

USER GUIDE

Open eVision

Examples in C++

This documentation is provided with Open eVision 2.16.1 (doc build 1156). www.euresys.com

Contents

PART I : STARTING UP	7
1. Installing Open eVision	8
2. Selecting the Licensing Model	
3. Manipulating Pixels Containers and Files	
3.1. Pixel Container File Save	
3.2. Pixel Container File Load	
3.3. Memory Allocation	
3.5. Image Coordinate Systems	
3.6. Image Drawing and Overlay	
3.7. 3D Rendering of 2D Images	
3.8. Vector Types and Main Properties	
3.9. ROI Main Properties	
3.10. Arbitrarily Shaped ROI (ERegion)	
3.12. Profile	
PART II : GENERAL PURPOSE LIBRARIES	
1. Easylmage - Pre-Processing Images	
1.1. Intensity Transformation	
1.2. Thresholding	
1.3. Arithmetic and Logic	
1.4. Non-Linear Filtering 1.5. Geometric Transforms	
1.6. Noise Reduction and Estimation	
1.7. Scalar Gradient	
1.8. Vector Operations	
1.9. Canny Edge Detector	
1.10. Harris Corner Detector	
1.11. Overlay	
1.13. Flexible Masks in EasyImage	
1.14. Computing Image Statistics	
2. EasyColor - Pre-Processing Color Images	
2.1. Bayer Conversion	
2.2. LUT for Gain/Offset (Color)	
2.3. LUT for Color Calibration	
2.4. LUT for Color Balance	
PART III : MATCHING AND MEASUREMENT TOOLS	80
1. EasyObject - Analyzing Blobs	
1.1. Image Segmenters 1.2. Image Encoder	
1.3. Holes Construction	
1.4. Normal vs. Continuous Mode	
1.5. Selecting and Sorting Blobs	
1.6. Object Template Matcher	
1.7. Advanced Features	

Computable Features	
Draw Coded Elements	
Flexible Masks in EasyObject	
2. EasyGauge - Measuring down to Sub-Pixel	
2.1. Workflow	
2.2. Gauge Definitions	
2.3. Find Transition Points Using Peak Analysis	
2.4. Find Shapes Using Geometric Models	
2.5. Gauge Manipulation: Draw, Drag, Plot, Group	
2.6. Calibration and Transformation	
2.7. Calibration Using EWorldShape	
2.8. Advanced Features	
3. EasyFind - Matching Geometric Patterns	
3.1. Workflow	
3.2. Learning Process	
3.3. Finding Process	
3.4. Advanced Features	
4. EasyMatch - Matching Area Patterns	
4.1. Workflow	
4.2. Learning Process	
4.3. Matching Process	
4.4. Advanced Features	
5. EChecker2 - Validating Golden Templates	
5.1. EChecker2	
5.2. Creating a Model	
5.3. Inspecting an Image	144
olor hispecting un hindge	······································
eler nepeeting an intege	
PART IV : TEXT AND CODE READING TOOLS	
PART IV : TEXT AND CODE READING TOOLS 1. EasyBarCode - Reading Bar Codes	
PART IV : TEXT AND CODE READING TOOLS 1. EasyBarCode - Reading Bar Codes 1.1. Reading Bar Codes	
PART IV : TEXT AND CODE READING TOOLS 1. EasyBarCode - Reading Bar Codes 1.1. Reading Bar Codes 1.2. Reading Mail Bar Codes	
 PART IV : TEXT AND CODE READING TOOLS 1. EasyBarCode - Reading Bar Codes 1.1. Reading Bar Codes 1.2. Reading Mail Bar Codes 2. EasyMatrixCode - Reading Matrix Codes 	
 PART IV : TEXT AND CODE READING TOOLS 1. EasyBarCode - Reading Bar Codes 1.1. Reading Bar Codes 1.2. Reading Mail Bar Codes 2. EasyMatrixCode - Reading Matrix Codes 2.1. EasyMatrixCode vs EasyMatrixCode2 	
 PART IV : TEXT AND CODE READING TOOLS 1. EasyBarCode - Reading Bar Codes 1.1. Reading Bar Codes 1.2. Reading Mail Bar Codes 2. EasyMatrixCode - Reading Matrix Codes 2.1. EasyMatrixCode vs EasyMatrixCode2 2.2. EasyMatrixCode 	
 PART IV : TEXT AND CODE READING TOOLS 1. EasyBarCode - Reading Bar Codes 1.1. Reading Bar Codes 1.2. Reading Mail Bar Codes 2. EasyMatrixCode - Reading Matrix Codes 2.1. EasyMatrixCode vs EasyMatrixCode2 2.2. EasyMatrixCode Specifications 	
 PART IV : TEXT AND CODE READING TOOLS 1. EasyBarCode - Reading Bar Codes 1.1. Reading Bar Codes 1.2. Reading Mail Bar Codes 2. EasyMatrixCode - Reading Matrix Codes 2.1. EasyMatrixCode vs EasyMatrixCode2 2.2. EasyMatrixCode Specifications Workflow 	
 PART IV : TEXT AND CODE READING TOOLS 1. EasyBarCode - Reading Bar Codes 1.1. Reading Bar Codes 1.2. Reading Mail Bar Codes 2. EasyMatrixCode - Reading Matrix Codes 2.1. EasyMatrixCode vs EasyMatrixCode2 2.2. EasyMatrixCode Specifications Workflow Reading a Matrix Code 	
 PART IV : TEXT AND CODE READING TOOLS 1. EasyBarCode - Reading Bar Codes Reading Bar Codes Reading Mail Bar Codes 2. EasyMatrixCode - Reading Matrix Codes EasyMatrixCode vs EasyMatrixCode2 EasyMatrixCode Specifications Workflow Reading a Matrix Code 	
 PART IV : TEXT AND CODE READING TOOLS 1. EasyBarCode - Reading Bar Codes Reading Bar Codes Reading Mail Bar Codes 2. EasyMatrixCode - Reading Matrix Codes EasyMatrixCode vs EasyMatrixCode2 EasyMatrixCode Specifications Workflow Reading a Matrix Code Learning a Matrix Code Computing the Print Quality 	
 PART IV : TEXT AND CODE READING TOOLS 1. EasyBarCode - Reading Bar Codes Reading Bar Codes Reading Mail Bar Codes 2. EasyMatrixCode - Reading Matrix Codes EasyMatrixCode vs EasyMatrixCode2 EasyMatrixCode Specifications Workflow Reading a Matrix Code Learning a Matrix Code Computing the Print Quality Using GS1 Data Matrix Codes 	
 PART IV : TEXT AND CODE READING TOOLS 1. EasyBarCode - Reading Bar Codes Reading Bar Codes Reading Mail Bar Codes 2. EasyMatrixCode - Reading Matrix Codes EasyMatrixCode vs EasyMatrixCode2 EasyMatrixCode Specifications Workflow Reading a Matrix Code Learning a Matrix Code Computing the Print Quality Using GS1 Data Matrix Code2 	
 PART IV : TEXT AND CODE READING TOOLS 1. EasyBarCode - Reading Bar Codes Reading Bar Codes Reading Mail Bar Codes 2. EasyMatrixCode - Reading Matrix Codes EasyMatrixCode vs EasyMatrixCode2 EasyMatrixCode Specifications Workflow Reading a Matrix Code Learning a Matrix Code Computing the Print Quality Using GS1 Data Matrix Codes 	
 PART IV : TEXT AND CODE READING TOOLS 1. EasyBarCode - Reading Bar Codes Reading Bar Codes Reading Mail Bar Codes 2. EasyMatrixCode - Reading Matrix Codes EasyMatrixCode vs EasyMatrixCode2 EasyMatrixCode Specifications Workflow Reading a Matrix Code Learning a Matrix Code Computing the Print Quality Using GS1 Data Matrix Code2 Specifications 	
PART IV : TEXT AND CODE READING TOOLS 1. EasyBarCode - Reading Bar Codes 1.1. Reading Bar Codes 1.2. Reading Mail Bar Codes 2. EasyMatrixCode - Reading Matrix Codes 2.1. EasyMatrixCode vs EasyMatrixCode2 2.2. EasyMatrixCode Specifications Workflow Reading a Matrix Code Learning a Matrix Code Computing the Print Quality Using GS1 Data Matrix Codes 2.3. EasyMatrixCode2 Specifications Workflow Reading a Matrix Code Computing the Print Quality Using GS1 Data Matrix Codes 2.3. EasyMatrixCode2 Specifications Workflow Reading a Matrix Code Learning a Matrix Code	
PART IV : TEXT AND CODE READING TOOLS 1. EasyBarCode - Reading Bar Codes 1.1. Reading Bar Codes 1.2. Reading Mail Bar Codes 2. EasyMatrixCode - Reading Matrix Codes 2.1. EasyMatrixCode vs EasyMatrixCode2 2.2. EasyMatrixCode Specifications Workflow Reading a Matrix Code Learning a Matrix Code Computing the Print Quality Using GS1 Data Matrix Codes 2.3. EasyMatrixCode2 Specifications Workflow Reading a Matrix Code Computing the Print Quality Using GS1 Data Matrix Codes 2.3. EasyMatrixCode2 Specifications Workflow Reading a Matrix Code Learning a Matrix Code Computing the Print Quality Using G1 Data Matrix Code Lastrians Workflow Reading a Matrix Code Learning a Matrix Code Learning a Matrix Code Lorputing the Print Quality	
 PART IV : TEXT AND CODE READING TOOLS 1. EasyBarCode - Reading Bar Codes Reading Bar Codes Reading Mail Bar Codes 2. EasyMatrixCode - Reading Matrix Codes EasyMatrixCode - Reading Matrix Codes EasyMatrixCode vs EasyMatrixCode2 EasyMatrixCode Specifications Workflow Reading a Matrix Code Computing the Print Quality Using GS1 Data Matrix Code Learning a Matrix Code EasyMatrixCode2 Specifications Workflow Reading a Matrix Code Computing the Print Quality Using GS1 Data Matrix Code Learning a Matrix Code Computing the Print Quality Using GS1 Data Matrix Code Computing the Print Quality Using GS1 Data Matrix Code 	
PART IV : TEXT AND CODE READING TOOLS 1. EasyBarCode - Reading Bar Codes 1.1. Reading Bar Codes 1.2. Reading Mail Bar Codes 2. EasyMatrixCode - Reading Matrix Codes 2.1. EasyMatrixCode vs EasyMatrixCode2 2.2. EasyMatrixCode Specifications Workflow Reading a Matrix Code Learning a Matrix Code Computing the Print Quality Using GS1 Data Matrix Code Learning a Matrix Code Specifications Workflow Reading a Matrix Codes 2.3. EasyMatrixCode2 Specifications Workflow Reading a Matrix Code Computing the Print Quality Using GS1 Data Matrix Code Computing the Print Quality Using GS1 Data Matrix Codes Asynchronous Processing	
PART IV : TEXT AND CODE READING TOOLS 1. EasyBarCode - Reading Bar Codes 1.1. Reading Bar Codes 1.2. Reading Mail Bar Codes 2. EasyMatrixCode - Reading Matrix Codes 2.1. EasyMatrixCode vs EasyMatrixCode2 2.2. EasyMatrixCode Specifications Workflow Reading a Matrix Code Learning a Matrix Code Computing the Print Quality Using GS1 Data Matrix Codes 2.3. EasyMatrixCode2 Specifications Workflow Reading a Matrix Code Computing the Print Quality Using GS1 Data Matrix Code Learning a Matrix Code Computing the Print Quality Using GS1 Data Matrix Code Computing the Print Quality Using GS1 Data Matrix Codes Asynchronous Processing Advanced Parameters	
PART IV : TEXT AND CODE READING TOOLS 1. EasyBarCode - Reading Bar Codes 1.1. Reading Bar Codes 1.2. Reading Mail Bar Codes 2. EasyMatrixCode - Reading Matrix Codes 2.1. EasyMatrixCode vs EasyMatrixCode2 2.2. EasyMatrixCode Specifications Workflow Reading a Matrix Code Learning a Matrix Code Computing the Print Quality Using GS1 Data Matrix Codes 2.3. EasyMatrixCode2 Specifications Workflow Reading a Matrix Code Computing the Print Quality Using GS1 Data Matrix Code Computing a Matrix Code Learning a Matrix Code Computing the Print Quality Using GS1 Data Matrix Code Computing the Print Quality Using GS1 Data Matrix Code Computing the Print Quality Using GS1 Data Matrix Codes Asynchronous Processing Advanced Parameters 3. EasyQRCode - Reading QR Codes	
PART IV : TEXT AND CODE READING TOOLS 1. EasyBarCode - Reading Bar Codes 1.1. Reading Bar Codes 1.2. Reading Mail Bar Codes 2. EasyMatrixCode - Reading Matrix Codes 2.1. EasyMatrixCode vs EasyMatrixCode2 2.2. EasyMatrixCode Specifications Workflow Reading a Matrix Code Learning a Matrix Code Computing the Print Quality Using GS1 Data Matrix Codes 2.3. EasyMatrixCode2 Specifications Workflow Reading a Matrix Code Computing the Print Quality Using GS1 Data Matrix Code Learning a Matrix Code Computing the Print Quality Using GS1 Data Matrix Code Computing the Print Quality Using GS1 Data Matrix Codes Asynchronous Processing Advanced Parameters	

3.3. Reading QR Codes	
4. EasyOCR - Reading Texts	
4.1. Workflow	
4.2. Learning Process	
4.3. Segmenting	
4.4. Recognition	
5. EasyOCR2 - Reading Texts (Improved)	
5.1. Workflow	
5.2. Detection	
5.3. Learning	
5.4. Recognition	
PART V : DEEP LEARNING INSPECTION TOOLS	188
1. Deep Learning Tools - Inspecting Images with Deep Learning	
1.1. Purpose and Workflow	
1.2. Tools and Resources	
1.3. Hardware Support (CPU/GPU)	
1.4. Managing the Images	
Images and Labels	
Adding Images	
Editing the Segmentation of an Image	
Editing the Objects of an Image ROI and Mask	
1.5. Managing the Dataset	
Training and Validation Datasets	
Using Data Augmentation	
1.6. Training a Deep Learning Tool	
2. EasyClassify - Classifying Images	
2.1. Tool and Images	
2.2. Validating the Results	
2.3. Classifying New Images	
2.4. Benchmarks for EasyClassify	
3. EasySegment - Detecting and Segmenting Defects	
3.1. Unsupervised vs Supervised Modes	
3.2. EasySegment Unsupervised	
Tool and Configuration	
Validating the Results	
Applying the Tool to New Images	
Benchmarks for EasySegment Unsupervised	
Tool and Configuration	
Using the Supervised Segmenter	
Evaluating the Results	
Benchmarks for EasySegment Supervised	
4. EasyLocate - Locating Objects and Defects	
4.1. Tool and Configuration	
4.2. Locating Objects	
4.3. Validating the Results	
4.4. Benchmarks for EasyLocate	
PART VI : 3D PROCESSING TOOLS	
1. Easy3D - Using 3D Toolset	

1.1. Basic Concepts	252
1.2. Static Methods	
1.3. Point Cloud	
Mapping Attributes	
Coordinates Transformations	
Reducing a Point Cloud	
Managing Planes	
Aligning	
1.4. Mesh	
1.5. ZMap	
Generating a ZMap Creating a Point Cloud from a ZMap	
Managing the Coordinates	
1.6. 3D Viewer	
1.7. Photometric Stereo	
Photometric Stereo and Process	
Calibration	
Computation and Results	
Processing the Results with Open eVision Tools	
Improving the Results	
2. Easy3DLaserLine - Laser Line Extraction and Calibration	
2.1. Laser Triangulation	
2.2. The Laser Line 3D Acquisition Pipeline	
2.3. Laser Line Extraction	
2.4. Calibration	
2.5. Object-Based Calibration Guidelines	
3. Easy3DObject - Extracting 3D Objects	
3.1. Purpose and Workflow	
3.2. Object Features	
3.3. Extracting and Using Objects	
3.4. Use Case - Inspecting a PCB	
4. Easy3DMatch - 3D Alignment and Comparison	
4.1. Purpose and Workflow	
4.2. Alignment (E3DAligner)	
4.3. Comparison (E3DComparer)	
4.4. Alignment and Comparison (E3DMatcher)	
PART VII : ADVANCED PROGRAMMING	
1. Multicore Processing	
2. EGrabberBridge - Using Images from Coaxlink	
3. Handling the Memory in .NET	
4. Using Open eVision in a DLL	

PART I STARTING UP

1. Installing Open eVision

Installer package on Windows

Open eVision comes as a single installer package open_evision-win-X.Y.Z.B.exe. It contains everything needed to run or develop applications using Open eVision

Installation types

The Open eVision Installer provides the following installation types:

- Complete: everything needed for running or developing applications is installed on the system.
- Typical: same as Complete, with the exception of legacy components and VC++ 6.0 specific components.
- **Runtime:** installs all binaries needed to run applications using Open eVision on the system.
- Custom: allows to select exactly what components are installed on the system.

Older versions

Open eVision does not replace other Open eVision versions but installs alongside. Only maintenance releases (with the same major and minor version but a different revision) automatically update an existing installation.

Command-line interface

To install Open eVision with the command line, use:

- open_evision-win-X.Y.Z.B.exe -silent INSTALLTYPE=[install_type]
 - Where [install_type] can be Complete, Typical or Runtime.
 - □ By default, installation type is Typical.
- For the command prompt to wait for the end of the installation add "start /wait" at the start of the command:
 - start /wait "open_evision-win-X.Y.Z.B.exe -silent INSTALLTYPE=[install_type]"

Installation logs

- By default, the Open eVision installer generates installation log files in the %LOCALAPPDATA%/Temp directory.
- If you want the installer to generate the installation logs somewhere else, use the following command:
 - open_evision-win-X.Y.Z.B.exe -log [logFilename]
 - □ Where [logFilename] indicates where the main installation log is saved.
 - Additional log files may be created along the main one, their name is derived from [logFilename].

Installer package on Linux

Open eVision comes as a single tarball open_evision-linux-x86_64-X.Y.Z.B.deb.tar.gz. It contains a Debian package that contains everything needed to run or develop your applications using Open eVision.

Packages

- The Open eVision tarball provides the following packages:
 - open_evision-linux-x86_64.X.Y.Z.B.deb: the library, the sample programs and sample images.
 - neo-linux-license-manager-x86_64.X.Y.Z.B: the Neo License Manager.
 - codemeter-lite_X.Y.Z.B_amd64.deb: a license system dependency.
- To install Open eVision:
- 1. Open a terminal in the tarball directory.
- 2. Decompress it:

\$ sudo tar -xvf open_evision-linux-x86_64-X.Y.Z.B.deb.tar.gz

3. Install the packages:

\$ sudo apt install ./open_evision-linux-x86_64.X.Y.Z.B.deb ./ neo-linux-license-manager-x86_ 64.X.Y.Z.B ./codemeter-lite_X.Y.Z.B_amd64.deb

4. We recommand you to copy/paste the Sample Programs folder to your home directory from:

/opt/euresys/Open_eVision_X_Y/

License activation

Open eVision licenses are activated from the Open eVision License Manager. The License Manager can be launched at the end of the installation, or from the Windows start menu.

Open eVision licenses are activated using the included license managers.

- Since release 2.13:
 - □ A new licensing system, named Neo Licensing System, is available with Open eVision.
 - □ The Neo License Manager manages these new licenses.
 - □ You can launch it at the end of the installation, or from the Windows start menu.
- Previous licensing systems:
 - □ The licensing systems used before 2.13 are still available.
 - Open eVision License Manager, the corresponding license manager, is still available too.
 - □ You can launch it at the end of the installation, or from the Windows start menu.

NOTE

On Windows XP, the Open eVision License Manager requires .NET 2.0.

Supported platforms and requirements

Open eVision in C++

Include the header (Open_eVision_X_Y.h) located in the installation folder > Include subfolder. No linker settings are required.

Microsoft Visual Studio C++ environments automatically adds the Open eVision Include folder at installation time. This must be done manually for Borland/CodeGear C++ environments.

The header of Open eVision has a lot of content, and it is highly recommended:

- To place the content into a precompiled header to avoid unnecessarily recompilations.
- When using Visual Studio, to use the following settings to avoid compilation issues:
 - □ /bigobj: allows the compiler to handle more code in the headers.
 - □ /zm256 (or bigger): allows bigger precompiled headers.
- To disable Browse Information, as it is superseded by Intellisense and it is known to crash when handling big projects.

Open eVision in .NET

Add a reference to the Open_eVision_NetApi_X_Y.dll in the development environment. No other DLL must be copied.

2. Selecting the Licensing Model

Starting with Open eVision 2.13, you can select the Open eVision licensing model(s) that you use with your application.

This avoids the delays that are sometimes added by the initialization of licensing models you do not use.

The SelectLicensingModel function

- To select the licensing models to enable with Open eVision, call the following function: Preconfiguration::SelectLicensingModels(ELicensingModel model)
- Always call it before any other Open eVision function as calling it after the first call to Open eVision has no effect.
- The SelectLicensingModels function takes a single argument:
 The licensing models to enable, as described by the ELicensingModel enumeration.

The ELicensingModel enumeration

- The ELicensingModel enumeration contains the different licensing models you can enable within Open eVision:
 - □ Neo: the new licensing model introduced with Open eVision 2.13.
 - □ LegacyDongle: the licensing model associated to the dongles used before 2.13.
 - LegacySoftware: the licensing model associated to the software-based licenses used before 2.13
 - Legacy: this licensing model mirrors the licensing as it operated in Open eVision before 2.13 (LegacyDongle + LegacySoftware).
 - All (default): this licensing model enables all the others (Neo + LegacyDongle + LegacySoftware).
- To use another combination of licensing models, use the |(OR) operator as follows: Preconfiguration::SelectLicensingModels(ELicensingModel_LegacyDongle | ELicensingModel_Neo)

3. Manipulating Pixels Containers and Files

3.1. Pixel Container File Save

Images and depth maps

The Save method of an image or the SaveImage method of a depth map or a ZMap saves the image data of an image or of a depth map or a ZMap object into a file using two arguments:

- Path: path, file name and file name extension.
- **Image File Type:** if omitted, the file name extension is used.

Images bigger than 65,536 (either width or height) must be saved in Open eVision proprietary format.

Save throws an exception when:

- □ The requested image file format is incompatible with the image pixel types
- Description The Auto file type selection method and the file name extension is not supported

When saving a 16-bit depth map, the fixed point precision is lost and the pixels are considered as 16-bit integers.

Image file type arguments

Argument	Image File Type
<pre>EImageFileType_Auto(*)</pre>	Automatically determined by the filename extension. See below.
EImageFileType_Euresys	Open eVision Serialization.
EImageFileType_Bmp	Windows bitmap - BMP
EImageFileType_Jpeg	JPEG File Interchange Format - JFIF
EImageFileType_Jpeg2000	JPEG 2000 File format/Code Stream -JPEG2000
EImageFileType_Png	Portable Network Graphics - PNG
EImageFileType_Tiff	Tagged Image File Format - TIFF
(*) Default value.	

File name extension(*)	Automatically assigned image file type
BMP	Windows Bitmap Format
JPEG, JPG	JPEG File Interchange Format - JFIF
JP2	JPEG 2000 file format
J2K, J2C	JPEG 2000 Code Stream
PNG	Portable Network Graphics
TIFF, TIF	Tagged Image File Format
(*	*) Case-insensitive.

Assigned image file type if argument is ImageFileType_Auto or missing

Saving JPEG and JPEG2000 lossy compressions

SaveJpeg and SaveJpeg2K specify the compression quality when saving compressed images. They have two arguments:

- Path: a string of characters including the path, filename, and file name extension.
- Compression quality of the image file, an integer value in range [0: 100].
 SaveJpeg saves image data using JPEG File Interchange Format JFIF.
 SaveJpeg2K saves image data using JPEG 2000 File format.

JPEG compression values

Description
Default quality (*)
Superb image quality, lowest compression factor
Good image quality (*)
Normal image quality
Average image quality
Bad Image quality

(*) The default quality corresponds to the good image quality (75).

Representative JPEG 2000 compression quality values

JPEG 2000 compression	Description
-1	Default quality (*)
1	Highest image quality, lowest compression factor
16	Good Image Quality (*) (16:1 rate)
512	Lowest image quality, highest compression factor

(*) The default quality corresponds to the good image quality (16:1 rate).

Saving point clouds

Use the following methods to save a point cloud in a specific format:

- **EPointCloud:**:Save: Open eVision proprietary file format.
- D EPointCloud::SaveCSV: CSV file.
- □ EPointCloud::SaveOBJ: OBJ file.
- D EPointCloud::SavePCD: PCD file.
- D EPointCloud::SavePLY: PLY file.
- D EPointCloud::SaveXYZ: XYZ file.

TIP

The PCD format is supported in ASCII and binary modes.

3.2. Pixel Container File Load

Loading images and depth maps

- Use the Load method to load image data into an image object:
 - □ It has one argument: the **path:** path, filename, and file name extension.
 - □ File type is determined by the file format.
 - □ The destination image is automatically resized according to the size of the image on disk.
- The Load method throws an exception when:
 - File type identification fails
 - □ File type is incompatible with pixel type of the image object

TIP

Serialized image files of Open eVision 1.1 and newer are incompatible with serialized image files of previous Open eVision versions.

TIP

When loading a BW16 image (with integer values) in a depth map, the fixed point precision set in the depth map (0 by default) is left unchanged and used.

Loading point clouds

Use the following methods to load a point cloud saved in a specific format:

- **EPointCloud:**:Load: Open eVision proprietary file format.
- D EPointCloud::LoadCSV: CSV file.
- EPointCloud::LoadOBJ: OBJ file.
- EPointCloud::LoadPCD: PCD file.
- D EPointCloud::LoadPLY: PLY file.
- D EPointCloud::LoadXYZ: XYZ file.

TIP

- The PCD format is supported in ASCII and binary modes.
- The PLY is supported only in ASCII mode.

3.3. Memory Allocation

An image can be constructed with an internal or external memory allocation.

Internal memory allocation

The image object dynamically allocates and deallocates a buffer.

- Memory management is transparent.
- When the image size changes, reallocation occurs.
- When an image object is destroyed, the buffer is deallocated.

To declare an image with internal memory allocation:

- a. Construct an image object, for instance EImageBW8, either with width and height arguments, OR using the SetSize function.
- **b.** Access a given pixel. There are several functions that do this. GetImagePtr returns a pointer to the first byte of the pixel at the given coordinates.

External memory allocation

The user controls buffer allocation or links a third-party image in the memory buffer to an Open eVision image.

- Image size and buffer address must be specified.
- When an image object is destroyed, the buffer is unaffected.

To declare an image with external memory allocation:

- a. Declare an image object, for instance EImageBW8.
- b. Create a suitably sized and aligned buffer (see Image Buffer).
- c. Assign the buffer to the image with SetImagePtr.

NOTE

If your buffer rows are not aligned on 4 bytes, you cannot use SetImagePtr. In that case, use InitializeFromUnalignedBuffer instead. Please note, however, that this allocates the memory internally and copies the external buffer into the internal one instead of using the external one directly.

3.4. Image and Depth Map Buffer

Image and depth map pixels are stored contiguously, from left to right and from top row to bottom row, in Windows bitmap format (top-down DIB -device-independent bitmap-) into an associated buffer.

The buffer address is a pointer to the start address of the buffer, which contains the top left pixel of the image.

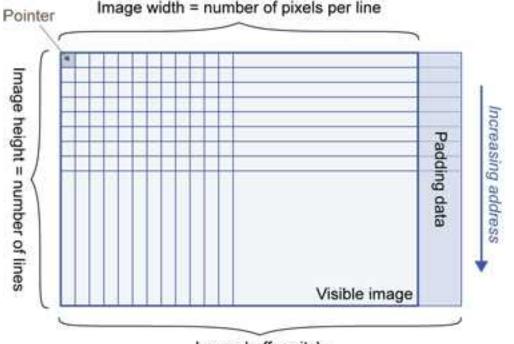
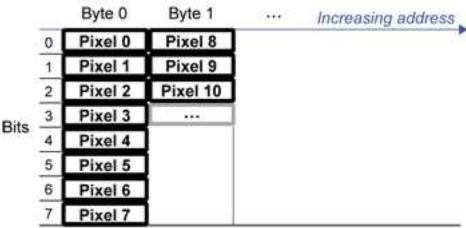


Image buffer pitch

Image buffer pitch

- Alignment must be a multiple of 4 bytes.
- Open eVision 1.2 onwards default pitch is 32 bytes for performance reasons (Open eVision 1.1.5 was 8 bytes).

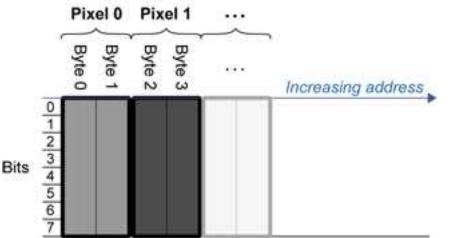

Memory layout

Bits

6

EImageBW stores 8 pixels in one byte.

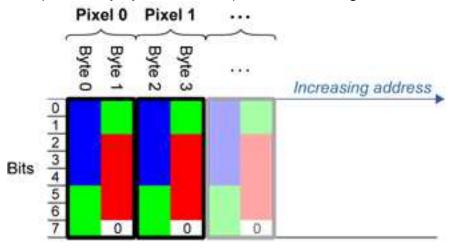
Example memory layout of the first 2 pixels of a BW1 image buffer:


EImageBW8 and EDepthMap8 store each pixel in one byte.

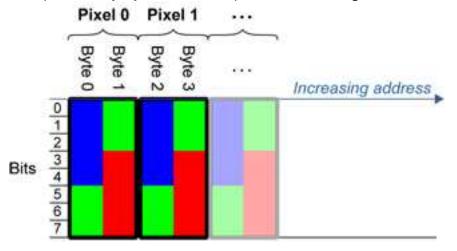
Example memory layout of the first pixels of a BW8 image buffer: Byte Byte 10.00 0 Increasing address 2345 Pixel Pixel

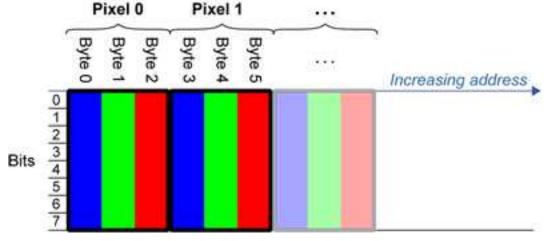
EImageBW₆ stores each pixel in a 16-bit word (two bytes).

÷


Example memory layout of the first pixels of a BW16 image buffer:

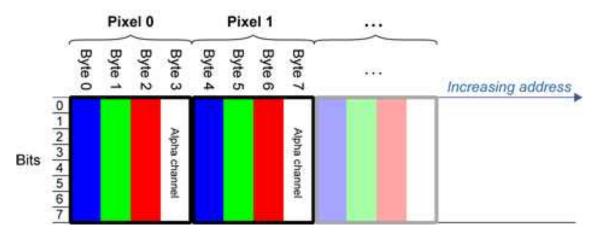
EImageC₅ stores each pixel in 2 bytes. Each color component is coded with 5-bits. The 16th bit is left unused.


Example memory layout of the first pixels of a C15 image buffer:


EImageC_{F6} stores each pixel in 2 bytes. The first and third color components are coded with 5bits.

The second color component is coded with 6-bits.

Example memory layout of the first pixels of a C16 image buffer:

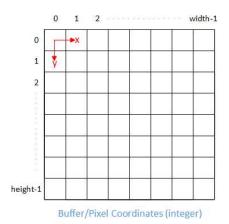

- EDepthMap₆ store each pixel in 2 bytes using a fixed point format.
- EImageC24 stores each pixel in 3 bytes. Each color component is coded with 8-bits.

Example memory layout of the first pixels of a C24 image buffer:

• EImageC24A stores each pixel in 4 bytes. Each color component is coded with 8-bits. The alpha channel is also coded with 8-bits.

Example memory layout of the first pixels of a C24A image buffer:

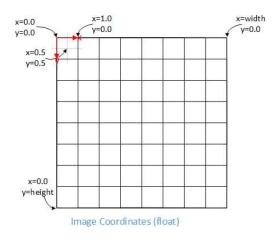
• EDepthMap32f store each pixel in 4 bytes using a float format.


3.5. Image Coordinate Systems

The conventions below apply to all Open eVision functions and results.

- □ Pixel coordinates are usually given as integer numbers.
- □ Some results can use subpixel precision with real (floating point) numbers.
- □ Some exceptions apply and are documented per librarie.

Integer coordinates


- The origin (0,0) of the coordinate system is the upper left pixel of the image.
- The lower right pixel is (width-1, height-1).

Real coordinates

- With floating point (x,y) coordinates, the origin is the upper left corner of the upper left pixel.
- The first pixel area ranges in [0,1[for X and Y axis.
- Coordinates greater or equal than the width or the height are outside the image.

3.6. Image Drawing and Overlay

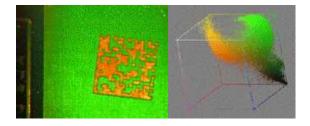
- Drawing uses Windows GDI (Graphics Device Interface) system calls.
 - MFC (Microsoft Foundation Class) applications normally use OnDraw event handler to draw, where a pointer to a device context is available.
 - □ Borland/CodeGear OWL or VCL use a Paint event handler.
- The color palette in 256-color display mode gives optimal rendering.
- Gray-level images can be improved using LUTs (LookUp Tables) (using histogram stretching techniques or pseudo-coloring).
- The zoom can be different horizontally and vertically.
- DrawFrameWithCurrentPen method draws a frame.
- *Non-destructive overlaying* drawing operations do not alter the image contents, such as MoveTo/LineTo.
- Destructive overlaying drawing operations alter the image contents by drawing inside the image such as Easy::OpenImageGraphicContext. Gray-level [color] images can only receive a gray-level [color] overlay.

3.7. 3D Rendering of 2D Images

These images are viewed by rotating them around the X-axis, then the Y-axis.

Gray 3D rendering

Easy::Render3D prepares a 3-dimensional rendering where gray-level values are altitudes. Magnification factors in the three directions (X = width, Y = height and Z = depth) can be given. The rendered image appears as independent dots whose size can be adjusted to make the surface more or less opaque.

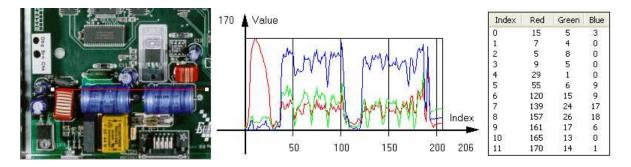

3D rendering

Color histogram 3D rendering

Easy::RenderColorHistogram prepares a 3-dimensional rendering of a color image histogram. The pixels are drawn in the RGB space (not XY-plane) to show clustering and dispersion of RGB values.

This function can process pixels in other color systems (using EasyColor to convert), but the raw RGB image is required to display the pixels in their usual colors.

Magnification factors in all three directions (X = red, Y = green and Z = blue) can be given.



Color histogram rendering

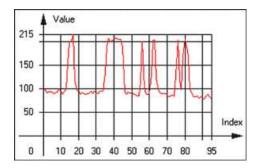
3.8. Vector Types and Main Properties

A vector is a one-dimensional array of pixels (taken from an image profile or contour).

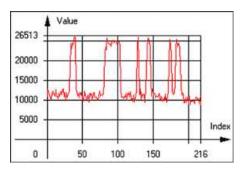
EVector is the base class for all vectors. It contains all non-type-specific methods, mainly for counting elements and serialization.

Profile in a C24 image, RGB values plot along profile and RGB values array (EC24Vector)

A vector manages an array of elements. Memory allocation is transparent, so vectors can be resized dynamically. Whenever a function uses a vector, the vector type, size and structure are automatically adjusted to suit the function needs.

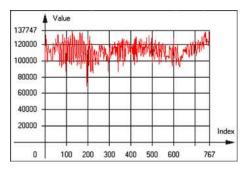

The use of vectors is quite straightforward:

- To create a vector of the appropriate type:
 - □ Use its constructor and preallocate elements if required.
- To fill a vector with values:
 - □ Call the EVector::Empty member to empty it.
 - □ Call the EC24Vector::AddElement member to add elements one by one.
 - Use the indexing to access any element.
- To access a vector element, either for reading or writing:
 - □ Use the brackets operator EC24Vector::operator[].
- To determine the current number of elements:
 - Use the EVector::NumElements member.
- To draw the vector:
 - A pixel vector is a plot of the element values as a function of the element index, so its graphical appearance depends on its type. You can draw a vector in a window. For legibility, the drawing should appear on a neutral background.
 - □ Drawing is done in the device context associated to the desired window. By default, curves are drawn in blue and annotations in black. You can define: graphicContext, width, height, originX, originY, color0, color⊢and color2.
 - □ The EC24Vector has three curves drawn instead of one, each corresponding to a color component. By default the red, blue and green pens are used.


Vector types

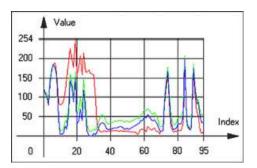
• EBW8Vector: a sequence of gray-level pixel values, often extracted from an image profile (used by EasyImage::Lut, EasyImage::SetupEqualize, EasyImage::ImageToLineSegment, EasyImage::LineSegmentToImage, EasyImage::ProfileDerivative...).

Graphical representation of an EBW8Vector (see Draw method)


• EBW=6Vector: a sequence of gray-level pixel values, using an extended range (16 bits), mainly for intermediate computations.

Graphical representation of an EBW_6Vector

• EBW32Vector: a sequence of gray-level pixel values, using an extended range (32 bits), mainly for intermediate computations


(used in EasyImage::ProjectOnARow, EasyImage::ProjectOnAColumn, ...).

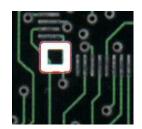
Graphical representation of an EBW32Vector

• EC24Vector: a sequence of color pixel values, often extracted from an image profile (used by EasyImage::ImageToLineSegment, EasyImage::LineSegmentToImage, EasyImage::ProfileDerivative, ...).

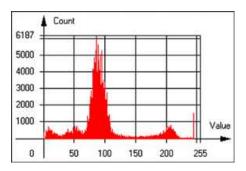
Graphical representation of an EC24Vector

• EBW8PathVector: a sequence of gray-level pixel values, extracted from an image profile or contour, with corresponding pixel coordinates (used by EasyImage::ImageToPath, EasyImage::PathToImage, ...).

Graphical representation of an EBW8PathVector (see Draw method)


• EBW_GPathVector: a sequence of gray-level pixel values, extracted from an image profile or contour, with corresponding pixel coordinates (used by EasyImage::ImageToPath, EasyImage::PathToImage, ...).

Graphical representation of an EBW+6PathVector (see Draw method)



• EC24PathVector: a sequence of color pixel values, extracted from an image profile or contour, with corresponding pixel coordinates (used by EasyImage::ImageToPath, EasyImage::PathToImage, ...).

Graphical representation of an EC24PathVector (see Draw method)

• EBWHistogramVector: a sequence of frequency counts of pixels in a BW8 or BW16 image (used by EasyImage::IsodataThreshold, EasyImage::Histogram, EasyImage::AnalyseHistogram, EasyImage::SetupEqualize, ...).

Graphical representation of an EBWHistogramVector (see Draw method)

• EPathVector: a sequence of pixel coordinates. The corresponding pixels need not be contiguous

(used by EasyImage::PathToImage and EasyImage::Contour).

Graphical representation of an EPathVector (see Draw method)

- EPeakVector: peaks found in an image profile (used by EasyImage::GetProfilePeaks).
- EColorVector: a description of colors (used by EasyColor::ClassAverages and EasyColor::ClassVariances).

3.9. ROI Main Properties

ROIs are defined by a width, a height, and origin x and y coordinates. The origins are specified with respect to the top left corner in the parent image or ROI. The ROI must be wholly contained in its parent image. The processing/analysis time of a BW1 ROI is faster if OrgX and Width are multiples of 8.

Save and load

You can save or load an ROI as a separate image, to be used as if it was a full image. The ROIs perform **no memory allocation** at all and never duplicate parts of their parent image, the parent image provides them with access to its image data.

The image size of the new file must match the size of the ROI being loaded into it. The image around the ROI remains unchanged.

ROI Classes

An Open eVision ROI inherits parameters from the abstract class EBaseROI.

There are several ROI types, according to their pixel type. They have the same characteristics as the corresponding image types.

- □ EROIBW⊢
- □ EROIBW8
- □ EROIBW⊨6
- □ EROIBW32
- □ EROIC_►5
- □ EROIC⊷6
- □ EROIC24
- □ EROIC24A

Attachment

An ROI must be attached to a parent (image/ROI) with parameters that set the parent, position and size, and these links are updated transparently, avoiding dangling pointers. A normal image cannot be attached to another image or ROI.

Nesting

Set and Get functions change or query the width, height and position of the origin of an ROI, with respect to its immediate or topmost parent image.

An image may accommodate an arbitrary number of ROIs, which can be nested in a hierarchical way. Moving the ROI also moves the embedded ROIs accordingly. The image/ROI classes provide several methods to traverse the hierarchy of ROIs associated with an image.

Nested ROIs: Two sub-ROIs attached to an ROI, itself attached to the parent image

Cropping

CropToImage crops an ROI which is partially out of its image. The resized ROI never grows. An exception is thrown if a function attempts to use an ROI that has limits that extend outside of the parents.

(In Open eVision 1.0.1 and earlier, an ROI was silently resized or repositioned when placed out of its image and sometimes grew. If ROI limits extended outside parents, they were silently resized to remain within parent limits.)

Resizing and moving

ROIs can easily be resized and positioned by two functions and dragging handles:

- EBaseR0I::Drag adjusts the ROI coordinates while the cursor moves.
- EBaseR0I::HitTest informs if the cursor is placed over a dragging handle.
 - Once the handle is known, the cursor shape can be changed by an OnSetCursor MFC event handler. HitTest is unpredictable if called while dragging is in progress.
 - HitTest can be used in an OnSetCursor MFC event handler to change the cursor shape, or before a dragging operation like OnLButtonDown,

(or EvSetCursor and EvLButtonDown in Borland/CodeGear's OWL)

(or FormMouseMove and FormMouseDown in Borland/CodeGear's VCL).

3.10. Arbitrarily Shaped ROI (ERegion)

See also: example: Inspecting Pads Using Regions / code snippets: ERegion

Regions or arbitrarily shaped ROI

You define and use regions of interest (ROI) to restrict the area processed with your vision tool and to reduce and optimize the processing time.

In Open eVision:

- □ An **ROI** (EROIXXX class) designates a rectangular region of interest.
- A region (ERegion class) designates an arbitrarily shaped ROI. With regions, you can determine precisely which part of the image, down to a single pixel, is used for your processing.

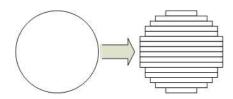
Currently, only the following Open eVision methods support **ERegions**:

Library	Method
	EasyImage::Threshold
	EasyImage::Copy
	EasyImage::ConvolKernel
	EasyImage::ConvolSymmetricKernel
	EasyImage::ConvolLowpass
	EasyImage::ConvolLowpass2
	EasyImage::ConvolLowpass3
	EasyImage::ConvolUniform
	EasyImage::ConvolGaussian
	EasyImage::ConvolHighpass
	EasyImage::ConvolHighpass2
	EasyImage::ConvolGradientX
	EasyImage::ConvolGradientY
	EasyImage::ConvolGradient
	EasyImage::ConvolSobelX
	EasyImage::ConvolSobelY
	EasyImage::ConvolSobel
	EasyImage::ConvolPrewittX
	EasyImage::ConvolPrewittY
	EasyImage::ConvolPrewitt
	EasyImage::ConvolRoberts
	EasyImage::ConvolLaplacianX
	EasyImage::ConvolLaplacianY
	EasyImage::ConvolLaplacian8
	EasyImage::DilateBox
	EasyImage::ErodeBox
	EasyImage::OpenBox
Easylmage	EasyImage::CloseBox
	EasyImage::WhiteTopHatBox
	EasyImage::BlackTopHatBox
	EasyImage::MorphoGradientBox
	EasyImage::ErodeDisk

Library	Method
	EasyImage::DilateDisk
	EasyImage::OpenDisk
	EasyImage::CloseDisk
	EasyImage::WhiteTopHatDisk
	EasyImage::BlackTopHatDisk
	EasyImage::MorphoGradientDisk
	EasyImage::Median
	EasyImage::ScaleRotate
	EasyImage::DoubleThreshold
	EasyImage::Histogram
	EasyImage::Area
	EasyImage::AreaDoubleThreshold
	EasyImage::BinaryMoments
	EasyImage::WeightedMoments
	EasyImage::GravityCenter
	EasyImage::PixelCount
	EasyImage::PixelMax
	EasyImage::PixelMin
	EasyImage::PixelAverage
	EasyImage::PixelStat
	EasyImage::PixelVariance
	EasyImage::PixelStdDev
	EasyImage::PixelCompare
	EDepthMapToMeshConverter::Convert
	EDepthMapToPointCloudConverter::Convert
F 05	EStatistics::ComputePixelStatistics
Easy3D	EStatistics::ComputeStatistics
	E3D0bjectExtractor::Extract
	EZMapToPointCloudConverter::Convert
EasyObject	EImageEncoder::Encode
	EPatternFinder::Find
EasyFind	EPatternFinder::Learn
	EOCR2::Read
EasyOCR2	EOCR2::Detect
	EPointGauge::Measure
	ELineGauge::Measure
EasyGauge	ERectangleGauge::Measure
	ECircleGauge::Measure
	EWedgeGauge::Measure
FasyMatch	EMatcher::LearnPattern
EasyMatch	EMatcher::Match
EasyQRCode	EQRCodeReader::SetSearchField
	EQRCodeReader::Read

🗸 TIP

In the future Open eVision releases, the support of **ERegions** will be gradually extended to all operators.



