector::AddElement member. You can access
any element by means of indexing.

Open eVision User Guide

23

3. Access a vector element, either for reading or writing. Use the brackets operator, for
instance, EC24Vector::operator[].

4. Determine the current number of elements, use member EVector::NumElements.
5. Draw the vector.

A pixel vector is a plot of the element values as a function of the element index, so its
graphical appearance depends on its type. You can draw a vector in a window. For legibility,
the drawing should appear on a neutral background.
Drawing is done in the device context associated to the desired window. By default, curves
are drawn in blue, annotations are drawn in black. The following parameters can be defined:
graphicContext, width, height, origin, origin, color0, color1, color2.
The EC24Vector has three curves drawn instead of one, each corresponding to a color
component. By default, red, blue and green pens are used.

2.8. ROI Main Properties
ROIs are defined by a width, a height, and origin x and y coordinates.
The origins are specified with respect to the top left corner in the parent image or ROI.
The ROI must be wholly contained in its parent image.
The processing/analysis time of a BW1 ROI is faster if OrgX and Width are multiples of 8.

Save and load

You can save or load an ROI as a separate image, to be used as if it was a full image. The ROIs
perform no memory allocation at all and never duplicate parts of their parent image, the parent
image provides them with access to its image data.

The image size of the new file must match the size of the ROI being loaded into it. The image
around the ROI remains unchanged.

ROI Classes

An Open eVision ROI inherits parameters from the abstract class EBaseROI.

There are several ROI types, according to their pixel type. They have the same characteristics as
the corresponding image types.
n EROIBW1

n EROIBW8

n EROIBW16

n EROIBW32

n EROIC15

n EROIC16

n EROIC24

n EROIC24A

Open eVision User Guide

24

Attachment

An ROI must be attached to a parent (image/ROI) with parameters that set the parent, position
and size, and these links are updated transparently, avoiding dangling pointers.
A normal image cannot be attached to another image or ROI.

Nesting

Set and Get functions change or query the width, height and position of the origin of an ROI,
with respect to its immediate or topmost parent image.

An image may accommodate an arbitrary number of ROIs, which can be nested in a hierarchical
way. Moving the ROI also moves the embedded ROIs accordingly. The image/ROI classes provide
several methods to traverse the hierarchy of ROIs associated with an image.

Nested ROIs: Two sub-ROIs attached to an ROI, itself attached to the parent image

Cropping

CropToImage crops an ROI which is partially out of its image. The resized ROI never grows.
An exception is thrown if a function attempts to use an ROI that has limits that extend outside of
the parents.

NOTE
(In Open eVision 1.0.1 and earlier, an ROI was silently resized or repositioned
when placed out of its image and sometimes grew. If ROI limits extended
outside parents, they were silently resized to remain within parent limits.)

Resizing and moving

n ROIs can easily be resized and positioned by two functions and dragging handles:
n EBaseROI::Drag adjusts the ROI coordinates while the cursor moves.
n EBaseROI::HitTest informs if the cursor is placed over a dragging handle. Once the

handle is known, the cursor shape can be changed by an OnSetCursor MFC event handler.
HitTest is unpredictable if called while dragging is in progress.
HitTest can be used in an OnSetCursor MFC event handler to change the cursor shape, or
before a dragging operation like OnLButtonDown,
(or EvSetCursor and EvLButtonDown in Borland/CodeGear's OWL)
(or FormMouseMove and FormMouseDown in Borland/CodeGear's VCL).
In VB6, MouseDown, MouseMove,MouseUp events return the current cursor position in
twips rather than pixels, so conversion is mandatory.

Open eVision User Guide

25

2.9. Arbitrarily Shaped ROI (ERegion)

See also:example: Inspecting Pads Using Regions / code snippets: ERegion

Regions or arbitrarily shaped ROI

You define and use regions of interest (ROI) to restrict the area processed with your vision tool
and to reduce and optimize the processing time.

In Open eVision:

□ An ROI (EROIxxx class) designates a rectangular region of interest.

□ A region (ERegion class) designates an arbitrarily shaped ROI. With regions, you can
determine precisely which part of the image, down to a single pixel, is used for your
processing.

Currently, only the following Open eVision methods support ERegions:

Library Method

EasyImage

EasyImage::Threshold

EasyImage::DoubleThreshold

EasyImage::Histogram

EasyImage::Area

EasyImage::AreaDoubleThreshold

EasyImage::BinaryMoments

EasyImage::WeightedMoments

EasyImage::GravityCenter

EasyImage::PixelCount

EasyImage::PixelMax

EasyImage::PixelMin

EasyImage::PixelAverage

EasyImage::PixelStat

EasyImage::PixelVariance

EasyImage::PixelStdDev

EasyImage::PixelCompare

Easy3D

EDepthMapToMeshConverter::Convert

EDepthMapToPointCloudConverter::Convert

EStatistics::ComputePixelStatistics

EStatistics::ComputeStatistics

E3DObjectExtractor::Extract

EZMapToPointCloudConverter::Convert

EasyObject EImageEncoder::Encode

EasyFind
EPatternFinder::Find

EPatternFinder::Learn

EasyOCR2
EOCR2::Read

EOCR2::Detect

Open eVision User Guide

26

Library Method

EasyGauge

EPointGauge::Measure

ELineGauge::Measure

ERectangleGauge::Measure

ECircleGauge::Measure

EWedgeGauge::Measure

TIP
In the future Open eVision releases, the support of ERegions will be
gradually extended to all operators.

Creating regions

Open eVision offers multiple ways to create regions, depending on the shape you need:

The ERegion is the base class for all regions and the most versatile. It encodes a region using a
Run-Length Encoded (RLE) representation.

□ The RLE representation of a region is made of runs (horizontal, 1-pixel high slices).

□ The runs are stored in the form of their ordinate, starting abscissa and length.

Run-Length Encoding of a circle-shaped region

To create a region, either:

□ Use one of the geometry-based region classes.

□ Use the result of another tool, such as EasyFind, EasyMatch or EasyObject.

□ Combine or modify other regions.

□ Use a mask image.

□ Directly provide the list of runs.

Open eVision User Guide

27

Geometry-based regions

Geometry based regions are specialized classes of regions that are encompassed in simple
geometries. Open eVision currently provides classes based on a rectangle, a circle, an ellipse or a
polygon.

Use these classes to setup geometric regions and modify them with translation, rotation and
scaling. The transformation operators return new regions, leaving the source object unchanged.

● ERectangleRegion

□ The contour of an ERectangleRegion class is a rectangle.

□ Define it using its center, width, height and angle.

□ Alternatively, use an ERectangle instance, such as one returned by an
ERectangleGauge instance.

Rectangle region separating a bar code from the background

● ECircleRegion

□ The contour of an ECircleRegion class is a circle.

□ Define it using its center and radius or 3 non-aligned points.

□ Alternatively, use an ECircle instance, such as one returned by an ECircleGauge
instance.

Circle region encompassing the useful part of an X-Ray image

Open eVision User Guide

28

● EEllipseRegion

□ The contour of an EEllipseRegion class is an ellipse.

□ Define it using its center, long and short radius and angle.

Ellipse region encompassing a waffle

● EPolygonRegion

□ The contour of an EPolygonRegion class is a polygon.

□ It is constructed using the list of its vertices.