Creating regions

Open eVision offers multiple ways to create regions, depending on the shape you need:

The ERegion is the base class for all regions and the most versatile. It encodes a region using a Run-Length Encoded (RLE) representation.

- □ The RLE representation of a region is made of runs (horizontal, 1-pixel high slices).
- □ The runs are stored in the form of their ordinate, starting abscissa and length.

Run-Length Encoding of a circle-shaped region

To create a region, either:

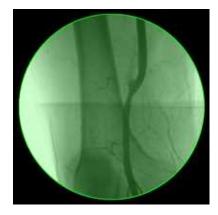
- □ Use one of the geometry-based region classes.
- □ Use the result of another tool, such as EasyFind, EasyMatch or EasyObject.
- Combine or modify other regions.
- Use a mask image.
- Directly provide the list of runs.

Geometry-based regions

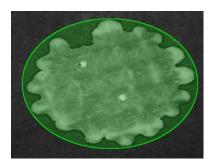
Geometry based regions are specialized classes of regions that are encompassed in simple geometries. Open eVision currently provides classes based on a rectangle, a circle, an ellipse or a polygon.

Use these classes to setup geometric regions and modify them with translation, rotation and scaling. The transformation operators return new regions, leaving the source object unchanged.

- ERectangleRegion
 - □ The contour of an ERectangleRegion class is a rectangle.
 - Define it using its center, width, height and angle.
 - □ Alternatively, use an ERectangle instance, such as one returned by an ERectangleGauge instance.



Rectangle region separating a bar code from the background


• ECircleRegion

- □ The contour of an ECircleRegion class is a circle.
- Define it using its center and radius or 3 non-aligned points.
- □ Alternatively, use an ECircle instance, such as one returned by an ECircleGauge instance.

Circle region encompassing the useful part of an X-Ray image

- EEllipseRegion
 - □ The contour of an EEllipseRegion class is an ellipse.
 - Define it using its center, long and short radius and angle.

Ellipse region encompassing a waffle

- EPolygonRegion
 - □ The contour of an EPolygonRegion class is a polygon.
 - It is constructed using the list of its vertices.

Polygon region encompassing a key

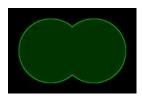
Using the result of other tools

The ERegion class provides a set of specialized constructors to create regions from the results of another tool.

In a tool chain, these constructors restrict the processing of a tool to the area issued from the previous tool.

Open eVision provides constructors for the following tools:

- EasyFind: EFoundPattern
- EasyMatch: EMatchPosition
- EasyGauge: ECircle and ERectangle
- EasyObject: ECodedElement



When compatible, Open eVision also provides specialized constructors for the geometry-based regions. For instance, ECircleRegion provides a constructor using an ECircle.

Combining regions

Use the following operations to create a new region by combining existing regions:


- Union
 - □ The ERegion::Union(const ERegion&, const ERegion&) method returns the region that is the addition of the two regions passed as arguments.

Union of 2 circles

Intersection

□ The ERegion::Intersection(const ERegion&, const ERegion&) method returns the region that is the intersection of the two regions passed as argument.

Intersection of 2 circles

- Subtraction
 - □ The ERegion::Subtraction(const ERegion&, const ERegion&) method returns the first region passed as argument after removing the second one.

Subtraction of 2 circles

Morphological operations on regions

The initial arbitrary region used to illustrate the different morphological operations

• Grow

□ The ERegion::Grow(int radius) method returns a region that is the dilation of the region by a disk with a radius equals to the argument.

Grow of the arbitrary region

- Shrink
 - □ The ERegion::Shrink(int radius) method returns a region that is the erosion of the region by a disk with a radius equals to the argument.

Shrink of the arbitrary region

- Contour
 - □ The ERegion::Contour(int thickness, bool centered = true) method returns a region that is the contour of the region.

Contour of the arbitrary region

Free-hand drawing a region

- The ERegionFreeHandPainter class provides the methods that allow you to create a region by hand, using the mouse or any other user input method.
- The RegionFreeHand sample, available both in C++ and C#, shows how to use this class to draw a region on an image.

Using regions

The tools supporting regions provide methods that follow one of these conventions:

- Method(const EImage& source, const ERegion& region)
- Method(const EImage& source, const ERegion& region, EImage& destination)

ΝΟΤΕ

The source, the region and the destination must be compatible. It means that the region must at least partly fit in the source, and that source and destination must have the same size.

Preparing the region

- Open eVision automatically prepares the regions when it applies them to an image, but this preparation can take some time.
- If you do not want your first call to a method to take longer than the next ones, you can prepare the region in advance by using the appropriate Prepare() method.
- To manually prepare the regions, adapt the internal RLE description to your images.

Drawing regions

The **ERegion** classes provide several methods to display the regions:

- ERegion::Draw() draws the region area, in a semi-transparent way, in the provided device context.
- ERegion::DrawContour() draws the region contour in the provided device context.

- ERegion:::ToImage() renders the region as a mask into the provided destination image.
 - You can configure the foreground and the background colors.
 - If you initialized your image with a width and a height, Open eVision renders the region inside those bounds.
 - □ If not, Open eVision resizes the image to contain the whole region.
 - □ Use ToImage() to create masks for the Open eVision functions that support them.

ERegions and EROIs

- The older EROI classes of Open eVision are compatible with the new regions.
- Some tools allow the usage of regions with source and/or destinations that are ERoi instead of EImage follow one of these conventions:
 - Method(const ERoi& source, const ERegion& region)
 - Method(const ERoi& source, const ERegion& region, ERoi& destination)

TIP

In that case, the coordinates used for the region are relative to the reduced ROI space instead of the whole image space .

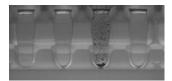
ERegion and 3D

- The new regions are compatible with the 2.5D representations of Easy3D (EDepthMap and EZMap).
- You can also reduce the domain of processing when using these classes.

3.11. Flexible Masks

ROIs vs flexible masks

ROIs and masks restrict processing to part of an image:


- "ROI Main Properties" on page 26 apply to all Open eVision functions. Using Regions of Interest accelerates processing by reducing the number of pixels. Open eVision supports hierarchically nested rectangular ROIs.
- Flexible Masks are recommended to process disconnected ROIs or non-rectangular shapes. They are supported by some EasyObject and EasyImage library functions.

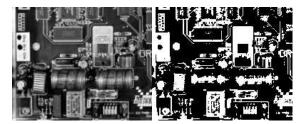
Flexible Masks

A flexible mask is a BW8 image with the same height and width as the source image. It contains shapes of areas that must be processed and ignored areas (that will not be considered during processing):

- □ All pixels of the flexible mask having a value of 0 define the ignored areas.
- All pixels of the flexible mask having any other value than 0 define the areas to be processed.

Source image

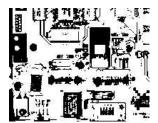
Associated mask



Processed masked image

A flexible mask can be generated by any application that outputs BW8 images and by some EasyObject and EasyImage functions.

Flexible Masks in EasyImage


Code Snippets

Source image (left) and mask variable (right)

Simple steps to use flexible masks in Easyimage

- 1. Call the functions from EasyImage that take an input mask as an argument. For instance, one can evaluate the average value of the pixels in the white layer and after in the black layer.
- **2.** Display the results.

Resulting image

EasyImage Functions that support flexible masks

- EImageEncoder::Encode has a flexible mask argument for BW1, BW8, BW16, and C24 source images.
- AutoThreshold.
- Histogram (function HistogramThreshold has no overload with mask argument).
- RmsNoise, SignalNoiseRatio.
- Overlay (no overload with mask argument for BW8 source images).
- ProjectOnAColumn, ProjectOnARow (Vector projection).
- ImageToLineSegment, ImageToPath (Vector profile).

Flexible Masks in EasyObject

A flexible mask can be generated by any application that outputs BW8 images or uses the Open eVision image processing functions.

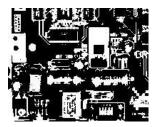

EasyObject can use flexible masks to restrict blob analysis to complex or disconnected shaped regions of the image.

If an object of interest has the same gray level as other regions of the image, you can define "keep" and "ignore" areas using flexible masks and Encode functions.

A flexible mask is a BW8 image with the same height and width as the source image.

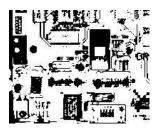
- A pixel value of 0 in the flexible mask masks the corresponding source image pixel so it doesn't appear in the encoded image.
- □ Any other pixel value in the flexible mask causes the pixel to be encoded.

EasyObject functions that create flexible masks


Source image

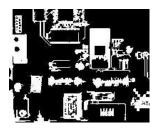
1) ECodedImage2::RenderMask: from a layer of an encoded image

- **1.** To encode and extract a flexible mask, first construct a coded image from the source image.
- Choose a segmentation method (for the image above the default method) GrayscaleSingleThreshold is suitable).
- 3. Select the layer(s) of the coded image that should be encoded (i.e. white and black layers using minimum residue thresholding).
- Make the mask image the desired size using mask.SetSize(sourceImage.GetWidth(), sourceImage.GetHeight()).


5. Exploit the flexible mask as an argument to ECodedImage2::RenderMask.

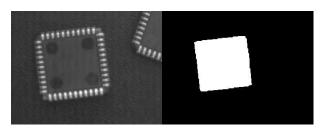
BW8 resulting image that can be used as a flexible mask

2) ECodedElement::RenderMask: from a blob or hole

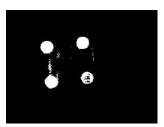

- 1. Select the coded elements of interest.
- 2. Create a loop extracting a mask from selected coded elements of the coded image using ECodedElement::RenderMask.
- 3. Optionally, compute the feature value over each of these selected coded elements.

BW8 resulting image that can be used as a flexible mask

3) EObjectSelection::RenderMask: from a selection of blobs


EObjectSelection::RenderMask can, for example, discard small objects resulting from noise.

BW8 resulting image that can be used as a flexible mask


Example: Restrict the areas encoded by EasyObject

Find four circles (left) Flexible mask can isolate the central chip (right)

- 1. Declare a new ECodedImage2 object.
- 2. Setup variables: first declare source image and flexible mask, then load them.
- **3.** Declare an EImageEncoder object and, if applicable, select the appropriate segmenter. Setup the segmenter and choose the appropriate layer(s) to encode.
- 4. Encode the source image. Encoding a layer with just the area in the flexible mask is then pretty straightforward.

We see that the circles are correctly segmented in the black layer with the grayscale single threshold segmenter:

- 5. Select all objects of the coded image.
- 6. Select objects of interest by filtering out objects that are too small.
- 7. Display the blob feature by iterating over the selected objects to display the chosen feature.

3.12. Profile

Code Snippets

Profile Sampling

A **profile** is a series of pixel values sampled along a line/path/contour in an image.

- EasyImage::ImageToLineSegment copies the pixel values along a given line segment (arbitrarily oriented and wholly contained within the image) to a vector. The vector length is adjusted automatically. This function supports flexible masks.
- A path is a series of pixel coordinates stored in a vector. EasyImage::ImageToPath copies the corresponding pixel values to the vector. This function supports flexible masks.

• A **contour** is a closed or not (connected) path, forming the boundary of an object. **EasyImage::Contour** follows the contour of an object, and stores its constituent pixels values inside a profile vector.

Profile Analysis

The profile can be processed to find peaks or transitions:

 A transition corresponds to an object edge (black to white or white to black). It can be detected by taking the first **derivative** of the signal (which transforms transitions (edges) into peaks) and looking for peaks in it.

EasyImage::ProfileDerivative computes the first derivative of a profile extracted from a graylevel image.

The EBW8 data type only handles unsigned values, so the derivative is shifted up by 128. Values under [above] 128 correspond to negative [positive] derivative (decreasing [increasing] slope).

- A peak is the portion of the signal that is above [or below] a given threshold the maximum or minimum of the signal. This may correspond to the crossing of a white or black line or thin feature. It is defined by its:
 - □ Amplitude: difference between the threshold value and the max [or min] signal value.
 - □ Area: surface between the signal curve and the horizontal line at the given threshold.

EasyImage::GetProfilePeaks detects max and min peaks in a gray-level profile. To eliminate false peaks due to noise, two selection criteria are used. The result is stored in a peaks vector.

Profile Insertion Into an Image

EasyImage::LineSegmentToImage copies the pixel values from a vector or constant to the pixels of a given line segment (arbitrarily oriented and wholly contained within the image).

EasyImage::PathToImage copies the pixel values from a vector or a constant to the pixels of a given path.

PART II GENERAL PURPOSE LIBRARIES

1. Easylmage - Pre-Processing Images

EasyImage operations prepare images so that further processing gets better results by:

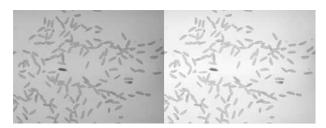
- isolating defects using thresholding or intensity transformations
- compensating perspective effects (for non-flat surfaces such as a bottle label)
- processing complex or disconnected shapes using flexible masks

The main functions are:

- Intensity Transformations change the gray-level of each pixel to clarify objects (histogram stretching).
- Thresholding transforms a binary image into a bi- or tri-level grayscale image by classifying the pixel values.
- Arithmetic and logic functions manipulate pixels in two images, or one image and a constant.
- Non-Linear Filtering functions use non-linear combinations of neighboring pixels (using a kernel) to highlight a shape, or to remove noise.
- Geometric transforms move selected pixels to realign, resize, rotate and warp.
- Noise Reduction and Estimation functions ensure that noise is not unacceptably enhanced by other operations (thresholding, high-pass filtering).
- □ Gradient Scalar generates a gradient direction or gradient magnitude map from a graylevel image.
- Vector operations extract 1-dimensional data from an image into a vector, for example to detect scratches or outlines, or to clarify images.
- Harris corner detector returns a vector of points of interest in a BW8 image.
- Canny edge detector returns a BW8 image of the edges found in a BW8 image.
- Overlay overlays an image on top of a color image.
- Operations on Interlaced Video Frames eliminate interlaced image artifacts by rebuilding or re-aligning fields.
- □ Flexible Masks help process irregular shapes in EasyImage.

1.1. Intensity Transformation

These EasyImage functions change the gray-levels of pixels to increase contrast.


Gain offset

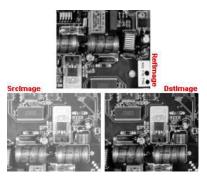
Gain Offset changes each pixel to [old gray value * Gain coefficient + Offset].

- gain adjusts contrast. It should remain close to 1.
- offset adjusts intensity (brightness). It can be positive or negative.
- The resulting values are always saturated to range [0..255].

In this example, the resulting image has better contrast and is brighter than the source image.

Source and result images (with gain = 1.2 and offset = +12)

Color images have three separate gain and offset values, one per color component (red, green, blue).



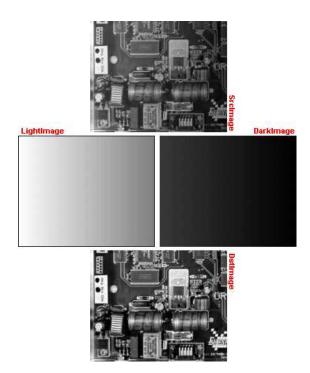
Example of gain/offset applied on a color image

Normalization

Normalize makes images of the same scene comparable, even with different lighting.

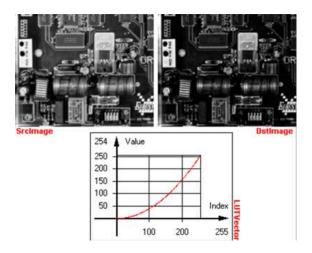
It compares the average gray level (brightness) and standard deviation (contrast) of the source image and a reference image. Then, it normalizes the source image with gain and offset coefficients such that the output image has the same brightness and contrast as the reference image. This operation assumes that the camera response is reasonably linear and the image does not saturate.

The reference image (from which the average and standard deviation are computed), the source image (too bright),


and the normalized image (contrast and brightness are the same as the reference image)

Uniformization

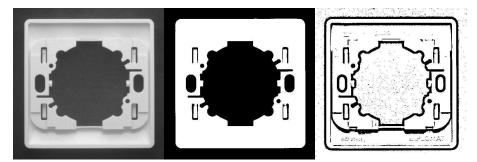
Uniformize compensates for non-uniform illumination and/or camera sensitivity based on one or two reference images. The reference image should not contain saturated pixel values and have minimum noise.


- When one reference image is used, the transformation is similar to an adaptive (spacevariant) gain; each pixel in the reference image encodes the gain for the corresponding pixel in the source image.
- When two reference images are used, the transformation is similar to an adaptive gain and offset; each pixel in the reference images encodes either the gain or the offset for the corresponding pixel in the source image.

Example of an image uniformized with two reference images

Lookup tables

Lut uses a lookup table of new pixel values to replace the current ones - efficient for BW8 and BW16 images. If the transform function never changes, it is best to use a lookup table.



Example of a transform

1.2. Thresholding

Code Snippets

Thresholding transforms an image by classifying the pixel values using these methods:

- "Automatic thresholding" on page 45 (BW8 and BW16 images only)
- "AutoThreshold" on page 46 (BW8 and BW16 images only)
- "Manual thresholding" on page 46 using one or two threshold values
- "Histogram based" on page 46 (computed before using the thresholding function)

These functions also return the average gray levels of each pixel below and above the threshold.

Keys to successful thresholding

- Object and background areas should be of uniform color and illumination. Image uniformization may be required prior to thresholding.
- The gray level range of the object and background must be sufficiently different (all background pixels should be darker than the darkest object pixel).
- You must decide if the threshold value should be:
 - constant: absolute threshold
 - adapted to ambient light intensity: relative or automatic threshold

Automatic thresholding

The threshold is calculated automatically if you use one of these arguments with the EasyImage::Threshold function.

Min Residue: Minimizes the quadratic difference between the source and the resulting image (default if the **Threshold** function is invoked without an argument).

Max Entropy: Maximizes the entropy (that is, the amount of information) between object and background of the resulting image.

Isodata: Calculates a threshold value that is an average of the gray levels: halfway between the average gray level of pixels below the threshold, and the average gray level of pixels above the threshold.

Manual thresholding

Manual thresholds require that the user supplies one or two threshold values:

- **one** value to the Threshold function to classify source image pixels (BW8/BW16/C24) into two classes and create a bi-level image. This can be:
 - relativeThreshold is the percentage of pixels below the threshold. The Threshold function then computes the appropriate threshold value, or
 - absoluteThreshold. This value must be within the range of pixel values in the source image.
- **two** values to the DoubleThreshold function to classify source image pixels (BW8/BW16) into three classes and create a tri-level image.
 - LowThreshold is the lower limit of the threshold
 - HighThreshold is the upper limit of the threshold

Histogram based

When a histogram of the source image is available, you can speed up the automatic thresholding operation by computing the threshold value from the histogram (using HistogramThreshold or HistogramThresholdBW=6) and using that value in a manual thresholding operation.

These functions also return the average gray levels of each pixel below and above the threshold.

AutoThreshold

When no source image histogram is available, AutoThreshold can still calculate a threshold value using these threshold modes: EThresholdMode_Relative, _MinResidue, _MaxEntropy and _ Isodata.

This function supports flexible masks.

1.3. Arithmetic and Logic

Code Snippets

Reasons you may use arithmetic and logic are:

- **to emphasize differences** between images by subtracting the pixels (a conformity check).
- to compensate for non-uniform lighting by dividing the target image by the image of the background alone.
- to remove unwanted areas of an image by preparing an appropriate mask, and clearing all the pixels that belong to the mask by using logical combinations of pixels.
- to create a combined image by combining the pixels of two source images to generate a resulting image.

Arithmetic operations are handled by the Oper function, EArithmeticLogicOperation enum lists all supported operators.

These operations can be applied to images and constants, they have one or two source arguments (image or integer constants) and one destination argument. If the source operands are a color and a gray-level image, each color component combines with the gray-level component to give a color image. Histogram equalization can improve your results.

Arithmetic and logic combinations

Allowed combinations

	General	Сору	Invert	Shift	Logical	Overlay	Set
Const BW8 -> Image BW8		х					
Const C24 -> Image C24		х					
Image BW8 -> Image BW8		х	Х				
Image BW8 -> Image C24		х	Х			х	
Image C24 -> Image C24		х	Х				
Const BW8, Image BW8 -> Image BW8	x						
Image BW8, Const BW8 -> Image BW8	х			х			х
Image BW8, Image BW8 -> Image BW8	х				х		х
Image BW8, Image BW8 -> Image C24	х					х	
Const C24, Image C24 -> Image C24	х						
Image C24, Const C24 -> Image C24	х			х			
Image C24, Image C24 -> Image C24	х				х		
Image C24, Image BW8 -> Image C24	х				х	х	
Image BW8, Image C24 -> Image C24	x				х		x

NOTE

Note: For logical operators, a pixel with value 0 is assumed **FALSE**, otherwise **TRUE**. The result of a logical operation is 0 when **FALSE** and 255 otherwise.

The classification of operations in the above table are:

General

- Compare (abs. value of the difference)
- Saturated sum

- Saturated difference
- Saturated product
- Saturated quotient
- Modulo
- Overflow-free sum
- Overflow-free difference
- Overflow-free product
- Overflow-free quotient
- Bitwise AND
- Bitwise OR
- Bitwise XOR
- Minimum
- Maximum
- Equal
- Not equal
- Greater or equal
- Lesser or equal
- Greater
- Lesser

Сору

• Sheer Copy

Invert

• Invert (negative)

Shift

- Left Shift
- Right Shift

Logical

- Logical AND
- Logical OR
- Logical XOR

Overlay

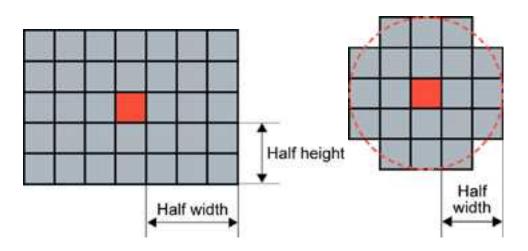
• Add an overlay

Set

Operators Copy if mask = 0 and Copy if mask <> 0 are very handy to perform masking: the first image argument serves as a mask that allows or disallows changing the pixel values in the destination image.

- Copy if mask = 0
- Copy if mask <> 0

1.4. Non-Linear Filtering


These functions use non-linear combinations of neighboring pixels to highlight a shape, or to remove noise.

Most can be destructive (except top-hat and median filters) i.e. the source image is overwritten by the destination image. Destructive operations are faster.

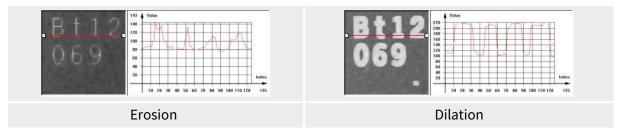
All have a gray image and a bilevel equivalent, for example ErodeBox and BiLevelErodeBox.

- 1. They define the required shape by a "Kernel" on page 49 (usually in a 3x3 matrix).
- 2. They slide this Kernel over the image to determine the value of the destination pixel when a match is found:
 - Erosion, Dilation: shrinks / grows image regions.
 - Opening, Closing: removes / fills image region boundary pixels.
 - Thinning, Thickening: erodes / dilates using image pattern matching.
 - Top-Hat filters: retains all the tiny image details while removing everything else.
 - Morphological distance: indicates how many erosions are required to make a pixel black.
 - Morphological gradient: indicates the outer and inner edges of the erosion and dilation processes.
 - Median filter: removes impulsive noise.
 - Hit-and-Miss transform: detects patterns of foreground /background pixels, can create skeletons.

Kernel

Rectangular kernel of half width = 3 and half height = 2 (left) Circular kernel of half width = 2 (right)

The morphological operators combine the pixel values in a neighborhood of given shape (square, rectangular or circular) and replace the central pixel of the neighborhood by the result. The combining function is non-linear, and in most cases is a rank filter: which considers the N values in the given neighborhood, sorts them increasingly and selects the K-th largest. *Three special cases are most often used* erosion, dilation and median filter where : K can be 1 (minimum of the set), N (maximum) or N/2 (median).

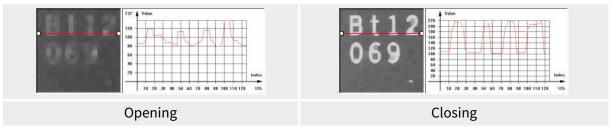

Erosion, Dilation, Opening, Closing, Top-Hat and Morphological Gradient operations all use rectangular or circular kernels of odd size. Kernel size has an important impact on the result.

examples

HalfWidth/HalfHeight	Actual width/height
0	1
1	3
2	5
3	7

Erosion, Dilation

Erosion reduces white objects and enlarges black objects, Dilation does the opposite.



Erosion thins white objects by removing a layer of pixels along the objects edges: ErodeBox, ErodeDisk. As the kernel size increases, white objects disappear and black ones get fatter.

Dilation thickens white objects by adding a layer of pixels along the objects edges: DilateBox, DilateDisk. As the kernel size increases, white objects get fatter and black ones disappear.

Opening, Closing

Opening removes tiny white objects / dust. Closing removes tiny black holes / dust.

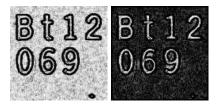
An **Opening** is an erosion followed by a dilation using OpenBox, OpenDisk. The global effect is to preserve the overall shape of objects, while removing white details that are smaller than the kernel size.

A **Closing** is a dilation followed by an erosion using **CloseBox**, **CloseDisk**.

The global effect is to preserve the overall shape of objects, while removing the black details that are smaller than the kernel size.

Thinning, Thickening

These functions use a 3x3 kernel to grow (Thick) or remove (Thin) pixels:


- Thinning: can help edge detectors by reducing lines to single pixel thickness.
- Thickening: can help determine approximate shape, or skeleton.

When a match is found between the kernel coefficients and the neighborhood of a pixel, the pixel value is set to 255 if thickening, or 0 if thinning. The kernel coefficients are:

- 0: matching black pixel, value 0
- 1: matching non black pixel, value > 0
- -1: don't care

Top-Hat filters

Top-hat filters are excellent for improving non-uniform illumination.

White top-hat filter: source and destination images

They take the difference between an image and its opening (or closure). Thus, they keep the features that an opening (or closing) would erase. The result is a perfectly flat background where only black or white features smaller than the kernel size appear.

- White top-hat filter enhances thin white features: WhiteTopHatBox ,WhiteTopHatDisk.
- Black top-hat filter enhances thin black features:BlackTopHatBoxBlackTopHatDisk.

Morphological distance

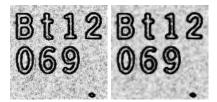
Distance computes the morphological distance (number of erosion passes to set a pixel to black) of a binary image (0 for black, non 0 for white) and creates a destination image, where each pixel contains the morphological distance of the corresponding pixel in the source image.

Morphological gradient

The morphological gradient performs edge detection - it removes everything in the image but the edges.

The morphological gradient is the difference between the dilation and the erosion of the image, using the same structuring element.

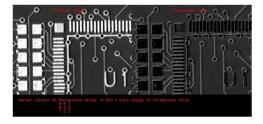
MorphoGradientBox, MorphoGradientDisk.



Dilation – Erosion = Gradient

Median

The Median filter removes impulse noise, whilst preserving edges and image sharpness. It replaces every pixel by the median (central value) of its neighbors in a 3x3 square kernel, thus, outer pixels are discarded.



Median filter: source and destination images

Hit-and-Miss transform

Hit-and-miss transform operates on BW8, BW16 or C24 images or ROIs to detect a particular pattern of foreground and background pixels in an image.

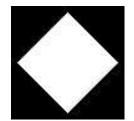
Hit-and-miss transform

The HitAndMiss function has three arguments:

- A pointer to the source image of type EROIBW8, EROIBW-6, or EROIC24
- A pointer to the destination image of type corresponding to the type of the source image. The sizes of the source and destination images must be identical.
- A kernel of type EHitAndMissKernel Two constructors are available for the kernel object:
 - EHitAndMissKernel(int startX, int startY, int endX, int endY) where: startX, startY are coordinates of the top left of the kernel, must be less than or equal to zero.

endX, endY are coordinates of the bottom right of the kernel, must be greater than or equal to zero.

The constructed kernel has no explicit restrictions on its size, and the following characteristics:


kernel width = (endX – startX +), kernel height = (endY – startY +)

- EHitAndMissKernel(unsigned int halfSizeX, unsigned int halfSizeY) where:
 - halfSizeX is half of the kernel width 1, must be greater than zero. halfSizeY is half of the kernel height – 1, must be greater than zero. The constructed kernel has the following characteristics:

```
kernel width = ((2 x halfSizeX) + →), kernel height = ((2 x halfSizeY) + →)
kernel StartX = - halfSizeX, kernel StartY = - halfSizeY
```

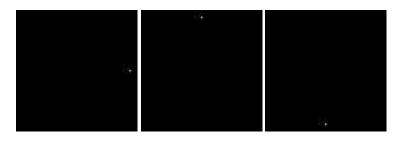
example: detecting corners in a binary image.

The hit-and-miss transform can be used to locate corners.

Binary source image

1. Define the kernel by detecting the left corner. The left corner pixel has black pixels on its immediate left, top and bottom; and it has white pixels on its right. The following hit-and-miss kernel will detect the left corner:

- + - + + - +


2. Apply the filter on the source image. Note that the resulting image should be properly sized.

Resulting image, highlighted pixel is located on left corner of rhombus

3. Locate the three remaining corners in the same way: Declare three kernels that are the rotation of the filter above and apply them.

4. Detect the right, top and bottom corners.

1.5. Geometric Transforms

Geometric transformation moves selected pixels in an image, which is useful if a shape in an image is too large / small / distorted, to make point-to-point comparisons possible.

The selected area may be any shape, but the resulting image is always rectangular. Pixels in the destination image that have corresponding pixels that are outside of the selected area are considered not relevant and are left black.

When the source coordinates for a destination pixel are not integer, an interpolation technique is required.

The nearest neighborhood method is the quickest - it uses the closest source pixel. The bi-linear interpolation method is more accurate but slower - it uses a weighted average of the four neighboring source pixels.

Possible geometric transformations are:

Re-alignment

The simplest way to realign two misaligned images is to accurately locate features in both images (landmarks or pivots, using pattern matching, point measurement or other) and realign one of the images so that these features are superimposed.

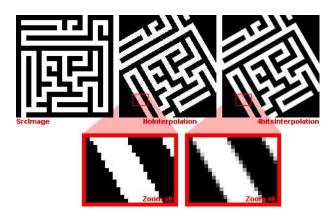
You can register an image by realigning one, two or three pivot points to reference positions. For best accuracy, the pivot points should be as far apart as possible.

- A **single pivot point** transform is a simple translation. If interpolation bits are used, subpixel translation is achieved.
- **Two pivot points** use a combination of translation, rotation and optionally scaling. If scaling is not allowed, the second pivot point may not be matched exactly. Scaling should not normally be used unless it corresponds to a change of lens magnification or viewing distance.
- **Three pivot points** use a combination of translation, rotation, shear correction and optionally scaling. A shear effect can arise when acquiring images with a misaligned line-scan camera.

Mirroring

This destructive feature modifies the source image to create a mirror image:

- · horizontally (the columns are swapped) or
- vertically (the rows are swapped).


Translation, Scaling and Rotation

If the position or size of an object of interest changes, you can measure the change in position or size and generate a corrected image using the ScaleRotate and Shrink functions.

EasyImage::ScaleRotate performs:

- Image translation: you provide the position coordinates of a pivot-point in the source image and a corresponding pivot point in the destination image.
- Image scaling: you provide scaling factor values for X- and Y-axis.
- Image rotation: you provide a rotation angle value.

For resampling, the nearest neighbor rule or bilinear interpolation with 4 or 8 bits of accuracy is used. The size of the destination image is arbitrary.

Scale and rotate example

Shrink

EasyImage::Shrink: resizes an image to be smaller, applying pre-filtering to avoid aliasing.

LUT-based unwarping

If the feature of interest is distorted due to its shape (anamorphosized), you can unwarp a circular ring-wedge shape (such as text on CD labels) into a straight rectangle. A ring-wedge is delimited by two concentric circles and two straight lines passing through the center.

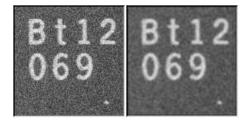
EasyImage::SetCircleWarp prepares warp images for use with function EasyImage::Warp which moves each pixel to locations specified in the "warp" images which are used as lookup tables.

1.6. Noise Reduction and Estimation

Code Snippets

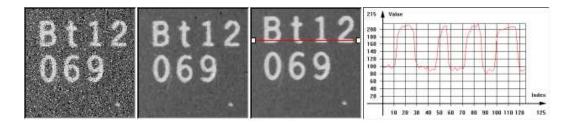
Noise can degrade the visual quality of images, and certain processing operations (thresholding, high-pass filtering) will enhance noise in a non-acceptable way. Acquired images are always noisy (this is best observed on live images where the pixel values fluctuate around the true intensity). When acquired with 8 bits of accuracy, the noise level typically amounts to about 3 to 5 gray-level values. One distinguishes several forms of noise:

- additive: noise amplitude is not related to image contents
- **multiplicative**: noise amplitude is proportional to local intensity
- uniform: noise amplitude follows a smooth distribution centered around zero
- **impulse**: noise amplitude is infinite.


Impulse noise produces a "salt and pepper" effect, while uniform noise blends.

Spatial noise reduction (if you only have 1 image)

Reduces uniform and impulse noise but blurs edges.


Cannot distinguish noise from actual signal changes, so always spoils part of the signal. Uses the correlation between neighboring pixel values to perform convolution or median filtering:

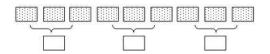
• **Convolution** replaces the value at each pixel by a combination of its neighbors, leading to a localized averaging. Linear filtering is recommended to reduce uniform noise. Beware that it tends to blur edges.

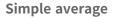
Uniform noise reduction by low-pass filtering

• **Median filtering** replaces each pixel by the median value in the pixel neighborhood (5-th largest value in a 3x3 neighborhood). This reduces impulse noise and keeps sharpness.

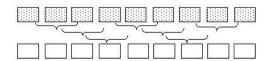
Impulse noise reduction by median filtering

- EasyImage::Median
- EasyImage::BiLevelMedian

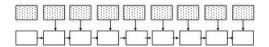

Temporal noise reduction (for several images, such as moving objects)


Temporal noise reduction is achieved by combining the successive values of individual pixels across time. EasyImage implements recursive averaging and moving averaging.

EasyImage provides three ways to minimize noise by means of several images:


• **Temporal average**: just accumulates N images and average them; using standard arithmetic operations, as illustrated below. Creates denoised image after N acquisitions using average values. Noise varies from frame to frame while the signal remains unchanged, so if several images of the same (still) scene are available, noise can be separated from the signal.

The disadvantage of producing one denoised image after N acquisitions only, is that fast display refresh is not possible.


• **Temporal moving average**: accumulates the last N images and updates the denoised image each time a new one is acquired, in such a way that the computation time does not depend on N. The whole process is handled by EMovingAverage. The disadvantage of this method is that it combines noisy images together.

Moving average

• **Temporal recursive average**: combines a noisy image with the previously denoised image using EasyImage::RecursiveAverage.

Recursive average

Recursive averaging

This is a well known process for noise reduction by temporal integration. The principle is to continuously update a noise-free image by blending it, using a linear combination, with the raw, noisy, live image stream. Algorithmically, this amounts to the following:

 $Dst_N = a imes Src + (1-a) imes Dst_{N-1}$

where a is a mixture coefficient. The value of this coefficient can be adjusted so that a prescribed noise reduction ratio is achieved.

This procedure is effective when applied to still images, but generates a trailing effect on moving objects. The larger the noise reduction ratio, the heavier the trailing effect is. To work around this, a non-linearity can be introduced in the blending process: small gray-level value variations between successive images are usually noise, while large variations correspond to changes in the image.

EasyImage::RecursiveAverage uses this observation and applies stronger noise reduction to small variations and conversely. This reduces noise in still areas and trailing in moving areas.

For optimal performance, the non-linearity must be precomputed once for all using function EasyImage::SetRecursiveAverageLUT.

NOTE

Before the first call to the EasyImage::RecursiveAverage method, the 16-bit work image must be cleared (all pixel values set to zero).

Noise estimation (of image compared to reference image):

To estimate the amount of noise, two or more successive images are required. In the simplest mode, two noisy images are compared. (Other modes are available: if a noise-free image is available, it is compared to a noisy one; a noise-free image can also be built by temporal averaging.) Calculates the root-mean-square amplitude and signal-to-noise ratio.

- EasyImage::RmsNoise computes the root-mean-square amplitude of noise, by comparing a given image to a reference image. This function supports flexible mask and an input mask argument. BW8, BW16 and C24 source images are supported. The reference image can be noiseless (obtained by suppressing the source of noise), or affected by a noise of the same distribution as the given image.
- EasyImage::SignalNoiseRatio computes the signal to noise ratio, in dB, by comparing a given image to a reference image. This function supports flexible mask and an input mask argument. BW8, BW16 and C24 source images are supported. The reference image can be noiseless (obtained by suppressing the source of noise) or be affected by a noise of the same distribution as the given image.

Signal amplitude is the sum of the squared pixel gray-level values.

Noise amplitude is the sum of the squared difference between the pixel gray-level values of the given image and the reference.

1.7. Scalar Gradient

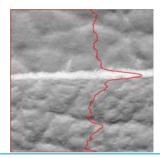
EasyImage::GradientScalar computes the (scalar) gradient image derived from a given source image.

The scalar value derived from the gradient depends on the preset lookup-table image.

The gradient of a grayscale image corresponds to a vector, the components of which are the partial derivatives of the gray-level signal in the horizontal and vertical direction. A vector can be characterized by a direction and a length, corresponding to the gradient orientation, and the gradient magnitude.

This function generates a gradient direction or gradient magnitude map (gray-level image) from a given gray-level image.

For efficiency, a pre-computed lookup-table is used to define the desired transformation. This lookup-table is stored as a standard EImageBW8/EImageBW-6.

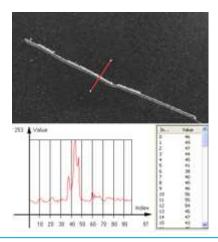

Use EasyImage::ArgumentImage or EasyImage::ModulusImage once before calling GradientScalar.

1.8. Vector Operations

Code Snippets / Code Snippets

Extracting 1-dimensional data from an image generates linear sets of data that are handled as vectors. Subsequent operations are fast because of the reduced amount of data. The methods are either:

Projection



Projects the sum or average of all gray color-level values in a given direction, into various vector types (levels are added when projecting into an EBW32Vector and averaged when projecting into an EBW8Vector, EBW-6Vector or EC24Vector). These functions support **flexible masks**.

- EasyImage::ProjectOnAColumn projects an image horizontally onto a column.
- EasyImage::ProjectOnARow projects an image vertically onto a row.

Profile

Samples a series of pixel values along a given segment, path or contour, then analyze and modify their Peaks and Transitions to make images clearer:

1. Obtain the profile of a line segment / path / contour.

EasyImage::ImageToLineSegment copies the pixel values along a given line segment (arbitrarily oriented) to a vector. The line segment must be entirely contained within the image. The vector length is adjusted automatically. This function supports flexible masks.

EasyImage::ImageToPath copies the corresponding pixel values to the vector. This function supports flexible masks. A path is a series of pixel coordinates stored in a vector.

EasyImage::Contour follows the contour of an object, and stores its constituent pixels values inside a profile vector. A **contour** is a closed or not connected path, forming the boundary of an object.

2. Analyse the profile to find peaks or transitions.

EasyImage::GetProfilePeaks detects max and min peaks in a gray-level profile. To eliminate false peaks due to noise, two selection criteria are used. The result is stored in a peaks vector.

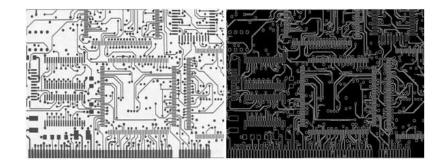
A peak is a maximum or minimum of the signal which may correspond to the crossing of a white or black line or thin feature. It is defined by its:

- Amplitude: difference between the threshold value and the max [or min] signal value.
- Area: surface between the signal curve and the horizontal line at the given threshold.

A **transition** corresponds to an object edge (black to white, or white to black). It can be detected by taking the first **derivative** of the signal and looking for peaks in it. EasyImage::ProfileDerivative computes the first derivative of a profile extracted from a gray-level image. This derivative transforms transitions (edges) into peaks. EBW8 data type only handles unsigned values, so the derivative is shifted up by 128. Values under 128 correspond to negative derivative (decreasing slope), values above 128 correspond to positive derivative (increasing slope).

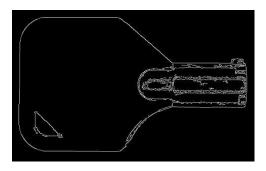
3. Insert the profile into an image.

EasyImage::LineSegmentToImage copies the pixel values from a vector or a constant to the pixels of a given line segment (arbitrarily oriented). The line segment must be wholly contained within the image.


EasyImage::PathToImage copies pixel values from a vector or a constant to the pixels of a given path.

1.9. Canny Edge Detector

Code Snippets


The Canny edge detector facilitates:

- Good detection: finds all edges
- Good localization: the found edges are as close as possible to the "real" edges in the image
- Minimal response: one edge response is accepted for each position, i.e. avoiding multiple close or intersecting edge responses

Source image and the result after a Canny edge detection

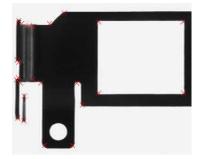
The EasyImage Canny edge detector operates on a grayscale BW8 image and delivers a blackand-white BW8 image where pixels have only 2 possible values: **0** and **255**. Pixels corresponding to edges in the source image are set to **255**; all others are set to **0**. It can adjust the scale analysis, it doesn't allow sub-pixel interpolation and it delivers a binary image after thresholding.

Canny edge detector example

The Canny edge detector requires only two parameters:

- **Characteristic scale of the features of interest**: the standard deviation of the Gaussian filter used to smooth the source image.
- Gradient threshold with hysteresis: maximum magnitude of the gradient of the source image expressed as a fraction ranging from 0 to 1 (two values).

The API of the Canny edge detector is a single class, ECannyEdgeDetector, with the following methods:


- Apply: applies the Canny edge detector on an image/ROI.
- GetHighThreshold: returns the high hysteresis threshold to consider that a pixel is an edge.
- GetLowThreshold: returns the low hysteresis threshold to consider that a pixel is an edge.
- GetSmoothingScale: returns the scale of the features of interest.
- GetThresholdingMode: returns the mode of the hysteresis thresholding.
- ResetSmoothingScale: prevents the smoothing of the source image by a Gaussian filter.
- SetHighThreshold: sets the high hysteresis threshold to consider that a pixel is an edge.
- SetLowThreshold: sets the low hysteresis threshold to consider that a pixel is an edge.
- SetSmoothingScale: sets the scale of the features of interest.
- SetThresholdingMode: sets the mode of the hysteresis thresholding.

The **result image** must have the same dimensions as the input image.

1.10. Harris Corner Detector

Code Snippets

The Harris corner detector is invariant to rotation, illumination variation and image noise. It operates on a grayscale BW8 image and delivers a vector of points of interest.

Harris corner detector example

The EasyImage Harris corner detector requires three parameters:

• The integration scale oi: the standard deviation of the Gaussian Filter used for scale analysis.

 $\sigma d = 0.7 \times \sigma i$, where σd is the differentiation scale: the standard deviation of the Gaussian Filter used for noise reduction during computation of the gradient.

- A corner threshold: a fraction ranging from 0 to 1 of the maximum value of the cornerness of the source image.
- A Boolean that toggles sub-pixel detection.

The following characteristics are available for every point of interest:

- Corner position (pixel coordinates with sub-pixel accuracy if enabled).
- Cornerness measurement.
- Gradient magnitude with regards to the differentiation scale od.
- Gradient value along the X-axis with regards to the differentiation scale σd.
- Gradient value along the Y-axis with regards to the differentiation scale σd

The API of the Harris corner detector is a single class named EHarrisCornerDetector and these methods:

- Apply: applies the Harris corner detector on an image/ROI.
- EHarrisCornerDetector: constructs a EHarrisCornerDetector object initialized to its default values.
- GetDerivationScale: returns the current derivation scale.
- GetScale: returns the integration scale.
- GetThreshold: returns the current threshold.
- GetThresholdingMode: returns the current thresholding mode for the cornerness measure.
- IsGradientNormalizationEnabled: returns whether the gradient is normalized before the computation of the cornerness measure.
- IsSubpixelPrecisionEnabled: returns whether the sub-pixel interpolation is enabled.
- SetDerivationScale: sets the derivation scale.
- SetGradientNormalizationEnabled: sets whether the gradient is normalized before the computation of the cornerness measure.
- SetScale: sets the integration scale.
- SetSubpixelPrecisionEnabled: sets whether the sub-pixel interpolation is enabled.
- SetThreshold: sets the threshold on the cornerness measure for a pixel to be considered as a corner.
- SetThresholdingMode: sets the thresholding mode for the cornerness measure.

Basic usage of Harris Corner Detector

An object of the EHarrisCornerDetector class can be reused across Harris detector applications, in order to reduce the setup time.

- 1. **Create an instance of the detector** and set the appropriate method, for instance, the integration scale, SetScale, with the structures of interest that could have a spatial extent of 2 pixels.
- 2. Apply **the detector** with two arguments to the new image : the input image and the interest points in the input image EHarrisInterestPoints.
- 3. Access the individual elements of the output vector.

1.11. Overlay

EasyImage::Overlay overlays an image on the top of a color image, at a given position.

If a color image is provided as the source image, all the pixels of this image are copied to the destination image, except the ones that equal the reference color. When a C24 image is used as overlay source image, the color of the overlay in destination image is the same as the one in the overlay source image, thus allowing multicolored overlays.

If a BW8 image is provided as the source image, all the overlay image pixels are copied to the destination image, apart from those that are the reference color which are replaced by the source images.

This function supports flexible mask and an input mask argument. C24, C15 and C16 source images are supported.

1.12. Operations on Interlaced Video Frames

When an image is interlaced, the two frames (even and odd lines) are not recorded at the same time. If there is movement in the scene, a visible artifact can result (the edges of objects exhibit a "comb" effect).

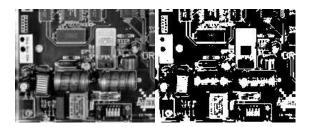
EasyImage::RealignFrame cures this problem if the movement is uniform and horizontal (objects on a conveyor belt), by shifting one of the frames horizontally. The amplitude of the shift can be estimated automatically.

EasyImage::GetFrame extracts the frame of given parity from an image while EasyImage::SetFrame replaces the frame of given parity in an image.

EasyImage::MatchFrames determines the optimal shift amplitude by comparing two successive lines of the image. These lines should be chosen such that they cross some edges or non-uniform areas.

EasyImage::RebuildFrame rebuilds one frame of the image by interpolation between the lines of the other frame.

EasyImage::SwapFrames: interchanges the even and odd rows of an image. This is helpful when acquisition of an interlaced image has confused even and odd frames.

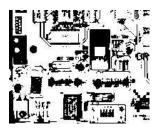

The same image should be used as source and destination because only the shifted rows are copied. To use a different destination image, the source image must be copied first in the destination image object.

The size of the destination image is determined as follows:

dstImage_Width = srcImage_Width dstImage_Height = (srcImage_Height + 1 - odd) / 2

1.13. Flexible Masks in EasyImage

Code Snippets



Source image (left) and mask variable (right)

Simple steps to use flexible masks in Easyimage

- 1. Call the functions from EasyImage that take an input mask as an argument. For instance, one can evaluate the average value of the pixels in the white layer and after in the black layer.
- 2. Display the results.

Resulting image

EasyImage functions that support flexible masks

- EImageEncoder::Encode has a flexible mask argument for BW1, BW8, BW16, and C24 source images.
- EImageEncoder::AutoThreshold.
- EasyImage::Histogram (function EasyImage::HistogramThreshold has no overload with mask argument).
- EasyImage::RmsNoise, EasyImage::SignalNoiseRatio.
- EasyImage::0verlay (no overload with mask argument for BW8 source images).
- EasyImage::ProjectOnAColumn, EasyImage::ProjectOnARow (vector projection).
- EasyImage::ImageToLineSegment, EasyImage::ImageToPath (vector profile).

1.14. Computing Image Statistics

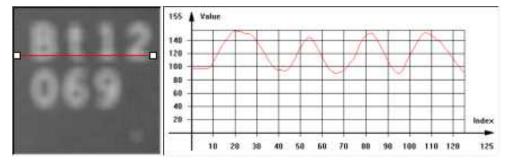
Code Snippets

EasyObject statistics are related to the objects in an image.

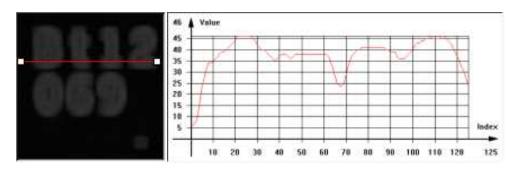
EasyImage statistics are related to whole images (global illumination / contrast, saturation, presence or absence of an object).

Sliding window (creates new image of avg or std deviation of gray-level values)

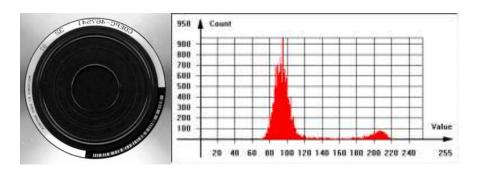
The average and standard deviation of gray-level values can be computed in a sliding window, i.e., computed for every position of a rectangular window centered on every pixel. The window size is arbitrary.


NOTE

The computing time of these functions does not depend on the window size.


The result of the operation is another image.

The **local average**, EasyImage::LocalAverage, corresponds to a strong low-pass filtering.


The **local standard deviation**, EasyImage::LocalDeviation enhances the regions with a high frequency contents, such as noisy or textured areas.

Sliding window standard deviation

Histogram computation and analysis(and LUT creation)

A histogram is a statistical summary of an image: it shows the number of occurrences of every gray-level value in an image, and it's shape reveals characteristics of the image. For instance, peaks in the histogram curve correspond to dominant colors in the image. If the histogram is bimodal, a large peak for the dark values corresponding to the background, and smaller peaks in the light values.

Typical image histogram

Histogram Computation

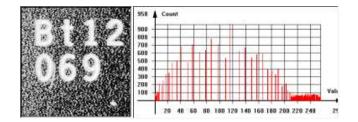
EasyImage: :Histogram computes the histogram of an image. It can take a flexible mask as input argument.

BW8, BW16 and BW32 source images are supported.

You can compute the cumulative histogram of an image, i.e. the count of pixels below a given threshold value, by calling EasyImage::CumulateHistogram after EasyImage::EasyImage::CumulateHistogram after EasyImage::EasyImage:

Histogram Analysis

EasyImage::AnalyseHistogram and


EasyImage::AnalyseHistogramBW=6 provide statistics and thresholding values:

- Total number of pixels.
- Smallest and largest pixel value (gray-level range).
- Average and standard deviation of the pixel values.
- Value and frequency of the most frequent pixel.
- Value and frequency of the least frequent pixel.

Histogram equalization

EasyImage::Equalize re-maps the gray levels so that the histogram fills in the whole dynamic range as uniformly as possible.

This may be useful to maximize image contrast, or reveal a lot of image details in dark areas.

Equalized image and histogram

Setup a lookup table

EasyImage::SetupEqualize creates a LUT so you can work explicitly with the histogram and LUT vectors. It can be more efficient to keep the image histogram for other purposes (i.e statistics) and keep the equalization LUT to apply to other images.

48 -	-			1	122	1
28 -	_			-	-	1
00 -	_	_	6		-	1
80 -	-		1	-	-	1
68 -	-	-	-	-	-	4
40 -	-	-	-	-	-	+
20 -	-	-	-	-	-	1
00	-	- 1	-	-	+	ŧ.
80 -	-	-	-	-	-	1
68 +	_	1	-	-	-	1
45	-	. 1	-	-	-	1 hides
20. +		1	-	-	-	mucs

Equalization lookup table

Image focus

Sharp focusing can be achieved if the EasyImage::Focusing quantity is maximum for a given image. This function must be called multiple times with multiple images with a different focus for the basis of an "auto-focus" system.

EasyImage::Focusing computes the total gradient energy of the image. You can then use this gradient as a measure of the focusing of an image.

The gradients of the image show the edges of the structures present in the image, with strong values if the image is well-focused and weaker values otherwise.

To compute the total gradient energy of the image, Open eVision:

- a. Squares the pixel values of the horizontal and vertical gradient images.
- **b.** Averages the squared pixel values over both images.
- c. Sums the averages.
- d. Takes the square root of the resulting value.

) TIP

The resulting value is maximum if the image is well-focused.

A well-focused image, with its (absolute-valued) horizontal and vertical gradients. The gradients show the edges of the structures with strong values. The total gradient energy for this image is 17.9.

A badly focused image, with its (absolute-valued) horizontal and vertical gradients. The gradients show the edges of the structures with weak values. The total gradient energy for this image is 7.9.

EasyImage statistics functions

Area (number of pixels with values above/on/between thresholds)

- EasyImage::Area counts pixels with values above (or on) a threshold.
- EasyImage::AreaDoubleThreshold counts pixels whose values are comprised between (or on) two thresholds.

Binary and weighted moments (object position and extent)

- EasyImage::BinaryMoments computes the 0th, 1st or 2nd order moments on a binarized image, i.e. with a unit weight for those pixels with a value above or equal to the threshold, and zero otherwise. It provides information such as object position and extent.
- EasyImage::WeightedMoments computes the 0th, 1st, 2nd, 3rd or 4th order weighted moments on a gray-level image. The weight of a pixel is its gray-level value. It provides information such as object position and extent.

Gravity center (average pixel coordinates above/on threshold)

• EasyImage::GravityCenter computes the coordinates of the gravity center of an image, i.e. the average coordinates of the pixels above (or on) the threshold.

Pixel count (between 2 thresholds)

• EasyImage::PixelCount counts the pixels in the three value classes separated by two thresholds.

Minimum, maximum and average gray-level value

- EasyImage::PixelMax computes the maximum gray-level value in an image.
- EasyImage::PixelMin computes the minimum gray-level value in an image.
- EasyImage::PixelAverage computes the average pixel value in a gray-level or color image. For a color image, it computes the means of the three pixel color components, the variances of the components and the covariances between pairs of components.

Average, variance and standard deviation

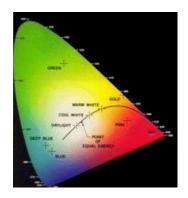
- EasyImage::PixelStat computes min, max and average gray-level values.
- EasyImage::PixelVariance computes average and variance of pixel values.
- EasyImage::PixelStdDev computes average and standard deviation of pixel values. For a color image, it computes the standard deviations and correlation coefficients (covariance over the product of standard deviations) of the pairs of pixel component values.

Number of different pixels by comparing 2 images

• EasyImage::PixelCompare counts the number of different pixels between two images.

2. EasyColor - Pre-Processing Color Images

Code Snippets


EasyColor makes color image processing as efficient as possible by detecting, classifying and analyzing objects. Several conversion functions mean that any color system can be processed.

Color definition and supported systems

What is color?

The human eye is sensitive to light:

- Intensity, or achromatic sensation, captured by grayscale images.
- Wavelength, or chromatic sensation, described in red, green and blue primary colors. True color digital images (24 bits per pixel; 8 bits per RGB channel) represent as many colors as the eye can distinguish.

Visible color gamut in the XYZ color space

There are three color systems:

- **Mixture** systems (RGB/XYZ) give the proportions of the three primaries to be combined.
- **YUV Luma/chroma** systems (XYZ/YUV) separate the achromatic (Y) and chromatic sensations (U & V). Used when a black and white image is required as well (television).
- Intensity/saturation/hue systems (RGB/XYZ/YUV) separate achromatic (black and white Intensity) from enhanced chromatic (color Saturation and Hue) sensations. Used to eliminate lighting effects, or to convert RGB images to another color system. More saturated colors are more vivid, less saturated ones are grayer.

In general:

- RGB is used by monitors, cameras and other display devices.
- YUV is used for efficient transmission of color images by compressing the chrominance information.
- XYZ is used for device-independent color representation.

All image processing operations can use **quantized** coordinates: discrete values in the [0..255] interval, which use a byte representation to store images in a frame buffer.

Color system conversion operations can also use simpler **unquantized** coordinates: continuous values, often normalized to the [0..1] interval.

Color image processing

A color image is a vector field with three components per pixel. All three RGB components reflected by an object have amplitude proportional to the intensity of the light source. By considering the ratio of two color components, one obtains an illumination-independent image. With a clever combination of three pieces of information per pixel, one can extract better features.

There are 3 ways to process a color image:

- **Component extraction**: you can extract the most relevant feature from the triple color information, to reduce the amount of data. For instance, objects may be distinguished by their hue, a pre-processing step could transform the image to a gray-level image containing only hue values.
- **De-coupled transformation**: you can perform operations separately on each color component. For instance, adding two images together adds the red, green and blue components and stores the result, component by component, in a resulting color image.
- **Coupled transformation**: you can combine all three color components to produce three derived components. For example, converting YIQ to RGB.

Supported color systems

Easycolor supports color systems RGB, XYZ, L*a*b*, L*u*v*, YUV, YIQ, LCH, ISH/LSH, VSH and YSH.

RGB is the preferred internal representation as it is compatible with 24-bit Windows Bitmaps.

	RGB-based	XYZ-based	YUV-based
Mixture	RGB	XYZ	—
Luma/Chroma	-	L*a*b* L*u*v*	YUV YIQ
Intensity/Saturation/Hue	ISH LSH VSH	LCH	YSH

Transform using LUTs (LookUp Tables)

EasyColors Lookup tables provide an array of values that define what output corresponds to a given input, so an image can be changed by a user-defined transformation.

A color pixel can take 16,777,216 (2²⁴) values, a full color LUT with these entries would occupy 50 MB of memory and transforms would be prohibitively time-consuming. Pre-computed LUTs make color transforms feasible.

To transform a color image, you initialize a color LUT using one of the following functions:

- □ "LUT for Gain/Offset (Color) " on page 76: EasyImage::GainOffset,
- □ "LUT for Color Calibration" on page 77: EColorLookup::Calibrate,
- □ "LUT for Color Balance" on page 77: EColorLookup::WhiteBalance,

EColorLookup::ConvertFromRGB, EColorLookup::ConvertToRGB.

This color LUT is then used in a transform operation such as EasyColor::Transform or you can create a custom transform using EColorLookup which takes unquantized values (continuous, normalized to [0..1] intervals), and specifies the source and destination color systems. Some operations use the LUT on-the-fly thus avoid storing the transformed image, for example to alter the U (of YUV) component while the image is in RGB format.

The optimum combination of **accuracy and speed** is determined by the choice of IndexBits and Interpolation - the accuracy of the transformed values roughly corresponds to the number of index bits.

- Fewer table entries mean smaller storage requirements, but less accuracy.
- No interpolation gives quicker running time, but less accuracy. Interpolation can recover 8 bits of accuracy per component. When the involved transform is linear (such as YUV to RGB), interpolation always gives exact results, regardless of the number of table entries.

Index Bits	Number of entries	Table size (bytes)
4	2(3*4) = 4,096	14,739
5	2(3*5) = 32,768	107,811
6	2(3*6) = 262,144	823,875

Discrete quantized vs. continuous unquantized

Color coordinates in the classical systems are normally **continuous** values, often normalized to the **[0..1]** interval. Computations on such values, termed **unquantized**, are simpler.

However, storage of images in a frame buffer imposes a byte representation, corresponding to **discrete** values, in the **[0..255]** interval. Such values are termed **quantized**.

All image processing operations apply to quantized values, but conversion operations can also be specified using unquantized coordinates.

Transform YUV444 / YUV422

YUV images can be minimized without degrading visual quality using function Format444To422 to convert from 4:4:4 to 4:2:2 format (or you can convert Format 422 To 444).

- 4:4:4 uses 3 bytes of information per pixel.
- 4:2:2 uses 2 bytes of information per pixel. It stores the even pixels of U and V chroma with the even and odd pixels of Y luma as follows:

$$Y_{[\!even]} \, U_{[\!even]} \, Y_{[\!odd]} \, V_{[\!even]}$$

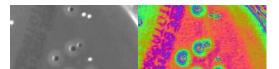
Merge, extract and color

A color image contains three color planes of continuous tone images. A gray-level image can be a component of a color system.

Merge and extract components

EasyColor can change or extract one plane at a time, or all three together. See Compose, Decompose, GetComponent, SetComponent.

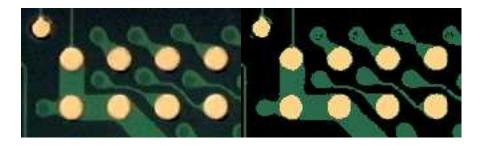
These operations can use a color LUT to transform on the fly, they could build an RGB image from lightness, saturation and hue planes.


NOTE

EasyColor functions perform the necessary interleaving / un-interleaving operations to support Windows bitmap format of interleaved color planes (blue, green and red pixels follow each other).

Pseudo-color to transform gray-level images to color

The trick is to define a regular gamut of 256 colors and each color will be assigned to pixels with a corresponding gray-level value.


To define pseudo-color shades, you specify a trajectory in the color space of an arbitrary system. You can then pseudo-color using the drawing functions color palette (see Image and Vector Drawing) then save and/or transform it like any other color image.

Gray-level and pseudo-colored image

Separate color objects

This EasyColor process takes a set of distinct colors and associates each pixel with the closest color, using a layer index that can then be used in EasyObject with the labeled image segmenter to improve blob creation.

Raw image and segmented image (3 colors)

2.1. Bayer Conversion

Code Snippets

The Bayer pattern is a color image encoding format for capturing color information from a single sensor.

A color filter with a specific layout is placed in front of the sensor so that some of the pixels receive red light only, while others receive green or blue only. That filter is also named *Color Filter Array* or *CFA*.

An image encoded by the Bayer pattern has the same format as a gray-level image and conveys three times less information. The true horizontal and vertical resolutions are smaller than those of a true color image.

G	В	G	В	G	в	RGB	RGB	RGB	RGB	RGB	RGB
R	G	R	G	R	G	RGB	RGB	RGB	RGB	RGB	RGB
G	в	G	в	G	в	RGB	RGB	RGB	RGB	RGB	RGB
R	G	R	G	R	G	RGB	RGB	RGB	RGB	RGB	RGB
G	в	G	В	G	В	RGB	RGB	RGB	RGB	RGB	RGB
R	G	R	G	R	G	RGB	RGB	RGB	RGB	RGB	RGB

Bayer vs. true color format

TIP

- The Bayer pattern normally starts with a GB/RG block in the upper left corner.

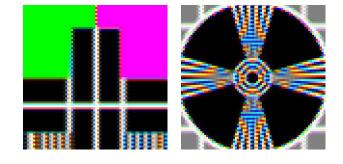
- If the image is cropped, this parity rule can be lost.
- Parity adjustment is not necessary when working on a Open eVision ROI.

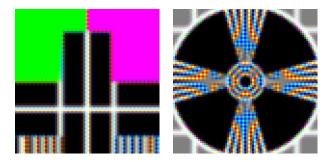
The Bayer conversion method EasyColor::BayerToC24 transforms an image captured using the Bayer pattern and stored as a gray-level image, into a true color image. That process is also known as *demosaicing*.

Along with the gray-level input image, the Bayer configuration is mandatory.

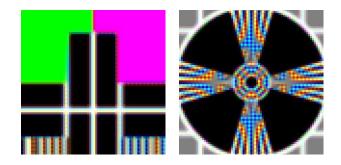
There are 4 different arrangements of the Bayer pattern, defined by the first 2 pixels of the first row of the image:

Several methods are available to reconstruct the missing pixels.

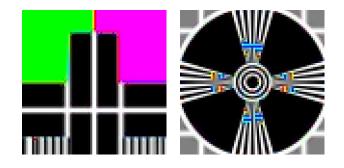

- Some are fast but the resulting image may have artifacts, like the zipper effect or color aliasing.
- □ Some are slower but achieve better interpolation and produce less artifacts.


Interpolation modes

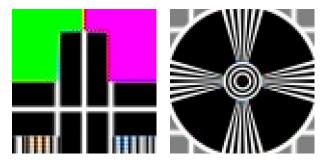
The frame rate is given for the conversion of a 1280 x 720 image on a single core Intel I7-6600U CPU.


- Mode 0
 - No interpolation
 - □ Frame rate: 943

- Mode 1
 - Linear interpolation on a 3x3 kernel
 - Frame rate: 2159



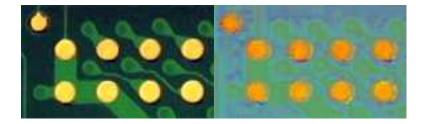
- Mode 2
 - Advanced interpolation on a 3x3 kernel
 - □ Frame rate: 1303



- Mode 3
 - Interpolation on a 5x5 kernel
 - Frame rate: 449

- Mode 4
 - Interpolation on 9x9 kernel
 - Frame rate: 22

The method EasyColor::C24ToBayer is the reciprocal function of EasyColor::BayerToC24. It converts RGB color pixel images to Bayer images using the given EBayerConfiguration.


A Bayer encoded image is not compatible with a true color image (EC24), but you can apply white balance and gamma correction with the EColorLookup parameter in EasyColor::TransformBayer.

2.2. LUT for Gain/Offset (Color)

Separate gains and offsets can be applied to each of the three components of an image (contrast enhancement transform). The RGB image must be transformed to the targeted color space, gains and offsets applied, then transformed back to RGB.

- When applied to a mixture representation, all three gains and offset should vary in a similar way.
- When applied to luma/chroma representations, the gain and offset of the chromatic components should vary in a similar way.
- When applied to intensity/saturation/hue representation, it makes no sense to apply gain and offset to the hue component.

Enhanced saturation / Uniform lightness

NOTE

The contrast enhancement function can be used to uniformize a given component: setting the gain to 0 for some component has the same result as setting all pixels to the value of the offset for this component.

2.3. LUT for Color Calibration

Color distortions introduced by the image acquisition chain can be corrected by comparing sample colors from the image with their true values. A calibrated color chart, such as the IT8, is required.

- Sample colors are the average color in a suitable ROI using PixelAverage.
- True color values are specified in the XYZ color system. Even though the reference colors are described by their XYZ coordinates, the image to be calibrated must contain RGB information.

The calibration transform can be based on one, three or four reference colors. In the first case, calibration is a gain adjustment for the three color components. In the second and third case, a linear or affine transform is used.

2.4. LUT for Color Balance

A color image can be improved by changing gamma correction and white balance.

These effects can be corrected efficiently by setting up a lookup table using WhiteBalance and applying it on a series of images by means of Transform. The LUT only needs to be prepared once (it implements a decoupled color transformation).

Gamma precompensation

Many color cameras use a gamma precompensation process that deals with the non-linear response of the display device (such as a TV monitor).

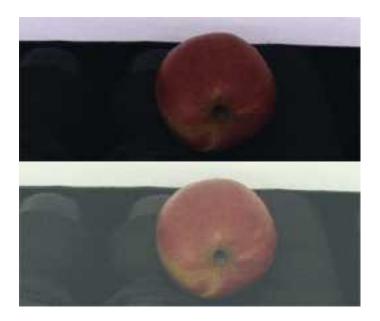
Gamma precompensation should be used after processing because using it before would change the result because of the nonlinearity introduced.

The precompensation process applies the inverse transform to the signal, so that the image renders correctly on the display. Three predefined gamma values are available, depending on the video standard at hand:

Video standard	Gamma value	EasyColor property
NTSC	1/2.2	CompensateNtscGamma
PAL	1/2.8	CompensatePalGamma
SMPTE	0.45	CompensateSmpteGamma

NOTE

Precompensation cancellation and pure precompensation correspond to exponents that are inverse of each other.


Gamma precompensation cancellation

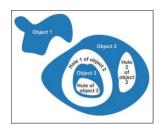
Many color cameras have a built-in gamma precompensation feature that can be turned off. If this feature cannot be turned off and is not desired, its effect can be canceled by applying the direct gamma transform. The following predefined gamma values are available for this purpose:

Video standard	Gamma value	EasyColor property
NTSC	2.2	NtscGamma
PAL	2.8	PalGamma
SMPTE	1/0.45	SmpteGamma

White balance

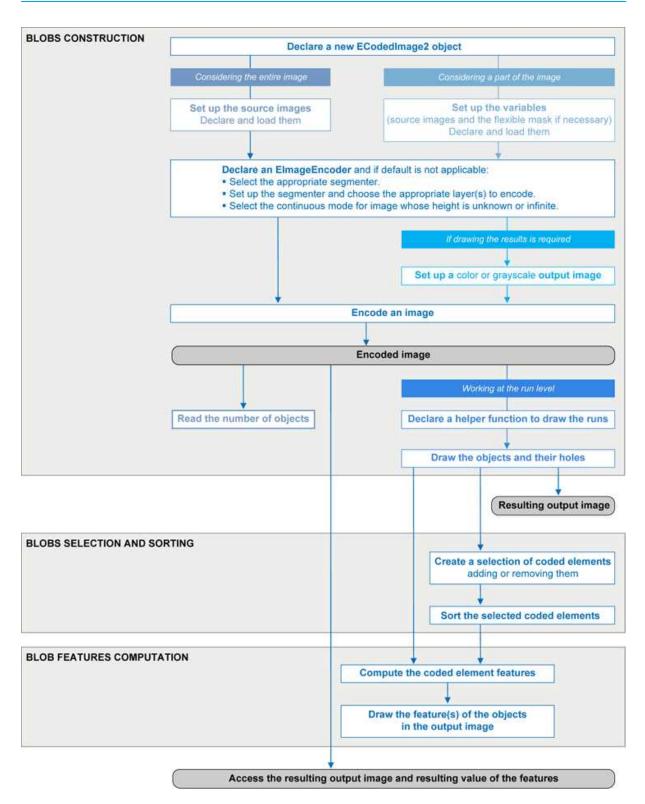
A camera may exhibit color imbalance, that is, the three color channels having mismatched gains, or the illuminant (the light sources) not being perfectly white. When this occurs, the white areas appear as an unsaturated color. The white balance correction automatically adjusts three independent gains so that the components of a white pixel become equal. This means that a white balance calibration step is required, during which a white surface must be shown to the camera and the corresponding color component are measured. PixelAverage can be used for this purpose.

Raw image, and image with white balance and gamma precompensation


PART III MATCHING AND MEASUREMENT TOOLS

1. EasyObject - Analyzing Blobs

Reference | Code Snippets


The EasyObject library picks out features in an image by creating and processing blobs (objects or holes that have the same gray level range).

This library can be used for BW1, BW8, BW16 and C24 source images and is accessible from the ECodedImage2 class which has improved execution time, especially for large images with many objects.

Workflow

Blob Definition

A blob is a grouping of neighboring pixels of the same gray level range. Blobs may be objects or holes in objects. EasyObject functions analyze both objects and holes. When blobs are built, the inclusion relationship between holes and objects is computed.

Even though holes may be the actual objects of interest, it is easier to find an object of interest, then detect its holes (with EasyObject) and measure their characteristics (with EasyGauge or EasyObject).

Blobs are handled as independent entities:

- They can be selected by means of the layer they belong to, their position, a rectangular ROI or their computed features. The selection criteria can be combined (select the small objects; among these, select those close to the right edge...).
- They can be listed and sorted by their geometric characteristics: such as area, width, or ellipse of inertia.

Blob analysis can be restricted to rectangular and nested ROIs, and to complex or disconnectedshape regions using flexible masks.

Build Blobs

EasyObject chooses objects of interest and constructs blobs/holes in two steps:

- 1. Segment: classifies the source image pixels, creates layers, and constructs the runs (a run is a sequence of adjacent pixels in a row, that share the same property).
- Encode: assembles runs, to build blobs for each layer. You select which objects or holes are kept.
 EImageEncoder::Encode analyzes the blobs and stores the result into a coded image which has a set of superimposed, mutually exclusive image layers, where the pixels of each layer have properties in common, such as being above a threshold.
 Flexible masks can restrict encoding to an arbitrary shaped area.

There is no need to build holes, they are constructed on-the-fly when required.

Functions

- Segmentation GetSegmentationMethod and SetSegmentationMethod
- Grayscale single threshold EGrayscaleSingleThresholdSegmenter
- Grayscale double threshold EGrayscaleDoubleThresholdSegmenter
- Color single threshold EColorSingleThresholdSegmenter
- Color range threshold EColorRangeThresholdSegmenter
- Reference image EReferenceImageSegmenter
- Image range EImageRangeSegmenter
- Labeled image ELabeledImageSegmenter
- Binary images EBinaryImageSegmenter

Pixel aggregation (encoder)

- Layer selection
- Object construction: run aggregation into objects
- Hole construction: run aggregation into holes

Extract objects (using geometric parameters)

Once an image has been encoded, the coded elements (objects or holes) are accessible through the abstract class ECodedElement which provides a large set of methods applicable to a particular coded element:

Num	Area	Gravity Center X	Gravity Center Y 🔺	
59	2221	17.67	95.55	
37	387	161.69	53.46	
47	344	166.43	90.24	## UL4- 2
32	327	226.23	72.07	
40	251	111.45	62.04	State of the local division of the local div
50	239	120.41	91.51	A + + + + + + + + + + + + + + + + + + +
4	144	220.98	2.44	State State State
68	142	72.05	123.10	C

Features computation and display

The objects, holes and their features can be efficiently accessed randomly (in an index-based fashion).

1.1. Image Segmenters

Code Snippets

There are several ways to segment pixels. The method is chosen with GetSegmentationMethod and SetSegmentationMethod.

1. Grayscale Single Threshold (default)

EGrayscaleSingleThresholdSegmenter is applicable to BW8 and BW16 grayscale images and produces coded images with two layers:

- The **black layer** (usually Layer 0) contains unmasked pixels with a gray value below the Threshold value.
- The **white layer** (usually Layer 1) contains the remaining unmasked pixels, i.e. unmasked pixels having a gray value greater or equal to the Threshold value.

EasyObject provides 5 thresholding methods:

- **Absolute** (integer value): represents the first gray value of the white layer. Set with SetAbsoluteThreshold method and got with GetAbsoluteThreshold method.
- **Relative** (%): represents the fraction of image pixels that belong to the Black layer, it is a user-defined float value in range 0 to 1. Set with <u>SetRelativeThreshold</u> method and got with <u>GetRelativeThreshold</u> method.
- **Minimum Residue** (default): The threshold is an automatically computed value such that the quadratic difference between the source and thresholded image is minimized.
- **Maximum Entropy**: automatically computed value such that the entropy (i.e. the amount of information) of the resulting thresholded image is maximized.
- **IsoData**: automatically computed value that lies halfway between the average dark gray value (gray levels below the threshold) and average light gray values (gray levels above the threshold).

Open eVision User Guide PART III Matching and Measurement Tools

Grayscale Single Threshold with a minimum residue thresholding method is the default. Only objects whose pixels have a value that is above this threshold are encoded.

2. Grayscale Double Threshold

EGrayscaleDoubleThresholdSegmenter is applicable to BW8 and BW16 grayscale images and produces coded images with three layers:

- The **black layer** (usually Layer 0) contains unmasked pixels having a gray value below the Low Threshold value.
- The **white layer** (usually Layer 2) contains unmasked pixels having a gray value above or equal the High Threshold value.
- The **neutral layer** (usually Layer 1) contains the remaining unmasked pixels.

The **Low Threshold** and **High Threshold** are user-defined integer values, set with SetLowThreshold and SetHighThreshold methods, and got with GetLowThreshold and GetHighThreshold methods.

3. Color Single Threshold

EColorSingleThresholdSegmenter is applicable to C24 color images; it produces coded images with two layers:

- The **white layer** (usually Layer 1) contains unmasked pixels that belong to the cube of the color space defined by the threshold point and the white point (255,255,255).
- The **black layer**(usually Layer 0) contains the remaining unmasked pixels.

The **Color Threshold** is a set of three **user-defined** integer values designating a color in the color space, set with <u>SetThreshold</u> method and got with <u>GetThreshold</u> method.

4. Color Range Threshold

EColorRangeThresholdSegmenter is applicable to C24 color images; it produces coded images with two layers:

- The **white layer**(usually Layer 1) contains unmasked pixels that belong to the cube of the color space defined by the Low Threshold point and the High Threshold point.
- The **black layer** (usually Layer 0) contains the remaining unmasked pixels.

The Low Threshold and High Threshold are each a set of three user-defined integer values designating a color in the color space, set with SetLowThreshold and SetHighThreshold methods and got with GetLowThreshold and GetHighThreshold methods.

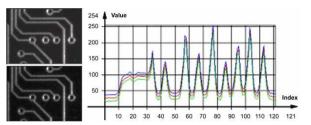
5. Image Range

The following cases need a segmentation using **pixel-by-pixel thresholding** which gives an allowed range of values for each pixel:

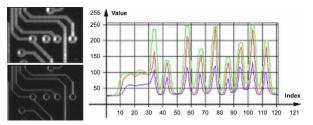
- when the background is not uniform enough,
- when the illumination is not uniform across the image,
- when only differences between the image and a reference image (ideal) are to be enhanced,

The allowed range for each pixel is specified using two images: a low reference image with the minimum values allowed for each pixel, a high reference image with the maximum values. The reference images are thus the source image minus (or plus) a fixed value all over the image (assuming noise distribution is uniform and additive).

The difficulty is preparing suitable high and low reference images.

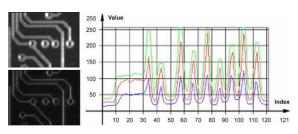

Preparing high and low reference images

You can start from an image of the scene without defects and add security margins before comparison.


Source image

Gray-level tolerance must be provided for noise and illumination variations.

Gray-level tolerance margins


The image may have a slight shift in some direction which can be corrected by enlarging the light and dark areas using dilate and erode morphological operations. This geometric tolerance margin is roughly as large as the morphological filter size.

Geometric tolerance margins

Combining both kinds of tolerance margins gives the best results.

Combined margins

Image Segmenter

EImageRangeSegmenter and EReferenceImageSegmenter are applicable to BW8, BW16, and C24 images; and produce coded images with two layers.

The low threshold and the high threshold are defined for each pixel individually by means of two reference images of the same type as the source image: the Low Image and the High Image. The Reference Image defines the reference threshold of each pixel individually.

- For **grayscale** images, the **white layer** (usually Layer 1) contains unmasked pixels having a gray value in a range defined by the gray value of the corresponding unmasked pixels in the Low, High or Reference Image.
- For **color** images, the **white layer** (usually Layer 1) contains unmasked pixels having a color inside the cube of the color space defined by the colors of the corresponding unmasked pixels in the Low, High or Reference Image.
- The **black layer** (usually Layer 0) contains the remaining unmasked pixels.

Pointers to the **Low Image** can be set or got using the functions associated with the type of the source image:

- BW8: SetLowImageBW8 GetLowImageBW8
- BW16: SetLowImageBW_6GetLowImageBW_6
- C24: SetLowImageC24GetLowImageC24

Pointers to the **High Image** can be set or got using the functions associated with the type of the source image:

- BW8: SetHighImageBW8GetHighImageBW8
- BW16 SetHighImageBW_6GetHighImageBW_6
- C24 SetHighImageC24GetHighImageC24

Pointers to the **Reference Image** can be set or got using the functions associated with the type of the source image:

- BW8: SetReferenceImageBW8, GetReferenceImageBW8
- BW16: SetReferenceImageBW₆, GetReferenceImageBW₆
- C24: SetReferenceImageC24 , GetReferenceImageC24

6. Labeled Image

ELabeledImageSegmenter is applicable to is applicable to BW8 and BW16 grayscale images; it produces coded images with a number of layers equal to the maximum number of gray values: 256 for BW8 images or 65536 for BW16 images. The layer n contains all the unmasked pixels having a gray value equal to n.

By default, all layers are encoded. However, it is possible to restrict the encoding to a single range of layers with <u>SetMinLayer</u> and <u>SetMaxLayer</u> functions which return the lowest and the highest values of the index range respectively.

7. Binary Image


EBinaryImageSegmenter is applicable to BW1 binary images; it produces coded images with two layers:

- Black layer (usually index 0) contains unmasked pixels with a binary value equal to zero.
- White layer (usually index 1) contains the remaining unmasked pixels, i.e. unmasked pixels with a binary value equal to one.

1.2. Image Encoder

Reference | Code Snippets

The class representing the objects (EObject) derives from an abstract class ECodedElement.

Object building

Selecting the Layers to Encode

The segmentation methods (see Image Segmenters) determine which layer(s) to encode by default, and do not encode pixels from the other layers.

Function GetMaxLayerIndex returns the highest Layer Index value. It is available for all segmenters.

Enabling/disabling layer encoding for each layer individually

The following tables list, for each layer, the Set/Get function and the default enable/disable value.

Two-layer segmenters

Layer	Set LayerEncoded function	Get LayerEncoded function	Default value
Black layer	SetBlackLayerEncoded	IsBlackLayerEncoded	FALSE
White layer	SetWhiteLayerEncoded	IsWhiteLayerEncoded	TRUE

Three-layer segmenters

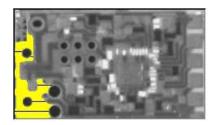
Open eVision User Guide PART III Matching and Measurement Tools

Layer	Set LayerEncoded function name	Get LayerEncoded function name	Default value
Black layer	SetBlackLayerEncoded	IsBlackLayerEncoded	FALSE
White layer	SetWhiteLayerEncoded	IsWhiteLayerEncoded	FALSE
Neutral layer	SetNeutralLayerEncoded	IsNeutralLayerEncoded	TRUE

Manually Assigning a Layer Index to Each Layer Individually

The following tables list, for each layer, the Set/Get function and the default value.

Two-layer segmenters


Layer	Set LayerEncoded function name	Get LayerEncoded function name	Default value
Black layer	SetBlackLayerIndex	IsBlackLayerIndex	0
White layer	SetWhiteLayerIndex	IsWhiteLayerIndex	1

Three-layer segmenters

Layer	Set LayerEncoded function name	Get LayerEncoded function name	Default value
Black layer	SetBlackLayerIndex	IsBlackLayerIndex	0
Neutral layer	SetNeutralLayerIndex	IsNeutralLayerIndex	1
White layer	SetWhiteLayerIndex	IsWhiteLayerIndex	2

Runs

For the sake of computational efficiency, the objects are described as lists of runs. A run is a sequence of adjacent pixels that share homogeneous properties (such as being above a given threshold). These runs are merged in objects by the image encoder.

A single object with five enhanced runs

EasyObject can work at object level, and at run level which allows faster processing in critical cases. This is useful to compute custom features on objects then list all runs belonging to a given object as shown in this example of working at run level, with colored runs in the output image.

- 1. **Declare a new** ECodedImage2 object.
- 2. **Declare an** EImageEncoder and, if applicable, select the appropriate segmenter. Setup the segmenter and choose appropriate layer(s) to encode.
- 3. Set up an output image.
- 4. Encode the image.
- 5. **Color the runs in the output image**. Iterate over the objects of a specific layer by constructing a loop and then a RunsIterator object. This iterator allows to browse runs of the considered object. Once the iterator has finished a run of the considered object, the inner loop processes the pixels spanned by this run in the output image.
- 6. Select a specific layer.

s.a

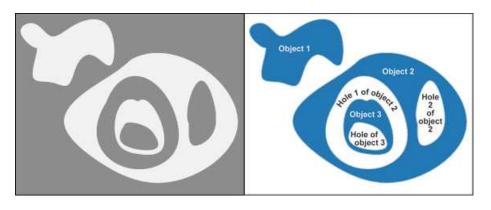
Source image (left) with the white layer rendered (right)

Connexity

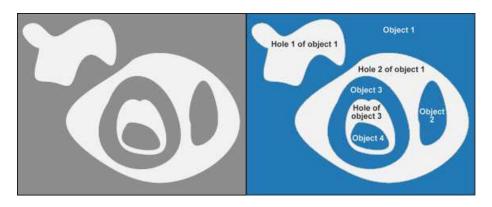
Pixels can touch each other along an edge or by a corner. In Four Connexity only pixels touching by an edge are considered neighbors. In Eight Connexity (the default) pixels touching by a corner are also considered neighbors.

Multiple images can be encoded in continuous mode.

1.3. Holes Construction

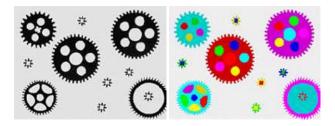

Code Snippets

A hole is a set of connected pixels that are entirely surrounded by a parent object (4 or 8 pixels depending on the connexity mode).


A hole has no child. Objects inside a hole are considered as separate objects.

EObject and EHole classes both derive from ECodedElement, so objects and holes are managed in the same way and share the same functions.

Encoding the white layer (3 objects and 3 holes)


Encoding the black layer (4 objects and 3 holes)

How to Color holes

- 1. **Declare a new** ECodedImage2 object.
- 2. **Declare an** EImageEncoder and, if applicable, select and setup the appropriate segmenter, and choose the appropriate layer(s) to encode.
- 3. Set up an output image.
- 4. Encode the image.
- 5. **Declare a helper function to draw the runs.** A helper function (see also section Object Construction/Working at the Run Level) draws the runs in an output image, using, for example, a given color. This function can be shared for objects and holes.
- 6. **Draw the objects and their holes in the output image.** It is necessary to iterate over the objects of the chosen layer.
 - a. The helper function draws the runs of each object (DrawRuns) using a specific color.
 - b. The holes are iterated over the current object, and their runs are drawn.
 - c. Each hole of an object is drawn with a different color computed in the global function (GetFadedColor) that returns a color. This color depends upon the hole index, for example a gradation of red to green colors.

Open eVision User Guide PART III Matching and Measurement Tools

Raw image (left) Building of objects and all holes (right)

1.4. Normal vs. Continuous Mode

Code Snippets

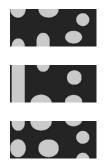
Normal Mode (default)

In normal mode, the image encoder does not track blobs across several successive images. EasyObject works with one image, without keeping blobs in memory. All the blobs are returned as objects.

Continuous Mode

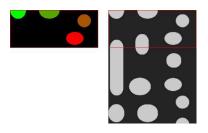
In continuous mode EasyObject can process an image whose height is unknown or infinite (e.g. coming from a line-scan camera). The image is split into several chunks that are fed into an image encoder. Objects that straddle several successive image chunks can be detected.

The image encoder encodes only the objects that contain no run touching the last row of the source image. Objects that touch the inferior border of the image are not written in the coded image because they are expected to continue in subsequent image chunks, but they are kept in memory and are processed when subsequent images are analyzed.


A large image is assumed to be divided into several chunks that are stored in the array EImageBW8 chunk[x].

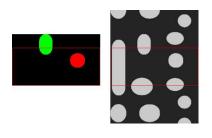
In this example, we generate a sequence of color images that exhibit objects encoded over successive chunks

Original image

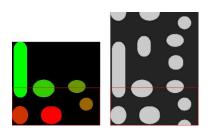


Three chunks of the image

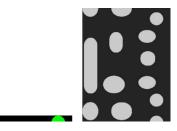
- 1. **Draw the objects encoded in a layer of a coded image.** This code is essentially the same as in "Browsing Runs" code snippet. The only difference is that an offset can be applied along the Y-axis.
- 2. **Define a function to draw the objects of a layer.** If a coded image contains objects that were started in a previous image: the runs of this object from the previous image are assigned with a negative Y-coordinate.


The zero Y-coordinate is the first row of the most recently encoded image. The convention is to assign the lowest Y-coordinate to the oldest run in the encoded objects. The method EImageEncoder::GetStartY obtains the Y-coordinate of this oldest run. It is necessary to define a function that displays the content of a layer of a coded image. Each object can be displayed with a different color(computed by GetFadedColor). This function closely follows the function DrawRuns, but is adapted to continuous mode by taking GetStartY into account.

- 3. **Enable continuous mode** in property EImageEncoder::SetContinuousModeEnabled. Additional variables can be declared, for example to store the successive encoded image, or to hold the output images.
- 4. Analyze the successive chunks. To encode successive chunks use Encode(chunk[count], codedImage) and then DrawLayer. Note: The variable count spans integers 0, 1 and 2. When an object from a chunk is not complete it is kept in the internal memory of the image encoder.



Content of layerImage when count equals 0, after the application of DrawLayer. Chunk of the large image that is under consideration. Note that two objects in the lower-left of the image chunk are not encoded, because they touch the border of the chunk.


When count reaches 1, one of these two objects becomes completed, which leads to the encoding of the following image. Two other objects are not encoded yet at this time. Here is the result of the encoding of the last chunk (count = 2).

Three objects from the previous chunks have been closed, and have thus been encoded.

Flushing Continuous Mode

After encoding the three image chunks, there remains one object to be completed (in the bottom-right corner of the large image). However, as there are no more chunks, it is necessary to explicitly close this object and encode the remaining object using the flushing of the image encoder. The internal memory of the image encoder is then empty.

Result of the flush

1.5. Selecting and Sorting Blobs

Code Snippets

The object segmentation process considers any blob as an object, including noise pixels which appear as tiny objects. You can select which blobs to keep using the class EObjectSelection.

Create / modify a selection

You can use the methods Add and Remove of the class EObjectSelection to:

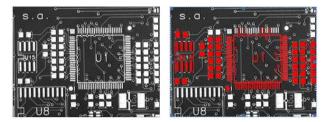
□ Add or remove a single object , a hole or a whole layer to/from a selection.

Open eVision User Guide PART III Matching and Measurement Tools

- Add or remove objects or holes based on some specified **feature** (see the feature list in Computing the Coded Element Features).
- Add or remove objects or holes based on their specific **position**, or whether they lie within a specified ROI rectangle.
- Add or remove objects based on their specific position, or whether they lie outside, on or within a specified ROI rectangle or ERegion (AddObjectsUsingRectangle and AddObjectsUsingRegion).

These actions can be cascaded and combined at will in a single selection.