Polygon region encompassing a key

Using the result of other tools

The ERegion class provides a set of specialized constructors to create regions from the results of
another tool.

In a tool chain, these constructors restrict the processing of a tool to the area issued from the
previous tool.

Open eVision User Guide

29

Open eVision provides constructors for the following tools:

□ EasyFind: EFoundPattern

□ EasyMatch: EMatchPosition

□ EasyGauge: ECircle and ERectangle

□ EasyObject: ECodedElement

TIP
When compatible, Open eVision also provides specialized constructors for
the geometry-based regions. For instance, ECircleRegion provides a
constructor using an ECircle.

Combining regions

Use the following operations to create a new region by combining existing regions:

● Union

□ The ERegion::Union(const ERegion&, const ERegion&) method returns the region
that is the addition of the two regions passed as arguments.

Union of 2 circles

● Intersection

□ The ERegion::Intersection(const ERegion&, const ERegion&) method returns
the region that is the intersection of the two regions passed as argument.

Intersection of 2 circles

Open eVision User Guide

30

● Subtraction

□ The ERegion::Substraction(const ERegion&, const ERegion&) method returns
the first region passed as argument after removing the second one.

Subtraction of 2 circles

Using regions

The tools supporting regions provide methods that follow one of these conventions:

□ Method(const EImage& source, const ERegion& region)

□ Method(const EImage& source, const ERegion& region, EImage&
destination)

NOTE
The source, the region and the destination must be compatible. It means that
the region must at least partly fit in the source, and that source and
destination must have the same size.

Preparing the region

● Open eVision automatically prepares the regions when it applies them to an image, but this
preparation can take some time.

● If you do not want that your first call to a method takes longer than the next ones, you can
prepare the region in advance by using the appropriate Prepare() method.

● To manually prepare the regions, adapt the internal RLE description to your images.

Drawing regions

The ERegion classes provide several ways to display the regions:

● ERegion::Draw() draws the region area, in a semi-transparent way, in the provided device
context.

● ERegion::DrawContour() draws the region contour in the provided device context.

Open eVision User Guide

31

● ERegion::ToImage() renders the region as a mask into the provided destination image.

□ You can configure the foreground and the background colors.

□ If you initialized your image with a width and a height, Open eVision renders the region
inside those bounds.

□ If not, Open eVision resizes the image to contain the whole region.

□ Use ToImage() to create masks for the Open eVision functions that support them.

ERegions and EROIs

● The older EROI classes of Open eVision are compatible with the new regions.

● Some tools allow the usage of regions with source and/or destinations that are ERoi instead
of EImage follow one of these conventions:

□ Method(const ERoi& source, const ERegion& region)

□ Method(const ERoi& source, const ERegion& region, ERoi& destination)

TIP
In that case, the coordinates used for the region are relative to the reduced
ROI space instead of the whole image space .

ERegion and 3D

● The new regions are compatible with the 2.5D representations of Easy3D (EDepthMap and
EZMap).

● You can also reduce the domain of processing when using these classes.

2.10. Flexible Masks
ROIs vs flexible masks

ROIs and masks restrict processing to part of an image:
n "ROI Main Properties" on page 23 apply to all Open eVision functions. Using Regions of

Interest accelerates processing by reducing the number of pixels. Open eVision supports
hierarchically nested rectangular ROIs.

n Flexible Masks are recommended to process disconnected ROIs or non-rectangular shapes.
They are supported by some EasyObject and EasyImage library functions.

Flexible Masks

A flexible mask is a BW8 image with the same height and width as the source image. It contains
shapes of areas that must be processed and ignored areas (that will not be considered during
processing):

Open eVision User Guide

32

n All pixels of the flexible mask having a value of 0 define the ignored areas.
n All pixels of the flexible mask having any other value than 0 define the areas to be processed.

Source image Associated mask Processed masked image

A flexible mask can be generated by any application that outputs BW8 images and by some
EasyObject and EasyImage functions.

Flexible Masks in EasyImage

Source image (left) and mask variable (right)

Simple steps to use flexible masks in Easyimage

1. Call the functions from EasyImage that take an input mask as an argument. For instance,
one can evaluate the average value of the pixels in the white layer and after in the black layer.

2. Display the results.

Resulting image

EasyImage Functions that support flexible masks

n EImageEncoder::Encode has a flexible mask argument for BW1, BW8, BW16, and C24 source
images.

n AutoThreshold.
n Histogram (function HistogramThreshold has no overload with mask argument).
n RmsNoise, SignalNoiseRatio.
n Overlay (no overload with mask argument for BW8 source images).
n ProjectOnAColumn, ProjectOnARow (Vector projection).

Open eVision User Guide

33

n ImageToLineSegment, ImageToPath (Vector profile).

Flexible Masks in EasyObject

A flexible mask can be generated by any application that outputs BW8 images or uses the Open
eVision image processing functions.
EasyObject can use flexible masks to restrict blob analysis to complex or disconnected shaped
regions of the image.

If an object of interest has the same gray level as other regions of the image, you can define
"keep" and "ignore" areas using flexible masks and Encode functions.

A flexible mask is a BW8 image with the same height and width as the source image.
n A pixel value of 0 in the flexible mask masks the corresponding source image pixel so it

doesn't appear in the encoded image.
n Any other pixel value in the flexible mask causes the pixel to be encoded.

EasyObject functions that create flexible masks

Source image

1) ECodedImage2::RenderMask: from a layer of an encoded image

1. To encode and extract a flexible mask, first construct a coded image from the source image.
2. Choose a segmentation method (for the image above the default method

GrayscaleSingleThreshold is suitable).
3. Select the layer(s) of the coded image that should be encoded (i.e. white and black layers

using minimum residue thresholding).
4. Make the mask image the desired size using mask.SetSize(sourceImage.GetWidth(),

sourceImage.GetHeight()).
5. Exploit the flexible mask as an argument to ECodedImage2::RenderMask.

BW8 resulting image that can be used as a flexible mask

Open eVision User Guide

34

2) ECodedElement::RenderMask: from a blob or hole

1. Select the coded elements of interest.
2. Create a loop extracting a mask from selected coded elements of the coded image using

ECodedElement::RenderMask.
3. Optionally, compute the feature value over each of these selected coded elements.

BW8 resulting image that can be used as a flexible mask

3) EObjectSelection::RenderMask: from a selection of blobs

EObjectSelection::RenderMask can, for example, discard small objects resulting from noise.

BW8 resulting image that can be used as a flexible mask

Example: Restrict the areas encoded by EasyObject

Find four circles (left) Flexible mask can isolate the central chip (right)

1. Declare a new ECodedImage2 object.
2. Setup variables: first declare source image and flexible mask, then load them.
3. Declare an EImageEncoder object and, if applicable, select the appropriate segmenter. Setup

the segmenter and choose the appropriate layer(s) to encode.

Open eVision User Guide

35

4. Encode the source image. Encoding a layer with just the area in the flexible mask is then
pretty straightforward.
We see that the circles are correctly segmented in the black layer with the grayscale single
threshold segmenter:

5. Select all objects of the coded image.
6. Select objects of interest by filtering out objects that are too small.
7. Display the blob feature by iterating over the selected objects to display the chosen feature.