Clear a selection

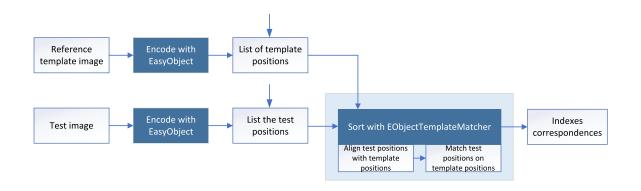

You can clear a previous selection using EObjectSelection::Clear.

Sort a selection

You can sort the elements of a selection according to any of their features.

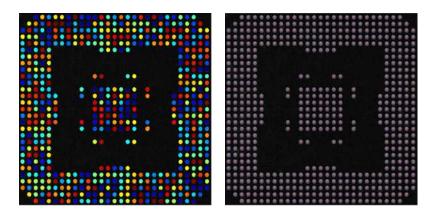
Example

In this example, we select objects in the middle band of an image, with a surface >100 pixels.


Source image, and selection of objects

- 1. Declare a new ECodedImage2 object.
- **2. Declare an EImageEncoder** object and, if applicable, select and setup the appropriate segmenter and choose the appropriate layer(s) to encode.
- **3.** Encode the source image.
- 4. Create a selection of objects. Create an instance of the EObjectSelection class and add objects to this selection, for instance through EObjectSelection::AddObjects.
- 5. Remove objects based on the value of one feature at a time. The objects in a selection can be unselected by calling one of the EObjectSelection::Remove methods.
- 6. Remove the objects based on their position using EObjectSelection::RemoveUsingFloatFeature. For details, see also "Working at the Run Level".
- 7. Sort the selected objects using EObjectSelection::Sort.
- 8. Access the selected objects.

1.6. Object Template Matcher

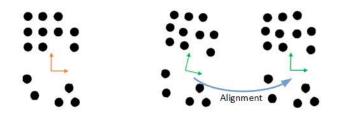

The class EObjectTemplateMatcher is a tool designed to align and match the output of EasyObject to a reference template. It is designed and developed to handle efficiently thousand of objects.

Creating the reference template

Use the method BuildTemplate to create the reference template, with one of the following parameters:

- □ An ECodedImage2, result of the method EImageEncoder::Encode.
- □ An EObjectSelection, a selection (subset) of ECodedImage2 objects.
- □ A list of positions, given by a vector of points (std::vector<EPoint>).

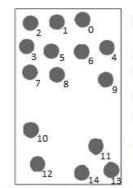
An encoding of the reference image for use as the template. And the center positions of each object for use in the matching process.


Sorting the objects

- To perform the matching after setting up the template:
 - □ Use the method SortSelection with an EObjectSelection as parameter.
 - □ Or use the more generic method SortPositions with a std::vector<EPoint> as parameter.
- When you pass the objects in a selection as the sort method parameter, the bounding box center of the objects is the position used for the matching with the template.

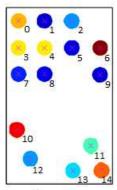
- Before the sorting, EObjectTemplateMatcher performs an optional global rigid alignment of the submitted positions with the defined template.
 - □ This alignment only applies the translation and rotation transformations.
 - □ Use the method SetEnableAlignment to enable the alignment process.

Left: the template. Right: the alignment of the submitted selection.

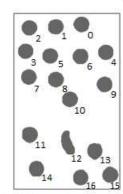

- After the optional alignment, EObjectTemplateMatcher matches the submitted positions with the reference template.
 - □ It uses the shortest distance criterion to pair these positions with the template.
 - You can set the maximum distance to constraint the search. This can speed up the processing.

Retrieving the Sorting Results

- Use one of these methods to retrieve the sorting results:
 - □ GetSelectionIndexes returns, for each position in the template, the paired index in the selection. The value ---is used if the object in the template has no correspondence in the selection.
 - □ GetTemplateIndexes returns, for each position in the selection, the paired index in the template. The value ---is used if the object in the selection has no correspondence in the template.
 - GetUnpairedObjects returns the positions in the template and in the selection that have not been paired.
- Use the method GetNumberOfPairedObjects to get the total number of paired objects.
- Use the methods Save and Load to store and retrieve the configuration of an EObjectTemplateMatcher object, including the template.


NumberOfPairedObjects = 15

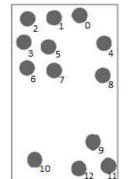
SelectionIndexes = 2, 1, 0, 3, 5, 6, 4, 7, 8, 9, 10, 11, 12, 14, 13


TemplateIndexes = 2, 1, 0, 3, 6, 4, 5, 7, 8, 9, 10, 11, 12, 14, 13

UnpairedObjects = onlyInTemplate = <> onlyInSelection = <>

Selection with moved objects

Template with object indexes


NumberOfPairedObjects = 15

SelectionIndexes = 2, 1, 0, 3, 5, 6, 4, 7, 8, 9, 11, 13, 14, 16, 15

TemplateIndexes = 2, 1, 0, 3, 6, 4, 5, 7, 8, 9, -1, 10, -1, 11, 13, 14, 13

UnpairedObjects = onlyInTemplate = <> onlyInSelection = 10,12

Selection with extra objects

Selection with missing objects

NumberOfPairedObjects = 13

SelectionIndexes = 2, 1, 0, 3, 5, -1, 4, 6, 7, 8, -1, 9, 10, 11, 12

TemplateIndexes = 2, 1, 0, 3, 6, 4, 7, 8, 9, 11, 12, 14, 13

UnpairedObjects = onlyInTemplate = 5,10 onlyInSelection = <>

1.7. Advanced Features

Computable Features

Methods prefixed with **Get** indicate a lazy evaluation: the result is computed on the first invocation of the method and cached.

Methods prefixed with **Compute** indicate that the function is reevaluated at every invocation and the result is never cached.

Position

Limit (top, bottom, left, right)	ECodedElement::GetTopLimit ECodedElement::GetBottomLimit ECodedElement::GetLeftLimit ECodedElement::GetRightLimit
Gravity center (X and Y)	ECodedElement::GetGravityCenter ECodedElement::GetGravityCenterX ECodedElement::GetGravityCenterY
Weight gravity center (X and Y)	ECodedElement::ComputeWeightedGravityCenter

Gravity center and weight gravity center

The gravity center returns the abscissa of the gravity center of the coded element.

The **weight gravity center** computes the gravity center of a given image over a coded element.

Area (pixel count)	ECodedElement::Area
Feret box (center X and Y, height, width with distinct orientation angles at 22, 45, 68 degrees)	ECodedElement::ComputeFeretBox ECodedElement::GetFeretBox22Box ECodedElement::GetFeretBox22Center ECodedElement::GetFeretBox22CenterX ECodedElement::GetFeretBox22CenterY ECodedElement::GetFeretBox22Height ECodedElement::GetFeretBox22Width ECodedElement::GetFeretBox45Box ECodedElement::GetFeretBox45Center ECodedElement::GetFeretBox45CenterX ECodedElement::GetFeretBox45CenterY ECodedElement::GetFeretBox45CenterY ECodedElement::GetFeretBox45Height ECodedElement::GetFeretBox45Height ECodedElement::GetFeretBox68Box ECodedElement::GetFeretBox68Center ECodedElement::GetFeretBox68CenterX ECodedElement::GetFeretBox68CenterX ECodedElement::GetFeretBox68CenterX ECodedElement::GetFeretBox68CenterX ECodedElement::GetFeretBox68CenterX ECodedElement::GetFeretBox68CenterX ECodedElement::GetFeretBox68CenterX ECodedElement::GetFeretBox68CenterX ECodedElement::GetFeretBox68CenterY
Bounding box (center X and Y, height, width)	ECodedElement::GetBoundingBox ECodedElement::GetBoundingBoxCenter ECodedElement::GetBoundingBoxCenterX ECodedElement::GetBoundingBoxCenterY ECodedElement::GetBoundingBoxHeight

Extents

	ECodedElement::GetBoundingBoxWidth
Min. enclosing rectangle (angle, center X and Y, heath, width)	ECodedElement::MinimumEnclosingRectangle ECodedElement::MinimumEnclosingRectangleAngle ECodedElement::MinimumEnclosingRectangleCenter ECodedElement::MinimumEnclosingRectangleCenterX ECodedElement::MinimumEnclosingRectangleCenterY ECodedElement::MinimumEnclosingRectangleHeight ECodedElement::MinimumEnclosingRectangleWidth

Feret box

A feret box is a rectangle with the minimum surface rotated at a specified angle that contains all the pixels center points of an object.

- Bounding box is the Feret box at 0°.
- **Minimum enclosing rectangle** is the Feret box with the minimum surface across all the possible angles.
- Width of a FeretBox rectangle is the length of the rectangle side that exhibits the smallest angle with the X-axis. This is NOT necessarily the smallest side!
- The **height** of a Feret box rectangle is the length of the other side of the rectangle.

Miscellaneous

Starting point of the object contour (X and Y)	ECodedElement::GetContour ECodedElement::GetContourX ECodedElement::GetContourY
Largest run	ECodedElement::GetLargestRun
Run count	ECodedElement::GetRunCount
Object number (index)	<pre>ECodedElement::GetLayerIndex ECodedElement::GetElementIndex</pre>
Pixel gray-level value (average, deviation, variance)	ECodedElement::ComputePixelGrayAverage ECodedElement::ComputePixelGrayDeviation ECodedElement::ComputePixelGrayVariance
Pixel gray-level value (min and max)	ECodedElement::ComputePixelMax ECodedElement::ComputePixelMin

Ellipse of inertia

Eccentricity of the ellipse of inertia	ECodedElement::Eccentricity
Moment	ECodedElement::GetCentralMoment ECodedElement::GetMoment ECodedElement::GetNormalizedCentralMoment

Ellipse (angle, height, width)	ECodedElement::GetEllipseAngle ECodedElement::GetEllipseHeight ECodedElement::GetEllipseWidth
Second order geometric moments (Sigma: X, XX, XY, Y, YY)	ECodedElement::GetSigmaX ECodedElement::GetSigmaXX ECodedElement::GetSigmaXY ECodedElement::GetSigmaY ECodedElement::GetSigmaYY

NOTE

The object perimeter can be measured indirectly by tracing the object contour with contouring methods and counting the pixels.

From the standard geometric features, others can be derived. For instance, object elongation is computed as the ratio of large to short ellipse axis or max height over max width. Object circularity is defined as the ratio of the squared perimeter divided by four times pi multiplied by the object area.

NOTE

Note. Formulas (N = area):

$$\text{HEIGHT} = 4\sqrt{I_{B}}$$

$$\texttt{ANGLE} = \arctan\left(\frac{\mathbf{I_{I}} - \mathbf{I_{\lambda}}}{\mathbf{I_{II}}}\right)$$

Convex Hull

The convex hull of a shape is the convex polygon of minimum area that completely surrounds an object. The convex hull can be used to characterize the object footprint, as well as to observe concavities. Given that the number of vertices of the convex hull is variable, they are stored in a EPathVector container.

The corresponding function is ECodedElement::ComputeConvexHull.

Graphic Representation

The objects can be drawn onto the source image by means of ECodedImage2::Draw. The following features also have a graphical representation that can be drawn by the means of ECodedImage2::DrawFeature.

Objects	Graphic
Bounding box	
Convex hull	
Ellipse	10.04
Feret box	
Feret box with an angle of 22°	-
Feret box with an angle of 45°	-
Feret box with an angle of 68°	
Gravity center	4

Open eVision User Guide PART III Matching and Measurement Tools

Minimum enclosing rectangle

Weighted gravity center

Coordinate System and Conventions

Coordinate system

EasyObject uses a pixel coordinate system where the origin is conventionally at the top left corner of the top left pixel of an image. Consequently, the fractional part of the coordinates of the center of a pixel is ".5". This convention is best suited for the representation of sub-pixel coordinates.

Angles

According to the mathematical conventions, the angles are now counted inversely: A positive angle brings the X axis on the Y axis.

Evaluating the features

There is one property per feature, removing the need to access the feature through an **enum**.

Draw Coded Elements

Once an image has been encoded, the coded elements (object or hole) are accessible through the abstract class ECodedElement and a large set of methods:

To draw coded elements

- 1. **Declare a new** ECodedImage2 object.
- 2. **Declare an** EImageEncoder object and, if applicable, select and setup the appropriate segmenter and choose the appropriate layer(s) to encode.
- 3. **Create an output image**: copy, pixel by pixel, the (grayscale) source image into a (color) output image if the drawing of the resulting features has to be colored.
- 4. Encode the source image.
- 5. Draw the features for each object in a layer.
- 6. Read the result, which can be rounded down. A specific drawing can be created to mark the feature (for example, draw a target for a gravity center).

To render flexible masks use ECodedElement::RenderMask.

The objects, holes and their features can be efficiently accessed randomly (in an index-based fashion).

Flexible Masks in EasyObject

See also: using Code Snippets : Creating Code Snippets

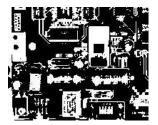
A flexible mask can be generated by any application that outputs BW8 images or uses the Open eVision image processing functions.

EasyObject can use flexible masks to restrict blob analysis to complex or disconnected shaped regions of the image.

If an object of interest has the same gray level as other regions of the image, you can define "keep" and "ignore" areas using flexible masks and Encode functions.

A flexible mask is a BW8 image with the same height and width as the source image.

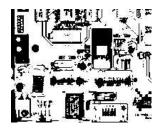
- A pixel value of 0 in the flexible mask masks the corresponding source image pixel so it doesn't appear in the encoded image.
- Any other pixel value in the flexible mask causes the pixel to be encoded.


EasyObject functions that create flexible masks

Source image

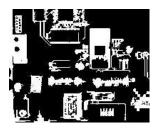
1. ECodedImage2::RenderMask: from a layer of an encoded image

- **1.** To encode and extract a flexible mask, first construct a coded image from the source image.
- 2. Choose a segmentation method (for the image above the default method GrayscaleSingleThreshold is suitable).
- **3.** Select the layer(s) of the coded image that should be encoded (i.e. white and black layers using minimum residue thresholding).
- Make the mask image the desired size using mask.SetSize(sourceImage.GetWidth(), sourceImage.GetHeight()).
- 5. Exploit the flexible mask as an argument to ECodedImage2::RenderMask.

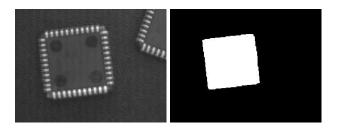


BW8 resulting image that can be used as a flexible mask

2. ECodedElement::RenderMask: from a blob or hole


- **1.** Select the coded elements of interest.
- 2. Create a loop extracting a mask from selected coded elements of the coded image using ECodedElement::RenderMask.
- 3. Optionally, compute the feature value over each of these selected coded elements.

BW8 resulting image that can be used as a flexible mask

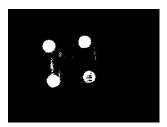

3. EObjectSelection::RenderMask: from a selection of blobs

EObjectSelection::RenderMask can, for example, discard small objects resulting from noise.

BW8 resulting image that can be used as a flexible mask

Example: Restrict the areas encoded by EasyObject

Find four circles (left) Flexible mask can isolate the central chip (right)

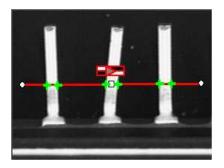

- 1. Declare a new ECodedImage2 object.
- 2. Setup variables: first declare source image and flexible mask, then load them.
- **3.** Declare an EImageEncoder object and, if applicable, select the appropriate segmenter. Setup the segmenter and choose the appropriate layer(s) to encode.

Open eVision User Guide PART III Matching and Measurement Tools

Encode the source image. Encoding a layer with just the area in the flexible mask is then
pretty straightforward.
 We see that the sircles are correctly segmented in the black layer with the grayscale single

We see that the circles are correctly segmented in the black layer with the grayscale single threshold segmenter:

- 5. Select all objects of the coded image.
- 6. Select objects of interest by filtering out objects that are too small.
- **7.** Display the blob feature by iterating over the selected objects to display the chosen feature.



2. EasyGauge - Measuring down to Sub-Pixel

2.1. Workflow

EasyGauge

EasyGauge library controls dimensions. It accurately determines position, orientation, curvature and size of parts. It can interact graphically to place and size gauges, combine them in grouped hierarchies, and store and retrieve them with all their parameters.

TIP

The theoretical best-case precision is 1/64th pixel for all EasyGauge operators. In practice, you can assume a precision of 1/10th pixel.

Workflow

The gauge model can be built programmatically or in a graphical editor, then "played" in the final application.

Choose the workflow that matches the complexity of your model and the accuracy required: uncalibrated, calibrated or grouped.

Uncalibrated Gauging: for a simple model

EasyGauge basic use is straightforward.

- a. Create a gauge object that corresponds to the required measurement.
- **b.** Change the parameters whose default values are not appropriate.
- c. Invoke the desired measurement function.
- d. Read the resulting position parameters.

Open eVision User Guide PART III Matching and Measurement Tools

Uncalibrated gauging is easy to implement but has several drawbacks:

- Measurements are performed in pixels, not millimeters.
- Measurement models are not portable: gauge positions and sizes must be reworked if viewing conditions change.
- Optical distortion or perspective causes inaccurate measurements.

Calibrated gauging: for one or two simple measurement sites

Calibrated gauging is more accurate, and measures the inspected parts independently of the viewing conditions.

All measurements are taken in the calibrated units, with any distortion implicitly compensated. Refer to Calibration to learn how to master field-of-view calibration.

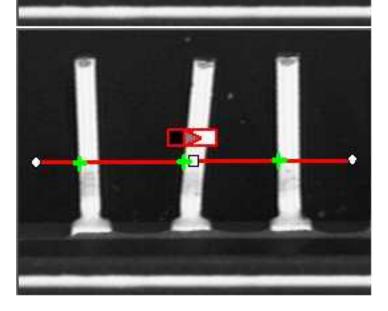
- **a.** Create a calibrator object.
- **b.** Place it on the inspected scene.
- c. Adjust calibration parameters.
- d. Attach a gauge.

Complex Gauging

Gauges can be grouped (see Gauge Manipulation Processes) and attached to another item:

- Attaching gauges to an EFrameShape object moves the gauges with the frame (translation and/or rotation), the application program must adjust the frame position to track the inspected part.
- Attaching gauges to another gauge moves them according to the measured position of the supporting gauge. For example, if gauges are attached to a common rectangle gauge that is detecting the outline of a part, all gauges automatically track the part when the rectangle outline is fitted.

If using several measurement sites, you can save the complete model, with calibration modes, coefficients, and attached gauges, in a single file.


NOTE

Unlike the rest of Open eVision, EasyGauge uses a pixel center origin (see "Image Coordinate Systems" on page 19). The subpixel coordinate (0, 0) is the center of the upper left pixel of the image.

2.2. Gauge Definitions

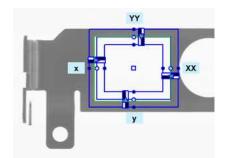
Point gauge

You can select the most relevant transition points along a line segment probe that crosses one or several objects edges. Crosswise and lengthwise filtering can be activated for noise reduction.

Point location. Contrast-based selection

Rectangle Gauge

The placement of a rectangle gauge is defined by its nominal position (given by the coordinates of its center), its nominal size and its rotation angle.


Each side of a rectangle can have its own transition detection parameters, and can be set to active or inactive with the ActiveEdges property. When a side is active:

- setting the value of a parameter only applies to the currently active sides1.
- getting the value of a parameter yields a result only when the value of this property is the same for all active sides.
- only active sides are used for measurement and model fitting.

These rules allow to set different parameters for different sides, and measure parallel sides or a corner point instead of the whole rectangle. The four sides are denoted by letters "x", "y", "XX" and "YY" respectively.

Naming conventions for the sides of a rectangle gauge

Usage

Define and position the gauge, then use Measure to fit the lines. To obtain the rectangle properties, set ActualShape to **TRUE** to return the fitted line (**TRUE** value) (default is **FALSE**).

Alternatively, MeasuredRectangle provides the results as an ERectangle object.

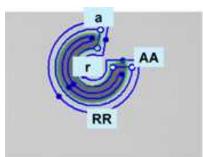
For instance, you can accurately locate the four corners (landmarks) of a rectangle using a rectangle fitting gauge.

6.25, 59.88)	المجريد وعاملا المالية	0 0	LICE STREET	(661.54, 61.3
		0.0		
100401				
-				
•				
	0.0.00			
1.1	0000		0.000	
. 40				- h h
	000.0			T
	0 0'0 0			
				ALC: NO PERCE
				 If a first state
1. V. (198				 A second s
				and the second second
100				
1.0	and the second se			
		- <u>-</u> -		
14.89, 601.81				(660 15, 603.2

Locating a rectangle's corners

Wedge gauge

The placement of a wedge gauge is defined by its nominal position (given by the coordinates of its center), its nominal inner and outer radius (inner and outer diameter), its breadth (difference between radii), the angular position from where it extends and its angular amplitude.

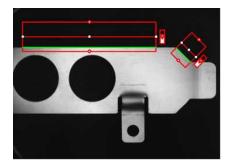

The Set member can distinguish between a full ring, a sector of a ring and a disk.

Each side of a wedge can have its own transition detection parameters and can be set to active or inactive with the ActiveEdges property. When a side is active, this means that:

- setting the value of a parameter only applies to the currently active sides;
- getting the value of a parameter yields a result only when the value of this parameter is the same for all active sides;
- only active sides are used for measurement and model fitting.

So different sides can have different parameters, and you can measure parallel arcs or oblique sides, or a corner point, instead of the whole wedge. The four sides are denoted by letters "a", "r", "AA" and "RR" respectively.

Naming conventions for the sides of a wedge gauge


Usage

Define and position the gauge, then use Measure to fit the lines. To obtain the wedge properties, set the ActualShape property to **TRUE** to return the fitted line (instead of the nominal line position **FALSE**, default).

Alternatively, MeasuredWedge provides the results as an EWedge object.

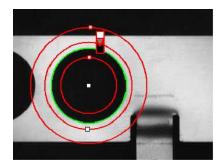
Line gauge

The placement of a line gauge is defined by its center coordinates, its length and its angle with respect to the X-axis. To constrain the line slope value, set Angle and KnownAngle.

Line fitting

Usage

Define and position the gauge, then use Measure to fit the lines. To obtain the line properties, set the ActualShape property to **TRUE** to return the fitted line (**TRUE** value) (instead of the nominal line position **FALSE** value, default).

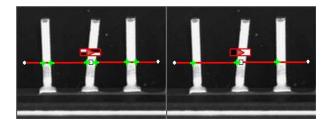

Alternatively, MeasuredLine provides the results as an ELine object.

Circle gauge

The placement of a circle gauge is defined by its nominal position (given by the coordinates of its center), its nominal diameter (or radius), the angular position from where it extends and its angular amplitude.

The Set member can distinguish between a full circle and an arc (the arc amplitude must be specified).

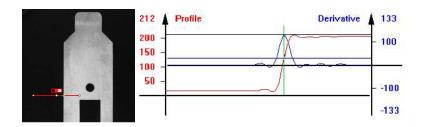
Circle fitting


Usage

Once the gauge has been defined and positioned, use Measure to trigger the circle fitting operation. To obtain the measurement results, set the ActualShape mode to TRUE. The ActualShape mode determines whether an inquiry returns the fitted circle (TRUE value) or the nominal circle position (FALSE value, default). The requested information is then retrieved by means of the circle properties.

Alternatively, MeasuredCircle provides the results as an ECircle object.

2.3. Find Transition Points Using Peak Analysis


Finds the position of all transition points along a line segment probe that crosses one or several objects edges, and allows selecting the most relevant ones. Crosswise and lengthwise filtering can be activated for noise reduction.

Point location. Contrast-based selection

Point Location principle

Point location principle (left) and S-shaped curve and its derivative (right)

On a linear profile extracted from an image, an edge appears as a transition from dark to light (or vice versa). When plotting pixel values along the gauge, this transition appears as an S-shaped curve. The first derivative of this curve exhibits a peak around the transition point. The better the contrast, the sharper the transition and the higher the peak.

EasyGauge extracts the pixel values along a profile (red curve) then uses peak analysis to determine the transition location. All the pixel values in the peak area1 are used to compute the transition location.

- Sub-pixel accuracy is only possible if the transition is surrounded by almost uniform regions of at least 2 pixels wide.
- BWB2 transitions have an increasing profile curve and the peak takes positive values. Otherwise, the curve decreases and the peak extends negatively.
- You cannot normally detect peaks using the default threshold value (20) as BWB or WBW transitions base the peak analysis on the gray level profile along the EPointGauge (or sample path) and not its first derivative.

EPointGauge contains all point measurement parameters, with default values that detect reasonably contrasted edges.

1Area between the derivative curve and a horizontal user-defined threshold level 2Black / White / Black

EPointGauge parameters

Center: Nominal point position (will normally be different before and after measurement). Tolerance: Tolerance value and gauge orientations.

TransitionType, TransitionChoice, TransitionIndex: Peak selection strategies.

Threshold: Noise immunity.

MinAmplitude, MinArea: Peak strength.

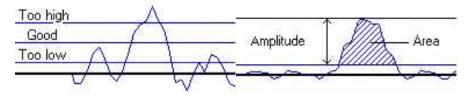
Thickness, Smoothing: Local filter widths.

RectangularSamplingArea Sets sampling area (rectangular by default) to transverse filtering mode. Measure: Measures the object.

- In single transition mode, Valid returns True when an appropriate point was found. To obtain measurement results, set ActualShape to True so that Center returns the located point. (False default value returns nominal point position).

- In multiple transition mode, NumMeasuredPoints returns the number of points found, GetMeasuredPoint returns an EPoint object which contains located point information.

An integer index between 0 and GetNumMeasuredPoints-1 must be passed.

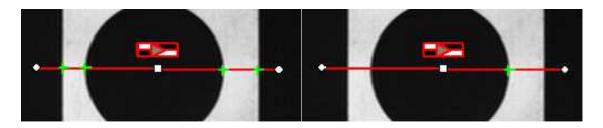

GetMeasuredPeak: Returns EPeak containing the peak's Area and Amplitude, and the delimiting coordinates along the probe segment (Start, Length and Center values).

Select Peaks to improve edge precision

The threshold level is very important:

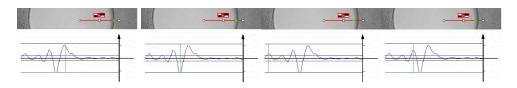
- Too high can cause significant peaks to be missed, and insufficient pixel values to achieve good precision.
- Too low can cause false peaks because of noise.

To resolve this dilemma, the EasyGauge peak selection mechanism can reject low contrast or false edges: transition strength is measured by peak *amplitude* and *area*. Every edge measurement determines peak amplitude and area. If either value falls below the minimum amplitude or minimum area, the peak is disregarded and no point is assumed at that location.

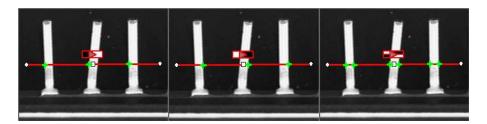


Threshold level selection (left) and Peak amplitude and area (right)

Multiple versus single transition


EasyGauge can measure several edge points in a single go and retrieve all results afterwards while in *multiple transition mode*.

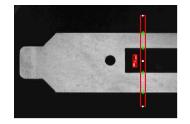
Multiple transition (left) versus single transition (right)


You can select the single most relevant transition based on 4 criteria: the highest peak, the peak with the largest area, the peak closest to the gauge center, or the N-th peak encountered starting from one tip of the gauge.

Best area (first image) and best amplitude choices (2nd image), closest (3rd image) and 3rd from the start (4th image)

Positive or negative peak selection

Peak selection can also be refined by choosing the transition polarity: White to Black or Black to White (i.e. positive or negative peak), or indifferent.

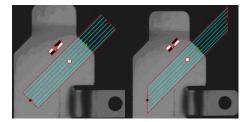

Black to white, white to black or indifferent polarities

Prefiltering

Prefiltering the image locally can reduce noise effects.

Transverse (lengthwise) filtering averages several parallel lines when sampling the image. Longitudinal (crosswise) uniform filtering can also be applied to the resulting profile curve.

Thick point gauge for filtering


Transverse Filtering

Transverse filtering places parallel line segments in either a parallelogram or a rectangle (default). This behavior can be toggled.

Parallelogram mode is faster than rectangular if the angle is close to 0° or 90°, or thickness is less than 5. If thickness=1, no difference exists between the two modes.

thickness determines the number of parallel lines.

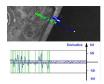
sampling area is the smallest region containing all the parallel line segments.

Rectangular sampling area (left) and Parallelogram sampling area (right)

Point Probe Position

The expected **nominal** position of a point gauge is specified by its **center**, orientation **angle** with respect to the X-axis, and length **tolerance** that the point position can vary.

The results are the coordinates of the located points (the **actual** location) and the strength of the transition (amplitude and area).


Low values indicate a weak edge, possibly corresponding to an unreliable or inaccurate measurement.

Tuning Point Measurement Parameters for unclear edges

The EasyGauge default parameters and working modes are good for clear edges. More complex situations may need parameter tuning.

1. Set the gauge point location and tolerance.

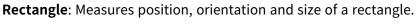
The center position and orientation are easy to decide based on a sample image or on coordinate considerations. The tolerance depends on the edge position variations. A larger tolerance increases the likelihood of hitting an edge, but it may be a false edge or extraneous feature.

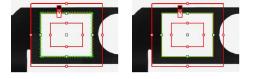
Decide whether noise reduction is required. Lay the gauge over the desired location and observe the profile curve and its derivative (play with the filtering parameters while looking at the plotted curve). The curve regularity gives an indication of the spread of the gray-level values.

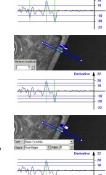
When these coefficients are set, the gray-level profile will not change anymore.

3. Set the threshold value to be low enough for useful parts of the peaks to cover enough pixels (to achieve better sub-pixel accuracy), but not lower than the ambient image noise.

4. Remove weak or false edges using the list of peak amplitudes and areas. Plotting these values along with good and extraneous peaks can help find appropriate peak rejection limits.

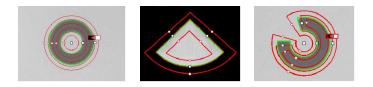

5. Choose whether all transition points are needed or just the most relevant. If all are required, they can be queried one after another. Otherwise, a point selection strategy should be chosen based on strength, order or transition polarity (black to white and/or conversely).


2.4. Find Shapes Using Geometric Models

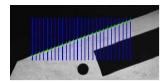

ELineGauge, ECircleGauge, ERectangleGauge, or EWedgeGauge predefined geometric models can be fit over the edges of an object. The targeted edge must be defined, and points sampled along it at regularly spaced point measurement gauges. Model fitting in the least square sense can be applied.

Line: Measures position and orientation of straight edges.

Circle: Measures position and curvature of a circle or arc.

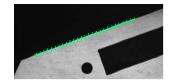


• Wedge: Measures position, orientation and size of a ring/ disk sector / curvilinear rectangle.


🕗 euresys

All gauge types share these common features:

Point sampling


- Point gauges are placed along the edges and point measurement carried out at regularly spaced spots, which can be adjusted differently per side in rectangle and wedge gauges. All point measurement parameters and operating modes are available.
- SamplingStep sets the spacing of point location gauges along the model.
- □ NumSamples returns the number of points sampled during the model fitting operation.

Sampling paths and sampled points

Model fitting

The model is adjusted to minimize error residue and provide the best edge parameter estimates. Rectangles and wedges have parallelism and concentricity constraints. Image shows sampled points and fitted line.

• Outlier rejection

- After model fitting, some points will be too far away from the fitted model and may harm location accuracy. EasyGauge can tag them as outliers to be ignored using the FilteringThreshold property.
- □ The outlier elimination process can be repeated several times using NumFilteringPasses. The number of valid sample points remaining after a model fitting operation is kept in NumValidSamples.

The average distance of these points to the fitted model is returned by AverageDistance.

2.5. Gauge Manipulation: Draw, Drag, Plot, Group

EasyGauge provides means to graphically interact with gauges to place and size them, combine them as a hierarchy of grouped items, and store/retrieve them and all working parameters to/from model files.

Draw

Draw gives a graphical representation of a gauge. Drawing is done with the current pen in the device context associated with the desired window. Depending on the operation, handles may be displayed.

Drag

An operator can drag a gauge interactively over an image. Several dragging handles are available.

- HitTest determines when the mouse cursor is over a handle. When it is, the cursor shape should be changed for feedback, and a drag can take place.
- Drag moves the handle and the corresponding gauge accordingly.

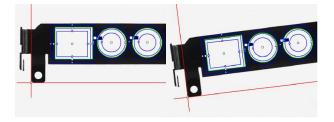
Plot

EasyGauge can **Plot** gray-level values along the sampled paths and/or its derivative - useful for parameter tuning.

Point measurement gauges can plot after calling Measure.

Model fitting gauges can plot after calling MeasureSample with an index argument that lies between **0** and **GetNumSamples-1** (included).

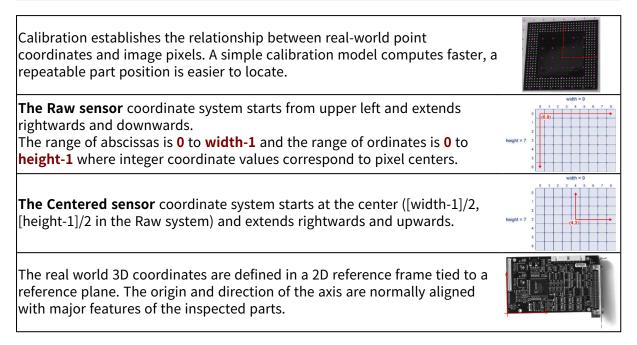
To view the corresponding sampling path, use the method Draw with mode **EDrawingMode_ SampledPath**.


Group

Measurement gauges can be grouped (their relative placement remains fixed) to form a dedicated tool that can be moved (translated and rotated) to follow the movement of inspected items / probes before computing measurements.

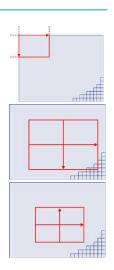
Attach associates a gauge to a mother gauge or EFrameShape object.

NumDaughters, GetDaughter, or Mother retrieves information relative to attached daughters or mother.


Detach, DetachDaughters dissociates the gauge or daughters from the mother.

2.6. Calibration and Transformation

Field-of-view calibration


Before World-to-Sensor Transform

Before converting from world to sensor coordinates, sources of distortion should be eliminated:

- adjust sweep frequency or scanning speed to avoid non-square pixels.
- adjust optical alignment to minimize perspective effect. The field of view should be parallel to the sensor plane.
- use long focal distances and good quality lenses to minimize Optical distortion.
- use appropriate scale factor based on lens magnification, observation distance and focusing.
- minimize skew and translation effects by secure fixtures, and part-movement / acquisition-triggering synchronization.

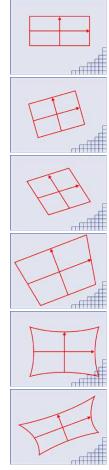
Effects of World-to-Sensor Transform

- No calibration. World and sensor coordinates are identical.
- **Translated calibration**: The coordinate origin can be moved. World coordinates correspond to pixel units.
- **Isotropic scaling** (square pixels). A scale factor converts pixel values to physical measurements.

- 📀 euresys
- Anisotropic scaling (non-square pixels). Uses two scale factors with pixel aspect ratio (X /Y) in the range [-4/3, -3/4] (or [3/4, 4/3]). Pixels are always displayed as square, so the image appears stretched.
- **Scaled and skewed** (square pixels). Real-world axis aligns with rotated inspected part using translation, rotation and scaling.
- **Scaled and skewed** (non-square pixels). Distortion is apparent. Occurs when camera scan speed does not match pixel spacing.
- **Perspective distortion** causes further away objects to look smaller; lines remain straight but angles are not preserved.
- Optical distortion causes cushion or barrel appearance of rectangles.
- **Combined distortions** result in a complex, non linear, transform from realworld to sensor spaces.

2.7. Calibration Using EWorldShape

The EWorldShape object can calibrate the whole field of view (in given imaging conditions with fixed camera placement and lens magnification), if the optical setup is modified. EWorldShape computes appropriate calibration coefficients and transforms measurement gauges


that are tied to it.

It can set world-to-sensor transform parameters, perform conversions from and to either coordinate system, determine unknown calibration parameters, and save the parameters of a given transform for later reuse.

After calibration EWorldShape can perform coordinate transform for arbitrary points using SensorToWorld and WorldToSensor to:

- measure non-square pixels and rotated coordinate axis.
- correct perspective and optical distortion, with no performance loss.

There are several ways to obtain the calibration coefficients:

Estimate (feasible if no distortion correction is required and accuracy requirements are low)

To estimate the calibration coefficients either locate the limits of the field of view and divide the image resolution by the field of view size, or use the following procedure:

- **1.** Take a picture of the part to be inspected or a calibration target (e.g. rectangle).
- 2. Locate feature points such as corners in the image (by the eye) and determine their coordinates in pixel units —let (i,j).
- 3. Use the Euclidean distance formula to derive the calibration coefficient: $c = \frac{\sqrt{(i_{k} i_{0})^{2} + (j_{k} j_{0})^{2}}}{p}$ where C is a calibration coefficient, in pixels per unit, and D is the world distance between the corresponding points, in units.
- 4. For non-square pixels repeat this operation for pairs of horizontal and vertical points.

To estimate a skew angle, apply this formula to two points on the X-axis in the world system: $\theta = \arctan \frac{\mathbf{j}_{1} - \mathbf{j}_{0}}{\mathbf{j}_{1} - \mathbf{j}_{0}}$

Estimating scale factors and skew angle

When the calibration coefficients are available, use SetSensor to adjust them and set the calibration mode, or set them individually using: SetSensorSize, SetFieldSize, SetResolution, SetCenter, SetAngle.

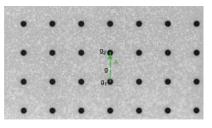
Pass a set of reference points (landmarks) to a calibration function

Locate at least 4 landmarks and obtain their coordinates in sensor (using image processing) and world coordinate systems (actual measurements). More landmarks give more accurate calibration.

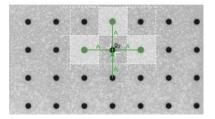
The resulting pixels aspect ratio (X resolution / Y resolution) must be in the range [-4/3, -3/4] (or [3/4, 4/3]).

Use the method EWorldShape::AddLandmark to add reference points, then use EWorldShape::AutoCalibrateLandmarks to calculate the calibration.

Analyze a Calibration target


A calibration target can be automatically analyzed to get an appropriate set of landmarks. It is an easy way to achieve automatic calibration, provided an appropriate procedure is available to extract the desired landmark point coordinates.

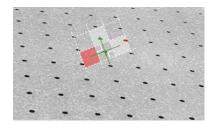
Open eVision relies on the use of a specific target holding a rectangular grid of symmetrical dots (of any shape) with no other object on the grid.


Dot Grid based calibration example

- 1. Grab an image of the calibration target in such a way that it covers the whole field of view (or restricts the image of view to an ROI where only dots are visible).
- 2. Apply blob analysis to extract the coordinates of the centers of the dots, as can be done by EasyObject.
- 3. Pass all points detected to AddPoint (sensor coordinates only).
- **4.** Call RebuildGrid to reconstruct a grid to calibrate a field of view using an iterative algorithm which computes the world coordinates of each dot.
 - **a.** The grid points nearest to the gravity center (g) of grid points are selected (g_1 and g_2) to form the first reference oriented segment, of length A.

b. Starting from the extremity of the reference segment (g_2) , the algorithm determines 3 tolerance areas (white squares in the figure), in perpendicular directions. The tolerance areas are centered at a distance A (length of the reference segment) from (g_2) . They are square, with a side-length of A.

The algorithm searches for 1 neighboring point, in each of the 3 tolerance areas. The grid will be correctly calibrated if each tolerance area contains a neighboring point.


c. The 3 perpendicular segments are the references of the next iterative searches. The algorithm goes back to step 2.

5. Call Calibrate.

If the grid exhibits too much distortion, grid reconstruction does not work as expected. The following errors could happen:

- 1. A tolerance area does not contain a neighboring point (red square in the figure).
- 2. A tolerance area contains more than one neighboring point.
- **3.** The point in the tolerance area is not the correct one. For instance, the point might be diagonally connected (red point in the figure).

TIP

Use the method EWorldShape::AutoCalibrateDotGrid to automatically perform the process above.

2.8. Advanced Features

The field-of-view calibration model can be tuned using these parameters:

Sensor width and height

The sensor width and sensor height give the logical image size, in pixels (always integers).

Field-of-view width and height

The field-of-view (f-o-v) width and height give the actual image size, in length units, i.e. the size of the rectangle corresponding to the image edges in the world space. These values are related to the pixel resolution by the following equations:

f-o-v width = pixel width * sensor width f-o-v height = pixel height * sensor height

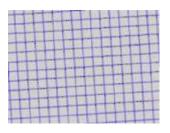
or

sensor width = f-o-v width * horizontal resolution sensor height = f-o-v height * vertical resolution

By default pixel height is not specified, the pixels are assumed to be square (pixel width = pixel height).

Ratio

		-	_	-			_			-			_	
1.1		12	1		-	4			0	24		111		
-	-	-	-		-	-		-	-	-	-	-	-	
	-													-
-														
										÷ir,			10	-
												_		
	S. Della	2	2			1								
		-						2						-
	-							2	-	10			-	
-	-													-

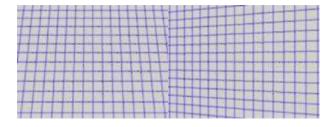

Anisotropic aspect ratio

Center abscissa and ordinate

The center abscissa (x) and ordinate (y) indicate the image origin point (world coordinates (0,0)). Default is the image center.

Skew angle

The skew angle is the angle formed by the real-world reference frame (X-axis) and the image edge (horizontal). The default is no skew.

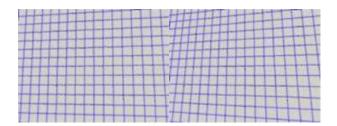

Skew angle

NOTE

When the pixels are not square, the EWorldShape object can convert the angle between the world and sensor spaces.

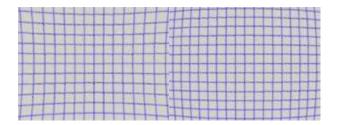
X and Y tilt angles

The X and Y tilt angles describe the viewing plane direction. They correspond to the required rotations around X and Y axis that bring the Z axis parallel to the optical axis.



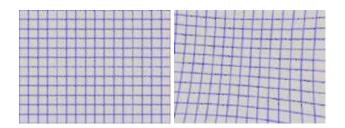
Tilt X and tilt Y angles

Perspective strength


The perspective strength gives a relative measure of the perspective effect. The shorter the focal length, the larger the value.

Weak and strong perspective

Distortion strength


Distortion strength gives a relative measure of radial distortion in the image corners, that is the ratio of image diagonal length with and without distortion.

Positive and negative distortion

Calibration mode, expressed as a combination of options, can be accessed via CalibrationModes.

Effect of the Calibration Coefficients

No calibration coefficient: All coefficients combined.

2.9. Unwarp an Image

An **EWorldShape** object manages a field-of-view calibration context. Such an object is able to represent the relationship between world coordinates (physical units) and sensor coordinates (pixels), and account for the distortions inherent in the image formation process.

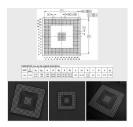
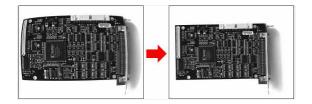


Image calibration is an important process in quantitative measurement applications. It establishes the relation between the location of points in an image (pixel indices) and the actual positions of those points in the real world, on the inspected item.

Calibration can be setup by providing explicit calibration parameters of the calibration model, or a set of known points (landmarks), or a calibration target.


The goal of calibration is twofold:

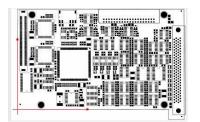
• To gain independence with respect to the viewing conditions (part placement in the field of view, lens magnification, sensor resolution, ...), letting you describe the inspected item once for all using absolute measurements.

Single model versus multiple viewing conditions

• To correct some distortion related to the imaging process (perspective effect, optical aberrations, ...).

Removal of image distortion

The pixel indices in an image are usually integer numbers, but fractional values can occur when using sub-pixel methods. They are normally obtained by processing an image and locating known feature points. These values are called sensor coordinates.


Feature point in sensor space

The world coordinates describe the location of points on the inspected item are expressed in an appropriate length measurement unit.

The world coordinates are actual dimensions, usually gathered from design drawings or by mechanical measurements.

They require a reference frame to be defined.

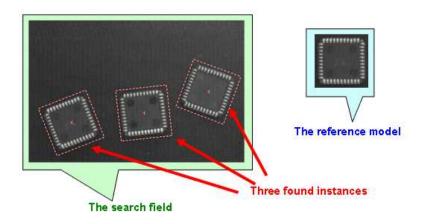
Reference frame in world space

Unwarp

Unwarp an image using Unwarp, SetupUnwarp and UnwarpAfterSetup. Using a lookup table before unwarping may speed up the process.

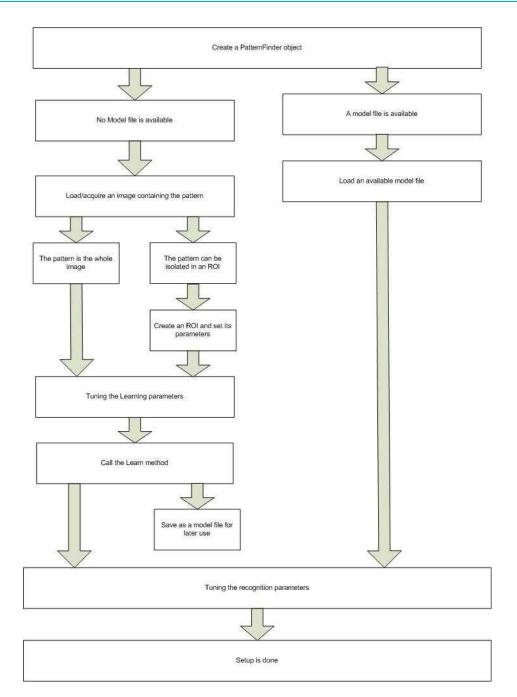
							•	•		•	٠	•	•	•	•	•	•	•	•
						•	•	٠		٠	٠	•	•	٠	•	•	•	•	
•			•		•		•	•	•	٠	•	•	•		•		٠	•	
•	•	•			•	•	•	•	•	٠	•	•	•	•	•	•	•		•
•	•	•	•	•	•	•	•	•	•							•			
•	•		•	•	٠	•	•	•	•	•	•	•	•	•	٠	•	•	•	
•	•	•	•		•	•	•	•	•		•	•	•		•	•	•		•
•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•		
•	•						•												

Distorted vs. Unwarped image

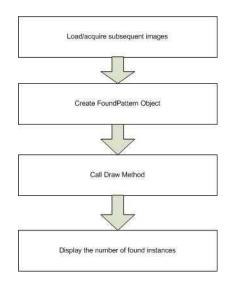


3. EasyFind - Matching Geometric Patterns

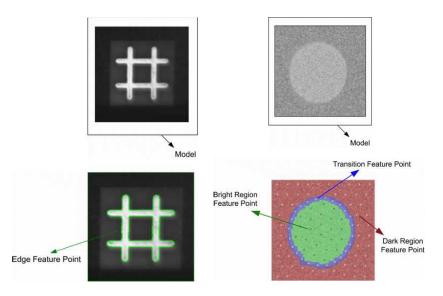
3.1. Workflow


EasyFind learns a reference model from a pattern, which is used to find similar patterns in other images and retrieve information about these instances.

It is quick and robust, and very tolerant of noise, blur, occlusion, missing parts and changes in illumination.



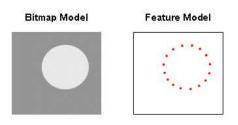
Workflow



Feature points definition

A feature point is a pair of coordinates (X, Y) and a type (Edge, Transition or Region).

EasyFind uses feature points to find instances in a search field.



- **Edge feature points**: an abrupt change of gray level between two regions indicates an edge at this location in the search fields.
- **Transition feature points**: a smooth change of gray level between two regions indicates a transition area in their neighborhood (represented by dots in the blue area of the example above). The size of the neighborhood can be modified.
- **Region feature points**: identify 2 regions of roughly uniform gray levels:
 - □ dark region (represented by a family of dots in the red area of the example above),
 - bright region (represented by a family of dots in the green area).

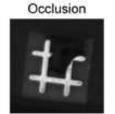
3.2. Learning Process

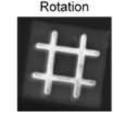
EasyFind supports various pattern types (Consistent edges or Thin structures). During the learning process, EasyFind computes for itself a feature model which is a set of all extracted feature points from a bitmap representation of the pattern.

EasyFind only needs this feature model to start the finding function, but you can create your own optimal model.

The optimal model depends on the type of pattern being searched for.

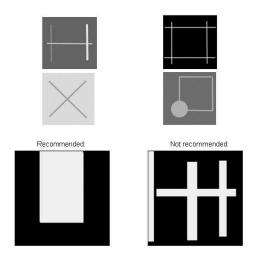
Consistent Edges


Models must be well contrasted with sharp edges. They should be substantially different from the rest of the expected search fields. Can be scaled or rotated, very robust to: blurring, noise, occlusion, illumination variation (point-by-point scores improves robustness and computation time of the finding phase).


Good for models with consistent edges, sharp contrast transitions, regions delineated by well defined edges that are in approximately the same place for each instance in all search fields.

Choose the similar points with EPatternFinder::ContrastMode property:

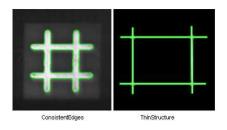
- PointByPointNormal: if points share the same contrast polarity.
- PointbyPointInverse: if points exhibit opposite contrast polarity.
- DepintByPointAny: regardless of their respective contrast polarity.



Thin Structures (defined by edge feature points)

Can be scaled or rotated, robust to: blurring, noise, occlusion, illumination variation. Edges must be consistent between thin elements and regions, and the contrast should be the same for each thin element.

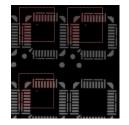
Good for models containing thin elements.



Check the Learned model is correct

EasyFind can draw the extracted feature points on the model using the DrawModel method of the PatternFinder object.

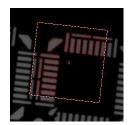
On the examples, edge feature points appear as green points for Consistent Edges and Thin Structures.



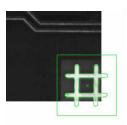
3.3. Finding Process

You can optimize the finding process by setting and saving some parameters in a configuration file. You simply load this file and run to see what EasyFind has found in the reported information.

Maximum number of expected instances


Set the maximum number of instances that EasyFind should return. In this example the number was three.

Angles and scales (thin structure and consistent edges pattern types)

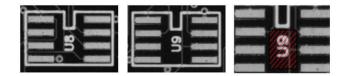

Ranges have a bias and a tolerance. For instance, for an angle bias of 20° and an angle tolerance of 5°, EasyFind returns instances with an angle between 15° and 25° with respect to the learned model (20° \pm 5°).

3.4. Advanced Features

Find partial patterns

EasyFind can locate instances of thin structures and consistent edges that are partially out of the search field, if the extension of the search field is set to > 0 pixels.

Tune Parameters

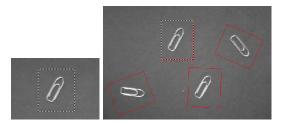

These parameters can be tuned for all models:

- Adjust the Light Balance using model drawing to preview the model so that it fits the useful parts of the pattern, then learn the model again.
- □ Set the gray-level threshold (this overrides light balancing) and learn the model again.
- Move the pivot to a specific place in the model like a corner or a hole. The pivot is the location returned by EasyFind when it finds an instance (the center by default).

□ **Ignored areas**. Zero values indicate ignored areas. 255 values indicate areas taken into account. For example: If the text in the center of the model differs from the instance, you can indicate that EasyFind must not extract feature points from this part of the model.

- Thin Structures may benefit from tuning these parameters:
 - Automatic (thin elements with the same contrast between them and their neighboring regions)
 - D Thin elements darker than the neighborhood
 - D Thin elements brighter than the neighborhood

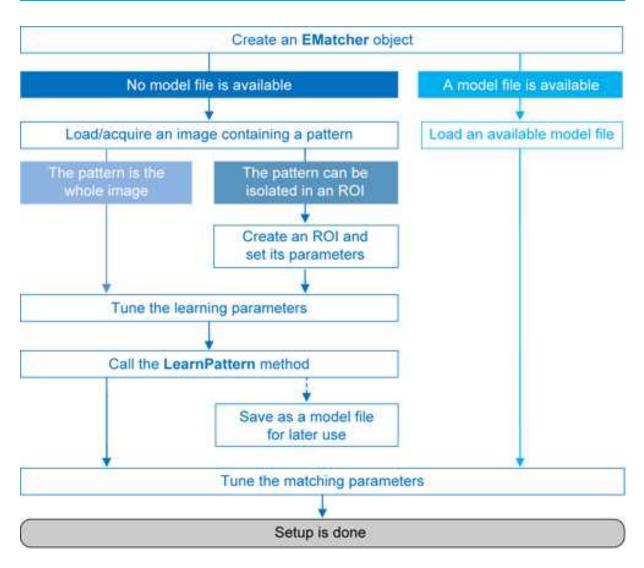
4. EasyMatch - Matching Area Patterns

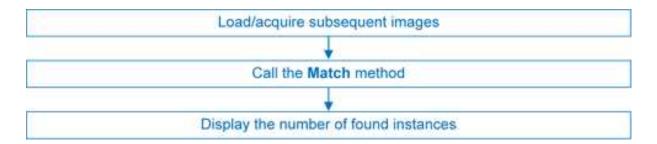

4.1. Workflow

EasyMatch

Reference

EasyMatch learns a pattern and finds exact matches:


- The pattern is learned by defining an ROI that contains the object to be matched. This ROI is created after iteratively learning from several images which contain the object.
- 2. The parameters are tuned to ensure the pattern is found reliably.
- **3.** Images can now be searched for one or more occurrences of the pattern, which may be translated, rotated or scaled.


Learning and Matching a pattern

Learning workflow

Matching workflow

4.2. Learning Process

Select an image containing the pattern/ROI to be searched for and call LearnPattern. Pass an arbitrary shaped region of interest (ERegion) to ignore the pixels outside of this region.

The resulting pattern can be saved as a model for later use. You can repeat this process to search for and save multiple patterns.

Best pattern characteristics

- **repeatable**, you need to know if it can translate or rotate or scale.
- represent the object to be located.

It should:

- □ Keep the same appearance whatever the lighting conditions.
- Remain at a fixed location with respect to the part.
- Be rigid and not change shape.
- **exhibit good contrast in small and large scale.** It should be distinctly visible from a distance, and on a reduced image.
- **not be invariant under the degrees of freedom to be measured.** For instance, a pattern of black and white horizontal stripes cannot detect horizontal translation; a cog wheel cannot help measure large rotations.
- have a neutral background. If objects around the pattern in the ROI may change, this area should be neutralized by means of "don't care" pixels or a mask.
- have contrasted margin around the objects so that foreground and background intensities are seen.

Customize Parameters

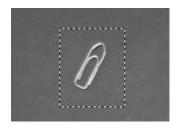
Parameters can be tuned to minimize processing time, but it still takes longer than EasyFind as the entire selected area is matched.

• DontCareThreshold: If don't care areas are required, the corresponding pixels must hold a value below the DontCareThreshold.

If all the background can be ignored, merely adjusting the DontCareThreshold to the right thresholding value can do.

Otherwise, when the don't care area is unrelated to the threshold pattern image, the DontCareThreshold should be set to 1 and all pixels belonging to the don't care area should be set to black (value 0).

Alternatively, pass an arbitrary shaped region of interest (ERegion) to ignore the pixels outside of this region. It is equivalent to setting all pixels outside of the region to black and having a DontCareThreshold set to 1.


• MinReducedArea: To improve time performance, EasyMatch sub-samples the pattern. This parameter stipulates the minimum size of the pattern (as its area in pixels) during sub-sampling. The smaller the value, the faster the matching process, but, set too low, it decreases the matching process reliability.

The value of MinReducedArea is computed automatically if AdvancedLearning is enabled (default behavior). Setting explicitly MinReducedArea will disable AdvancedLearning. A value of 64 is usually a good compromise.

• AdvancedLearning: If the pattern is defined as a ROI of an image, AdvancedLearning optimizes learning parameters, such as MinReducedArea, by using the whole image context. AdvancedLearning is enabled by default, as it leads to better results in case of tiled or periodic images. If MinReducedArea is set explicitly, AdvancedLearning is disabled. Please note that as AdvancedLearning changes the number of pixels in the pattern, it can have a significant impact on the matching process duration.

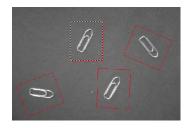
• FilteringMode: If the image has sharp gray-level transitions, it is better to choose a low-pass kernel instead of the usual uniform kernel.

Learning a pattern

4.3. Matching Process

For each new image, one or more occurrences of the pattern is searched for, allowing it to translate, rotate or scale, using a single function call:

Match: receives the target image/ROI as its argument and locates the desired occurrences of the pattern. You can pass an arbitrary shaped region of interest (ERegion) to ignore the pixels located outside of this region.


You can set these parameters:

- □ Rotation range: MinAngle, MaxAngle.
- □ Scaling range: MinScale, MaxScale.
- □ Anisotropic scaling range: MinScaleX, MaxScaleX, MinScaleY, MaxScaleY.

The following functions return the result of the matching:

- NumPositions returns the number of good matches found. A good match is defined as having a score higher than prescribed value (the MinScore threshold value).
- GetPosition returns the coordinates of the N-th good match. The positions are sorted by decreasing score.

If you want to match several patterns against the same image, create an EMatcher object for each pattern.

Matching a pattern

4.4. Advanced Features

The best way to speed up this process is to minimize rotation and scaling, and limit the number of occurrences searched for.

• Learning time:

- Optimize number of searches: Searching all positions takes too long, so a sequence of searches is performed at various scales (reductions). The coarsest reduction is quick and approximate. Subsequent reductions work in a close neighborhood to improve location, drastically reducing the number of positions to be tried. The location accuracy is given by 2^K, where K is the reduction number.
- □ MinReducedArea. Indicates how small the pattern can be made for rough location.
- Matching time:
 - Correlation mode (way to compare the pattern and the image): CorrelationMode. Can be standard, offset-normalized, gain-normalized and fully normalized: the correlation is computed on continuous tone values. Normalization copes with variable light conditions, automatically adjusting the contrast and/or intensity of the pattern before comparison.
 - Contrast mode (way to deal with contrast inversions): ContrastMode. Lighting effects can cause an object to appear with inverted contrast, you can choose whether to keep inverted instances or not, and whether to match positive occurrences only, negative occurrences only or both.
 - Maximum positions (expected number of matches): MaxPositions, MaxInitialPositions. You can compel EasyMatch to consider more instances than needed at the coarse stage using the MaxInitialPositions parameter (this number is progressively reduced to reach MaxPositions in the final stage).
 - Minimum score (under which match is considered as false and is discarded): MinScore, InitialMinScore.
 - Sub-pixel accuracy: Interpolate. The accuracy with which the pattern is measured can be chosen (the less accurate, the faster). By default, the position parameters for each degree of freedom are computed with a precision of a pixel. Lower precision can be enforced. One tenth-of-a-pixel accuracy can be achieved.
 - Number of reduction steps: FinalReduction. Can speed up matching when coarse location is sufficient, range [0...NumReductions-1].
 - Non-square pixels: GetPixelDimensions, SetPixelDimensions. When images are acquired with non-square pixels, rotated objects appear skewed. Taking the pixel aspect ratio into account can compensate for this effect.
 - "Don't care" pixels (ignored for correlation score) below the DontCareThreshold value. When the pattern is inscribed in a rectangular ROI, some parts of the ROI can be ignored by setting the pixels values below a threshold level. The same feature can be used if parts of the template change from sample to sample.

5. EChecker2 - Validating Golden Templates

5.1. EChecker2

- EChecker2 is a tool that allows to inspect an image using a Golden Template validation. It works in 2 steps:
 - a. The *Model Creation* involves pre-processing a set of reference images to compute a model.

You can create the model once and archive the results in a Golden Template model for later use.

b. The *Inspection* involves processing an image and checking its quality using the previously computed model.

These 2 operations are totally independent and can even be programmed in separate applications.

- EChecker2 is part of the EasyObject library.
- The following sections present the relevant API functions for use in the training and inspection steps.

EChecker2 vs. EChecker

- EChecker2 supersedes the original EChecker:
 - It expands EChecker with an up-to-date API.
 - It adds the possibility to use geometrical pattern matching and a flexible number of fiducials.
 - It works with the newer ECodedImage2.
 - □ It only requires the EasyObject license.
- For all these reasons, the original EChecker is now considered legacy and deprecated.

5.2. Creating a Model

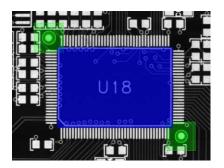
During the model creation phase, the good images are processed to build the model that is used in the inspection phase. The model includes the pixel acceptance ranges, in the form of 2 threshold images, as well as the information needed to realign and normalize the images.

To create a model, 2 operations are performed: initialization and training.

Initialization

- The initialization of the model creation process is done on a specific image, called the reference.
- On this reference, the following information are defined or computed:
 - The global gray level metrics are computed as reference for the normalization process.
 It is thus very important that the reference image is well lit and contrasted.
 - One or more ERegions are placed to define the location patterns (fiducial marks or landmarks).

The location of these patterns is used as reference in the realignment process.


TIP

- If you use only 1 pattern, the only transformation handled is the translation.

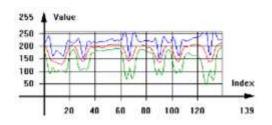
- With 2 or more patterns, the scaling and the rotation are also processed.

- As per Open eVision 2.15, you can only use either 1 or 2 regions.
- The possibility to use more regions will be added in the future.
- An ERegion is defined to delimit the area to be inspected.
 This area should only include pixels of the rigid part (that moves with the fiducial marks), and not the background.
- To perform the initialization, use the method EChecker2::Initialize.

Initialization: the fiducial regions and tolerances (green) and the inspection region (blue)

Training

- After the initialization, the main training phase begins.
 - All the training images are processed and are averaged using statistical training (see below).
 - The training uses realignment to deal with displacement of the inspected part in the field of view.
 - □ The training uses gray-level normalization to deal with global illumination changes.
- Ideally, use 16 images or more in training to create the low and high threshold images that serve as the basis of the inspection process.



- To perform the training:
 - □ Use the method EChecker2::Train with class instances.
 - □ Use the method EChecker2::TrainFromImageFiles with a list of image files.

Statistical training

- Use several training images to optimize the assessment of normal gray-level variations and acceptance intervals:
 - Consecutive images of the same part without any change (static test) generates a graylevel distribution that corresponds to the noise distribution.
 - Consecutive images of different defect-free parts reveal variations due to the parts themselves (as opposed to defects).

Accepted gray-level ranges

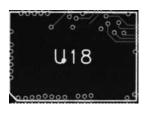
Model creation parameters

- Choose the TrainingMode to fit your needs:
 - Quick for a quick training process and simpler cases (well defined defects and stable illumination).
 - Precise for more difficult cases.
 - Default: Precise mode.
- Set NormalizationMode to select the type of normalization used by EChecker2:
 - Moments: linear.
 - **Threshold:** non-linear.
 - NoNormalization: if your acquisition process already produces consistently lit images.
 - Default: Moments.
- Choose the FiducialMatchingMode to define the search of the fiducials inside the processed images:
 - Geometric for well-defined fiducials that can potentially suffer from occlusion.
 - Area for less-well defined fiducials.
 - Default: Geometric.

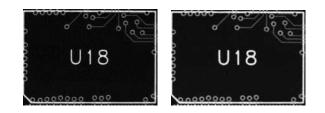
- Set FiducialHorizontalTolerance and FiducialVerticalTolerance to adjust the search distance for the fiducials from the reference position (after realignment).
 Default: 30 pixels.
- Set InspectionTolerance to adjust the acceptance ranges during the inspection.
 Use higher values to make the inspection process more tolerant to noise and/or texture.

All these parameters have an influence on how the model is built, and, as such, if any of these parameters is changed, you must restart the model creation.

Model serialization


• After the training, use the methods EChecker2::Save and EChecker2::Load you can save the created model in a single file including all the relevant information and to retrieved it.

5.3. Inspecting an Image


• Use the inspection on an image to assess it towards the trained model.

The process is straightforward:

- a. The sample image is realigned with the model.
- **b.** The gray-level is normalized.
- **c.** This gray-level is combined with the high and low threshold images to populate an ECodedImage2.
- **d.** The computed blobs are made of pixels that fall out of the range defined by the threshold images and thus represent potential defects.

The realigned Image

The low and high threshold images

Open eVision User Guide PART III Matching and Measurement Tools

Detected defects after inspection

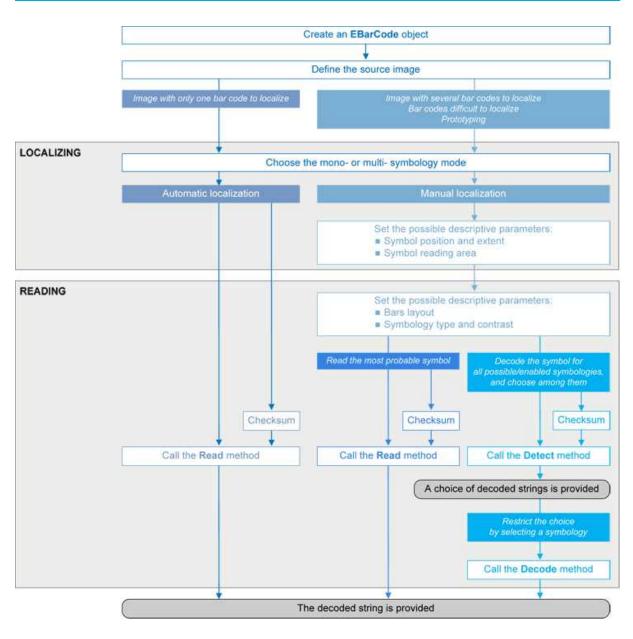
- When the inspection is done, you can discard the smaller defects (usually noise), as well as measure the geometric characteristics (location, size, orientation...) using the standard EasyObject2 processes.
- To perform the inspection, use the method <a>EChecker2::Inspect.

PART IV TEXT AND CODE READING TOOLS

1. EasyBarCode - Reading Bar Codes

1.1. Reading Bar Codes

Reference | Code Snippets


Bar code (EAN 13 symbology)

EasyBarCode can locate and read bar codes automatically.

Location can be performed manually for prototyping or when automatic mode results are unsatisfactory.

Workflow

Bar code definition

A bar code is a 2D pattern of parallel bars and spaces of varying thickness that represents a character string. It is arranged according to an encoding convention (**symbology**) that specifies the character set and encoding rules.

- The bar code may be black ink on white background or inversely white ink on black background.
- The bar code should be preceded and followed by a quiet zone of at least ten times the module width (smallest bar or space thickness).
- Bars should be surrounded below and above by a quiet zone of a few pixels.
- Bars and spaces widths must be greater than or equal to 2 pixels.

symbologies

A symbology defines the way a bar code is encoded.

Symbologies can be enabled in StandardSymbologies or AdditionalSymbologies parameters.

The standard symbologies are enabled by default:

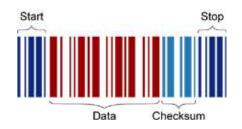
- Code 39
- Code 128
- Code 2/5 5 Interleaved
- Codabar
- EAN 13*
- EAN 128
- MSI
- UPC A*
- UPC E

NOTE

* EAN 13 and UPC A only differ by the layout of surrounding digits.

Additional symbologies that are supported:

- ADS Anker
- Binary code
- Code 11
- Code 13
- Code 32
- Code 39 Extended (a super-set of Code 39)
- Code 39 Reduced (a subset of Code 39)
- Code 93
- Code 93 Extended
- Code 412 SEMI
- Code 2/5 3 Bars Datalogic
- Code 2/5 3 Bars Matrix
- Code 2/5 5 Bars IATA
- Code 2/5 5 Bars Industry
- Code 2/5 5 Compressed
- Code 2/5 5 Inverted
- Code BCD Matrix
- Code C.I.P
- Code STK
- EAN 8
- IBM Delta Distance A
- Plessey
- Telepen


Checksum

A checksum character enables the reader to check the barcode validity depending on the symbology:

- The checksum may be mandatory and must be checked by the reader.
- The checksum may be mandatory but may not need to be checked.
- The checksum and its verification may both be optional.

VerifyChecksum enables or disables (default) checksum verification.

Read a bar code

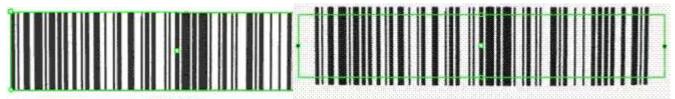
The **Automatic** mode reading algorithm locates a bar code in the field of view and Reads it. If several bar codes are present, only one is located, like a straightforward hand-held bar code reader.

Before reading, the decoding symbologies must be specified in the StandardSymbologies, or AdditionalSymbologies properties.

Mono-symbology mode reads the bar code using the expected symbology type(s) and reports the encoded information (if readable) or the reason for failure (if not readable). There is only one interpretation for the character string.

Decoded bar code

Note: When the bar code contains \0x00 characters, the std::string::c_str method should not be used (since C-strings are terminated by the \0x00 character). An iterator over the characters should be used instead of a C-string.


Advanced features

Locate and Read bar code manually

If automatic localization fails or for prototyping purposes, the user can provide the **bar code position** and **reading area** to manually locate the code.

- **Bar code position** can be provided graphically by a bounding box around the bar code or by its parameters. If several symbols appear in the image, they can be processed one after the other.
- The **reading area** of the bar code is the area that is read. It should be wider than the bar code bounding box width, and less high than the bar code bounding box height. It may also be rotated relatively to the bar code bounding box, to take into account slanting bars (Advanced mode!).

EAN 128 (With Application Identifiers) EAN 128

(With Application Identifiers)

Bounding box — graphical appearance (manual location)

Reading area — graphical appearance (manual location)

Read all interpretations (multi-symbology mode)

Use Detect to report the number of possible symbologies in the NumEnabledSymbologies property, and list the data contents by decreasing likeliness.

Then call the Decode method in a loop, using GetDecodedSymbology to walk through the list of successful symbologies in decreasing order of likelihood.

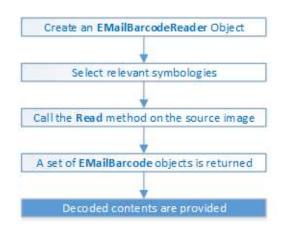
1.2. Reading Mail Bar Codes

Reference | Code Snippets

223-0057-472 223-0007-472
Postal Code : 223-0057
Address : 472 223-0057 新羽町472

իկներերերերերերերերություններություններ

Mail bar code example


Specifications

The Mail Bar code Reader:

- Detects and decodes postal 4-state bar codes.
- Supports multiple mail bar codes in an image.
- Supports various symbologies.
- □ Supports the 4 main bar code orientations, with a tolerance of 3°.
- Detects bars that are at least 3 pixels wide.

Workflow

4-state bar codes

A 4-state bar code is a special kind of bar code where data is encoded on the height and position of the bars rather than their width.

Each bar can have one of 4 possible states:

- Short and centered
- Medium and elevated
- Medium and lowered
- Full height

Mail bar code symbologies

The symbology of a mail bar code specifies how to decode the bar code and how to interpret its contents.

Every country uses its own flavor of mail bar code, or symbology. Some countries, like the US, even use multiple symbologies.

As of now, the Open eVision Mail Bar code Reader supports the following symbologies:

- US: PLANET, POSTNET and Intelligent Mail
- Japan: Japan Post

Mail bar code orientation

The Open eVision Mail Bar code Reader is designed to be used in mail-handling machines. As such it is optimized to handle the 4 main orientations you encounter in such machines:

- □ No Rotation: The mail barcode is horizontal and read from left to right
- Rotated 90° to the right: The mail barcode is vertical and read from top to bottom
- □ Rotated 90° to the left: The mail barcode is vertical and read from bottom to top

□ Rotated 180°: The mail barcode is upside down, horizontal, and read from right to left.

For each of these orientations, an additional rotation of -3 to 3 degrees is allowed.

Checksum

Some symbologies specify the presence of a checksum in the bar code data.

This checksum is an additional character computed from all others encoded characters. It enables the reader to check the decoded character string coherence.

- The Mail Bar code Reader allows the user to verify or not the checksum for all enabled symbologies.
- By default, checksum is not controlled.
- To enable or disable checksum verification for all enabled symbologies, set the ValidateChecksum property.

Reading the mail bar codes in an image

To read all the mail barcodes in a given image:

- 1. Create an EMailBarcodeReader object.
- 2. Optionally, select the relevant symbologies using the ExpectedSymbologies property.

By default, Mail Bar code Reader will consider all supported symbologies.

3. Optionally, select the relevant orientations using the ExpectedOrientations property.

By default, Mail Bar code Reader will test all supported orientations.

4. Call Read on the source image or ROI.

Each mail bar code detected is returned as an EMailBarcode object.

- 5. Each EMailBarcode objects contains the following information:
 - □ The decoded string, using the Text property.
 - □ The decoded string, split up in semantic parts, using the ComponentStrings property.
 - □ The bar code orientation, using the **Orientation** property.
 - □ The bar code position, using the Position property.

US Intelligent Mail bar code with highlighted position and decoded information

Advanced parameters

The advanced parameters of the EMailBarcodeReader object are:

• EnableDottedBarcodes activates the support for dotted barcodes (barcodes whose bars are printed with dots).

By default, this property is set to false.

Dotted Mail Barcode

• EnableClutteredBarcodes activates the support for cluttered barcodes (barcodes in which some bars are connected).

By default, this property is set to true.

ԽՈՎովելի (իկիլ) (իկիլ) (իկիլին և հեղենդեպես հեղենյիլ)

Cluttered Mail Barcode

• ValidateChecksum activates the validation of the bar codes checksums, if present. By default, this property is set to false.

2. EasyMatrixCode - Reading Matrix Codes

2.1. EasyMatrixCode vs EasyMatrixCode2

Reference | Code Snippets

Starting with release 2.5, Open eVision introduces a new data matrix code reading class, named EasyMatrixCode2.


Compared to EasyMatrixCode, it offers the following benefits:

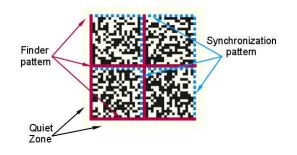
- Ability to read multiple data matrix codes in an image.
- Support for asynchronous processing.
- Improved consistency of reading and grading results.
- Improved consistency of processing time.
- Improved handling of deformed data matrix codes.

2.2. EasyMatrixCode

Specifications

Reference | Code Snippets

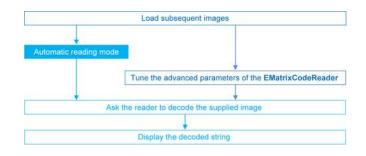
ECC 200, 26x26 cells data matrix code (left) and finder pattern (right)


In a single read operation, EasyMatrixCode locates, unscrambles, decodes, reads and grades the quality of grayscale 2D data matrix codes of any size, contrast, location and orientation (even viewed from the back on a transparent medium), providing they meet the following specifications:

- Minimum cell (= module) size: 3x3 pixels
- Maximum stretching ratio (ratio between cell width and height): 2
- D Minimum quiet zone (blank zone around the matrix code) width: 3 pixels

Data Matrix Code Definition

- A data matrix code is a two-dimensional rectangular array of black and white cells which conveys a string of characters (digits, letters and special characters).
 - It is encoded to achieve maximum packing.
 - Each cell corresponds to a bit of information.
 - Additional redundant bits allow error correction for robust reading of degraded symbols.
- A data matrix code is located using the **Finder pattern**:
 - □ The bottom and left edges of a Data Matrix code contain only black cells.
 - The top and right edges have alternating cells.


- A data matrix code is characterized by:
 - □ Its logical size (number of cells).
 - Its encoding type: ECC 000 (odd symbol sizes, deprecated) or ECC 200 (even symbol sizes)..

ΝΟΤΕ

The data matrix code definition is provided by ISO/IEC and approved as standard ISO/IEC 16022.

Workflow

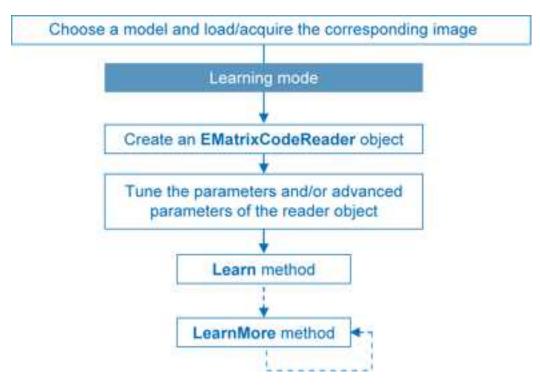
Reference | Code Snippets

Reading a Matrix Code

Reference | Code Snippets

You can read the matrix code in an image automatically, using the Read method.

This method returns an EMatrixCode instance that contains the following information about the found data matrix code:


- Its decoded string,
- Its position in the image,
- Its logical size,
- Its encoding type,
- Its grading results,
- Methods to draw the data matrix code on the source image.

Learning a Matrix Code

Reference | Code Snippets

To search for specific features and speed up your processing, learn a Matrix code model.

Workflow

- 1. Load the image of the matrix code you want to learn.
- 2. Learn the model:
 - □ Use the Learn method with Contrast, Family, Flipping, Logical Size parameters.
 - If you need to learn several matrix codes, use LearnMore and pass additional sample images.
 - □ Call Learn to replace EMatrixCodeReader parameters (calling Learn several times does not accumulate results, while LearnMore does).

- 3. Tune search parameters to be efficient and either:
 - Read only matrix codes that match a sample matrix code,
 - Or read only matrix codes that have the same properties (Contrast, Family, Flipping, Logical Size) as the learned one,
 - Or disregard a search parameter of the learned matrix code SetLearnMaskElement, for example to read only unflipped matrix codes. Just remove the default parameters, then add new ones.
- **4.** Ask EMatrixCodeReader to decode the supplied image.
- 5. Display the decoded string.
- 6. Save the state of the reader object using Save.

Restoring the state of an EMatrixCodeReader

To restore the state of an EMatrixCodeReader and use it to read a matrix code:

- 1. Load an image.
- 2. Restore the reader state from the given file using Load.
- **3.** Read the image.
- 4. Display the decoded string.

Computing the Print Quality

Reference | Code Snippets

To compute the print quality indicators as defined by BC11, ISO 15415, ISO/IEC TR 29158 (formerly known as AIM DPM-1-2006) and SEMI T10-0701 standards, retrieve the grades with the GetIso_54_5GradingParameters, GetIso29_58GradingParameters and GetSemiT_OGradingParameters accessors of the EMatrixCode class.

ΝΟΤΕ

The print quality of the matrix codes is computed during the Read operation, only if the ComputeGrading parameter is set to true.

Using GS1 Data Matrix Codes

Reference | Code Snippets

EasyMatrixCode is able to find and decode GS1-compliant data matrix codes.

The GS1 standard adds semantic identifiers to the contents of a data matrix code. These identifiers are interpreted in an easy and consistent way.

The structure of GS1-compliant content is as follows:

 $d2 [GS1] [Id1] [Value1] [GS1] [Id2] [Value2] \cdots$

where:

- □ "]d2" is the string identifying a GS1-compliant stream,
- □ [GS1] is the GS1 escape character (0x1d),
- □ {Id} is an application identifier,
- □ {Value} is the value associated with that identifier.

Example

The string:

]d2 [GS1]11180112 [GS1]15190101

is interpreted as follows:

- □ It contains two GS1 parts: 11180112 and 15190101.
- The first (11180112) is composed of the identifier 11 and the value 180112, meaning that the product has a production date (the meaning of identifier 11) of January 12th, 2018.
- The second (15190101) is composed of the identifier 15 and the value 190101, meaning that the product has a best before date (the meaning of identifier 15) of January 1st, 2019.

TIP

For more information, see https://www.gs1.org/

2.3. EasyMatrixCode2

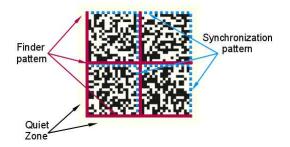
Specifications

Reference | Code Snippets

ECC 200, 26x26 cells data matrix code (left) and finder pattern (right)

In a single read operation, EasyMatrixCode2 locates, unscrambles, decodes, reads and grades the quality of grayscale 2D data matrix codes of any size, contrast, location and orientation (even viewed from the back on a transparent medium), providing they meet the following specifications:

- □ Minimum cell (= module) size: 3x3 pixels
- Description Minimum quiet zone (blank zone around the matrix code) width: 1 pixel

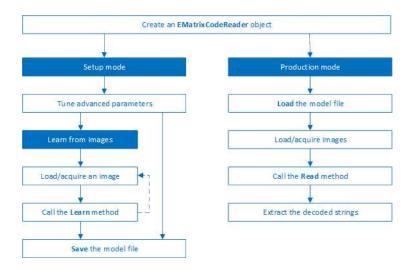

All the functionality of EasyMatrixCode2 is available for testing in Open eVision Studio, except for the StopProcess method (for asynchronous processing).

ΝΟΤΕ

The relevant classes of the <a>EasyMatrixCode2 library are stored in the name space "EasyMatrixCode2".

Data Matrix Code Definition

- A data matrix code is a two-dimensional rectangular array of black and white cells which conveys a string of characters (digits, letters and special characters).
 - It is encoded to achieve maximum packing.
 - Each cell corresponds to a bit of information.
 - □ Additional redundant bits allow error correction for robust reading of degraded symbols.
- A data matrix code is located using the **Finder pattern**:
 - The bottom and left edges of a Data Matrix code contain only black cells.
 - □ The top and right edges have alternating cells.


- A data matrix code is characterized by:
 - □ Its logical size (number of cells).
 - Its encoding type: ECC 000 (odd symbol sizes, deprecated) or ECC 200 (even symbol sizes)..

NOTE

The data matrix code definition is provided by ISO/IEC and approved as standard ISO/IEC 16022.

Workflow

Reference | Code Snippets

- 1. Load the image.
- 2. Read the data matrix codes in the image using EMatrixCodeReader.Read().
- **3.** Loop on found data matrix codes.
- 4. Display the decoded text.

Reading a Matrix Code

Reference | Code Snippets | dedicated code snippet: Reading Matrix Codes from an Image You can read the matrix code in an image automatically as follows:

- a. Create an EMatrixCodeReader object.
- **b.** Call the Read method to detect and decode the matrix codes in the image.
- c. Call the GetReadResults accessor to retrieve the decoded EMatrixCode instances.

The EMatrixCode instances contain the following information for each found data matrix code:

- Its decoded string,
- Its position in the image,
- Its logical size,
- Its encoding type,
- Its grading results,
- Methods to draw the data matrix code on the source image.

Learning a Matrix Code

Reference | Code Snippets | dedicated code snippet: Reading with Prior Learning

To improve the processing times of the Read method, learn a matrix code model from representative images as follows:

- 1. Load the image of the matrix code you want to learn from.
- 2. Call the Learn method to learn from the image.
- 3. Repeat with additional images if necessary.
- 4. Save the EMatrixCodeReader state to the disk with the Save method.

The Learn method re-orders the internal processing structure used to detect and decode the matrix codes in such a way that the learned codes are found faster.

TIP

The user-defined advanced parameters (MaxNumCodes, Timeout, ReadMode and ComputeGrading) are not affected by the Learn method .

If the Learn method is not able to detect any code in the image, it throws an exception.

The internal processing structure is not affected in this situation.

Restoring the state of an EMatrixCodeReader

- To restore a previously saved EMatrixCodeReader state , call the Load method.
- To restore the default state of an EMatrixCodeReader instance, call the ResetLearning method.

Computing the Print Quality

Reference | Code Snippets | dedicated code snippet: Inspecting Print Quality Grades

To compute the print quality indicators as defined by BC11, ISO 15415, ISO/IEC TR 29158 (formerly known as AIM DPM-1-2006) and SEMI T10-0701 standards, retrieve the grades with the GetIso_54_5GradingParameters, GetIso29_58GradingParameters and GetSemiT_OGradingParameters accessors of the EMatrixCode class.

NOTE

The print quality of the matrix codes is computed during the Read operation, only if the ComputeGrading parameter is set to true.

Using GS1 Data Matrix Codes

Reference | Code Snippets

EasyMatrixCode2 is able to find and decode GS1-compliant data matrix codes.

The GS1 standard adds semantic identifiers to the contents of a data matrix code. These identifiers are interpreted in an easy and consistent way.

The structure of GS1-compliant content is as follows:

 $d2 [GS1] [Id1] [Value1] [GS1] [Id2] [Value2] \cdots$

where:

- □ "]d2" is the string identifying a GS1-compliant stream,
- □ [GS1] is the GS1 escape character (0x1d),
- □ {Id} is an application identifier,
- □ {Value} is the value associated with that identifier.

Example

The string:

]d2 [GS1]11180112 [GS1]15190101

is interpreted as follows:

- □ It contains two GS1 parts: 11180112 and 15190101.
- The first (11180112) is composed of the identifier 11 and the value 180112, meaning that the product has a production date (the meaning of identifier 11) of January 12th, 2018.
- The second (15190101) is composed of the identifier 15 and the value 190101, meaning that the product has a best before date (the meaning of identifier 15) of January 1st, 2019.

🔿 ΤΙΡ

For more information, see https://www.gs1.org/

Asynchronous Processing

Reference | Code Snippets

EasyMatrixCode2 supports asynchronous processing. This means that you can launch multiple processing threads in parallel, each reading the matrix codes in its own image.

From the main thread, to manually stop the Read method in any of these processing threads at any time, use the StopProcess method.

When you manually stop the Read method:

- The search for matrix codes stops immediately, whether it has found matrix codes in the image or not.
- □ To retrieve all matrix codes found before the manual stop, use the GetReadResults accessor.

Advanced Parameters

Reference | Code Snippets

Tune the following parameters to optimize the performance of EasyMatrixCode2.

- The MaxNumCodes parameter:
 - □ Tells the EMatrixCode2Reader the number of codes that can be in the image.
 - □ Affects the computational time of the Read method.
 - □ Is set to 1 by default. This means that the EMatrixCodeReader only detects a single matrix code per image.
 - □ If set to 0, it tells the EMatrixCodeReader to find as many codes as possible in the image.
- The Timeout parameter:
 - □ Limits the amount of time that the Read and Learn methods may take to process a single image.
 - Is defined in microseconds.
 - □ Is set, by default, to a value that exceeds one hour.
- The ReadMode parameter affects the behavior of the Read method:
 - □ The setting EReadMode_Speed results in the shortest processing times and the Read method stops as soon as one of the following is true:
 - The method has found MaxNumCodes codes.
 - The method reaches the Timeout time limit.
 - The Read process is completely finished.
 - □ The setting EReadMode_Quality results in the best grading results and the Read method keeps trying to improve its detection until one of the following is true:
 - The method reaches the Timeout time limit.
 - The Read process is completely finished.
- The ComputeGrading parameter:
 - Determines if the Read method computes the grading properties of the EMatrixCode object.
 - □ Is set to False by default.

After the tuning:

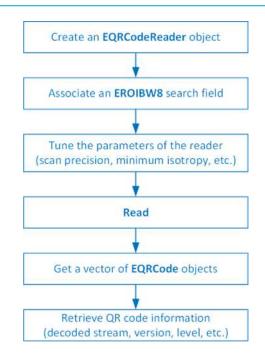
- □ Use the Save method to store the state of the EMatrixCodeReader on the disk.
- □ Use the Load method, at any time, to restore the saved state.

TIP

The Save and Load methods also store the effects of Learning.

3. EasyQRCode - Reading QR Codes

3.1. Workflow


EasyQRCode

EasyQRCode detects QR (Quick Response) codes in an image, decodes them, and returns their data.

Error detection and correction algorithms ensure that poorly-printed or distorted QR codes can still be read correctly.

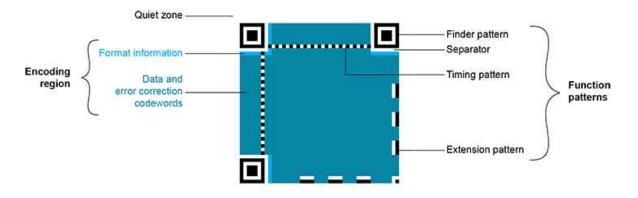
Workflow

3.2. QR Codes Specifications

QR code definition

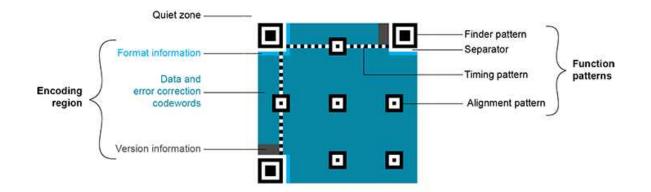
A QR code is a square array of dark and light dots. One dot (or "*module*") represents one bit of information.

QR codes contain various types of data and can be different models, versions, and levels. They always contain a message, metadata about alignment, size, format, and error correction bits. They comply with the international standard ISO/IEC 18004 (1, 2 and 2005).

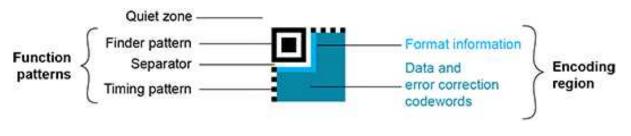

QR code structure

The QR code symbol consists of an *encoding region*, containing data and error correction codewords, and of *function patterns*, containing symbol metadata and position data.

A QR code must be structured with the following elements:


- Quiet zone: blank margin around the QR code
- □ *Finder patterns*: recognizable zones identifying a QR code
- *Extension patterns*: markers for the alignment of the QR code (model 1)
- □ *Alignment patterns*: markers for the alignment of the QR code (models 2 and 2005)
- Diming Patterns: data giving the module size (in pixels)
- Description: Format information: zones providing the QR code level
- Version information: data giving the QR code size, for instance 25 x 25 modules (models 2 and 2005)
- Data contents and error correction codewords: the primary information carried by the symbol, with additional information for error correction

Variants of this structure exist, according to the model, format, or version of the QR code. For instance, model 1 QR codes do not feature alignment patterns but extension patterns. Micro QR codes include only one finder pattern, and no alignment pattern.