2.11. Profile
Profile Sampling

A profile is a series of pixel values sampled along a line/path/contour in an image.
n EasyImage::ImageToLineSegment copies the pixel values along a given line segment

(arbitrarily oriented and wholly contained within the image) to a vector. The vector length is
adjusted automatically. This function supports flexible mask.

n A path is a series of pixel coordinates stored in a vector.
EasyImage::ImageToPath copies the corresponding pixel values to the vector. This
function supports flexible mask.

n A contour is a closed or not (connected) path, forming the boundary of an object.
EasyImage::Contour follows the contour of an object, and stores its constituent pixels
values inside a profile vector.

Profile Analysis

The profile can be processed to find peaks or transitions:
n A transition corresponds to an object edge (black to white or white to black). It can be

detected by taking the first derivative of the signal (which transforms transitions (edges) into
peaks) and looking for peaks in it.
EasyImage::ProfileDerivative computes the first derivative of a profile extracted from a
gray-level image.
The EBW8 data type only handles unsigned values, so the derivative is shifted up by 128.
Values under [above] 128 correspond to negative [positive] derivative (decreasing [increasing]
slope).

Open eVision User Guide

36

n A peak is the portion of the signal that is above [or below] a given threshold - the maximum or
minimum of the signal. This may correspond to the crossing of a white or black line or thin
feature. It is defined by its:
n Amplitude: difference between the threshold value and the max [or min] signal value.
n Area: surface between the signal curve and the horizontal line at the given threshold.

EasyImage::GetProfilePeaks detects max and min peaks in a gray-level profile. To
eliminate false peaks due to noise, two selection criteria are used. The result is stored in a
peaks vector.

Profile Insertion Into an Image

EasyImage::LineSegmentToImage copies the pixel values from a vector or constant to the
pixels of a given line segment (arbitrarily oriented and wholly contained within the image).

EasyImage::PathToImage copies the pixel values from a vector or a constant to the pixels of a
given path.

Open eVision User Guide

37

3. Deep Learning Tools

Open eVision User Guide

38

Deep Learning Tools - Inspecting Images with
Deep Learning

Purpose and Workflow

Tools

The deep learning tools are based on deep convolutional neural networks (CNNs):

● EasyClassify classifies images into a predefined set of classes. Use this tool to identify a
product in an image or to detect if the product is good or defective.

● EasySegment detects and segments defects in images. This tool works in an unsupervised
way. This means that it is trained on good products only.

As you build only a model of what a good product is and not a model of what a defective
product is:

□ The advantage is that the tool can detect and segment defects that are not in your dataset
or that are unexpected.

□ The drawback is that the type of defects that the tool can detect and segment is more
limited than when you build an explicit model of the defects.

By opposition to traditional machine vision techniques, the deep learning tools do not require
an explicit model of what to recognize and/or segment inside an image. Instead, they learn this
model from a set of example images. Thus the deep learning tools can solve machine vision
problems where an explicit model is too complex to build.

Specifications

EasyClassify EasySegment
(unsupervised mode)

Minimum image size 128 × 128 64 × 64

Maximum image size 1024 × 1024 10 000 × 10 000

Best image size 256 × 256 - 600 × 600 n.a.

Number of channels 1 or 3 (grayscale and color images)

Bit depth 8 bits, 16 bits

Number of labels 2 - 1000 2 (good and defective)

Minimum number of images per label 2
1 for the good label

0 for the defective label

Supported image format bmp, png, jpeg, j2k, tiff

Open eVision User Guide

39

TIP
To accelerate computations, we strongly recommend running the deep
learning tools on a recent NVIDIA GPU. Refer to the section "Hardware
Support (CPU/GPU)" on page 43 for installing the required NVIDIA CUDA and
deep learning library.

Workflow

To create an application based on the deep learning tools:

1. Capture a dataset of images representative of the problem you want to solve.

□ The capture conditions must be as close as possible of the production conditions.

□ Preferably, all images should have the same resolution.

□ The number of images needed to obtain a good performance depends on the complexity of
the task and the tool used.
Please refer to the specifications of each tool for the constraints on the resolution and the
number of images.

2. Manually label the images in the dataset with the different categories you want to recognize.

These categories depend on the tool:

□ EasyClassify:
- Each image must correspond to one and only one category.
- There must be at least 2 categories.

□ EasySegment:
- A single category for images of good samples.
- As many categories as you want (including none) for images of defective samples.

Use the EClassificationDataset class to compile your labeled images.

3. Choose the deep learning tool that suits your need.

All deep learning tools are child classes of the EDeepLearningTool class:

□ EasyClassify: EClassifier class

Open eVision User Guide

40

□ EasySegment: EUnsupervisedSegmenter class

4. Train the deep learning tool on the dataset.

5. Apply the trained tool in production.

Each tool returns a specific object.

Tools and Resources

Deep Learning Studio

Deep Learning Studio is a graphical user interface that:

□ Creates datasets and labeling images,

□ Configures and visualizes the data augmentation transformations,

□ Trains a deep learning tool,

□ Analyzes the performance of the tool,

□ Applies the tool to new images.

TIP
The Deep Learning Studio is available in the installation folder of Open
eVision.

Resources and code snippets

● The sample dataset called “MiniWaffle” illustrated below is available in the folder Sample
Images/Deep Learning/EasyClassify/MiniWaffle of the installation folder. This
dataset contains images of good and bad mini waffles.

● Some sample programs in the folder Sample Programs show how to train and use a deep
learning tool.

● Some code snippets are also provided for illustration and reference.

Open eVision User Guide

41

Workflow illustration with Deep Learning Studio

You can use Deep Learning Studio to perform steps 2 and 3 of the process described in section
"Purpose and Workflow" on page 38.

Manual labeling of images (step 2) and creating the dataset (steps 3a and 3b)

Splitting the dataset (step 3c) and starting the training (steps 3d and 3e)

Open eVision User Guide

42

Analyzing the performance (step 3f)

Classifying images (step 4)

Open eVision User Guide

43

Hardware Support (CPU/GPU)

Using a CPU

● Deep learning algorithms perform a lot of computations and can be very slow to train on a
CPU.

For example, for EasyClassify, on a high-end Intel Core i9-7900X CPU with a single thread,
with no data augmentation:

□ The training can process up to 0.5 MegaPixels/second.

□ The validation and classification can process up to 1.5 MegaPixels/second.

● Use the EDeepLearningTool::SetEnableGPU(false) method to use the CPU with the
deep learning tools.

TIP
The deep learning tools support CPU processing for both 32-bit and 64-bit
applications. However, the memory of a 32-bit application is limited to 2 GB
and this can slow the training or the classification of large images.

Using an NVIDIA CUDA® GPU

● Using a recent NVIDIA GPU greatly accelerates the processing speeds.

For EasyClassify, on a NVIDIA GeForce 1080Ti, with no data augmentation:

□ The training can process up to 50 MegaPixels/second.

□ The validation can process up to 160 MegaPixels/second.

□ The classification of a single image can process up to 55 MegaPixels/second (equivalent to
more than 800 256 x 256 grayscale images/second).

TIP
Please be aware that the actual speed varies with the input image format, the
data augmentation, the batch size and the GPU model.

1. To use an NVIDIA GPU with the deep learning tools, install the following NVIDIA libraries on
your computer:

□ NVIDIA CUDA® Toolkit version v10.0 (https://developer.nvidia.com/cuda-toolkit)

□ NVIDIA CUDA® Deep Neural Network library (cuDNN) v7
(https://developer.nvidia.com/cudnn)

Open eVision User Guide

https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cudnn

44

2. According to the installation location:

□ If you install the NVIDIA CUDA® Toolkit in its default location (C:\Program
Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0), a deep learning tool
automatically finds what it needs.

□ Otherwise, copy the DLLs cusolver64_100.dll, curand64_100.dll, cufft64_
100.dll and cublas64_100.dll in the Open eVision DLL folder (its default location is
C:\Program Files (x86)\Euresys\Open eVision X.X\Bin64\).

3. Install the NVIDIA CUDA ® Deep Neural Network library (cuDNN) that comes as a zip archive:

a. Unzip the files.

b. Copy the unzipped files to the NVIDIA CUDA® Toolkit installation directory as indicated in
https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installwindows.

c. If the NVIDIA CUDA® Toolkit is not installed in its default location, copy the DLL file
cudnn64_7.dll in the Open eVision DLL folder (its default location is C:\Program Files

(x86)\Euresys\Open eVision X.X\Bin64\).

4. Use the method EDeepLearningTool::SetEnableGPU(true) to use the GPU with the
deep learning tools.

Using multiple GPUs

You can use multiple GPUs for the training and the batch classification.

● In the API, to set the list of GPUs, use the EDeepLearningTool::SetGPUIndexes method.

NOTE
Using multiple GPUs increases the training and batch classification speed
only if these GPUs are Quadro or Tesla models with the TCC driver model (see
https://docs.nvidia.com/gameworks/content/developertools/desktop/nsight/t
esla_compute_cluster.htm).
Using multiple GeForce GPUs is slower than using a single one. If there are
more than one GPU installed on your computer, set the index of the GPU to
use with the EDeepLearningTool::SetGPUIndexes method.

● In Deep Learning Studio, to choose the processing devices, select an execution profile.

● You can configure these execution profiles to match your needs.

● GPU processing is not possible with 32-bit applications.

Open eVision User Guide

https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installwindows
https://docs.nvidia.com/gameworks/content/developertools/desktop/nsight/tesla_compute_cluster.htm
https://docs.nvidia.com/gameworks/content/developertools/desktop/nsight/tesla_compute_cluster.htm

45

Image cache

The image cache is the part of the memory reserved for storing images during training.

● The default size is 1 GB.

● With large dataset, increasing the image cache size may improve the training speed.

To specify the cache size in bytes:

● In the API, use the EDeepLearningTool::SetImageCacheSize method.

● In Deep Learning Studio, click on the Configure button below the Execution profile control and
select Image cache in the menu.

Multicore processing

The deep learning tools support multicore processing (see "Multicore Processing" on page 1):

● In the API, use the multicore processing helper function from Open eVision (that is Easy
::SetMaxNumberOfProcessingThreads() with a value greater than 1).

● In Deep Learning Studio, click on the Configure button below the Execution profile control and
select CPU Settings in the menu.

Open eVision User Guide

46

Managing the Dataset

Images and Labels
● In the API, a dataset is represented by an object of the EClassificationDataset type.

● The supported image file types are:

□ PNG

□ TIFF

□ JPEG

□ BMP

□ J2K

● The supported Open eVision image object types are:

□ EImageType_BW8

□ EImageType_BW16

□ EImageType_C24

Adding images

● In Deep Learning Studio, add image files (PNG, TIFF, JPEG, BMP and J2K types) to your
datasets in one of the following ways:

□ Right-click on a label and click Add images to label.

□ Drag and drop your files directly on a label.

□ Select a label and click on the Add Images button.

Open eVision User Guide

47

● Add a single image and its label to a EClassificationDataset, in one of the following
ways:

□ EClassificationDataset::AddImage(path, label) for an image file,

□ EClassificationDataset::AddImage(img, label) for an Open eVision image object.

● Add several image files that share the same label, with the method
EClassificationDataset::AddImages(filter, label).

filter is a glob pattern with the wildcard characters:

□ * means "zero or more characters"

□ ? means "a single character"

For example, EClassificationDataset::AddImages("*good*.png", "good") adds all
PNG image files that contain “good” in their filename.

TIP
EasyClassify automatically generates the set of labels from the labels of the
images that you add to the dataset.

NOTE
The labels are case sensitive.

Changing the labels

In Deep Learning Studio:

● To change the label of a single image, select or type the label directly on the image
thumbnail.

Open eVision User Guide

48

● To change the label of a group of images:

a. Select the images (keep the CTRL key pressed and click on the images).

b. Right click on one of the selected images.

c. Select the new label.

Setting the label weights

The label weights represent the relative importance that the deep learning tool gives to each
class during the training.

TIP
The EasySegment tool does not use the label weights as it is trained on the
images with one and only one specific label.

TIP
Increase the weight of a label to improve the accuracy of this label. Keep in
mind that this also means a lowering of the accuracy of the other labels.

By default, all labels are given the same weight of 1.

● In Deep Learning Studio, set the label weights directly in the label list of the first tab:

● In the API, set the weight of a label with EClassificationDataset::SetLabelWeight
(labelId, weight).

Open eVision User Guide

49

ROI and Mask
Setting a ROI

Use an ROI (region of interest) to crop an image or a whole dataset to a rectangular area aligned
with the axis.

In the API:

● To define a global ROI, use the SetGlobalRegionOfInterest method (set the ROI origin,
width and height).

● To define a different ROI for each image, specify the ROI when you add an image to the
dataset.

In Deep Learning Studio:

● To change the ROI:

a. Select an image from the dataset.

b. Click on the Edit ROI button.

Open eVision User Guide

50

c. Drag the ROI green box, or directly set the ROI origin, width and height.

● To set the same ROI for all the images of the dataset:

a. Check the Use global dataset ROI box.

b. Click on the Apply button.

Setting a mask

Set a mask on an image in a dataset to remove the pixels in the mask area from any
computation. The mask works as a “don’t care area”.

In the API:

● To define a global mask, use the SetGlobalMask method (use a a ERegion to define the
mask).

● To define a different mask for each image, specify the mask when you add an image to the
dataset.

In Deep Learning Studio:

● To change the mask:

a. Select an image from the dataset.

b. Click on the Edit Mask button.

Open eVision User Guide

51

c. Select a kind of ERegion to draw the mask.

d. Draw the mask.

TIP
Click on the Open mask button to use an image to specify a mask. All the
pixels of the image (such as an EROIBW8) that are over 127 are considered as
part of the mask.

● To set the same mask for all the images of the dataset:

a. Check the Use global dataset mask box.

b. Click on the Apply button.

Open eVision User Guide

52

Training and Validation Datasets
It is important to use at least 2 separate datasets of images:

□ A training dataset to train the classifier.

□ A validation dataset to automatically select the best classifier during the training.

□ An optional test dataset to evaluate the final performance of your classifier.

WARNING
These datasets MAY NOT contain:
- Images of the other datasets.
- Images of an object of interest extracted from images of the other datasets.

Deep Learning Studio automatically and randomly splits the dataset into a training and a
validation dataset. Add images to the test dataset in the tab Classify images.

Why is it important?

Deep learning techniques can suffer from overfitting; this means that the trained classifier is too
focused on the specific images present in the training dataset and it is not able to learn a general
model of your data. Such tools perform poorly in production.