Structure of a model 1 QR code symbol

Structure of a QR code 2005 symbol

Structure of a Micro QR code symbol

QR code subtypes

A QR code can be one of the following subtypes:

- □ *Basic*: the default subtype.
- ECI (Extended Channel Interpretation): the ECI subtype provides a consistent method to embed interpretation information of data in the QR code. The ECI protocol is defined in the AIM Inc. International Technical Specification. (ECI is not available for Micro QR code symbols.)
- □ *GS1*: the data contained in the QR code are formatted in accordance with the GS1 General Specification.
- □ *AIM*: the data contained in the QR code are formatted in accordance with a specific industry application previously agreed with AIM Inc. The application indicator value is embedded in the QR code data.

Data types

The QR code data can be any mix of these types:

- Numeric data (0-9)
- □ Alphanumeric data (0-9, A-Z, /,\$, %...)
- Byte data (possibly ECI-encoded)
- Kanji characters

Byte data interpretation

In a QR code, the byte data can represent any information. Their interpretation depends on the subtype of the QR code:

- Basic subtype:
 - □ If some byte data are present in the QR code, you need to know how to interpret them.
 - Use the EByteInterpretationMode enum to select the corresponding byte interpretation mode (see the retrieving decoded data section in "Reading QR Codes" on page 170 for more details).
- ECI-encoded byte data:
 - □ The ECI subtype provides an ECI table indicator.
 - D This indicator defines the character set to use to interpret the byte data.
 - □ EasyQRCode currently supports the UTF8 conversion table (ECI table indicator 26).

Models (Standards)

- Model 1: original QR code international standard, with versions ranging from 1 to 14. Note that the "version" of a QR code is the symbol size (in number of modules). It does not relate to the version of the standard, which is called the "model".
- Model 2: improvement of model 1. It provides versions from 1 to 40. It defines alignment patterns to improve reading of distorted QR codes, or QR codes printed on curved surfaces.
- Model 2005: improvement of model 2, including white-on-black QR codes, and mirror symbol orientation.
- □ *Micro QR codes*: smaller QR codes, from version *M1* to version *M4*. They have been introduced to save printing space.

Versions (Symbol Size)

- QR codes: from version 1 (21 x 21 modules) to version 40 (177 x 177 modules), with an increment of +4 x +4 modules (version 2: 25 x 25 modules, version 3: 29 x 29 modules, ..., version 39: 173 x 173 modules).
- Micro QR codes: version M1 (11 x 11 modules), version M2 (13 x 13 modules), version M3 (15 x 15 modules), version M4 (17 x 17 modules).

Examples of QR codes From left to right: Micro QR code, version M3, 15 x 15 modules, Model 2 QR code, version 4, 33 x 33 modules, 67-114 characters, Model 2 QR code, version 40, 177 x 177 modules, 1852-4296 characters

Levels (Error Correction)

QR codes contain error correction data. The standard offers the following levels of error correction:

- □ *L*: (low) about 7% of codewords can be restored
- □ *M*: (medium) 15%
- □ *Q*: (quality) 25%
- □ *H*: (high) 30% (not available for Micro QR codes)

For Micro QR code symbols, the available error correction levels depend on the version:

- M1 has only error detection
- M2 and M3 support L and M levels
- M4 supports L, M and Q levels

QR code geometry

When the QR code reader finds an array of dots that could match a QR code, it returns the "geometry" of this QR code candidate.

A QR code geometry is a set of points:

- It contains the coordinates of the corners of the QR code quadrangle (bottom left, top left, top right, bottom right).
- □ It contains the coordinates of the finder pattern centers (bottom left, top left, top right).
- □ For a Micro QR code symbol, the coordinates for a single finder pattern center (link) are returned.

EasyQRCode uses a float coordinate system and the origin (0.0, 0.0) is the top left corner of the top left pixel of the image.

QR code geometry

Read a QR code

Reading a QR code returns information about every QR codes found in the given search field (see "Reading QR Codes" on page 170).

3.3. Reading QR Codes

Read a QR code

- 1. Set a search field on an EROIBW8 image.
- 2. If needed, tune the parameters to restrict the number of operations to process.
- 3. The QR code reader scans the image and searches for 3 finder patterns that could match a QR code, with the following requirements:
 - Definition of the second secon
 - D Minimum module size: 3 x 3 pixels.
 - D Minimum isotropy: 0.5.
 - Maximum corner deformation: 15° (corner angles can range from 75° to 105°).
- 4. The QR code reader uses the gravity center of the QR code geometries to sort the QR code candidates in line then columns order starting from the top left corner of the image.
- 5. The QR code reader decodes the QR candidates and returns the QR code: model, version, level, geometry and the decoded data as described below.
- 6. The reader can report the amount of unused error correction.
 - Close to 1, very few errors were corrected when decoding the data. The decoding is highly reliable, and the QR code is of good quality.
 - Close to 0, many errors were corrected when decoding the data. The decoding is reliable, but the QR code quality is poor.
 - □ -1, error correction failed. Decoding was not performed.

Tune the search parameters

- Scan precision: You can change the scan precision to scan the search field with:
 - A fine precision (recommended for small QR codes)
 - A coarse precision (recommended for medium to large QR codes)
- Minimum score: The QR code reader searches for this QR code finder pattern:

- □ A perfect match returns a pattern finder score of 1.
- Less accurate matches return lower scores.
- Definition The minimum score allowed by default is 0.65 you can tune this.
- Minimum isotropy: The isotropy of a QR code represents its rectangular deformation.
 - Perfectly square QR codes have an isotropy of 1 (short side divided by long side, whether the rectangle is vertical or horizontal).
 - EasyQRCode can detect rectangle QR codes with an isotropy down to 0.5.
 - □ The default minimum isotropy is 0.8, it can be tuned from 0 to 1.

Square and rectangular QR codes (isotropy = 1, 0.5, and 0.5 from left to right)

- Model and Version: By default, the QR code reader searches for QR codes of model 1 and 2, and all versions.
 - You can shorten the process by specifying the QR code model(s) and a range of versions (from 1 (minimum) to 40 (maximum)) to search for.
 - □ By default, the QR code reader does not search for Micro QR code symbols.

Retrieve the decoded data

Retrieving methods

To retrieve the decoded data, you can (in growing complexity order):

- 1. Use the GetDecodedString method of an EQRCode object.
 - This method returns an UTF-8 formatted string that contains the concatenated data of the QR code.
 - □ It can take an EByteInterpretationMode as argument.
- 2. Use the GetDecodedString method of the EQRCodeDecodedStreamPart objects.
 - This method is called on a part and returns an UTF-8 formatted string that contains the data of this part.
 - □ It can take an EByteInterpretationMode as argument.
 - Concatenate the decoded string of each part.
- 3. Use the GetDecodedData method of the EQRCodeDecodedStreamPart objects.
 - This method is called on a part and returns a vector of bytes that contains the data of this part.
 - Interpret the data according to the coding mode of the QR code and the encoding of each part.
 - Concatenate the interpreted data of each part.

Interpreting the encoded data

The QR code data can be encoded in either alphanumeric, numeric or byte modes. If a QR code contains bytes, the interpretation mode of these bytes can be embedded in the QR code through the ECI protocol or you must specify or know it.

Use the dedicated EByteInterpretationMode for this purpose:

- EByteInterpretationMode_Hexadecimal
 - Converts all bytes to their hexadecimal values (2 characters per byte).
 - □ The escape character 0xEFBFBD surrounds the converted byte parts.
 - D This mode overrides the ECI table indicator if it is present.

- EByteInterpretationMode_UTF8
 - Converts all bytes to UTF-8 if possible.
 - □ The GetDecodedString method throws an EException if the data are not UTF-8 compatible.
- EByteInterpretationMode_Auto
 - Converts all bytes in the best possible way following the ECI protocol.

The decoded string returns the concatenated data of the QR code in UTF-8 format:

- □ If bytes are present in the QR code data without ECI, specify the byte interpretation mode when you call the GetDecodedString method.
- □ If bytes are present in the QR code data with ECI encoding, use the corresponding byte interpretation table (currently, only table ECI 26: UTF-8 is available).
- □ The hexadecimal byte interpretation mode does not throw an exception and returns all bytes parts present in the data in their hexadecimal form (2 characters per byte) surrounded by the OxEFBFBD escape character.
- □ See the code snippet Retrieving Information of a QR Code.

The decoded stream class consists of:

- □ A coding mode (basic, ECI, FNC -/GS or FNC -/AIM).
- □ An application indicator (if the coding mode is FNC→/AIM, otherwise 0).

The decoded data:

- □ Is accessible from each part of the decoded stream.
- □ Is interpreted according to its encoding (numeric, alphanumeric, byte or Kanji) and the ECI table indicator (if the coding mode is ECI, otherwise).
- Can be the raw bit stream (the bit data after unmasking and error correction, but before decoding as a vector of bytes).
- □ Can be the corresponding decoded string (specify a byte interpretation mode if the encoding is byte without ECI coding mode or if the ECI table is not supported).
- □ See also the code snippet Retrieving the Decoded Data (Advanced).

Computing the print quality

- The print quality indicators as defined by ISO 15415 and ISO/IEC TR 29158 (formerly known as AIM DPM-1-2006) are computed during the Read operation, but only if EQRCodeReader::ComputeGrading is set to TRUE.
 - □ The print quality is not yet supported for Micro QR code models.
- Use the EQRCode::GetIso_54_5GradingParameters and EQRCode::GetIso29_58GradingParameters methods to retrieve the grades.
- Using the grading:
 - □ For more accurate results, it requires modules to be at least 10 pixels in width.
 - □ It requires a 1-module quiet zone for grading.
 - It evaluates the Fixed Pattern Damage with a 4-module quiet zone around the finder patterns. If this condition is not met, the Fixed Pattern Parameter Grade is returned as ----This result affects the overall symbol grade.
 - □ The Version Additional Parameter is returned as --when it is not applicable. In this case, this result is ignored in the overall symbol grade.
 - The implementation follows closely the standard but the grades also depend on the decoding algorithm. So the results may slightly differ according to the Open eVision version.
- The print quality computation is not yet available for Micro QR codes.

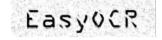
Multithreading

The Read method supports multithreading.

• Multithreading splits the load between the detection methods (such as AdaptiveThreshold and Gradient) and decodes multiple candidates in parallel. This is useful when there are several codes in the image.

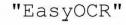
4. EasyOCR - Reading Texts

4.1. Workflow


Reference | Code Snippets

EasyOCR

EasyOCR optical character recognition library reads short texts (such as serial numbers, part numbers and dates).

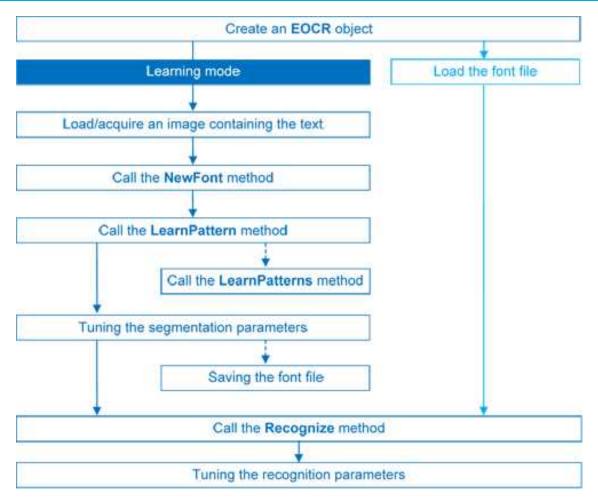

It uses font files (pre-defined OCR-A, OCR-B and Semi standard fonts, or other learned fonts) with a template matching algorithm that can recognize even badly printed, broken or connected characters of any size.

There are 4 steps to recognizing characters:

EasyOCR

Easyoce

1. Raw image


2. Object segmentation

3. Character isolation

4. Character recognition

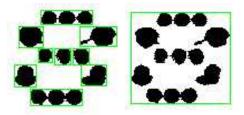
Workflow

4.2. Learning Process

You can learn characters to create a font file if required.

Characters are presented one by one to EasyOCR which analyzes them and builds a database of characters called a font. Each character has a numeric code (usually its ASCII code) and belongs to a character class (which may be used in the recognition process).

Font files are created as follows:


- 1. NewFont clears the current font.
- 2. LearnPattern or LearnPatterns adds the patterns from the source image to the font. Patterns are ordered by their index value, as assigned by the FindAllChars process. The patterns in a font are stored as a small array of pixels, by default 5 pixels wide and 9 pixels high. This size can be changed before learning, using parameters PatternWidthand PatternHeight.
- 3. RemovePattern removes unwanted patterns (optional).
- **4.** Save writes the contents of the font to a disk file with parameter values: NoiseArea, MaxCharWidth, MaxCharHeight, MinCharWidth, MinCharHeight, CharSpacing, TextColor.

4.3. Segmenting

Segmenting

- 1. EasyOCR analyses the blobs to locate the characters and their bounding box, using one of two segmentation modes:
 - □ **keep objects** mode: one blob corresponds to one character.
 - repaste objects mode: the blobs are grouped into characters of a nominal size. This is useful when characters are broken or made up of several parts. When a blob is too large to be considered a single character, it can be split automatically using CutLargeChars.

Character segmentation by blob grouping

- 2. Filters remove very large and very small unwanted features.
- 3. EasyOCR processes the character image to normalize the size into a bounding box, extracts relevant features, and stores them in the font file. The patterns in a font are stored as arrays of pixels defined by PatternWidth and PatternHeight (by default 5 pixels wide and 9 pixels high).

Segmentation parameters

Segmentation parameters must be the same during learning and recognition. Good segmentation improves recognition.

The Threshold parameter helps separate the text from the background.
 A too high value thickens black characters on white background and may cause merging, a too small value makes parts disappear.
 If the lighting conditions are very variable, automatic thresholding is a good choice.

Too high threshold value (left), Threshold adjustment (middle), Too low threshold value (right)

- NoiseArea: Blob areas smaller than this value are discarded. Make sure small character features are preserved (i.e., the dot over an "i" letter).
- MaxCharWidth, MaxCharHeight: Maximum character size. If a blob does not fit in a rectangle with these dimensions, it is discarded or split into several parts using vertical cutting lines. If several blobs fit in a rectangle with these dimensions, they are grouped together.
- MinCharWidth, MinCharHeight: Minimum character size. If a blob or a group of blobs fits in a rectangle with these dimensions, it is discarded.

- CharSpacing: The width of the smallest gap between adjacent letters. If it is larger than
 MaxCharWidth it has no effect.
 If the gap between two characters is wider than this, they are treated as different characters.
 This stops thin characters being incorrectly grouped together.
- RemoveBorder: Blobs near image/ROI edges cannot normally be exploited for character recognition. By default, they are discarded.

4.4. Recognition

Recognition

The characters are compared to a set of patterns, called a **font**. A character is recognized by finding the best match between a character and a pattern in the font. After the character has been located, it is normalized in size (stretched to fit in a predefined rectangle) for matching. The normalized character is compared to each normalized template in the font database and the best matches are returned.

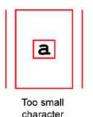
- 1. Load: reads a pre-recorded font from a disk file.
- 2. BuildObjects: The image is segmented into **objects** or blobs (connected components) which help find the **characters**. This step can be bypassed if the exact position of the characters is known. If the character isolation process is bypassed, you must specify the known locations of the characters: AddChar and EmptyChars.
- **3.** FindAllChars: selects the objects considered as characters and sorts them from top to bottom then left to right.
- 4. ReadText: performs the matching and filters characters if the marking structure is fixed or a character set filter was provided.

Character recognition: The characters are compared to a set of patterns, called a **font**. The best match is stretched to fit in a predefined rectangle and compared to each normalized template in the font database.

A **Character set filter** can improve recognition reliability and run time by restricting the range of characters to be compared. For instance, if a marking always consists of two uppercase letters followed by five digits, the last of which is always even, it is possible to assign each character a class (maximum 32 classes) then set the character filter to allow the following classes at recognition time: two uppercase, four even or odd digits, one even digit.

Steps 2 to 4 can be repeated at will to process other images or ROIs. The Recognize method can be used as well.

Additional information, such as the geometric position of the detected characters, can be obtained using: CharGetOrgX, CharGetOrgY, CharGetWidth, CharGetHeight, ...


CompareAspectRatio makes character and font comparison sensitive to the difference between narrow and wide characters. It improves recognition when characters look like each other after size normalization.

Recognition parameters

- MaxCharWidth, MaxCharHeight: if a blob does not fit within a rectangle with these dimensions, it is not considered as a possible character (too large) and is discarded. Furthermore, if several blobs fit in a rectangle with these dimensions, they are grouped together, forming a single character. The outer rectangle size should be chosen such that it can contain the largest character from the font, enlarged by a small safety margin.
- MinCharWidth, MinCharHeight: if a blob or a group of blobs does fit in a rectangle with these dimensions, it is not considered as a possible character (too small) and is discarded. The inner rectangle size should be chosen such that it is contained in the smallest character from the font, shrunk by a small safety margin.
- RemoveNarrowOrFlat: Small characters are discarded if they are narrow **or** flat. By default they are discarded when they are both narrow **and** flat.
- CharSpacing: if two blobs are separated by a vertical gap wider than this value, they are considered to belong to different characters. This feature is useful to avoid the grouping of thin characters that would fit in the outer rectangle. Its value should be set to the width of the smallest gap between adjacent letters. If it is set to a large value (larger than MaxCharWidth), it has no effect.
- CutLargeChars: when a blob or grouping of blobs is larger than MaxCharWidth, it is discarded. When enabled, the blob is split into as many parts as necessary to fit and the amount of white space to be inserted between the split blobs is set by RelativeSpacing. This is an attempt to separate touching characters.
- RelativeSpacing: when the CutLargeChars mode is enabled, setting this value allows specifying the amount of white space that should be inserted between the split parts of the blobs.

characters

Invalid recognition settings

Advanced tuning

These recognition parameters can be tuned to optimize recognition:

CompareAspectRatio: when this setting is on, EasyOCR is less tolerant of size and takes into account the measured aspect ratio. Using this mode improves the recognition when characters look similar after size normalization as it enforces the difference between narrow and wide characters.

Filtering the characters (in the ReadText method), can be used if the marking structure is fixed.

When objects are larger than the MaxCharWidth property, they can be split into as many parts as needed, using vertical cutting lines.

ESegmentationMode, character isolation mode defines how characters are isolated:

Keep objects mode: a character is a blob; no attempt is made to group blobs, thus damaged characters cannot be handled and small features such as accents and dots may be discarded by the minimum character size criterion.

 Repaste objects mode: blobs are grouped to form distinct characters if they fit in the maximum character size and are not separated by a vertical gap, thus preserving accents and dots.

5. EasyOCR2 - Reading Texts (Improved)

5.1. Workflow

Reference | Code Snippets

EasyOCR2

EasyOCR2 is an optical recognition library designed to read short texts such as serial numbers, expiry dates or lot codes printed on labels or on parts.

It can use an innovative segmentation method to detect blobs in the image, and then places textboxes over the detected blobs following a user-defined topology (number of lines, words and characters in the text). These methods support text rotation up to 360 degrees, can handle non-uniform illumination, textured backgrounds, as well as dot-printed or fragmented characters.

A character type (letter / digit / symbol) can be specified for each character in the text, improving recognition rate and speed.

You can perform the recognition in two different ways:

- □ Use a pre-trained classifier powered by Deep Learning technologies.
- Or use a character database built from sample images or from a TrueType font (.ttf) file.

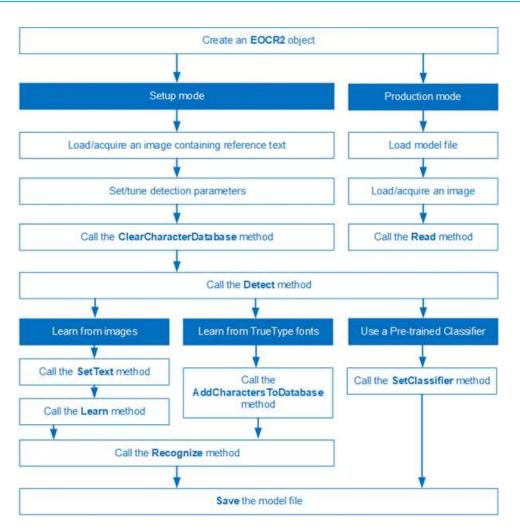
Text recognition with EasyOCR2 follows four phases:

EasyOCRZ EasyOCRE

Input image (left) and image segmentation (right)

EasyOCRZ Easyocre

Fitting textboxes (left) and recognition (right)



EasyOCR2 vs EasyOCR

EasyOCR2 will give better results than EasyOCR when dealing with:

- Unknown text rotation
- Dotted or fragmented characters
- Non-uniform illumination or textured backgrounds
- Complex text topologies
- When TrueType font files that match the text to be read are available, EasyOCR2 allows the user to use those font files directly for recognition, while EasyOCR does not.
- EasyOCR2 can perform recognition without any preliminary training using the provided pretrained classifiers.

Workflow

5.2. Detection

Detection

EasyOCR2 finds characters in an image as follows:

- 1. EasyOCR2 segments the image, finding blobs that represent (parts of) the characters.
- 2. Blobs that are too large or too small to be considered as parts of a character are filtered out.
- **3.** EasyOCR2 fits character boxes to the detected blobs according to a given topology and detectionMethod.
 - □ The topology describes the structure of the text in the image, defining the number of lines, the number of words per line and the number of characters per word.
 - □ If the topology is not required, EasyOCR2 fits boxes to the blobs as best as it can.
- 4. EasyOCR2 extracts the pixels inside each character box from the image.

The resulting character-images can be used to learn or recognize the characters.

A workflow detecting text in an image could be as follows:

- a. Set the required detection parameters.
- **b.** Alternatively, call Load to read a pre-made model (.o2m) file containing detection parameters from disk.
- c. Call Detect to extract the text from the image.

The method Detect will return an EOCR2Text structure that contains a textbox and a bitmap image for each character, hierarchically stored in EOCR2Line -> EOCR2Word -> EOCR2Char structures.

See example in code snippet: Detecting Characters

FIXED WIDTH

An example of a fixed-width font, processed with the detectionMethod 'EOCR2DetectionMethod_ FixedWidth'

PROPORTIONAL

An example of a proportional font, processed with the detectionMethod 'EOCR2DetectionMethod_ Proportional'

LOT	S801T
MFG.	08/2016
EXP.	07/2019

The text angle estimate for this image is slightly off when NumDetectionPasses=

LOT	S801T
MFG.	08/2016
EXP.	07/2019

The text angle estimate is better when NumDetectionPasses=2

dot	matrix
DOT	MATRIX
1234	1567890

For this dotted text, setting CharsMaxFragmentation to 0.1 leads to incomplete segmentation results

dot	matrix
DOT	MATRIX
1234	1567890

Setting CharsMaxFragmentation to 0.01 gives better segmentation results

Detection parameters

Required parameters

- The parameter EnableTopology indicates if the parameter Topology is required. In simple cases, the topology may not be necessary.
- The parameter Topology tells the box-fitting method how to structure the textboxes it fits to the detected blobs. Using a modified version of Regex expressions, the topology determines the number of lines in the text, the number of words per line and the number of characters per word. The section **Recognition Parameters** contains an extensive explanation of the syntax for the Topology.
- The parameter CharsWidthRange tells the segmentation and detection methods how wide the characters in the image can be.

- The parameter CharsHeight tells the segmentation and detection methods how high the characters in the image can be.
- The parameter TextPolarity tells the segmentation method whether it should look for light characters on a dark background or vice versa.

Advanced parameters for segmentation (optional):

- The parameter SegmentationMethod selects the algorithm used for segmentation.
 - The setting EOCR2SegmentationMethod_Global is faster and suited for clear background.
 - □ The setting EOCR2SegmentationMethod_Local (default) is more complex and suited for non uniform background.
- The CharsMaxFragmentation parameter tells the segmentation algorithm how small blobs can be to be considered (part of) a character. The minimum allowed area of a blob is given by:

minArea = CharsMaxFragmentation * CharsHeight * min(CharsWidthRange)

□ This parameter should be set between 0 and 1, the default setting is 0.1.

Advanced parameters for local segmentation (optional):

- The MaxVariation parameter determines how stable a blob in the image should be in order to be considered a potential character.
 - A region with clearly defined edges is generally considered stable while a blurry region is not. A high setting allows detection of blobs that are more unstable, a low setting allows only very stable blobs.
 - □ This parameter should be set between 0 and 1, the default setting is 0.25.
- The DetectionDelta parameter determines the range of grayscale values used to determine the stability of a blob.
 - A low setting will make the algorithm more sensitive to noise; a high setting will make the algorithm insensitive to blobs with low contrast to the background.
 - □ This parameter should be set between 1 and 127, the default setting is 12.

Advanced parameters for global segmentation (optional):

• The parameter EnableSecondPassGlobalSegmentation performs the segmentation twice during the first pass to have more accurate results when the text background is not just plain.

Advanced parameters for detection (optional)

- If the topology is required, the parameter DetectionMethod selects the algorithm used for fitting.
 - □ The setting EOCR2DetectionMethod_FixedWidth (default) is optimized for texts with fixed width fonts (including dotted text).
 - □ The setting EOCR2DetectionMethod_Proportional is optimized for texts with proportional fonts.

• The TextAngleRange parameter tells the box-fitting method how the text in the image is oriented. It will test the following range of rotation angles:

 $min(TextAngleRange) \leq angle \leq max(TextAngleRange)$

where angles are defined with respect to the horizontal. The unit for the angles (degrees/radians/revolutions/grades) can be set using easy::SetAngleUnit().
The default setting for this parameter is [-20, 20] degrees.

- The parameter NumDetectionPasses determines how many passes are made to fit textboxes to the detected blobs. The initial pass will fit textboxes to all detected blobs. Subsequent passes will select only those blobs that are covered by the textboxes from the previous pass and fit textboxes to that subset of blobs, potentially resulting in a more optimal fit.
 - This parameter should be set to either 1 or 2, the default setting is 1.

Advanced parameters, specific for the setting EOCR2DetectionMethod_FixedWidth

• The RelativeSpacesWidthRange parameter tells the box-fitting method how wide the spaces between words may be. It will test the following range of spaces:

 $min (SpacesWidthRange) * charWidth \leq space \leq max (SpacesWidthRange) * charWidth$

- □ The lower bound of this parameter is also used when the topology is not required.
- The parameter CharsWidthBias biases the optimization toward wider or narrower character boxes.
- The parameter CharsSpacingBias biases the optimization toward smaller or larger spacing between characters boxes.

Advanced parameters, specific for the setting EOCR2DetectionMethod_Proportional:

- The parameter EnableCutLargeCharacter tells if the detection should try to split too wide segmented blobs into different characters.
 - □ This parameter is also used when the topology is not required.

Advanced parameters, specific when the topology is not required:

• The parameter EnableOffSizeCharacter tells if the detection should allow or not the detection of characters whose size (width and height) is out of the size parameters if they are in the vicinity of characters in valid size range.

Additional remarks

- When the setting EOCR2DetectionMethod_FixedWidth is selected, all character boxes will have the same width and they do not necessarily have to fit tightly around the characters.
- When the setting EOCR2DetectionMethod_Proportional is selected, the character boxes will fit tightly around the characters, if any character falls outside the range of allowed character widths, the detection will fail.

5.3. Learning

In order to recognize characters, EasyOCR2 can use a database of known reference characters. You can generate this character database from images and/or from TrueType system fonts.

A workflow to build a character database could be as follows:

- **1.** Set the required detection parameters or call Load to read the model (.o2m) file from disk.
- **2.** Optionally, call ClearCharacterDatabase to clear the current character database.
- 3. Call Detect to extract the text from the image.
- 4. Call SetText in the extracted text structure to set the correct value for each character.
- 5. Call Learn to add the detected characters and their correct value to the current character database.
- 6. Call SaveCharacterDatabase to save the current character database to disk.
- **7.** Alternatively, call Save to save the model file to disk, including the detection parameters and the created character database.

See example in code snippet: Learning Characters

5.4. Recognition

Recognition

EasyOCR2 recognizes characters using a pre-trained classifier or a classifier that is trained on the character database. For each input character, the classifier will calculate a score for all candidate outputs, the candidate with the highest score will be returned as the recognition result. Through the Topology parameter, prior information about each character can be passed to the classifier, reducing the number of candidates and improving the recognition rate.

The production workflow for recognizing text from images could be as follows:

- □ Call Load to read the model (.o2m) file from disk. The model file contains all detection parameters, as well as the topology and the reference character database.
- Load or acquire the image.
- □ Call Read to detect and recognize the characters.
- Alternatively, call <u>Detect</u> to extract the text from the image, followed by <u>Recognize</u> to recognize the extracted text. This allows the user to modify elements of the detected text before recognition if so desired.

The methods Read and Recognize will return a string with the recognition results. To access more in-depth information about the results, one may call ReadText. This returns an EOCR2Text structure that contains the coordinates and sizes of each textbox as well as a bitmap image and a list of recognition scores for each character.

See example in code snippet: Reading Characters

Recognition parameters

The Classifier parameter specifies the classifier used by EOCR2 for recognition. By default, its value is EOCR2Classifier_DatabaseClassifier and it means that it uses the current Character Database. Other values represent pre-trained classifiers for different context.

The Topology parameter specifies the structure of the text (number of lines/words/characters) as well as the type of characters in the text. The recognition method will limit the number of candidates for each character based on the given topology.

It uses modified regular expression wildcards:

- "." (dot) represents any character (not including a space).
- "L" represents an alphabetic character.
 - "Lu" represents an uppercase alphabetic character.
 - "Ll" represents a lowercase alphabetic character.
- "N" represents a digit.
- "P" represents the punctuation characters: ! " # % & '() * , . / :; <>? @ [\]_{ }~
- "S" represents the symbols: \$ + < = > | ~
- □ "\n" represents a line break.
- " " (space) represents a space between two words.

Combinations can be made, for example: [LN] represents an alphanumeric character. To specify multiple characters, simply add {n} at the end for n characters. If the amount of characters is uncertain, specify {n,m} for a minimum of n characters and a maximum of m characters.

The topology "[LuN]{3,5}PN{4} \n .{5} LL" represents a text comprised of 2 lines:

- The first line has 1 word composed of 3 to 5 uppercase alphanumeric characters, followed by a punctuation character and 4 digits.
- The second line has 2 words. The first word comprises 5 wildcard characters, the second word has 2 letters (upper- or lowercase).

The topology "L{3}P N{6} \n L{3}P NNPN{4}" represents a text with 2 lines:

- The first line has 2 words. The first word has 3 uppercase letters followed by a punctuation mark, the second word has 6 digits.
- The second line also has two words. The first word has 3 uppercase letters followed by a punctuation mark. The second word has 2 digits, followed by a punctuation mark and 4 additional digits.

The topology ".{10} \n .{7} \n .{5} .{5} \n .{5} .?}" represents a text with 4 lines:

- □ The first line contains a single word of 10 (ASCII) characters
- The second line contains a single word of 7 characters
- □ The third line contains two words, each of 5 characters.
- □ The fourth line contains two words of 5 and 7 characters respectively.

PART V DEEP LEARNING INSPECTION TOOLS

1. Deep Learning Tools - Inspecting Images with Deep Learning

1.1. Purpose and Workflow

Tools

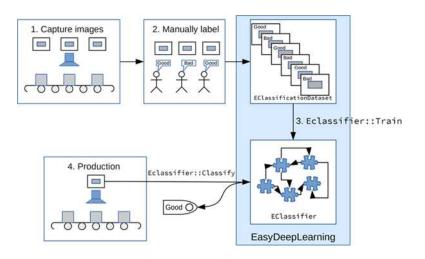
The deep learning tools are based on deep convolutional neural networks (CNNs):

- EasyClassify classifies images into a predefined set of classes. Use this tool to identify a product in an image or to detect if the product is good or defective.
- EasySegment Supervised segments defects and/or various elements in images. In the supervised mode, the training images must be precisely annotated with their expected segmentation (also called the *ground truth*).
- EasySegment Unsupervised detects and segments defects in images. This tool works in an unsupervised way. This means that it is trained on good products only.

As you build only a model of what a good product is and not a model of what a defective product is:

- □ The advantages are that the tool can detect and segment defects that are not in your dataset or that are unexpected and that it doesn't require to annotate the images with their expected segmentation (this can be very time consuming).
- The drawback is that the type of defects that the tool can detect and segment is more limited than when you build an explicit model of the defects.
- You can use EasySegment Unsupervised to produce a rough annotation of the images required by EasySegment Supervised.
- EasyLocate locates objects and/or defects in images. The neural network predicts the location and the label of the object and/or defect.
 - □ The location of the object is represented by its bounding box.
 - EasyLocate works well with partially occulted objects.
 - You can use it for defect detection and counting applications.
 - Compared to EasySegment, it detects two objects or defects with the same label and that are overlapping or touching each other as two different objects or defects and not as a single blob.

By opposition to traditional machine vision techniques, the deep learning tools do not require an explicit model of what to recognize and/or segment inside an image. Instead, they learn this model from a set of example images. Thus the deep learning tools can solve machine vision problems where an explicit model is too complex to build.


Specifications

	EasyClassify	EasySegment Unsupervised	EasySegment Supervised	EasyLocate
Minimum image size	128×128	64 ×	< 64	128×128
Maximum image size	1024 × 1024	10 000 ×	< 10 000	500 000 pixels (for ex. 707 × 707 for square image)
Best image size	256 imes 256 - 600 imes 600	n.a	а.	n.a.
Number of channels		1 or 3 (grayscale a	nd color images)	
Bit depth		8 bits, 1	L6 bits	
Number of labels	2 - 1000	2 (good and defective)	2 - (64
Minimum number of images per label	2	1 for the good label 0 for the defective label	1	
Supported formats		bmp, png, jp	oeg, j2k, tiff	

🗸 TIP

To accelerate computations, we strongly recommend running the deep learning tools on a recent NVIDIA GPU. Refer to the section "Hardware Support (CPU/GPU)" on page 195 for installing the required NVIDIA CUDA and deep learning library.

Workflow

To create an application based on the deep learning tools:

- **1.** Capture a dataset of images representative of the problem you want to solve.
 - The capture conditions must be as close as possible to the production conditions.
 - Preferably, all images should have the same resolution.
 - The number of images needed to obtain a good performance depends on the complexity of the task and the tool used.
 - With EasyClassify, you can use the training with as few as 10 images per label. Nevertheless, complex tasks may require more than 100 images per label.
 - With EasySegment Unsupervised, you can use less than 10 "good" images. Nevertheless, complex tasks may require more than 100 "good" images.
 - With EasySegment Supervised, the required number of images depends on the size and the number of elements to segment in each image. You can use as few as 10 elements per label. Nevertheless, complex tasks may require more than 100 elements per label.
 - With EasyLocate, the number of images depends on the number of objects/defects in the images. You can use as few as 10 objects per label. Nevertheless, complex tasks may require more than 100 objects per label.
 - Please refer to the specifications of each tool for the constraints on the resolution and the number of images.
- 2. Manually label the images in the dataset with the different categories you want to recognize.

These categories depend on the tool:

- EasyClassify:
 - Each image must correspond to one and only one category.
 - There must be at least 2 categories.
- EasySegment Unsupervised:
 - A single category for images of good samples.
 - As many categories as you want (including none) for images of defective samples.
- EasySegment Supervised:
 - You must annotate the pixels of the images with a ground truth segmentation
 - There must be at least one segmentation label in addition to the Background label.
- EasyLocate:
 - You must annotate the defects or the objects with a bounding box and a label.

Use the EClassificationDataset class to compile your labeled images.

3. Choose the deep learning tool that suits your needs.

All deep learning tools are child classes of the EDeepLearningTool class:

- EasyClassify: EClassifier class
- □ EasySegment: EUnsupervisedSegmenter and ESupervisedSegmenter classes.
- EasyLocate: ELocator class.
- 4. Train the deep learning tool on the dataset.
- 5. Apply the trained tool in production.

Each tool returns a specific object.

1.2. Tools and Resources

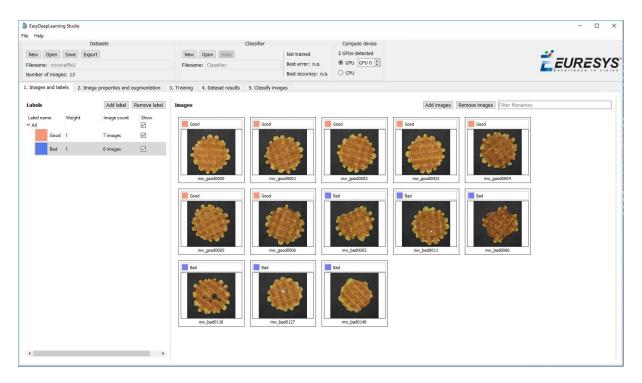
Deep Learning Studio

Deep Learning Studio is a graphical user interface that you can use to:

- Create datasets (load, label and segment images),
- Configure and visualize the data augmentation transformations,
- Train a deep learning tool,
- Analyze the performance of the tool,
- Apply the tool to new images.

🕥 ΤΙΡ

The Deep Learning Studio is available in the installation folder of Open eVision.


Resources and code snippets

- The Deep Learning Additional Resources package, separate from the Open eVision installer, provide several sample datasets and deep learning tools trained with these datasets:
 - For EasyClassify: the MiniWaffle and Stone Tiles datasets
 - For EasySegment Unsupervised: the Fabric dataset
 - For EasySegment Supervised: the Coffee dataset
 - For EasyLocate: the ElectronicComponentsBag and CeramicCapacitor datasets
- Some sample programs in the folder Sample Programs show how to train and use a deep learning tool.
- Some code snippets are also provided for illustration and reference.

Workflow illustration with Deep Learning Studio

You can use Deep Learning Studio to perform steps 2 and 3 of the process described in section "Purpose and Workflow" on page 189.

Manual labeling of images (step 2) and creating the dataset (steps 3a and 3b)

EasyDeepLearning Studio				- 🗆 X
ile Help				
Datasets	Classifi	ler	Compute device	
New Open Save Export	New Open Save	Trained for 35 iterations	2 GPUs detected	<i>É</i>EURESYS
Filename: miniwaffle2	Filename: Classifier	Best error: 0.0928012	⊙ GPU GPU 0 🗘	<i>E EURESYS</i>
Number of Images: 463		Best accuracy: 95.9184 %	O CPU	Excellence in vision
1. Images and labels 2. Image properties and augmentation	3. Training 4. Dataset results 5. Cla	assify images		
Train				
Setting apart a small fraction of images, called the validation da	A trained clas Estima	s it was never trained on. Training dataset: [20,00 Validation dataset: [20,00 Read the changed once the Number of iterations: [36] Batch size: [] opt usifier opened from a saved file co sted remaining time: 1 minute 15 Ikerations: 35/50 epod Bet validation accuracy: 95.9184 %	% of images on proportions training starts. 0	Stop

Splitting the dataset (step 3c) and starting the training (steps 3d and 3e)

🐞 EasyDeepLearning Studio				- 🗆 X
File Help				
Datasets	Classifier		Compute device	
New Open Save Export	New Open Save	Trained for 50 iterations	2 GPUs detected	<i>É</i>EURESYS
Filename: miniwaffie2	Filename: Classifier	Best error: 0.0653762	GPU GPU 0	EURESYS
Number of images: 463		Best accuracy: 98.9796 %	O CPU	Excellence in vision
1. Images and labels 2. Image properties and augmentation 3.	Training 4. Dataset results 5. Class	ify images		
Export results to CSV	Good Bad Good	Bad Good	Bad	
Results for: Full dataset				
Error: 0.0857233			The second se	
Accuracy: 97.6242 %	1000 S		Sat San	
True labels	5000X		and the second	
Good Bad	- 799 CP			
Good 238 8				
Bad 3 214	mw_good0064 mw_	good0077 mv	/_good0232	
P r				
e d				
l c				
t				
e d				
ř.				
a				
e e				
T.				
S				
Select all Select wrongly labeled Select rightly labeled				

Analyzing the performance (step 3f)

Datasets	Classif	ler	Device and memory	
w Open Save Export	New Open Save	Trained for 100 iterations	Execution profile:	
name: dataset	Filename: MiniwafflesClassifier	Best error: 0.0108448	CPU ~	É EURESY
iber of images: 463		Best accuracy: 100 %	Configure	
ages and labels 2. Image properties and augmentation 3. Train	ning 4. Dataset results 5. Classify images			
ge selection				 Results
Refresh for all images				Refresh
Open image Open folder				Predicted class: Good
aset type: Test dataset ~				Processing time: 686 milliseconds
~				Highlight the pixels explaining the predicted cla
Bad				Label name Probability
<u>A</u>				1 Good 99%
and the second s				2 Bad 0%
mw_bad0000				
		A. P. S. P.		
Good		A state of a state		
A CONTRACTOR OF		A REAL PROPERTY OF		
Contraction of the second seco				
mw_good0000				

Classifying images (step 4)

1.3. Hardware Support (CPU/GPU)

Using a CPU

• Deep learning algorithms perform a lot of computations and can be very slow to train on a CPU.

For example, for EasyClassify, on a high-end Intel Core i9-7900X CPU with a single thread, with no data augmentation:

- □ The training can process up to 0.5 MegaPixels/second.
- □ The validation and classification can process up to 1.5 MegaPixels/second.
- Use the EDeepLearningTool::SetEnableGPU(false) method to use the CPU with the deep learning tools.

🕗 ΤΙΡ

The deep learning tools support CPU processing for both 32-bit and 64-bit applications. However, the memory of a 32-bit application is limited to 2 GB and this can slow the training or the classification of large images.

Using an NVIDIA CUDA[®] GPU

Using a recent NVIDIA GPU greatly accelerates the processing speeds.

For EasyClassify, on a NVIDIA GeForce 1080Ti, with no data augmentation:

- □ The training can process up to 50 MegaPixels/second.
- □ The validation can process up to 160 MegaPixels/second.
- □ The classification of a single image can process up to 55 MegaPixels/second (equivalent to more than 800 256 x 256 grayscale images/second).

TIP

Please be aware that the actual speed varies with the input image format, the data augmentation, the batch size and the GPU model.

1. To use an NVIDIA GPU with the deep learning tools, install the following NVIDIA libraries on your computer:

- NVIDIA CUDA[®] Toolkit version v11.1 (https://developer.nvidia.com/cuda-toolkit)
- NVIDIA CUDA[®] Deep Neural Network library (cuDNN) v8.1 for CUDA 11.1 (https://developer.nvidia.com/cudnn)

2. According to the installation location:

- Otherwise, copy the DLLs cusolver64____dll, curand64__0.dll, cufft64__0.dll and cublas64_
 ___dll in the Open eVision DLL folder (its default location is C:\Program Files (x86)\Euresys\Open eVision X.X\Bin64\).

- 3. Install the NVIDIA CUDA [®] Deep Neural Network library (cuDNN) that comes as a zip archive:
 - a. Unzip the files.
 - **b.** Copy the unzipped files to the NVIDIA CUDA[®] Toolkit installation directory as indicated in https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installwindows.
 - c. If the NVIDIA CUDA® Toolkit is not installed in its default location, copy all the DLL files cudnn*8.dll in the Open eVision DLL folder (its default location is C:\Program Files (x86)\Euresys\Open eVision X.X\Bin64\).
- **4.** Use the method EDeepLearningTool::SetEnableGPU(true) to use the GPU with the deep learning tools.

Using multiple GPUs

You can use multiple GPUs for the training and the batch classification.

• In the API, to set the list of GPUs, use the EDeepLearningTool::SetGPUIndexes method.

- NOTE

Using multiple GPUs increases the training and batch classification speed only if these GPUs are Quadro or Tesla models with the TCC driver model (see

https://docs.nvidia.com/gameworks/content/developertools/desktop/nsight /tesla_compute_cluster.htm).

Using multiple GeForce GPUs is slower than using a single one. If there are more than one GPU installed on your computer, set the index of the GPU to use with the EDeepLearningTool::SetGPUIndexes method.

• In Deep Learning Studio, to choose the processing devices, select an execution profile.

- You can configure these execution profiles to match your needs.
- GPU processing is not possible with 32-bit applications.

Image cache

The image cache is the part of the memory reserved for storing images during training.

- The default size is 1 GB.
- With large dataset, increasing the image cache size may improve the training speed.

To specify the cache size in bytes:

- In the API, use the EDeepLearningTool::SetImageCacheSize method.
- In Deep Learning Studio, click on the Configure button below the Execution profile control and select Image cache in the menu.

		Hardware settings	
Device and memory Execution profile:	Computation device	Drops cable size The maps cable is a summy store view basching/coming inc A sufformit and maps cable can increase the training set trapp cable and [20116]	
Configure			Car Car

Multicore processing

The deep learning tools support multicore processing (see "Multicore Processing" on page 343):

- In the API, use the multicore processing helper function from Open eVision (that is Easy ::SetMaxNumberOfProcessingThreads() with a value greater than 1).
- In Deep Learning Studio, click on the Configure button below the Execution profile control and select CPU Settings in the menu.

DL Hardware settings			?	>
	Hardware setting	js		
Computation device for neural network	CPU settings			-
CPU settings	Maximum number of processing threads: This parameter influences the processing speed of GPU. Indeed, the CPU will always be used for some		×	1
Image cache	The maximum number of processing threads canno	t be higher than the number of processor cores.		