The validation dataset is used during training to prevent and know when overfitting occurs. This
keeps the tool in a state that gives the best performance on the validation dataset. Without the
validation dataset, it is impossible to know if a tool that performs well on its training dataset can
perform well in production too.

Thus, a tool that gives high performance on the training dataset but much lower performance on
the validation dataset has overfitted.

To fix overfitting:

□ You can add more images in your dataset.

□ Or, in some cases, you can use data augmentation.

TIP
Data augmentation generates random transformations of the images in the
training dataset to make the tool robust to geometric, luminosity or noise
differences that are not present in the original training dataset.

Open eVision User Guide

53

Splitting the dataset

To create your training and validation datasets:

● In Deep Learning Studio:

□ Create a single dataset in the Images and labels tab.

□ Set the splitting percentages in the Training tab.

□ During the training, the dataset automatically splits into a training and a validation dataset
according to this splitting percentage.

● In the API:

□ Create directly 2 EClassificationDataset objects containing 2 different sets of images.

□ Or randomly split an EClassificationDataset dataset into 2 parts with the method
EClassificationDataset::SplitDataset(trainingDataset,

validationDataset, trainingProportion).

Using Data Augmentation
Data augmentation performs random transformations on images given to a deep learning tool
(EClassifier or EUnsupervisedSegmenter object) during the training.

● Experiment different settings to choose the best parameters for your data augmentation.

● Check that the transformations do not change the label of an image (for example a defect that
disappears because of a rotation or a contrast change).

Use EClassificationDataset::SetEnableDataAugmentation(true/false) to enable or disable
these transformations.

Open eVision User Guide

54

In Deep Learning Studio:

● Configure the data augmentation in the second tab (Image properties and augmentation).

● Display and review the data augmented images with the minimum settings (Lower limits
augmentation), the maximum settings (Upper limits augmentation) or the random settings (Random
augmentation).

In the API:

Use EClassificationDataset::SetEnableDataAugmentation(true/false) to enable or disable
these transformations.

The possible transformations are:

Geometric transformations

● Horizontal and vertical flips (enabled with
EClassificationDataset::SetEnableHorizontalFlip and
EClassificationDataset::SetEnableVerticalFlip)

● Scaling (between a minimum and maximum value defined with
EClassificationDataset::SetMinScale and
EClassificationDataset::SetMaxScale)

Open eVision User Guide

55

● Horizontal and vertical shifts (between –maxValue and maxValue defined with
EClassificationDataset::SetMaxHorizontalShift(maxValue) and
EClassificationDataset::SetMaxVerticalShift(maxValue))

● Rotations (between 0 and a maximum value defined with
EClassificationDataset::SetMaxRotationAngle)

● Horizontal and vertical shear (between –maxValue and maxValue defined with
EClassificationDataset::SetMaxHorizontalShear and
EClassificationDataset::SetMaxVerticalShear)

Color and luminosity transformations

● Brightness offset (between –maxValue and maxValue defined with
EClassificationDataset::SetMaxBrightnessOffset)

● Contrast gain (between a minimum and maximum value defined with
EClassificationDataset::SetMinContrastGain and
EClassificationDataset::SetMaxContrastGain)

● Gamma corrections (between a minimum and maximum value defined with
EClassificationDataset::SetMinGamma and
EClassificationDataset::SetMaxGamma)

● Hue offset (between –maxValue and maxValue defined with
EClassificationDataset::SetMaxHueOffset)

● Saturation gain (between a minimum and maximum value defined with
EClassificationDataset::SetMinSaturationGain and
EClassificationDataset::SetMaxSaturationGain)

Noise transformations

Open eVision User Guide

56

TIP
The standard deviation is expressed as a percentage of the maximum pixel
value.

● Gaussian noise, also called additive white noise, generated with a standard deviation
(between a minimum and maximum value defined with
EClassificationDataset::SetGaussianNoiseMinimumStandardDeviation and
EClassificationDataset::SetGaussianNoiseMaximumStandardDeviation)

● Speckle noise, a multiplicative noise, generated from a Gamma distribution with a mean of 1
and a standard deviation (between a minimum and a maximum value defined with
EClassificationDataset::SetSpeckleNoiseMinimumStandardDeviation and
EClassificationDataset::GetSpeckleNoiseMinimumStandardDeviation).

● Salt and pepper noise generated from a pixel density (between a minimum and a maximum
value defined with EClassificationDataset::
SetSaltAndPepperNoiseMinimumDensity and
EClassificationDataset::SetSaltAndPepperNoiseMaximumDensity).

EasyClassify - Classifying Images
EasyClassify is the deep learning classification library of Open eVision (EClassifier class).

Deep Learning Studio

To create a classification tool in Deep Learning Studio:

1. Start Deep Learning Studio.

2. Select Classifier in the New deep learning tool dialog.

Open eVision User Guide

57

Input image format and normalization

● The input image format must have the width, height and number of channels corresponding
to the input of the neural network.

● By default, a classifier uses the image format of the first image inserted in the training dataset:

□ All other images are automatically reformatted (anisotropic rescaling and conversion
between color and grayscale).

□ If EClassifier::SetEnableAutomaticImageReformat(false) is called, the classifier
throws an exception when attempting to train or classify an image that does not have the
correct image format.

● In Deep Learning Studio, you can set the input image format in the Image properties and
augmentation tab.

● In the API, you can also set manually the input image format with the methods SetWidth,
SetHeight and SetChannels (1 channel for grayscale images and 3 channels for color
images).

● The input image format must have a resolution between 128 x 128 and 1024 x 1024.
For the best processing speed, use the lowest resolution at which your "objects of interest"
are still recognizable.

□ If your original images are smaller than the minimum resolution, upscale them to a
resolution higher or equal to 128 x 128.

□ If your original images are larger than the maximum resolution, lower the resolution:
- If the "objects of interest" are still recognizable, explicitly set the input image format of
the classifier to this lower resolution.
- If the "objects of interest" are not recognizable, divide your original images into sub-
windows and use these sub-windows to train the classifier and make prediction. This
presents the additional advantage of localizing the "object of interest" inside the original
image.

Open eVision User Guide

58

Histogram equalization

The classifier can also apply an histogram equalization to every input image:

□ In Deep Learning Studio, activate it in the image format controls in the Image properties and
augmentation tab.

□ In the API, use EClassifier::SetEnableHistogramEqualization(true) to activate
it.

Training the classifier

In the API, to train a classifier, call the method EClassifier::Train(trainingDataset,
validationDataset, numberOfIterations).

● Iteration:

□ An iteration corresponds to going through all the images in the training dataset once.

□ The training process requires a large number of iterations to obtain good results.

□ The default number of iterations is 50.

□ The larger the number of iterations, the longer the training is and the better the results
you obtain.

TIP
Calling the EClassifier::Train() method several times with the same
training and validation dataset is equivalent to calling EClassifier::Train()

once but with a larger number of iterations. The total number of iterations
used to train the classifier is accessible through
EClassifier::GetNumTrainedIterations().

Open eVision User Guide

59

● The training process is asynchronous:

□ A call to EDeepLearningTool::Train launches a new thread that does the training in
background.

□ The method EDeepLearningTool::WaitForTrainingCompletion suspends the program until
the whole training is completed.

□ The method EDeepLearningTool::WaitForIterationCompletion suspends the
program until the current iteration is completed.

□ During the training, use EDeepLearningTool::GetCurrentTrainingProgression()
to follow the progression of the training.

● Batch size:

The batch size corresponds to the number of images that are processed together.

□ The training is influenced by the batch size.

□ A large batch size increases the processing speed of a single iteration on a GPU but
requires more memory.

□ The training process is not able to learn a good model with too small batch sizes.

□ By default, the batch size is determined automatically during training to optimize the
training speed with respect to the available memory.
- Use EDeepLearningTool::SetOptimizeBatchSize(false) to disable this behavior.
- Use EDeepLearningTool::SetBatchSize to change the size of your batch.

□ Use EDeepLearningTool::GetBatchSizeForMaximumInferenceSpeed() to get the
batch size that maximizes the (batch) classification speed on a GPU with respect to the
available memory.

□ It is common to choose powers of 2 as batch size for performance reasons.

Validating the results

In Deep Learning Studio:

● The metrics are always computed without applying data augmentation on the images.

● In the Training tab, the metrics Best validation error and Best validation accuracy are computed
during the training using the label weights.

Open eVision User Guide

60

● In the Dataset results tab, there are 3 metrics displayed:

□ The weighted error and the weighted accuracy (normalized with respect to the label weights
instead of being dependent of the number of images for each label).

□ The dataset accuracy (it does not use the label weights).

TIP
If your dataset has a very different number of images for each of the labels, it
is called unbalanced. In this case, the dataset accuracy is biased towards the
labels containing the most images (the dataset accuracy mainly reflects the
accuracy of these labels).

● In the Dataset results tab, the confusion matrix shows the number of images according to their
true labels and their label predicted by the classifier.

□ The diagonal elements of the matrix shown in green are the correctly classified images.

□ All the other elements of the matrix are badly classified images.

□ Select one or more elements of the matrix to show the corresponding images.

Open eVision User Guide

61

In the API:

● After the completion of each iteration, EasyClassify automatically computes several
performance metrics about the training and validation dataset:

□ Call the methods EClassifier::GetTrainingMetrics(iteration) and
EClassifier::GetValidationMetrics(iteration) to read these metrics.

□ The iterations are indexed between 0 and EClassifier::GetNumTrainedIterations()-1.

□ Call EClassifier::GetBestIteration() to retrieve the iteration that produced the
best performance.

□ After the training, the classifier is back in the state corresponding to this best iteration.

● The metrics are represented by an EClassificationMetrics object that contains the
following performance metrics:

□ The classification error (EClassificationMetrics::GetError()), also called the cross-
entropy loss: the quantity that is minimized during the training. It is computed from the
probabilities computed by the classifier.
- The error for a single image is the negative of the logarithm of the probability
corresponding to the true label of the image. So, if this probability is low, the error for the
image is high.
- The error of the dataset is the average of the errors of each image in the dataset.

□ The classification accuracy (EClassificationMetrics::GetAccuracy()): the number
of images correctly classified divided by the total number of images in the dataset.

□ The confusion matrix (EClassificationMetrics::GetConfusion
(groundtruthLabel, predictedLabel)): the number of images labeled as
groundtruthLabel that are classified as predictedLabel.

TIP
Call EClassifier::Evaluate to evaluate a dataset independently of the
training.

Classifying new images

● In Deep Learning Studio, open Classify images tab to:

□ Classify new images.

□ Display detailed results for each image of the main dataset.

Open eVision User Guide

62

● Once the classifier is trained, call EClassifier::Classify to classify an Open eVision
image.

This method returns a EClassificationResult object:

□ EClassificationResult::GetBestLabel() returns the most probable label for the image.

□ EClassificationResult::GetBestProbability() returns the probability associated with
the most probable label.

□ EClassificationResult::GetProbability(label) returns the probability associated with
the given label.

□ EClassificationResult::GetRanking(label) returns the ranking of the given label.
The ranking goes from 1 (most probable) to EClassifier::GetNumLabels() (least
probable).

● You can also do batch classification or directly classify a vector of Open eVision images:

□ Images are processed together in groups determined by the batch size.

□ On a GPU, it is usually much faster to classify a group of images than a single image.

□ On a CPU, implement a multithread approach to accelerate the classification. In that case,
each thread must have its own instance of EClassifier (see code snippets).

TIP
The batch classification has a tradeoff between the throughput (the number
of images classified per second) and the latency (the time needed to obtain
the result of an image): on a GPU, the higher the batch size, the higher the
throughput and the latency. So, use batch classification to improve the
classification speed at the cost of a longer time before obtaining the
classification result of an image.

● Use EClassifier::GetHeatmap(img, label) to obtain an heat map highlighting the
pixels that contribute the most to a label. In some cases, this heat map can provide a rough
localization of the object corresponding to the label.

Memory requirements

● In addition to the properties of the classifier object and the weights of the neural network, an
EClassifier object dynamically allocates memory for intermediate results during the
training and the classification of new images.

● The size of the intermediate results depends on the width (W), height (H), batch size (B), and
whether the operations are performed on a GPU or a CPU.

● For training, these intermediate results need about the following amount of memory:

Tr ainingMemor yCPU = 0.000453 × W × H × B –292 (MB)
Tr ainingMemor yGPU = 0.000440 × W × H × B + 25 (MB)

Open eVision User Guide

63

● For classification, these intermediate results need up to the following memory:

Classi f i cationMemor yCPU = 0.000232 × W × H × B –97 (MB)
Classi f i cationMemor yGPU = 0.000226 × W × H × B + 13 (MB)

● For example, training a classifier or making classifications with 256 x 256 images and a batch
size of 32 on a GPU will take around respectively 950 MB or 500 MB.

TIP
Since large memory allocations take a lot of time, a classification does not
released this memory and the next classifications can reuse it as long as the
width, height, batch size and computation device remain the same. As such,
the first classification is always be slower due to the memory allocations.

EasySegment - Detecting and Segmenting Defects
EasySegment is the deep learning segmentation library of Open eVision. It contains the
unsupervised segmentation tool (EUnsupervisedSegmenter class).

Deep Learning Studio

To create create an unsupervised segmentation tool in Deep Learning Studio:

1. Start Deep Learning Studio.

2. Select Unsupervised segmenter in the New deep learning tool dialog.

Open eVision User Guide

64

The following dialog is displayed at the start of Deep Learning Studio or when you create a new
deep learning tool from the toolbar.

Configuration

The unsupervised segmenter tool has 5 parameters:

1. The Capacity of the neural network (default: Normal) represents the quantity of information it is
capable of learning. A larger capacity makes the tool slower.

In the API:

□ The capacity is represented by the enumerate type EUnsupervisedSegmenterCapacity.

□ EUnsupevisedSegmenter::Capacity sets the capacity of the tool.

2. The Image type (default: Monochrome (1 channel)):

In the API:

□ To use monochrome (grayscale, 1 channel) images, set
EUnsupervisedSegmenter::ForceGrayscale to true.

□ To use color (3 channels) images, set EUnsupervisedSegmenter::ForceGrayscale to
false.

3. Use the Scale (EUnsupervisedSegmenter::Scale) to automatically resize your images to a
lower resolution and accelerate the processing.