1.4. Managing the Images

Images and Labels

Images

- In the API, a dataset is represented by an object of the EClassificationDataset type.
- The supported image file types are:
 - PNG
 - TIFF
 - JPEG
 - BMP
 - J2K
- The supported Open eVision image object types are:
 - □ EImageType_BW8
 - EImageType_BW+6
 - □ EImageType_C24

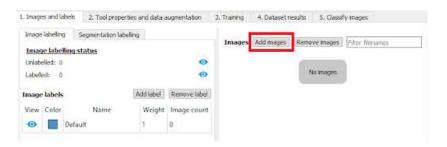
Labels

- There are 3 types of labels:
 - □ The *image labels* represent a characteristic of an image and its content. Use them to annotate images for EasyClassify or EasySegment Unsupervised.
 - □ The *segmentation labels* represent a characteristics of pixels. Use them to annotate image pixels for EasySegment Supervised.
 - □ The *object labels* represent a characteristic of a region of an image delimited by a bounding box. Use them to annotate images for EasyLocate.
- Images have the following labeling states:
 - Labeled or Unlabeled if the image is or is not associated with an image label.
 Only labeled images are used to train an EasyClassify or an EasySegment Unsupervised tool.
 - In the API, use EClassificationDataset::HasLabel(imageIndex).
 - Description With or without segmentation if the image has or has not a ground truth segmentation.
 - Only images with segmentation are used to train an EasySegment Supervised tool.
 - In the API, use EClassificationDataset::HasSegmenation(imageIndex).
 - □ *With or without object labeling* if the image has or has not a ground truth object labeling.
 - Only images with object labeling are used to train an EasyLocate tool.
 - In the API, use EClassificationDataset::HasObjectLabeling(imageIndex).
- The ground truth segmentation of an image has the following state:
 - Background when all the pixels of the image are associated with the Background segmentation label.
 - In defect detection applications, a background segmentation means that the image contains no defect.
 - With foreground blobs when the segmentation contains at least one pixel associated with a segmentation label different from Background.

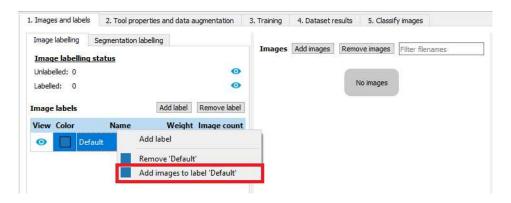
- In defect detection applications, a segmentation with foreground blobs means that the image contains defects.

- In the API, use EClassificationDataset::HasForegroundSegments(imageIndex).
- The ground truth object labeling of an image has the following state:
 - □ *No objects* when there is no object in the image.
 - In defect detection applications, an image with no object means that the image contains no defect.
 - Description: With objects when there is at least one object in the image.
 - In defect detection applications, an image with objects means that the image contains defects.

- In the API, use EClassificationDataset::GetImageNumObjects(imageIndex) to determine if the image has objects or not.

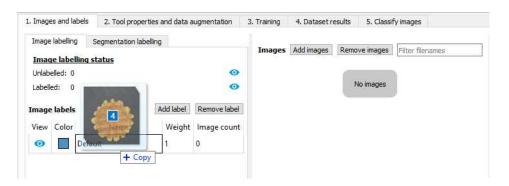


In Deep Learning Studio, the icons (visible) and (hidden) represent the visibility state of the images with the corresponding state and/or image label in the image list.
 Click on these icons to toggle the visibility state.


Image la	abeling	Segmentation lab	eling Objec	t labeling	Image	labeling	Segmentation la	beling Obje	ct labeling	Imag	e labelin	g Segn	entation la	ibeling Obje	ct labeling
Image	label	ing status			Imag	e segment	ation status			Obje	ect labe	ling statu	15		
Unlabele	ed: 0	images		0	No seg	gmentation:		0 ima	ges 🔇	Unlai	beled		0 images		0
Labeled	: 0	images		0	With s	egmentation	:	0 ima	ges <	> Labe	led		0 images		•
				In the second se	- Bad	kground / No	foreground blol	os / Good: 0 ima	ges 🔇	- Na	objects		0 images		
Image l	labels		Add label	Remove label	- With	n foreground	blobs / Defectiv	e: 0 ima	ges <	> - Wi	ith at lea	st 1 object	: 0 images		•
View 0	Color	Name	Weight	Image count		222			-						
0		Default	1	0	Segme	entation lab	els	Add label	Remove lab	el Objec	ct label	5		Add label	Remove labe
					Color	Nam	e Weig	nt Image cou	nt Pixel cou	nt View	Color	Name	Weight	Image count	Object cour
						Backgroun	d 1	0	0	0		Default	1	0	0

Adding Images

- In Deep Learning Studio, add image files (PNG, TIFF, JPEG, BMP and J2K types) to your datasets in one of the following ways:
 - □ Click on the Add images button to add images without any label nor segmentation.



 Right-click on an image label and click Add images to label to directly associate these images to the label.

 Drag and drop your files directly on an image label to directly associate these images to the label..

- Add a single image to a EClassificationDataset, in one of the following ways:
 - EClassificationDataset::AddImage(path[, label]) for an image file,
 - EClassificationDataset::AddImage(img[, label]) for an Open eVision image object.
 - You can specify a label to immediately associate the image with the label. Otherwise, the image is unlabeled.
- Add several images with the EClassificationDataset::AddImages(filter[, label]) method.

filter is a glob pattern with the wildcard characters:

- * means "zero or more characters"
- ? means "a single character"

For example, EClassificationDataset::AddImages("*good*.png", "good") adds all PNG image files that contain "good" in their filename.

TIP

The EClassificationDataset class automatically generates the set of labels from the labels of the images that you add to the dataset.

NOTE

By default, all images are unlabeled and have no ground truth segmentation.

Editing the Segmentation of an Image

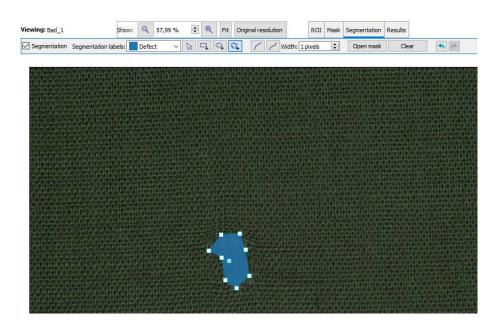
In Deep Learning Studio:

• To initialize or reset the segmentation of an image to all Background pixels:

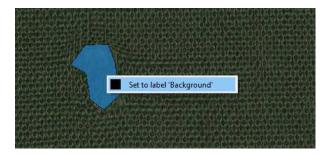
a. Select one or more images in the image list.

image labeling Sogr	entation lab	eling		Images	Add mages	Remove mages	Filter filenames
Image segmentation	status				(1997) All Contraction (1997)	Trend to be a second to be	L HITL HALLANDER
No segmentation:		7 mage	s 📀	CIT : NO	segmentation		
With segmentation:		() image	s 0	100.000	ang manana a		
-Background / No fore;	round blobs	/Good: 0 image	s 📀		Hanne		
-With foreground blobs	/Defective:	0 image	s 💿	建築			
Segmentation labels		Add label	Remove label		0.0	ldd images Idd images for labe	a >
Color Name	Weight	Image count	Pixel count	1274		et label	
Background	1	0	0			level segmentation	v 11
				GT: No		Inset segmentation Inset label	×
					F. F	lemove	

- **b.** Right click on the selection.
- c. Click on Reset segmentation.
- To edit the segmentation:
 - a. Double click on the image to open it in the image editor.
 - **b.** Click on the Segmentation button (ALT + S).


iewing: Bad_1	Show:	Q	57,99 %		Q	Fit	Original	resolution		ROI	Mask	Segmentation	tesults		
Segmentation Segment	ation labels:	Backe	round ~	S		9	52 1	121	Vidth: 1 pix	els.	1¢.	Open mask	Clear	44	100

c. To reset or unset the segmentation, uncheck the Segmentation checkbox (CTRL + S).


Viewing: Bad_1	Show:	Q	57,99 %	•	Q	Fit	Original resolution		ROI	Mask	Segmentation	Results		
Segmentation	Segmentation labels:	Defe	ct v		7	⊋ €	¥ / / v	Vidth: 1 pi	ixels	•	Open mask	Cle	ar 📩 🔦	14

d. Select a segmentation label, a drawing tool and enclose the segmentation.

e. Change the segmentation label of a blob by right-clicking on it

Editing the Objects of an Image

In Deep Learning Studio:

• To initialize or reset the object labeling of an image:

a. Select one or more images in the image list.

- **b.** Right click on the selection.
- c. Click on Reset object labeling.
- To edit the objects:
 - a. Double click on the image to open it in the image editor.
 - **b.** Click on the Objects button (ALT + 0).

Viewing: Images_1	Show:	Q 51,46 %	÷ @	Fit Original resolution	ROL	Mask	Segmentation	Objects	Results				
🗌 Object labeling 🛛 🏠 Edit	objects 🕞 Ad	dd objects 📃 De	fault 🗸	Clear 👆 🔶									View object list
										Image	Ground truth	Results	
										Object	labeling		
								12.54		Status	No ground trut	h object labeling	

c. To reset or unset the object labeling, uncheck the Object labeling checkbox (CTRL + L).

Viewing: Images_1	Show:	Q	51,46 %	÷	Fit	Original resolution	ROI	Mask	Segmentation	<u>O</u> bjects	<u>R</u> esults				
🗹 Object labeling 🛛 📎 Edit	objects 🖵	Add ob	jects 📕 I	Default 🗸		Clear 🔦 🥟	_								View object list
												Image	Ground truth	Results	
												A PARTY AND A PART	17. Andrea of the second second and	<i>uth object labeling</i> Drg Y Width H	leight

d. Click on the Add objects button to add new objects with the label indicated next to the button.

Object labeling 🛛 📎 Er	dit objects 📮 Add o	bjects	Default V	Clear					^	Image Object lab	Ground trut	h Res	sults	View o
and the second			2	3	13/6/4				8		With ground			
		2.50				Default	~			Label Default	Org X 922	Org Y 579	Width	Height
	1			the second		Derdide				Default	1068	564	149	145
00	and the	and in				2				Default	1144	491	150	153
1		Default 🐱		5	Default 🗸	7								

e. Click on the Edit objects button to modify the bounding box or the label of an object.

🛛 Object labeling	Edit objects	Default 🗸	Clear	🔦 14								View obj
			-				^	Object lab	Vith ground	l truth obj	sults ect labeling	t):
	11				Default 🗸			Label Default	Org X 922	Org Y 579	Width 158	Height 147
	1				1	Sales!		Default Default		564 491	149 150	145 153
	Pefau Defau Trans	lt stor	De	fault 🗸		7						
	K	8										

ROI and Mask

Setting a ROI

Use an ROI (region of interest) to crop an image or a whole dataset to a rectangular area aligned with the axis.

In the API:

- To define an ROI for an image:
 - □ Specify the ROI when you add the image to the dataset.
 - or use EClassificationDataset::SetRegionOfInterest.

In Deep Learning Studio:

- To change the ROI:
 - **a.** Select an image from the dataset.
 - **b.** Click on the ROI button (ALT + I).

🗢 y: 0 🗢 Wie	dth: 1920 🗘 Height: 1200 🗘	Reset					Apply	Apply to All Image
ad provided years						600000000000	100600666	Consultane and the
						Constant Steel		102000
Shielo of Sai					1904-048-2003-05	Janna Sanakari		
			20222423333	122020101100	0.00055552753			000000000
		92020201020		11111111111111				a service and the
1000000000			555555655222		19224024025	1050555555555	HERE SHE	loci lenza
Contractor and a second se				40.000000000000		36333336666		
		660666666666	assis Site Co	05.303992.0900		38056555555	98-13-64-65-7-	
	20010020024049				100000000000000000000000000000000000000			
North Charles and Charles	indization stated	00050012000					The black of	A Cartana Salara
000000000000000000000000000000000000000		Reaconsaces	Margana and and and and and and and and and	DOCOCODODOD	COUCOCC.	Win City City 101		
		toor: october			CLOCACECCCC	C. Well-Statistics	がいならならら	0.03.29933
REDUCTION								802.0199
		002070000000			Ecolocolette	GINE WEBBER		
We share								
	03325633333556							
2000000000				GIN GOVERNMENT	100000000000000000000000000000000000000	GOL GUG BRI GOOM		
000000000000000000000000000000000000000	000000000000000000000000000000000000000							CUCCERCE.
CARACTER		CILCUCTOR COLORG	000000000000					

- c. Drag the ROI green box, or directly set the ROI origin (x and y), Width and Height.
- **d.** Click on the Apply button (CTRL + A).

Viewing: Bad_0	Show:	Q 57,99	%	€ F	it Original re	solution	ROI	Mask	Segmentation	Results						
x: 236 🗘 y: 206 🕏 Width: 14	437 🗘 Height	t: 839 🗘	Rese	t]											Apply	Apply to All Image
	and the second second	Wilson a	man	harpata	n the state		anan.	-	e de la composición d			g ang sa		Provide G	والمراجع المراجع	
				1999			2005 2005	5050 5055								
33737333555555555			1000			120222	2005		55555				0000			
										13040		1993			1	Service 198
		-	A SHE											52 ⁰ 867		
						55555										
	Sciology	2636													6006	
	k state	00000 60000														
			9000 9000											Sauce:		
	000000															
							3633	۲						60500		
							0000 6469							Jogec		
							た。 合われて						505	00000		
			in de					555						State:		
						SECON		100								
						16.6								1,000		
			3.65			0.7		-955			6,66,65					
								ererere la				C C C C C		ALCONT.		
				ane selve esteriette												

- To set the same ROI for all the images of the dataset:
 - a. Set the ROI for one of the image.
 - **b.** Click on the Apply to All Images button (CTRL + SHIFT + A).

Viewing: Bad_0	Show: 🭳 57,99 %	🔹 🔍 Fit Original resolution	ROI Mask Segmentation Results	
x: 236 \$y: 206 \$Width: 1	137 🗘 Height: 839 文	Reset		Apply Apply to All Images

Setting a mask

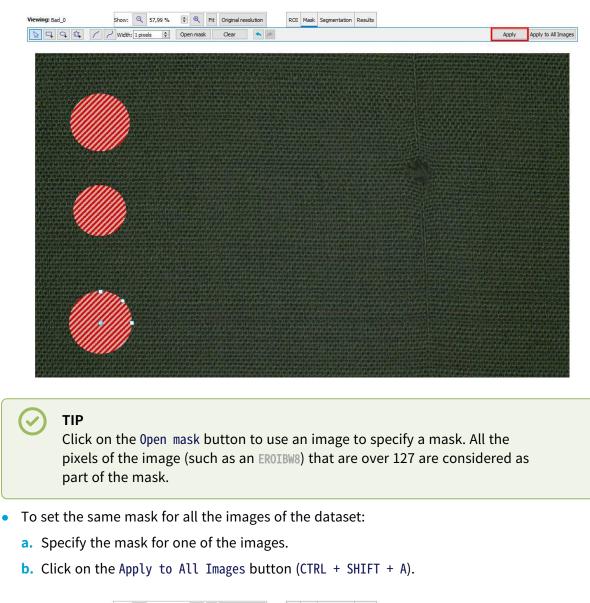
Set a mask on an image in a dataset to remove the pixels in the mask area from any computation. The mask works as a "don't care area".

In the API:

- To define a mask for an image:
 - Specify the mask when you add the image to the dataset.
 - or use EClassificationDataset::SetMask.

In Deep Learning Studio:

- To change the mask:
 - a. Select an image from the dataset.
 - **b.** Click on the Mask button (ALT + M).


Viewing: Bad_0	Show: 🭳 57,99 %	🕄 🍳 Fit	Original resolution	ROI	Mask	Segmentation	Results	
	🖌 🖌 Width: 1 pixels 🜲	Open mask	Clear 😽	4				

c. Select a kind of ERegion to draw the mask.

Viewing: Bad_0	Show:	Q	57,99 %	•	Q	Fit	Original resolution	ROI	Mask	Segmentation	Results
	Width:	1 pix	els 🜲	Ope	en masl	k	Clear A				
Add a polygon region	والبراد المحم المراجع	is. A pr	والإراد المراجع	An		(Train		k k k k k k k k	and a	0101010101010	0 01010

- d. Draw the mask.
- e. Click on the Apply button (CTRL + A).

Viewing: Bad_0	Show: 🭳 57,99 %	🗧 🍳 Fit Original resolution	ROI Mask Segmentation Results	
	Width: 1 pixels	Open mask Clear		Apply Apply to All Images

1.5. Managing the Dataset

Training and Validation Datasets

It is important to use at least 2 separate datasets of images:

- A training dataset to train the classifier.
- A validation dataset to automatically select the best classifier during the training.
- □ An optional test dataset to evaluate the final performance of your classifier.

WARNING

These datasets MAY NOT contain:

- Images of the other datasets.
- Images of an object of interest extracted from images of the other datasets.

Deep Learning Studio automatically and randomly splits the dataset into a training and a validation dataset. Add images to the test dataset in the tab Test and results.

Why is it important?

Deep learning techniques can suffer from overfitting; this means that the trained classifier is too focused on the specific images present in the training dataset and it is not able to learn a general model of your data. Such tools perform poorly in production.

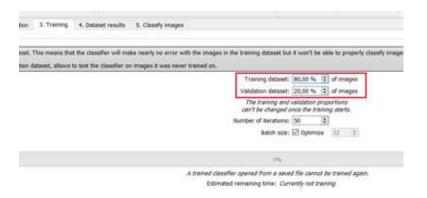
The validation dataset is used during training to prevent and know when overfitting occurs. This keeps the tool in a state that gives the best performance on the validation dataset. Without the validation dataset, it is impossible to know if a tool that performs well on its training dataset can perform well in production too.

Thus, a tool that gives high performance on the training dataset but much lower performance on the validation dataset has overfitted.

To fix overfitting:

- You can add more images in your dataset.
- Or, in some cases, you can use data augmentation.

TIP


Data augmentation generates random transformations of the images in the training dataset to make the tool robust to geometric, luminosity or noise differences that are not present in the original training dataset.

Splitting the dataset

To create your training and validation datasets:

- In Deep Learning Studio:
 - □ Create a single dataset in the Images and labels tab.
 - □ Set the splitting percentages in the Training tab.
 - During the training, the dataset automatically splits into a training and a validation dataset according to this splitting percentage.

- In the API:
 - Create directly 2 EClassificationDataset objects containing 2 different sets of images.
 - Or randomly split an EClassificationDataset dataset into 2 parts with the methods:
 - For EasyClassify and EasySegment Unsupervised: EClassificationDataset::SplitDataset (trainingDataset, validationDataset, trainingProportion)

- For EasySegment Supervised: EClassificationDataset::SplitDatasetForSegmentation (trainingDataset, validationDataset, trainingProportion)

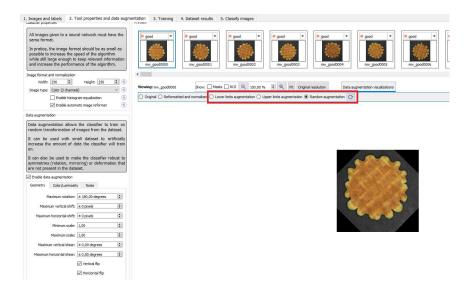
- For Easylocate: EClassificationDataset::SplitDatasetForLocator(trainingDataset, validationDataset, trainingProportion)

Using Data Augmentation

Data augmentation performs random transformations on images given to a deep learning tool (EClassifier, EUnsupervisedSegmenter or ESupervisedSegmenter object) during the training.

- Experiment different settings to choose the best parameters for your data augmentation.
- Configure data augmentation according to your problem. However, flips, shifts (20 40 px), brightness (5%), contrast (0.95 to 1.05) or salt and pepper noise (2%) can be useful on many datasets.
- Check that the transformations do not change the label of an image (for example a defect that disappears because of a rotation or a contrast change).

Use EClassificationDataset::SetEnableDataAugmentation(true/false) to enable or disable these transformations.


NO
Wit

NOTE

With EasyLocate, we do not recommend to use rotation and shear data augmentation as it is not possible to compute the minimal bounding box surrounding the object after these geometric transformations.

In Deep Learning Studio:

- Configure the data augmentation in the second tab (Image properties and augmentation).
- Display and review the data augmented images with the minimum settings (Lower limits augmentation), the maximum settings (Upper limits augmentation) or the random settings (Random augmentation).

In the API:

Use EClassificationDataset::SetEnableDataAugmentation(true/false) to enable or disable these transformations.

The possible transformations are:

Geometric transformations

Geometry	Color/Luminosity	v Noise	
M	aximum rotation:	± 0,00 degrees	\$
Maxin	num vertical shift:	± 0 pixels	\$
Maximur	n horizontal <mark>s</mark> hift:	± 0 pixels	\$
	Minimum scale:	1,00	\$
	Maximum scale:	1,00	\$
Maximu	im vertical shear:	± 0,00 degrees	\$
Maximum	horizontal shear:	± 0,00 degrees	¢
	l	Vertical flip	
		Horizontal flip	

- Horizontal and vertical flips (enabled with EClassificationDataset::SetEnableHorizontalFlip and EClassificationDataset::SetEnableVerticalFlip)
- Scaling (between a minimum and maximum value defined with EClassificationDataset::SetMinScale and EClassificationDataset::SetMaxScale)
- Horizontal and vertical shifts (between -maxValue and maxValue defined with EClassificationDataset::SetMaxHorizontalShift(maxValue) and EClassificationDataset::SetMaxVerticalShift(maxValue))
- Rotations (between 0 and a maximum value defined with EClassificationDataset::SetMaxRotationAngle)
- Horizontal and vertical shear (between -maxValue and maxValue defined with EClassificationDataset::SetMaxHorizontalShear and EClassificationDataset::SetMaxVerticalShear)

Color and luminosity transformations

Geometry	Color/Luminos	sity	Noise			
Maximum bri	ghtness offset:	±0,	00 %			Ľ
	Constrast gain:	min	1,00 🗘	max	1,00	
	Gamma:	min	1,00 🗘	max	1,00	
	Hue offset:	± 0,	00 degre	es		
5	Saturation gain:	min	1,00 🗘	max	1,00	

- Brightness offset (between -maxValue and maxValue defined with EClassificationDataset::SetMaxBrightnessOffset)
- Contrast gain (between a minimum and maximum value defined with EClassificationDataset::SetMinContrastGain and EClassificationDataset::SetMaxContrastGain)
- Gamma corrections (between a minimum and maximum value defined with EClassificationDataset::SetMinGamma and EClassificationDataset::SetMaxGamma)

- Hue offset (between -maxValue and maxValue defined with EClassificationDataset::SetMaxHueOffset)
- Saturation gain (between a minimum and maximum value defined with EClassificationDataset::SetMinSaturationGain and EClassificationDataset::SetMaxSaturationGain)

Noise transformations

Geometry	Color/Luminosity	Noise	
Gaussian no	ise (additive white r	noise)	
Minimum s	tandard deviation:	±0,00 %	\$
Maximum s	tandard deviation:	± 0,00 %	\$
Speckle nois	e (multiplicative nois	ie)	
Minimum s	tandard deviation:	± 0,00	•
Maximum s	tandard deviation:	±0,00	\$
Salt and pep	per noise		
	Minimum density:	±0,00 %	
P	Maximum density:	±0,00 %	(

TIP

The standard deviation is expressed as a percentage of the maximum pixel value.

- Gaussian noise, also called additive white noise, generated with a standard deviation (between a minimum and maximum value defined with EClassificationDataset::SetGaussianNoiseMinimumStandardDeviation and EClassificationDataset::SetGaussianNoiseMaximumStandardDeviation)
- Speckle noise, a multiplicative noise, generated from a Gamma distribution with a mean of 1 and a standard deviation (between a minimum and a maximum value defined with EClassificationDataset::SetSpeckleNoiseMinimumStandardDeviation and EClassificationDataset::GetSpeckleNoiseMinimumStandardDeviation).
- Salt and pepper noise generated from a pixel density (between a minimum and a maximum value defined with EClassificationDataset:: SetSaltAndPepperNoiseMinimumDensity and EClassificationDataset::SetSaltAndPepperNoiseMaximumDensity).

1.6. Training a Deep Learning Tool

In the API, to train a deep learning tool, call the EDeepLearningTool::Train(trainingDataset, validationDataset, numberOfIterations) method.

- An *Iteration* corresponds to going through all the images in the training dataset once.
 - The training process requires a large number of iterations to obtain good results.
 - □ The training process requires a large number of iterations to obtain good results.
 - □ The default number of iterations is 50.
 - The larger the number of iterations, the longer the training is and the better the results you obtain.
- *Multiple iterations*:
 - Calling the EDeepLearningTool::Train method several times with the same training and validation dataset is equivalent to calling it once but with a larger number of iterations.
 - □ Call EDeepLearningTool::GetNumTrainedIterations to get the total number of iterations used to train the classifier.
 - In successive calls to EDeepLearningTool::Train:

- You can add images to the training and validation dataset to train the tool to recognize new instances of your problem.

- We do not recommend that you remove images from the dataset as the tool might forget about these images during the new training phase.

- The training process is *asynchronous*:
 - **D** EDeepLearningTool::Train launches a new thread that does the training in background.
 - EDeepLearningTool::WaitForTrainingCompletion suspends the program until the whole training is completed.
 - EDeepLearningTool::WaitForIterationCompletion suspends the program until the current iteration is completed.
 - During the training, EDeepLearningTool::GetCurrentTrainingProgression shows the progression of the training.
- The *batch size* corresponds to the number of image patches that are processed together.
 The training is influenced by the batch size.
 - A large batch size increases the processing speed of a single iteration on a GPU but requires more memory.
 - □ The training process is not able to learn a good model with too small batch sizes.
 - By default, the batch size is determined automatically during the training to optimize the training speed with respect to the available memory.
 - Use EDeepLearningTool::SetOptimizeBatchSize(false) to disable this behavior.
 - Use EDeepLearningTool::SetBatchSize to change the size of your batch.
 - □ EDeepLearningTool::GetBatchSizeForMaximumInferenceSpeed gets the batch size that maximizes the batch classification speed on a GPU according to the available memory.
 - □ It is common to choose powers of 2 as the batch size for performance reasons.

2. EasyClassify - Classifying Images

2.1. Tool and Images

EasyClassify is the deep learning classification library of Open eVision (EClassifier class).

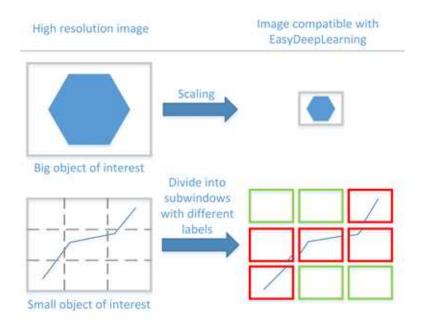
Deep Learning Studio

To create a classification tool in Deep Learning Studio:

- **1.** Start Deep Learning Studio.
- 2. Select EasyClassify in the New deep learning tool dialog.

📴 New deep learning tool	
EasyClassify The tool classifies images into labels.	Details Select Show details >> Number of labels: 2-1000 Minimum image size: 128x128 Maximum image size: 128x128 Maximum image size: 128x128 Maximum image size: 128x128 Maximum image size: 119x198 Maximum image s
Image: Segment Unsupervised Image: Segment Unsupervised <td>All images must have the same resolution (automatic reformatic possible) Select</td>	All images must have the same resolution (automatic reformatic possible) Select
EasySegment Supervised The tool detects and segments defects or objects in images.	Select Show details >>
EasyLocate The tool locates and classifies objects in images.	Select Show details >>
	Cano

Input image format and normalization


- The input image format must have the width, height and number of channels corresponding to the input of the neural network.
- By default, a classifier uses the image format of the first image inserted in the training dataset:
 - All other images are automatically reformatted (anisotropic rescaling and conversion between color and grayscale).
 - □ If Eclassifier::SetEnableAutomaticImageReformat(false) is called, the classifier throws an exception when attempting to train or classify an image that does not have the correct image format.

• In Deep Learning Studio, you can set the input image format in the Tool properties and data augmentation tab.

1. Images and lal		erties and data augm	
Classifier prope	rues		
Capacity:	Normal		~
Image forma	t and normalizati	on	
Width:	128	Height: 128	‡ (i
Image type:	Monochrome (1 channel) ~		~ G
	Enable histogram equalization		G
	Enable automati	reformat	G

- In the API, you can also set manually the input image format with the methods SetWidth, SetHeight and SetChannels (1 channel for grayscale images and 3 channels for color images).
- The input image format must have a resolution of at least 128 x 128 for the normal and the large capacity or 64 x 64 for the small capacity and at most 1024 x 1024. For the best processing speed, use the lowest resolution at which your "objects of interest" are still recognizable.
 - □ If your original images are smaller than the minimum resolution, upscale them to a resolution higher or equal to 128 x 128.
 - If your original images are larger than the maximum resolution, lower the resolution:
 If the "objects of interest" are still recognizable, explicitly set the input image format of the classifier to this lower resolution.

- If the "objects of interest" are not recognizable, divide your original images into subwindows and use these sub-windows to train the classifier and make predictions. This presents the additional advantage of localizing the "object of interest" inside the original image.

- The Capacity of the neural network (default: Normal) represents the quantity of information that it is capable of learning.
 - Description The small network is much smaller in memory and faster at inference.
 - The large network can handle more complex datasets. It is also better for datasets with a lot of noise.

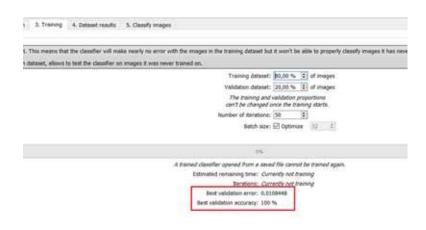
In the API:

- □ The capacity values are defined by the enumerate type EClassifierCapacity.
- □ Use EClassifier::SetCapacity to set the capacity of your tool.

Histogram equalization

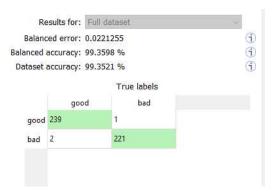
The classifier can also apply an histogram equalization to every input image:

- In Deep Learning Studio, activate it in the image format controls in the Image properties and augmentation tab.
- □ In the API, use EClassifier::SetEnableHistogramEqualization(true) to activate it.

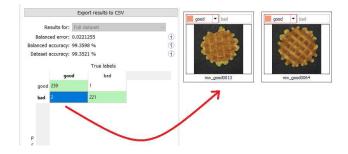

Training

To train your tool, see "Training a Deep Learning Tool" on page 213.

2.2. Validating the Results


In Deep Learning Studio:

- The metrics are always computed without applying data augmentation on the images.
- In the Training tab, the metrics Best validation error and Best validation accuracy are computed during the training using the label weights.


- In the Dataset results tab, there are 3 metrics displayed:
 - The weighted error and the weighted accuracy (normalized with respect to the label weights instead of being dependent of the number of images for each label).
 - The dataset accuracy (it does not use the label weights).

TIP

If your dataset has a very different number of images for each of the labels, it is called *unbalanced*. In this case, the dataset accuracy is biased towards the labels containing the most images (the dataset accuracy mainly reflects the accuracy of these labels).

- In the Dataset results tab, the confusion matrix shows the number of images according to their true labels and their label predicted by the classifier.
 - □ The diagonal elements of the matrix shown in green are the correctly classified images.
 - All the other elements of the matrix are badly classified images.
 - □ Select one or more elements of the matrix to show the corresponding images.

In the API:

- After the completion of each iteration, EasyClassify automatically computes several performance metrics about the training and validation dataset:
 - Call the methods EClassifier::GetTrainingMetrics(iteration) and EClassifier::GetValidationMetrics(iteration) to read these metrics.
 - □ The iterations are indexed between 0 and EDeepLearningTool::GetNumTrainedIterations()-1.
 - □ Call EDeepLearningTool::GetBestIteration() to retrieve the iteration that produced the best performance.
 - □ After the training, the classifier is back in the state corresponding to this best iteration.

- The metrics are represented by an EClassificationMetrics object that contains the following performance metrics:
 - □ The classification error (EClassificationMetrics::GetError()), also called the cross-entropy loss: the quantity that is minimized during the training. It is computed from the probabilities computed by the classifier.

- The error for a single image is the negative of the logarithm of the probability corresponding to the true label of the image. So, if this probability is low, the error for the image is high.

- The error of the dataset is the average of the errors of each image in the dataset.

- □ The classification accuracy (EClassificationMetrics::GetAccuracy()): the number of images correctly classified divided by the total number of images in the dataset.
- The confusion matrix (EClassificationMetrics::GetConfusion(groundtruthLabel, predictedLabel)): the number of images labeled as groundtruthLabel that are classified as predictedLabel.

TIP Call EClassifier::Evaluate to evaluate a dataset independently of the training.

2.3. Classifying New Images

Classify images

- In Deep Learning Studio, open the Test and results tab to:
 - Classify new images.
 - Display detailed results for each image of the main dataset.
- Once the classifier is trained, call **EClassifier::Classify** to classify an Open eVision image.

This method returns a EClassificationResult object:

- EClassificationResult::GetBestLabel() returns the most probable label for the image.
- EClassificationResult::GetBestProbability() returns the probability associated with the most probable label.
- EClassificationResult::GetProbability(label) returns the probability associated with the given label.
- EClassificationResult::GetRanking(label) returns the ranking of the given label. The ranking goes from 1 (most probable) to EClassifier::GetNumLabels() (least probable).

- You can also do batch classification or directly classify a vector of Open eVision images:
 Images are processed together in groups determined by the batch size.
 - On a GPU, it is usually much faster to classify a group of images than a single image.
 - On a CPU, implement a multithread approach to accelerate the classification. In that case, each thread must have its own instance of EClassifier (see code snippets).

TIP

The batch classification has a tradeoff between the throughput (the number of images classified per second) and the latency (the time needed to obtain the result of an image): on a GPU, the higher the batch size, the higher the throughput and the latency. So, use batch classification to improve the classification speed at the cost of a longer time before obtaining the classification result of an image.

- Use EClassifier::GetHeatmap(img, label) to obtain an heat map highlighting the pixels that contribute the most to a label.
 - In some cases, this heat map can provide a rough localization of the object corresponding to the label.
 - □ The heat map is colored, and the important parts are displayed in red.

Memory requirements

- In addition to the properties of the classifier object and the weights of the neural network, an EClassifier object dynamically allocates memory for intermediate results during the training and the classification of new images.
- The size of the intermediate results depends on the width (W), height (H), batch size (B), and whether the operations are performed on a GPU or a CPU.
- For training, these intermediate results need about the following amount of memory:

 $TrainingMemoryCPU = 0.000453 \times W \times H \times B - 292 \quad (MB)$ $TrainingMemoryGPU = 0.000440 \times W \times H \times B + 25 \quad (MB)$

• For classification, these intermediate results need up to the following memory:

 $\begin{aligned} ClassificationMemoryCPU &= 0.000232 \times W \times H \times B - 97 \ (MB) \\ ClassificationMemoryGPU &= 0.000226 \times W \times H \times B + 13 \ (MB) \end{aligned}$

• For example, training a classifier or making classifications with 256 x 256 images and a batch size of 32 on a GPU will take around respectively 950 MB or 500 MB.

TIP

Since large memory allocations take a lot of time, a classification does not released this memory and the next classifications can reuse it as long as the width, height, batch size and computation device remain the same. As such, the first classification is always slower due to the memory allocations.

2.4. Benchmarks for EasyClassify

Test conditions

- These numbers are only indicative and represent only the memory required for the neural network.
- □ Your actual memory requirements may be bigger or lower according to your GPU model.
- The GPU must have more memory than the indicated amount to work because storing images and results may require additional GPU memory and because of memory fragmentation.
- □ The training time is approximately twice the inference time per image. An iteration is equivalent to a loop over all the images in the dataset.
- Description The GPU used for these benchmarks is a NVIDIA GeForce 1080 Ti.
- □ The CPU used is an Intel Core i9 7900X.

				Training	
Image size	Batch	GPU Memory (MB)	GPU inference time /image	CPU inference time	GPU Memory (MB)
	1	19	2.7 ms	10.2 ms	-
128 × 128	4	29	0.88 ms	-	54
120 ~ 120	16	67	0.6 ms	-	134
	64	232	0.39 ms	-	463
	1	30	3.3 ms	45.3 ms	-
256 × 256	4	74	1.99 ms	-	144
230 ~ 230	16	247	1.35 ms	-	497
	64	959	1.14 ms	-	1924
	1	74	7.9 ms	199 ms	-
512 × 512	4	260	4.56 ms	-	519
J12 ~ J12	16	998	5.89 ms	-	2001
	64	3908	4.74 ms	-	7936

Capacity small

Capacity normal

			Inference			
Image size	Batch	GPU Memory (MB)	GPU inference time /image	CPU inference time	GPU Memory (MB)	
	1	92	4.4 ms	13 ms	-	
128 × 128	4	102	1.29 ms	-	166	
120 ~ 120	16	141	0.66 ms	-	320	
	64	277	0.41 ms	-	608	
	1	103	5.3 ms	50 ms	-	
256 × 256	4	145	2.33 ms	-	253	
250 ~ 250	16	315	1.3 ms	-	1219	
	64	1042	1.1 ms	-	2144	

			Training		
Image size Batc	Batch	GPU Memory (MB)	GPU inference time /image	CPU inference time	GPU Memory (MB)
	1	155	17.8 ms	199 ms	-
512 × 512	4	332	5.8 ms	-	1110
512 ~ 512	16	1069	4.3 ms	-	2605
	64	4122	4.22 ms	-	8533

Capacity large

			Inference		Training
Image size	Batch	GPU Memory (MB)	GPU inference time /image	CPU inference time	GPU Memory (MB)
	1	32	2.4 ms	17.1 ms	-
128 × 128	4	50	1.2 ms	-	100
120 ~ 120	16	131	0.9 ms	-	255
	64	421	0.6 ms	-	848
	1	54	4.2 ms	69 ms	-
256 × 256	4	137	2.7 ms	-	275
230 ~ 230	16	473	1.8 ms	-	990
	64	1830	1.3 ms	-	3660
	1	145	15.9 ms	324 ms	-
512 × 512	4	502	8.6 ms	-	1004
J12 / J12	16	1932	7.2 ms	-	3961
	64	7690	6.2 ms	-	15380

3. EasySegment - Detecting and Segmenting Defects

3.1. Unsupervised vs Supervised Modes

EasySegment is the deep learning segmentation library of Open eVision.

It contains 2 different modes:

- The *unsupervised* mode:
 - □ The tool is trained only with good images (EUnsupervisedSegmenter class).
 - This mode does not require a ground truth segmentation and the creation of the dataset is thus much quicker than for the supervised mode.
 - This mode can detect unexpected defects while the supervised mode is only capable of detecting defects similar to those in the dataset.
- The *supervised* mode:
 - The tool is trained using the ground truth segmentation defined for the images (ESupervisedSegmenter class).
 - This mode can detect and segment more types of defects with better accuracy than the unsupervised mode. It directly builds a model for the defects while the unsupervised mode builds a model of the good images and tries to detect variations from this model.
 - You can also use this mode to segment other types of objects than defects.

3.2. EasySegment Unsupervised

Tool and Configuration

EasySegment Unsupervised is the deep learning tool part of the EasySegment segmentation library of Open eVision. It detects and segments defects in images.

This tool trains in an unsupervised way. This means that it is trained only with good images. So it does not require any ground truth segmentation of the defects.

Deep Learning Studio

To create an unsupervised segmentation tool in Deep Learning Studio:

- 1. Start Deep Learning Studio.
- 2. Select EasySegment Unsupervised in the New deep learning tool dialog.

DL New deep learning tool		3
EasyClassify The tool classifies images into labels.	Select Show details >>	Details EasySegment Unsupervised Use cases: Defict detection with localization Number of labels: 1 good, 0-1000 defective labels. Minimum image size: 6 4664 Maximum image size: 3 2768 x 32 768
The tool detects and segments defects in images. Trained only with good images.	Select Show details >>	
The tool detects and segments defects or objects in image	Select S. Show details >>	
EasyLocate The tool locates and classifies objects in images.	Select Show details >>	
		Cancel

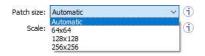
The following dialog is displayed at the start of Deep Learning Studio or when you create a new deep learning tool from the toolbar.

Deep le	arning tool
New Open Save	Not trained
Tool type: Unsupervised segmenter	Best valadation error: <i>n.a.</i> Best validation AUC: <i>n.a.</i>

Configuration

Good label:	Default	~
Capacity:	Normal	~
Image type:	Color (3 char	inels) ~
ampling density:	2,00	
Patch size:	Automatic	~
Scale:	1,00000000	
	Input width:	n.a.
	Input height:	n.a.

The unsupervised segmenter tool has 6 parameters:


- 1. The Good label is the name of the class that contains the good images.
- 2. The Capacity of the neural network (default: Normal) represents the quantity of information it is capable of learning. A larger capacity makes the tool slower.

In the API:

- □ The capacity is represented by the enumerate type EUnsupervisedSegmenterCapacity.
- EUnsupevisedSegmenter::Capacity sets the capacity of the tool.
- 3. The Image type (default: Monochrome (channel)):

In the API:

- To use monochrome (grayscale, 1 channel) images, set EUnsupervisedSegmenter::ForceGrayscale to true.
- □ To use color (3 channels) images, set EUnsupervisedSegmenter::ForceGrayscale to false.
- 4. The Sampling density (EUnsupervisedSegmenter::SamplingDensity) is the parameter of the sliding window algorithm used to process whole images using patches of size (EUnsupervisedSegmenter::PatchSize).
 - It indicates how much overlap there is between the image patches: 100 - 100 / SamplingDensity (%)
 - In practice, the stride between 2 consecutive patches is: PatchSize / SampleDensity (pixels)
- 5. The Patch size (EUnsupervisedSegmenter::PatchSize) is the size of the patches processed by the neural network.
 - By default, the patch size is determined automatically from the images in the training dataset.
 - You can also select the resolution of the patch size from the drop down list.

6. Use the Scale (EUnsupervisedSegmenter::Scale) to automatically resize your images to a lower resolution and accelerate the processing.

In Deep Learning Studio:

- □ If the dataset contains images with different resolutions, the Input width and the Input height indicate the range of the resolutions with the given scale.
- If all the images in the dataset have the same resolution, set either the Input width or the Input height to change the scale.

Training

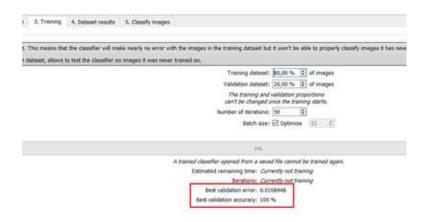
To train your tool, see "Training a Deep Learning Tool" on page 213.

Validating the Results

There are 2 types of metric for the unsupervised segmentation tool:

- Unsupervised metric only uses the results of the tool on good images. There is only one unsupervised metric: the error.
- Supervised metrics require both good and defective images. The supervised metrics are the AUC (Area Under ROC Curve), the ROC curve, the accuracy, the good detection rate (also called the true negative rate), the defect detection rate (also called the true positive rate).

The unsupervised segmentation tool computes a score for each image (see EUnsupervisedSegmenterResult::ClassificationScore). The label of a result is obtained by thresholding this score with the segmenter classification threshold (EUnsupervisedSegmenter::ClassificationThreshold). So, the supervised metrics also depends on the value of this classification threshold.


The ROC curve (Receiver Operating Characteristic) is the plot of the defect detection rate (the true positive rate) against the rate of good images classified as defective (also called the false positive rate). It is obtained by varying the classification threshold. The ROC curve shows the possible tradeoffs between the good detection rate and the defect detection rate.

The area under the ROC curve (AUC) is independent of the chosen classification threshold and represents the overall performance of the tool. Its value is between 0 (bad performance) and 1 (perfect performance).

In Deep Learning Studio:

• In the Training tab, the metrics Best validation error and Best validation AUC are computed during the training on the validation dataset without using data augmentation. The validation error, the training error and the validation AUC are plotted for each iteration.

- In the Dataset results tab, various metrics, the confusion matrix, a cumulative score histogram, and the ROC curve are displayed. You can also change the classification threshold directly in this tab.
 - □ The cumulative score histogram shows the cumulative proportion of good (in green) and defective (in red) images with respect to the scores of the image.
 - You can change the classification threshold in 3 ways : direct input, dragging the threshold line in the score histogram and selecting a point on the ROC curve.

In the API:

- The metrics are represented by an EUnsupervisedSegmenterMetrics object that contains the following performance metrics:
 - The error on good image (EUnsupervisedSegmenterMetrics::GetError)
 - The confusion matrix (EDeepLearningDefectDetectionMetrics::GetConfusion)
 - If the results for bad images are included in the metrics,
 EUnsupervisedSegmenterMetrics::IsTotallyUnsupervised is false and the following metrics are also be accessible:
 - The accuracy (EDeepLearningDefectDetectionMetrics::GetAccuracy)
 - The Area under ROC curve (EDeepLearningDefectDetectionMetrics::GetAreaUnderROCCurve)
 - The ROC point corresponding to the classification threshold (EDeepLearningDefectDetectionMetrics::GetROCPoint)

Applying the Tool to New Images

In Deep Learning Studio:

- Open the Test and results tab to:
 - Apply the segmenter to new images.
 - Display detailed results for each image of the main dataset.

• Once the unsupervised segmenter is trained, call EUnsupervisedSegmenter::Apply to detect and segment defects in an Open eVision image.