4. The Sampling density (EUnsupervisedSegmenter::SamplingDensity) is the parameter of
the sliding window algorithm used to process whole images using patches of size
(EUnsupervisedSegmenter::PatchSize).

□ It indicates how much overlap there is between the image patches (100-
100/SamplingDensity %).

□ In practice, the stride between 2 consecutive patches is PatchSize/SampleDensity
pixels.

5. The Good label is the name of the class that contains the good images.

Open eVision User Guide

65

Training the tool

In the API, to train an unsupervised segmenter, call the EDeepLearningTool::Train
(trainingDataset, validationDataset, numberOfIterations) method.

● An iteration corresponds to training on 10 000 image patches and computing the results for
each training and validation image.

□ The training process requires a large number of iterations to obtain good results.

□ The default number of iterations is 50.

□ The larger the number of iterations, the longer the training is and the better the results
you may obtain.

TIP
Calling the EDeepLearningTool::Train method several times with the
same training and validation dataset is equivalent to calling it once but with
a larger number of iterations.
Call EDeepLearningTool::GetNumTrainedIterations to get the total
number of iterations used to train the classifier.

● The training process is asynchronous:

□ EDeepLearningTool::Train launches a new thread that does the training in
background.

□ EDeepLearningTool::WaitForTrainingCompletion suspends the program until the
whole training is completed.

□ EDeepLearningTool::WaitForIterationCompletion suspends the program until the
current iteration is completed.

□ During the training, EDeepLearningTool::GetCurrentTrainingProgression shows
the progression of the training.

● The batch size corresponds to the number of image patches that are processed together.

□ The training is influenced by the batch size.

□ A large batch size increases the processing speed of a single iteration on a GPU but
requires more memory.

□ The training process is not able to learn a good model with too small batch sizes.

□ By default, the batch size is determined automatically during the training to optimize the
training speed with respect to the available memory.
- Use EDeepLearningTool::SetOptimizeBatchSize(false) to disable this behavior.
- Use EDeepLearningTool::SetBatchSize to change the size of your batch.

□ EDeepLearningTool::GetBatchSizeForMaximumInferenceSpeed gets the batch size
that maximizes the batch classification speed on a GPU according to the available
memory.

□ It is common to choose powers of 2 as the batch size for performance reasons.

Open eVision User Guide

66

Validating the results

There are 2 types of metric for the unsupervised segmentation tool:

□ Unsupervised metric only uses the results of the tool on good images. There is only one
unsupervised metric: the error.

□ Supervised metrics requires both good and defective images. The supervised metrics are
the AUC (Area Under ROC Curve), the ROC curve, the accuracy, the good detection rate
(also called the true negative rate), the defect detection rate (also called the true positive
rate).

The unsupervised segmentation tool computes a score for each image (see
EUnsupervisedSegmenterResult::ClassificationScore). The label of a result is obtained
by thresholding this score with the segmenter classification threshold
(EUnsupervisedSegmenter::ClassificationThreshold). So, the supervised metrics also
depends on the value of this classification threshold.

The ROC curve (Receiver Operating Characteristic) is the plot of the defect detection rate (the
true positve rate) against the rate of good images classified as defective (also called the false
positive rate). It is obtained by varying the classification threshold. The ROC curve shows the
possible tradeoffs between the good detection rate and the defect detection rate.

The area under the ROC curve (AUC) is independent of the chosen classification threshold and
represents the overall performance of the tool. Its value is between 0 (bad performance) and 1
(perfect performance).

In Deep Learning Studio:

● In the Training tab, the metrics Best validation error and Best validation AUC are computed during
the training on the validation dataset without using data augmentation. The validation error,
the training error and the validation AUC are plotted for each iteration.

Open eVision User Guide

67

● In the Dataset results tab, various metrics, the confusion matrix, a cumulative score histogram,
and the ROC curve are displayed. You can also change the classification threshold directly in
this tab.

□ The cumulative score histogram shows the cumulative proportion of good (in green) and
defective (in red) images with respect to the scores of the image.

□ You can change the classification threshold in 3 ways : direct input, dragging the threshold
line in the score histogram and selecting a point on the ROC curve.

In the API:

● The metrics are represented by an EUnsupervisedSegmenterMetrics object that contains
the following performance metrics:

□ The error on good image (EUnsupervisedSegmenterMetrics::GetError)

□ The confusion matrix (EUnsupervisedSegmenterMetrics::GetConfusion)

□ If the results for bad images are included in the metrics,
EUnsupervisedSegmenterMetrics::IsTotallyUnsupervised is false and the
following metrics are also be accessible:
- The accuracy (EUnsupervisedSegmenterMetrics::GetAccuracy)
- The Area under ROC curve (EUnsupervisedSegmenterMetrics::
GetAreaUnderROCCurve)
- The ROC point corresponding to the classification threshold
(EUnsupervisedSegmenterMetrics::GetROCPoint)

Applying the tool to new images

In Deep Learning Studio:

● Open the Classify images tab to:

□ Apply the segmenter to new images.

□ Display detailed results for each image of the main dataset.

● Once the unsupervised segmenter is trained, call EUnsupervisedSegmenter::Apply to
detect and segment defects in an Open eVision image.

This method returns a EUnsupervisedSegmenterResult object:

□ EUnsupervisedSegmenterResult::IsGood and
EUnsupervisedSegmenterResult::IsDefective returns whether the tool has decided
that the image is good or defective according to the
EUnsupervisedSegmenterResult::ClassificationScore and the
EUnsupervisedSegmenter::ClassificationThreshold.

Open eVision User Guide

68

□ EUnsupervisedSegmenterResult::GetSegmentationMap returns an EImageBW8
image where all pixels with a value different than 0 are defective pixels.
The value of a defective pixel is proportional to the importance of the defect at that
position.

□ EUnsupervisedSegmenterResult::GetRegion returns an ERegion object
corresponding to the segmented region of the image (all the pixels of
EUnsupervisedSegmenterResult::GetSegmentationMap that have a value strictly
higher than 0).

Open eVision User Guide

69

4. Code Snippets

Open eVision User Guide

70

4.1. Basic Types

Loading and Saving Images
//
// This code snippet shows how to load and save an image. //
//

// Images constructor
EImageBW8 srcImage;
EImageBW8 dstImage;

// Load an image file
srcImage.Load("mySourceImage.bmp");

// ...

// Save the destination image into a file
dstImage.Save("myDestImage.bmp");

// Save the destination image into a jpeg file
// The default compression quality is 75
dstImage.Save("myDestImage.jpg");

// Save the destination image into a jpeg file
// set the compression quality to 50
dstImage.SaveJpeg("myDestImage50.jpg", 50);

Interfacing Third-Party Images
///
// This code snippet shows how to link an Open eVision image //
// to an externally allocated buffer. //
///

// Images constructor
EImageBW8 srcImage;

// Size of the third-party image
int sizeX;
int sizeY;

//Pointer to the third-party image buffer
EBW8* imgPtr;

// ...

// Link the Open eVision image to the third-party image
// Assuming the corresponding buffer is aligned on 4 bytes
srcImage.SetImagePtr(sizeX, sizeY, imgPtr);

Retrieving Pixel Values
///
// This code snippet shows the recommended method (fastest) //
// to access the pixel values in a BW8 image //
///

Open eVision User Guide

71

EImageBW8 img;

OEV_UINT8* pixelPtr;
OEV_UINT8* rowPtr;
OEV_UINT8 pixelValue;
OEV_UINT32 rowPitch;
OEV_UINT32 x, y;

rowPtr = reinterpret_cast <OEV_UINT8*>(img.GetImagePtr());
rowPitch = img.GetRowPitch();

for (y = 0; y < height; y++)
{
 pixelPtr = rowPtr;

for (x = 0; x < width; x++)
{

 pixelValue = *pixelPtr;

// Add your pixel computation code here

 *pixelPtr = pixelValue;
 pixelPtr++;
 }

 rowPtr += rowPitch;
}

ROI Placement
///
// This code snippet shows how to attach an ROI to an image //
// and set its placement. //
///

// Image constructor
EImageBW8 parentImage;

// ROI constructor
EROIBW8 myROI;

// ...

// Attach the ROI to the image
myROI.Attach(&parentImage);

//Set the ROI position
myROI.SetPlacement(50, 50, 200, 100);

Vector Management
///
// This code snippet shows how to create a vector, fill it //
// and retrieve the value of a given element. //
///

// EBW8Vector constructor
EBW8Vector ramp;

// Clear the vector
ramp.Empty();

Open eVision User Guide

72

// Fill the vector with increasing values
for(int i= 0; i < 128; i++)
{

ramp.AddElement((EBW8)i);
}

// Retrieve the 10th element value
EBW8 value= ramp[9];

Exception Management
//
// This code snippet shows how to manage //
// Open eVision exceptions. //
//

try
{

// Image constructor
EImageC24 srcImage;

// ...

// Retrieve the pixel value at coordinates (56, 73)
EC24 value= srcImage.GetPixel(56, 730);

}

catch(Euresys::Open_eVision_1_1::EException exc)
{

// Retrieve the exception description
std::string error = exc.What();

}

4.2. Deep Learning Tools

Creating a Dataset and Training a Classifier
///
// This code snippet shows how to create a dataset, train a //
// classifier and get the best performance metrics obtained //
// during the training. //
///

// Creating dataset and classifier objects
EClassificationDataset dataset;
EClassificationDataset trainingDataset;
EClassificationDataset validationDataset;
EClassifier classifier;

// Adding images using a glob pattern
dataset.AddImages("*good*.png", "good");
dataset.AddImages("*defective*.png", "defective");

// Enabling data augmentation on the dataset
dataset.SetEnableDataAugmentation(true);

// Rotation of up to 90°

Open eVision User Guide

73

dataset.SetMaxRotationAngle(90);

// Enabling horizontal flips
dataset.SetEnableHorizontalFlip(true);

// Splitting the dataset with 80% of images for the training dataset
// and 20% for the validation dataset
dataset.Split(trainingDataset, validationDataset, 0.8);

// Training the classifier for 50 epochs
classifier.Train(trainingDataset, validationDataset, 50);
classifier.WaitForTrainingCompletion();

// Get the best metrics obtained on the validation dataset
EClassificationMetrics bestMetrics = classifier.GetValidationMetrics
(classifier.GetBestEpoch());

Loading a Classifier and Classifying a New Image
///
// This code snippet shows how load a trained classifier and //
// classify a new image. //
///

// Image and classifier constructor
EClassifier classifier;
EImageBW8 srcImage;

// String and probability for the most probable result
std::string label;
float probability;

// Load classifier and image
classifier.Load(...);
srcImage.Load(...);

// Classify image
EClassificationResult result = classifier.Classify(srcImage);

// Get the most probable label
label = result.GetBestLabel();
probability = result.GetBestProbability();

Using Multithreading for Classification
///
// This code snippet shows how to parallelize the //
// classification of new images on the CPU. //
// This code snippet is in C++ 11 and requires a recent //
// compiler. //
///

#include <thread>
#define NUM_THREADS 4

void task(EasyDeepLearning::EClassifier& classifier, EImageC24 img)
{
// Classification of the image
EasyDeepLearning::EClassificationResult result = classifier.Classify(img);

Open eVision User Guide

74

std::string label = result.GetBestLabel();
float proba = result.GetBestProbability();

// Perform other actions based on the result
...

}
...
// Vector of classifier: one per thread
std::vector<EasyDeepLearning::EClassifier> classifiers;
classifiers.resize(NUM_THREADS);
for (int i = 0; i < NUM_THREADS; i++)
{
classifiers[i].Load("classifier.ecl");

// Our thread pool
std::vector<std::thread> threads;
threads.resize(NUM_THREADS);

// The next thread to use
int threadToUse = 0;
bool hasImage = true;
while (hasImage)
{
EImageC24 image;

// Load or set the data pointer of the image
...

// Check that the threads has done its previous work
if (threads[threadToUse].joinable())
{

threads[threadToUse].join();
}

// Launch a new thread
threads[threadToUse] = std::thread(task, classifiers[threadToUse], image);
threadToUse = (threadToUse + 1) % NUM_THREADS;

// Check that we still have an image to process and change the status
// of "hasImage" if necessary.
...

}

// Make sure that all threads are finished
for (int i = 0; i < NUM_THREADS; i++)
{
if (threads[i].joinable())

threads[i].join();
}

Loading an Unsupervised Segmenter and
Segmenting an Image
///
// This code snippet shows how to load a trained //
// unsupervised segmenter and how to segment a new image. //
///

// Image
EImageBW8 image;

Open eVision User Guide

75

Image.Load(...) ;

// Segmenter
EUnsupervisedSegmenter segmenter;
segmenter.Load(...);

// Apply the segmenter on the image
EUnsupervisedSegmenterResult r = segmenter.Apply(image);

// Retrieve the segmentation map
EImageBW8 segmentationMap = r.GetSegmentationMap();

Open eVision User Guide

	1. Dealing with Pixel Containers and Files
	1.1. Pixel Container Definition
	1.2. Pixel Container Types
	1.3. Supported Image File Types
	1.4. Pixel and File Types Compatibility
	1.5. Color Types

	2. Manipulating Pixels Containers and Files
	2.1. Pixel Container File Save
	2.2. Pixel Container File Load
	2.3. Memory Allocation
	2.4. Image and Depth Map Buffer
	2.5. Image Drawing and Overlay
	2.6. 3D Rendering of 2D Images
	2.7. Vector Types and Main Properties
	2.8. ROI Main Properties
	2.9. Arbitrarily Shaped ROI (ERegion)
	2.10. Flexible Masks
	2.11. Profile

	3. Deep Learning Tools
	Deep Learning Tools - Inspecting Images with Deep Learning
	Purpose and Workflow
	Tools and Resources
	Hardware Support (CPU/GPU)
	Managing the Dataset
	Images and Labels
	ROI and Mask
	Training and Validation Datasets
	Using Data Augmentation

	EasyClassify - Classifying Images
	EasySegment - Detecting and Segmenting Defects

	4. Code Snippets
	4.1. Basic Types
	Loading and Saving Images
	Interfacing Third-Party Images
	Retrieving Pixel Values
	ROI Placement
	Vector Management
	Exception Management

	4.2. Deep Learning Tools
	Creating a Dataset and Training a Classifier
	Loading a Classifier and Classifying a New Image
	Using Multithreading for Classification
	Loading an Unsupervised Segmenter and Segmenting an Image