This method returns a EUnsupervisedSegmenterResult object:

- EUnsupervisedSegmenterResult::IsGood and EUnsupervisedSegmenterResult::IsDefective returns whether the tool has decided that the image is good or defective according to the EUnsupervisedSegmenterResult::ClassificationScore and the EUnsupervisedSegmenter::ClassificationThreshold.
- EUnsupervisedSegmenterResult::GetSegmentationMap returns an EImageBW8 image where all pixels with a value different than 0 are *defective* pixels.
 The value of a defective pixel is proportional to the importance of the defect at that position.
- EUnsupervisedSegmenterResult::GetRegion returns an ERegion object corresponding to the segmented region of the image (all the pixels of EUnsupervisedSegmenterResult::GetSegmentationMap that have a value strictly higher than 0).
- □ EUnsupervisedSegmenterResult::Draw draws the segmentation mask.

Benchmarks for EasySegment Unsupervised

Test conditions

- These numbers are only indicative and represent only the memory required for the neural network.
- □ Your actual memory requirements may be bigger or lower according to your GPU model.
- The GPU must have more memory than the indicated amount to work because storing images and results may require additional GPU memory and because of memory fragmentation.
- □ The training time is approximately twice the inference time per image. An iteration is equivalent to a loop over all the images in the dataset.
- Description The GPU used for these benchmarks is a NVIDIA GeForce 1080 Ti.
- The CPU used is an Intel Core i9 7900X.

Image size

- $\hfill \Box$ The inference times are reported for 1024 \times 1024 RGB images with all other settings at their default values.
- □ The inference times increase linearly with the width and height of the image. The inference times of a 512 × 512 image will be 25% of the time reported below.

Capacity small

			Training		
Patch size	Batch	GPU Memory (MB)	GPU inference time /image	CPU inference time	GPU Memory (MB)
	1	2	641 ms	3082 ms	-
64 × 64	4	4	299 ms	-	7
04 ^ 04	16	13	202 ms	-	31
	64	56	199 ms	-	134

		Inference			Training
Patch size B	Batch	GPU Memory (MB)	GPU inference time /image	CPU inference time	GPU Memory (MB)
	1	18	389 ms	3234 ms	-
128 × 128	4	28	215 ms	-	46
120 ~ 120	16	66	174 ms	-	132
	64	223	172 ms	-	472
	1	71	227 ms	2519 ms	-
256 × 256	4	109	170 ms	-	226
230 × 230	16	256	159 ms	-	526
	64	875	166 ms	-	1777

Capacity normal

				Training	
Patch size	Batch	GPU Memory (MB)	GPU inference time /image	CPU inference time	GPU Memory (MB)
	1	6	835 ms	6208 ms	-
64 × 64	4	10	341 ms	-	18
04 ^ 04	16	30	215 ms	-	67
	64	104	213 ms	-	234
	1	65	577 ms	6245 ms	-
128 × 128	4	82	261 ms	-	172
120 ~ 120	16	152	192 ms	-	312
	64	447	189 ms	-	921
	1	182	309 ms	5111 ms	-
256 × 256	4	250	194 ms	-	620
230 × 230	16	596	171 ms	-	1220
	64	1756	184 ms	-	3710

Capacity large

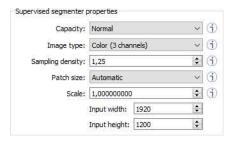
				Training	
Patch size	Batch	GPU Memory (MB)	GPU inference time /image	CPU inference time	GPU Memory (MB)
	1	18	1188 ms	12880 ms	-
64 × 64	4	25	439 ms	-	115
04 ^ 04	16	61	245 ms	-	179
	64	228	251 ms	-	473
	1	170	911 ms	13344 ms	-
128 × 128	4	203	359 ms	-	527
120 ~ 120	16	409	240 ms	-	846
	64	1008	219 ms	-	2214
	1	464	853 ms	11642 ms	-
256 × 256	4	594	293 ms	-	1103
250 ~ 250	16	1613	227 ms	-	3226
	64	3968	215 ms	-	8044

3.3. EasySegment Supervised

Tool and Configuration

Deep Learning Studio

To create an supervised segmentation tool in Deep Learning Studio:


- 1. Start Deep Learning Studio.
- 2. Select EasySegment Supervised in the New deep learning tool dialog.

01 New deep learning tool	×
EasyClassify Select The tool classifies images into labels. Show details >>	Details EasySegment Supervised Use cases: Defect detection with localization, object segmentation Number of labels: 2-64 Minimum image size: 64x64
Image: Select Select Image: Select The tool detects and segments defects in images. Image: Trained only with good images. Show details >>	Maximum image size: 32 768 x 32 768
Result Select Select The tool detects and segments defects or objects in images. Show details >>	
EasyLocate Select The tool locates and classifies objects in images. Show details >>	
	Cancel

The following dialog is displayed at the start of Deep Learning Studio or when you create a new deep learning tool from the toolbar.

Deep le	earning tool
New Open Save	Not trained
Filename: Unsaved deep learning tool	
Tool type: Unsupervised segmenter	Best valadation error: <i>n.a.</i> Best validation AUC: <i>n.a.</i>

Configuration

The supervised segmenter tool has 5 parameters:

1. The Capacity of the neural network (default: Normal) represents the quantity of information it is capable of learning. A larger capacity makes the tool slower.

In the API:

- □ The capacity is represented by the enumerate type ESupervisedSegmenterCapacity.
- ESupevisedSegmenter::Capacity sets the capacity of the tool.
- 2. The Image type (default: Monochrome (⊢ channel)):

In the API:

- □ To use monochrome (grayscale, 1 channel) images, set ESupervisedSegmenter::ForceGrayscale to true.
- □ To use color (3 channels) images, set EUnsupervisedSegmenter::ForceGrayscale to false.
- 3. The Sampling density (ESupervisedSegmenter::SamplingDensity) is the parameter of the sliding window algorithm used to process whole images using patches of size (ESupervisedSegmenter::PatchSize).
 - It indicates how much overlap there is between the image patches: 100 - 100 / SamplingDensity (%)
 - In practice, the stride between 2 consecutive patches is: PatchSize / SampleDensity (pixels)
- 4. The Patch size (ESupervisedSegmenter::PatchSize) is the size of the patches processed by the neural network.
 - By default, the patch size is determined automatically from the images in the training dataset.
 - You can also select the resolution of the patch size from the drop down list.

5. Use the Scale (ESupervisedSegmenter::Scale) to automatically resize your images to a lower resolution and accelerate the processing.

In Deep Learning Studio:

- □ If the dataset contains images with different resolutions, the Input width and the Input height indicate the range of the resolutions with the given scale.
- If all the images in the dataset have the same resolution, set either the Input width or the Input height to change the scale.

Training

To train your tool, see "Training a Deep Learning Tool" on page 213.

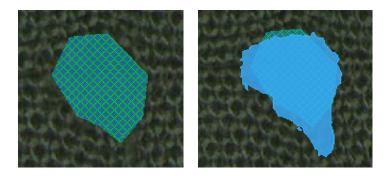
Using the Supervised Segmenter

To get the result, a supervised segmenter follows these steps:

- 1. For each pixel, the supervised segmenter tool computes the probabilities that it belongs to each of the segmentation labels.
- 2. From these probabilities, it extracts a set of potential foreground blobs (groups of contiguous pixels for which the highest probability corresponds to the same foreground segmentation label).
- 3. For each one of these potential foreground blobs:
 - It computes a score.
 - It removes, from the predicted segmentation map, the blobs with a score that is below or equal to the threshold of the supervised segmenter tool.
- 4. The score of an image is the maximum among the scores of the potential foreground blobs.

NOTE
In the
defect
soama

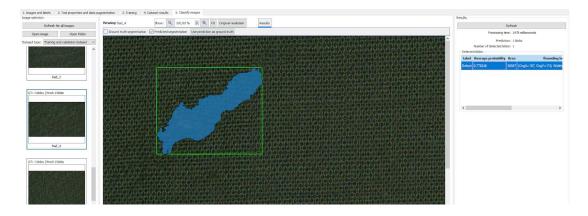
In the context of defect detection, an image is considered to be without defect when its score is below or equal to the threshold of the supervised segmenter tool.


In Deep Learning Studio:

- To apply the segmenter to new images, add these images to the dataset or use the Test and results tab.
- To visualize the segmentation of an image, check the Predicted segmentation option (CTRL + P) in the Result menu (ALT + R) of the image viewer.

Viewing: Bad_0	Show:	Q	57,94 %	٢	€ F	it Ori	ginal resolution	Segmentation	Results	s
Ground truth segmentation	Predicts	ed seg	mentation	Use p	ediction a	as groun	d truth			
	000000		13204							
		36				666				
				333		53.				
	ala sua Generado								2202 19202	
	5002 000-2						200303606	191060001) lette	
					and					
	ingent					900				
		<u>ц</u>							6006	
				855				Contraction of the second	1.000	

• If the image has a ground truth, check the Ground truth segmentation option (CTRL + G) to display it. It appears with a green pattern drawn over it.



Ground truth (left) and prediction on top of ground truth (right)

- To accept the whole predicted segmentation as ground truth, click on the Use prediction as ground truth button (CTRL + U).
- To accept a single predicted blob as ground truth, right click on the blob and select Accept into ground truth in the menu.

wing: Bad_0	Show:	Q	57,94 %	٢	Rit Fit	Original resolution	Segmentation	Results	
Ground truth segmentation	on 🗹 Predicte	d segm	entation	Use pre	diction as	ground truth			
	ويلار في الرغان ال	Bajaca	wie wierze	10.00	102214/102			anan	P2000000000000000000000000000000000000
122222	KARBARK				3996	6555656567	6666666		
							122000000	96.96	
9999-22-22					10000	000000000000			Accept into ground truth
666666666	Nabaca di		bobb	Citac.		10010-250256	BEALSTREE.		

• A list of blobs with various characteristics is available in the Classify tab.

In the API:

- To apply the supervised segmenter to an image use ESupervisedSegmenter::Apply. This method returns a ESupervisedSegmenterResult object.
 - □ Use ESupervisedSegmenterResult::GetProbabilityMap to retrieve the probability map for a given label. The probability map pixels contain the index of the predicted label.
 - □ Use ESupervisedSegmenterResult::Draw to draw the segmentation with the segmentation label colors of the dataset used for training.
 - □ Use ESupervisedSegmenterResult::GetBlobs to retrieve the filtered list of blobs.
 - □ Use e ESupervisedSegmenterResult::Score to retrieve the score of an image.
 - Use ESupervisedSegmenterResult::GetRegionForLabel to obtain an ERegion object containing the pixels of the specified label.

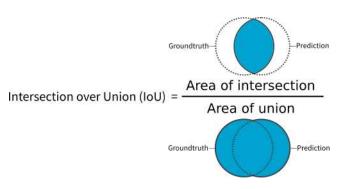
Evaluating the Results

There are 3 types of metrics for the supervised segmentation tool:

- □ The *pixel-based metrics* that quantify the performance of the tool at the pixel level.
- □ The *blob-based metrics* that quantify the performance of the tool at the blob level. A blob is a contiguous region of pixels that have the same foreground segmentation label. By definition, there is no background blob.
- □ The *image-based metrics* that quantify the performance of the tool at the image level. These metrics are related to the capacity of the tool to correctly detect background images (images with no blobs) and foreground images (images with blobs).

- In Deep Learning Studio:
 - □ The metrics are available in the Dataset results tab.
 - Most metrics depends on the value of the Classification threshold.

			Export results to	CSV	
Adaptin	g the <mark>classifica</mark> t	Weighted e	rror: 0.164	et	6
		Classification thr	eshold: 0,6785	16	
Pixel ba	ised metrics	Blob metrics	Image metrics		
Metric	s				
Wei	ghted Intersect	ion over Union (I	oU): 0.847		(i)
	Wei	ghted pixel accur	acy: 93.779 %		(j)
Confu	ision matrix				
			True labels		
		Background	Defect		
	Background	-	31689		
oels	Defect	66631	226347		
Predicted labels					
Per la	bel metrics				
33	Label	loU	Accura	асу	
	ground	0.998	0.998		
Back	ground	1960-101 / C	10.000 00000		


- In the API:
 - □ The metrics are represented by an ESupervisedSegmenterMetrics object.

The pixel-based metrics

- The pixel-based metrics are:
 - □ The weighted *Intersection over Union* (IoU) that is the weighted average of the IoU over all the labels (see per-label metrics).
 - □ The weighted *pixel accuracy* that is the weighted average of the accuracy over all the labels (see per-label metrics).
 - The *pixel confusion matrix* that shows the number of pixels from a given label that are predicted to belong to another label.

- The per label metrics are:
 - □ The *Intersection over Union* (IoU) that is the ratio of the intersection between the ground truth and the prediction for the label to the union of the ground truth and prediction for the label.

□ The *accuracy* that is the proportion of the pixels of the label that are correctly predicted.

Metrics				
Weigh	ted Intersect	ion over Union (τοι ή· 0.847	(i)
weigi			racy: 93.779 %	(i)
		grited pixer deed		0
Confusi	ion matrix			
			True labels	
		Background	Defect	
	Background	41147333	31689	
		66631	226347	
la la	Defect	00031	220347	
ed label	Defect	00031	220347	
edicted label	Defect	00031	220347	
Predicted labels	Defect	00031	(22034)	
Predicted label	Defect	00031	220347	
Predicted label	Defect	00031	[22034]	
		00031	220347	
Per labe	el metrics —			
Per labe	el metrics Label	loU	Ассигасу	
Per labe	el metrics —			

The blob-based metrics

- The metrics related to the correct prediction of blobs are:
 - The *recall* that is the ratio of the correctly predicted blobs to the total number of ground truth blobs.
 - The *precision* that is the ratio of correctly predicted blobs to the total number of predicted blobs.
 - □ The *F1-Score* that is the harmonic mean of the *recall* and the *precision*.
 - □ The *average precision* that is the average of the *precision* for different threshold weighted by the *recall* values.
 - □ The *best achievable F1-Score* that is the maximum *F1-Score* achievable by selecting an appropriate threshold.

- The confusion matrix:
 - It shows the number of blobs of a given true label that are predicted to be of the corresponding predicted label.
 - The image list of the Dataset results tab only shows the images containing the blobs corresponding to the selected cells of the matrix.
 - Each matrix element shows the number of ground truth blob and the number of corresponding predicted blobs separated by a "/" as a ground truth blob can correspond to one or more blobs in the prediction and inversely.

A dash (-) indicates that blobs are not defined for this category.

- For example, in the screenshot below, there are:
 - 3 predicted blobs of the label Defect that correspond to the Background.
 - 1 ground truth blob of the label Defect that does not correspond to any predicted blob.

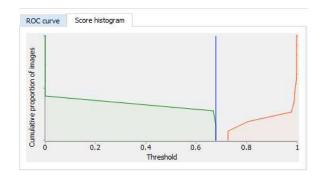
- 12 predicted blobs of the label Defect that correspond to 12 ground truth blob of the same label.

- The metrics for each individual foreground label are:
 - □ Recall
 - Precision
 - □ F1-Score

	etrics	Blob me	trics	Imag	e metrics		
Metrics for d	lefective	blob dete	ection				
			R	ecall: 0	.923		i
			Prec	ision: C	.923		(i)
			F1-S	core: C	.923		(i)
		Averag	je preci	ision: C	.945731		(j)
	Best	achievabl	le F1-S	core: C	.923077		Í
Confusion m	atrix (j						
				Te	ue labels		
		Backgr	bauna				
Pask	ground	Statement of the	ouna	1/-			
si Dack	-						
Page Dete	α	-/3		12/1	2		
Predicted labels Predicted labels							
₽.							
	Select	all	Se	elect wr	ong prediction:	s Sele	ct good predictions
Per label me		all	Se	elect wro	ong prediction	s Sele	ct good predictions
Per label me Label	trics	all	Se		ong prediction: F1 Score	s Sele	ct good predictions
	trics Re					s Sele	ct good predictions

The image-based metrics

- The metrics related to the correct detection of the class of the images (background / foreground or good / defective in the context of defect detection):
 - □ The *image detection accuracy* that is the proportion of image correctly predicted to have foreground blobs or not.
 - □ The *foreground image detection rate* that is the proportion of correctly predicted images with foreground blobs.
 - □ The *background image detection rate* that is the proportion of correctly predicted images with no foreground blobs.


- □ The *image detection AUC* (*Area under the ROC Curve*, see *ROC Curve* below).
- □ The *best achievable image detection accuracy* that is the maximum *image detection accuracy* obtained by changing the threshold.
- The confusion matrix:
 - It shows the number of images of a given true label that are predicted to be of the corresponding predicted label.
 - □ The image list of the Dataset results tab only shows the images corresponding to the selected cells of the matrix.
- The 2 available graphics are:
 - The ROC curve that plots the true positive rate (foreground image detection rate) versus the false positive rate (1 minus the background image detection rate) for various threshold values.

Click on a point on the plot to set the threshold at the corresponding value.

	Blob metrics	Image metrics	
Metrics			
Ima	ge detection acc	curacy: 100.000 %	(j)
Foreground	l image detection	n rate: 100.000 %	(j)
Background	l image detection	n rate: 100.000 %	(j)
	Image detection	n AUC: 1	(†) (†) (†) (†)
Best achievable ima	ge detection acc	uracy: 100.000 %	Í
Confusion matrix			
		True labels	
	Background		
In Dealansura			
응 Background	100	0	
Defect	0	(F.I.)	
5			
edicto			
응 Background 유 Defect 명 Defect			
Predict			
ti po č	tall S	elect wrong predictions	Select good predictions
	tall S	elect wrong predictions	Select good predictions
Selec		elect wrong predictions	Select good predictions
Selec ROC curve Sco	t all S re histogram	elect wrong predictions	Select good predictions
Selec		elect wrong predictions	Select good predictions
ROC curve Sco 1 0.9 0.8		elect wrong predictions	Select good predictions
Selec ROC curve Sco 1 0.9 0.8 0.7		elect wrong predictions	Select good predictions
Selec ROC curve Sco 1 0.9 0.8 0.7		elect wrong predictions	Select good predictions
Selec ROC curve Sco 1 0.9 0.8 0.7		elect wrong predictions	Select good predictions
Selec ROC curve Sco 1 0.9 0.8 0.7		elect wrong predictions	Select good predictions
Select ROC curve Sco 1 0.9 0.8 0.7 91 0.6 9.5 0.5 915500 0.4 0.4 0.4 0.2 0.2		elect wrong predictions	Select good predictions
Select ROC curve Sco 0.9 0.9 0.8 0.7 0.6 0.5 30,5 0.5 0.1 0	re histogram		
Select ROC curve Sco 1 0.9 0.8 0.7 910.6 0.5 0.4 0.6 0.3 0.1	ne histogram	elect wrong predictions	Select good predictions

- The *score histogram* that plots:
 - In green: the cumulative histogram of the scores of the background images.
 - In orange: the cumulative histogram of the scores of the foreground images.
 - The blue line corresponds to the current value of the threshold.

Benchmarks for EasySegment Supervised

Test conditions

- These numbers are only indicative and represent only the memory required for the neural network.
- □ Your actual memory requirements may be bigger or lower according to your GPU model.
- The GPU must have more memory than the indicated amount to work because storing images and results may require additional GPU memory and because of memory fragmentation.
- □ The training time is approximately twice the inference time per image. An iteration is equivalent to a loop over all the images in the dataset.
- The GPU used for these benchmarks is a NVIDIA GeForce 1080 Ti.
- □ The CPU used is an Intel Core i9 7900X.

Image size

- $\hfill\square$ The inference times are reported for 1024 \times 1024 RGB images with all other settings at their default values.
- The inference times increase linearly with the width and height of the image. The inference times of a 512×512 image will be 25% of the time reported below.

Capacity small

		Inference				
Patch size	Batch	GPU Memory (MB)	GPU inference time /image	CPU inference time	GPU Memory (MB)	
	1	16	545 ms	10090 ms	-	
64 × 64	4	29	187 ms	-	151	
04 ^ 04	16	87	123 ms	-	263	
	64	335	122 ms	-	573	

			Inference		Training
Patch size	Batch	GPU Memory (MB)	GPU inference time /image	CPU inference time	GPU Memory (MB)
	1	27	261 ms	14085 ms	-
128 × 128	4	83	133 ms	-	306
120 ~ 120	16	366	102 ms	-	757
	64	1441	114 ms	-	3139
	1	148	544 ms	17606 ms	-
256 × 256	4	369	151 ms	-	1185
230 ~ 230	16	1497	111 ms	-	3091
	64	7050	148 ms	-	12564

Capacity normal

			Inference		Training
Patch size	Batch	GPU Memory (MB)	GPU inference time /image	CPU inference time	GPU Memory (MB)
	1	18	789 ms	24458 ms	-
64 × 64	4	45	271 ms	-	229
04 ^ 04	16	213	160 ms	-	450
	64	828	171 ms	-	1753
	1	110	1952 ms	34032 ms	-
128 × 128	4	216	346 ms	-	878
120 ~ 120	16	884	188 ms	-	1864
	64	3446	177 ms	-	6124
	1	301	327 ms	42868 ms	-
256 × 256	4	864	280 ms	-	1822
230 ~ 230	16	3027	156 ms	-	6632
	64	14048	-	-	25796

Capacity large

			Inference		Training
Patch size	Batch	GPU Memory (MB)	GPU inference time /image	CPU inference time	GPU Memory (MB)
	1	91	7443 ms	58658 ms	-
64 × 64	4	140	1076 ms	-	727
04 ^ 04	16	440	437 ms	-	1201
	64	1666	346 ms	-	3332
	1	226	1043 ms	83118 ms	-
128 × 128	4	562	820 ms	-	996
120 ~ 120	16	1822	289 ms	-	4222
	64	6925	-	-	16156
	1	877	1153 ms	106446 ms	-
256 × 256	4	2249	567 ms	-	3887
230 × 230	16	7417	-	-	15603
	64	28225	-	-	50306

4. EasyLocate - Locating Objects and Defects

4.1. Tool and Configuration

Deep Learning Studio

To create an EasyLocate tool in Deep Learning Studio:

- 1. Start Deep Learning Studio.
- 2. Select EasyLocate in the New deep learning tool dialog.

Select Show details >>	Details EasyLocate Use cases: Defect detection, Product dassification, Counting Number of labels: 2-1000 Minimum image size: 128x128 Minimum image size: 128x128
Select Show details >>	Maximum image size: 500k pixels (~700x700) Trraining recommendation: 100+ object instances per label Size of objects: >156x16 pixels All images must have the same resolution (automatic reformating possible)
Select S. Show details >>	
Select Show details >>	
	Show details >> Show details >> Select Show details >> Select S. Show details >> Select

The following dialog is displayed at the start of Deep Learning Studio or when you create a new deep learning tool from the toolbar.

Deep le	earning tool
New Open Save	Not trained
Filename: Unsaved deep learning tool	
Tool type: Unsupervised segmenter	Best valadation error: <i>n.a.</i> Best validation AUC: <i>n.a.</i>

Configuration (main parameters)

Capacity:	Normal				×	(j)
Image type:	Color (3 channe	is)			~	G
Width:	892 px (scale: 4	6.3%)			÷	(j)
Height:	559 px (scale: 4	6.3%)			*	
	🗹 Keep aspect	ratio				
\checkmark Advance	d parameters —	April a A				_
	Anchors:	Determine anchors from dataset object	cts	See/edit and	hors	
Changing the	parameters belo	w will invalidate the results.				
State of States	parameters belo mber of objects:	En la contra de la c	4	In dataset:	3	(j)
Maximum nu	mber of objects:	100		In dataset: In dataset:		

The EasyLocate tool has 3 main parameters:

1. The Capacity of the neural network (default: Normal) represents the quantity of information it is capable of learning. A larger capacity makes the tool slower.

In the API:

- □ The capacity is represented by the enumerate type ELocatorCapacity.
- **ELocator::**Capacity sets the capacity of the tool.
- 2. The Image type (default: Monochrome (⊢ channel) if thedataset contains only grayscale images, otherwise color (3 channels)):

In the API:

- □ To use monochrome (grayscale, 1 channel) images, set ELocator::Channels to -
- □ To use color (3 channels) images, set ELocator::Channels to 3.
- 3. The size of the images (Width and Height). You must configure EasyLocate for a specific image size.
 - The image must contain less than 500 000 pixels (about 707 \times 707 pixels for a square image).
 - □ The width and the height must be at least 128 pixels.
 - The images are automatically resized to the specified size before EasyLocate processes them.
 - □ The lower the image size, the faster EasyLocate is.
 - \square EasyLocate works best with objects equal to or bigger than 16 \times 16 pixels.

In Deep Learning Studio:

- □ Use the Width and Height controls to change the size of the images.
- Uncheck Keep aspect ratio if you want to control the width and height independently of each other.
- By default, the width and height are set to the size of the images in the dataset. or, when they are bigger than 500 000 pixels, to the maximum possible size so that the aspect ratio of the image is kept and it contains at most 500 000 pixels.
- $\hfill A$ warning is displayed when the selected size makes the ground truth objects smaller than 16 \times 16 pixels.

Width:	450 px (scale: 23.3%)	-		
Height:	282 px (scale: 23.3%)	-		
	Keep aspect ratio			
	Warning: at this resolution, you have objects whose width and/or height is smaller than 16 pixels. EasyLocate might not be able to robustly detect small objects.			

In the API:

□ Use ELocator::Width and ELocator::Height to specify the image size.

Configuration (advanced parameters)

The EasyLocate tool has 4 advanced parameters linked to EasyLocate neural network design.

- The EasyLocate neural network works as an image pyramid where the size of the input image is halved at each level. EasyLocate attempts to detect objects using one or more pyramid levels depending on the size of the objects to detect.
- To do so, EasyLocate uses a set of typical object size, called *anchors*, that are assigned to pyramid levels according to their surface. Then, for each pixel and anchor of a pyramid level, EasyLocate predicts whether there is an object or not located around that pixel and whose size approximately matches the anchor.
- EasyLocate then performs a post-processing on the prediction of the neural network. Indeed, the neural network can predict the same object several times using different levels of the pyramid, different anchors or neighboring positions in the image. EasyLocate keeps only the prediction with the highest probability and removes duplicates based on the overlap between objects.

The advanced parameters are:

1. The Anchors. By default, the anchors are determined automatically from the objects in your dataset. The set of anchors must reflect the variety of object sizes that must be detected.

To check or manually edit the anchors, click on See/edit anchors to open the following dialog:

	Width	Height	^	Determine anchors fr	om dataset objects		
L	22.6274	22.6274		A	dd anchor		
2	16	32		Ren	nove anchor		
3	32	16		Generate anchors			
+	32	32		Number of subscales:	3	٢	6
5	22.6274	45.2548		Min dimension:	16	٢	6
5	45.2548	22.6274		Max dimension:	16		
7	45.2548	45.2548		Aspect ratios:	1;0.5;2		6
3	32	64			Generate		
	64	32	v				

The dialog lists the current anchors and enables the following operations:

- □ To edit an existing anchor, double-click on its width or on its heightin the list.
- □ To add or remove an anchor, click on the corresponding button.
- To generate a new set of anchors, specify the number of subscales, the minimum and the maximum dimensions of the anchors and one or more aspect ratios.

The dimension of an anchor is the square root of its surface and determines the pyramid level assigned to the anchor. The number of subscales represent the number of dimensions to generate for each pyramid level. For each of those dimensions, the anchors with the specified aspect ratios are generated.

In the API:

- Use ELocator::SetPredictionAnchors and ELocator::GenerateAnchors.
- 2. The Maximum number of objects in an image. By default the value is 100. A lower value can speed up the post-processing of the results.

In the API:

□ Use ELocator::MaxNumberOfObjects.

3. The Same label maximum overlap is the maximum overlap between objects with the same label. By default the value is 0.5.

In the API:

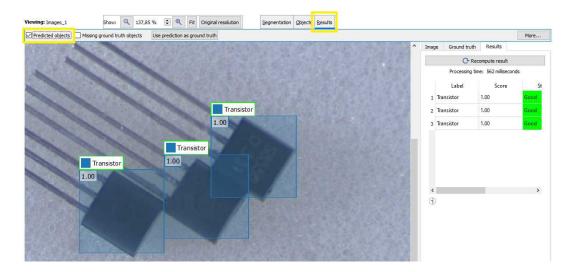
```
Use ELocator::SameLabelMaxOverlap.
```

4. The Absolute maximum overlap is the maximum overlap between objects, regardless of their label. By default the value is 1 and it means that the tool can predict two objects with different labels but with the exact same bounding box.

In the API:

□ Use ELocator::SameLabelMaxOverlap.

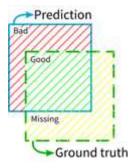
The overlap between two objects is their intersection over union (IoU), defined as the ratio between the surface of the intersection of their bounding boxes and the surface of the union of their bounding boxes.

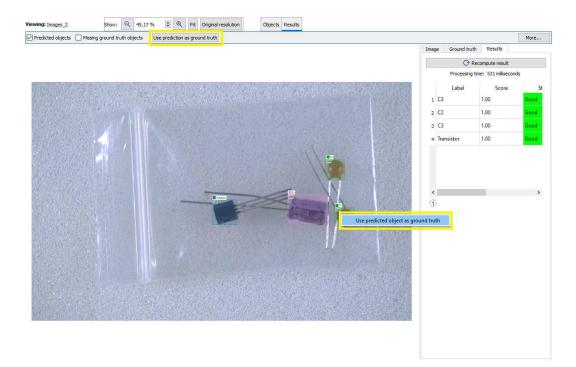

Training

To train your tool, see "Training a Deep Learning Tool" on page 213.

4.2. Locating Objects

In Deep Learning Studio:


- To apply EasyLocate to new images:
 - Add these images to the dataset.
 - Or use the Tests and results tab.
- To visualize the predicted objects of an image:
 - a. Open the Results menu (ALT + R) of the image viewer.
 - b. Check the Predicted objects option (CTRL + P).



- If the image has a ground truth, check the Missing ground truth object option (CTRL + G) to display missing objects. They appear with a yellow pattern drawn over it.
- In the Results tab on the right side:
 - The list of detected objects shows their label, their score, whether they are matched to a ground truth object and their predicted bounding box.
 - To see how close a predicted object is to a ground truth object, select the object in the list on the right side of the image.

The ground truth object is displayed on top of the predicted object with the following color code:

- To accept all the predicted objects as ground truth:
 - □ Click on the Use prediction as ground truth button (CTRL + U).
 - Note that it removes any previous ground truth object already present in the image.
- To accept a single predicted object as ground truth:
 - a. Right click on the object.
 - **b.** Select Accept into ground truth in the menu.

In the API

• To apply EasyLocate to an image, use ELocator::Apply.

This method returns an object ELocatorResult.

- Use ELocatorResult::GetDetectedObjects to retrieve the predicted objects as an array of ELocatorPredictedObject.
- Use ELocatorResult::Draw to draw all the predicted objects.
- For each predicted object, use:
 - □ ELocator0bject::Width to get its width.
 - □ ELocatorObject::Height to get its height.
 - □ ELocatorObject::Label to get its label.
 - ELocatorPredictedObject::Probability to get its predicted probability.

4.3. Validating the Results

The EasyLocate tool exposes 2 types of metrics. These object-based metrics quantify the performance of the tool :

- At the object level.
- At the image level. These metrics are related to the tool ability to correctly detect images without object and images with objects.

In Deep Learning Studio:

- The metrics are available in the Dataset results tab.
- Most metrics depends on the value of the Detection threshold.

		Export re	sults to CS	SV	
Adapting the	e detection rule	Results for	Full dat	aset	
	Detecti	on threshold	0,93079	96	ŧ
Objects	Images				
Metrics					
Avera	age precision:	0.98787			i
				Label weighted	
	Recall:	95.3051%		95.1773%	I
	Precision:	96.8254%		97.2048%	I
	F-Score:	0.959943		0.962456	i
Per label r	netrics				
Label	# Detected	# Correct	# Bad	# Not detected	Recall
Transi	177	163	14	2	98.79%
Diode	128	126	2	21	85.71%
C1	126	126	0	2	98.44%
C2	139	135	4	8	94.41%
C3	123	121	2	1	99.18%

In the API:

• The metrics are represented by an object ESupervisedSegmenterMetrics.

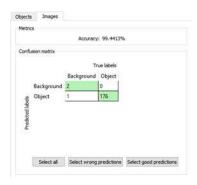
The object-based metrics

The object-based metrics are computed by matching actual, ground truth objects to detected objects. A ground truth object and a detected object are matched together if:

- They have the same label.
- Their overlap ("Intersection over Union") is higher or equal to the Same label maximum overlap parameter of the tool.
- □ There is no other ground truth that has a higher overlap with the detected object and there is no other detected object that has a higher overlap with the ground truth object.

The object-based metrics are:

- The Average precision (AP) is the average of the precision (proportion of detected objects that are matched to a ground truth objects) for different values of recall (true positive rate, proportion of ground truth objects that are matched to detected objects) obtained by varying the Detection threshold.
 - Its value is between 0 (bad detector) and 1 (good detector).
 - □ It is a standard metric for evaluating object detector.
- The recall, also called the "true positive rate", is the proportion of ground truth objects matched with a predicted object.
- The weighted recall is the weighted average of the recall for each label.
- The precision, also called the "positive predicted value", is the proportion of predicted objects matched with a ground truth object.
- The weighted precision is the weighted average of the precision for each label.
- The F-Score is the harmonic mean of the recall and the precision.
- The weighted F-Score is the weighted average of the F-Score for each label.
- The Per label metrics table shows various metrics of the objects of each label. The columns starting with a "#" indicate the number of objects in the corresponding category.
 - Selecting one or more cells from these columns filters the image list to show only the images that have objects falling in the corresponding categories.
 - □ If there is no selection, all the images are listed.
 - □ Use CTRL + Left Click to add cells to the current selection.



For example, the following selection shows the images containing either:

- A badly detected "transistor" object
- □ A detected (correctly or badly) "diode" object
- □ A correctly detected "C2" object
- □ An undetected ground truth "C3" object

Label	# Detected	# Correct	# Bad	# Not detected	Recall
Transi	177	163	14	2	98.79%
Diode	128	126	2	21	85.71%
C1	126	126	0	2	98.44%
CZ	139	135	4	8	94,41%
C3	123	121	2	i.	99.18%

The image-based metrics

The metrics related to the correct detection of the class of the images (background / with object or good / defective in the context of defect detection) are:

- The image detection accuracy is the proportion of images correctly predicted to have objects or not.
- A Confusion matrix listing the number of images in each category.
 - Selecting one or more cells of the confusion matrix filters the image list to show only the images in the corresponding categories.

4.4. Benchmarks for EasyLocate

Test conditions

- These numbers are only indicative and represent only the memory required for the neural network.
- □ Your actual memory requirements may be bigger or lower according to your GPU model.
- The GPU must have more memory than the indicated amount to work because storing images and results may require additional GPU memory and because of memory fragmentation.
- □ The training time is approximately twice the inference time per image. An iteration is equivalent to a loop over all the images in the dataset.
- Description The GPU used for these benchmarks is a NVIDIA GeForce 1080 Ti.
- □ The CPU used is an Intel Core i9 7900X.

				Training	
Image size	Batch	GPU Memory (MB)	GPU inference time /image	CPU inference time	GPU Memory (MB)
128 × 128	1	58	6.7 ms	78.91 ms	-
	4	123	2.39 ms	-	265
	16	453	1.05 ms	-	988
	64	1711	1 ms	-	3506
	1	123	7.52 ms	375.43 ms	-
256 × 256	4	383	4.49 ms	-	893
230 ~ 230	16	1711	3.22 ms	-	3720
	64	6745	3.09 ms	-	14651
	1	383	23 ms	2508 ms	-
512 × 512	4	1429	13.69 ms	-	3365
J12 ^ J12	16	6745	11.12 ms	-	14651
	64	26878	-	-	53758

Capacity small

Capacity normal

			Training		
Image size	Batch	GPU Memory (MB)	GPU inference time /image	CPU inference time	GPU Memory (MB)
128 × 128	1	63	7.2 ms	81.55 ms	-
	4	132	2.55 ms	-	279
	16	475	1.13 ms	-	1032
	64	1795	1.04 ms	-	3674
	1	132	6.93 ms	393 ms	-
256 × 256	4	408	4.30 ms	-	937
250 ~ 250	16	1795	3.20 ms	-	3888
	64	7074	3.28 ms	-	15310

			Inference		Training
Image size	Batch	GPU Memory (MB)	GPU inference time /image	CPU inference time	GPU Memory (MB)
	1	405	24.18 ms	2583 ms	-
512 × 512	4	1513	12.5 ms	-	3532
512 ~ 512	16	7074	11.24 ms	-	15310
	64	28191	-	-	56386

Capacity large

			Inference		Training
Image size	Batch	GPU Memory (MB)	GPU inference time /image	CPU inference time	GPU Memory (MB)
	1	196	12.04 ms	141 ms	-
128 × 128	4	327	3.65 ms	-	726
128 × 128	16	893	1.85 ms	-	1938
	64	3201	1.33 ms	-	7065
	1	334	38 ms	684 ms	-
256 × 256	4	857	9.17 ms	-	2159
230 ~ 230	16	3201	5.46 ms	-	6699
	64	12434	-	-	26030
	1	851	34.6 ms	4266 ms	-
512 × 512	4	2952	22.47 ms	-	6174
J12 × J12	16	12434	-	-	26030
	64	49367	-	-	98737

PART VI 3D PROCESSING TOOLS

1. Easy3D - Using 3D Toolset

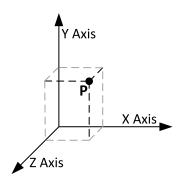
1.1. Basic Concepts

Easy3D

Easy3D is a set of tools for solving computer vision problems using 3D acquisition and processing. Easy3D supports laser line triangulation for fast and precise acquisition of depth maps.

TIP

Depth maps are gray scale images where each pixel represents a displacement in the third dimension. Because of the acquisition procedure, they are usually not dimensionally correct. So, while Open eVision 2D image operators are compatible with depth maps, you should not use them for processes requiring precise measurements.


Easy3D provides a calibration tool to generate corrected, metric point clouds and meshes from depth maps. Most 3D operators work on point clouds or meshes. The included export functions to the standard PCD file format allows integration with other 3D tools.

Easy3D also allows the computation of ZMaps. A ZMap is the projection of a point cloud on a given reference plane. Like depth maps, ZMaps are gray scale images, but are also dimensionally correct. As such, they can be used with all Open eVision 2D functions.

All the Easy3D tools are placed in the Easy3D namespace.

3D representation

Open eVision uses a right-handed cartesian 3D coordinate system. In this system, each 3D point is represented by its 3 coordinates X, Y and Z.

Open eVision provides different containers to store 3D objects :

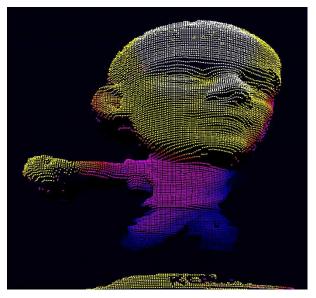
- Depth maps
- Point clouds
- Meshes
- ZMaps

Depth map

A depth map is a way to represent a 3D object using a 2D grayscale image where each pixel (u, v) in the image contains a third coordinate as its gray value.

The grayscale values of a depth map do not necessarily represent a Z metric coordinate. In the context of a laser triangulation setup, these values represent the displacement of the laser line profile, which is not the physical height of the 3D surface.

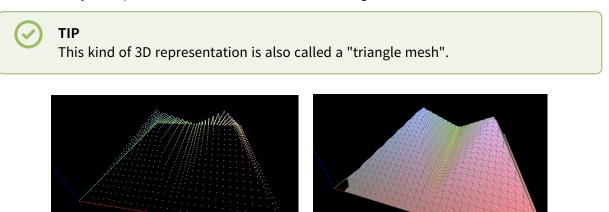
A depth map contains a gray scale image coded on 8, 16 or 32 bits per pixel.


- One specific gray value, called the undefined value, is reserved for the representation of invalid pixels.
- □ By default, this value is 0 for integer depth map types (EDepthMap8 and EDepthMap-6).
- By default, this value is the lowest float value (-3.402823 e+38) for the 32 bits floating point depth map types (EDepthMap32f).

The calibration process aims to convert the depth map representation to real, metric 3D representations such as point clouds or meshes.

Point cloud

A point cloud is a set of 3D points (x, y and z coordinates) representing the scanned object in the world metric space.



In addition to the calibration process included in Easy3D, point clouds can be produced using various 3D acquisition techniques, like stereo reconstruction or time of flight cameras.

Mesh

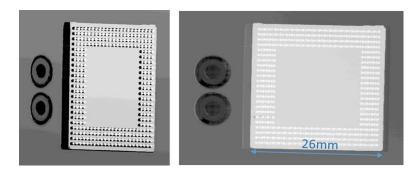
A Mesh is a geometric representation of a 3D surface, a set of connected 3D points.

In an EMesh object, 3 points are connected to define a triangle.

A point cloud and the corresponding mesh (displayed with Open eVision E3DViewer)

An EMesh object contains a point cloud and the indexes of the vertices of all mesh triangles.

EMesh uses a metric space representation that can be generated from a depth map and that can be used to produce a ZMap.



ZMap

ZMaps are another representation for 3D data.

- □ They are grayscale images like depth maps but represent metric and corrected 3D points.
- They are convenient representations for measurement and matching.
- They are compatible with most of the 2D processing functions.

ZMaps are generated by the orthogonal projection of a point cloud or a mesh onto an arbitrary 3D reference plane.

A depth map and the corresponding ZMap

A ZMap contains an image in which each pixel value represents a positive distance from the reference plane.

TIP

Use the method AsEImage() to obtain a reference to the contained image.

A ZMap also contains the following information:

- □ The transformation from the World coordinates to the ZMap coordinates.
- □ The size of a pixel, called the "resolution".

TIP

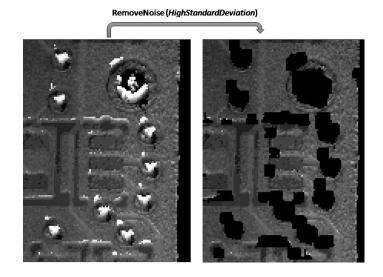
Like in a depth map, a specific pixel value is reserved to represent undefined pixels. To get this pixel value, use the method GetUndefinedValue().

1.2. Static Methods

EFilters class

The **EFilters** class contains static methods used to apply filters to ZMaps or depth maps.

RemoveNoise


The RemoveNoise() method removes outliers from a depth map or a ZMap.

• It takes a depth map or a ZMap as input and generates a depth map or a ZMap respectively.

The undefined points are not taken into account.

- It is based on a square moving kernel. The size of the kernel is (2 x halfKernelSize + 1) where halfKernelSize is a parameter of the method.
- The threshold parameter is scaled with regard to the Z resolution of the filtered depth map or ZMap.
- There are 3 variations of this filter, depending on the method parameter:
 - □ ENoiseRemovalMethod_AbsoluteDifferenceFromMean removes a point when it deviates from the average in the neighborhood, including itself. The threshold is an absolute difference.
 - ENoiseRemovalMethod_RelativeDifferenceFromMean removes a point when it deviates from the average in the neighborhood, including itself. The threshold is a multiple of the standard deviation.
 - □ ENoiseRemovalMethod_HighStandardDeviation removes a point when the standard deviation in the neighborhood, including itself, is higher than a defined threshold.

Example: Removing points showing a high standard deviation

The code below removes pixels with a standard deviation higher than a defined threshold.

```
// Load the ZMap data
EZMap_6 zmap;
zmap.Load(...);
// Compute the filtered ZMap. The new ZMap is called filteredZmap
// The size of the kernel is 7x7, the threshold is 30.0
EZMap_6 filteredZmap;
filteredZmap.SetSize(zmap);
EFilters::RemoveNoise(zmap, filteredZmap, ENoiseRemovalMethod_HighStandardDeviation, 3, 30.0, 0.0);
```

EStatistics class

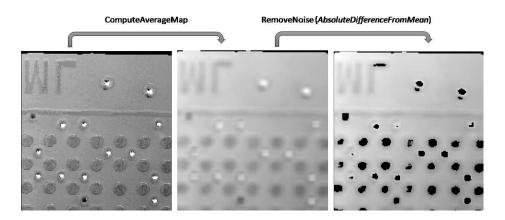
The EStatistics class contains static methods used to compute statistics on ZMaps or depth maps.

ComputeAverageMap

The ComputeAverageMap() method computes the local average map.

- You can use this method as a low-pass filter.
- Undefined points are not taken into account.
- This method is based on a square moving kernel. The size of the kernel is (2 x halfKernelSize + 1) where halfKernelSize is a parameter of the method.

ComputeStandardDeviationMap


The ComputeStandardDeviationMap() method computes a map of the local standard deviation.

• You can use this method to visually determine the threshold value to use with the RemoveNoise () method when using the ENoiseRemovalMethod_HighStandardDeviation setting.

NOTE

Be aware, however, that in the generated map, a pixel with the value 0 can either be undefined or have a standard deviation equal to zero.

Example: Using a low pass filter on a ZMap, then removing points showing a deviation larger than a defined threshold

The code below first applies a low pass filter, then removes from the result the pixels showing a deviation from the neighborhood larger than the defined threshold.

// Load the ZMap data
EZMap_6 zmap;
zmap.Load(...);
// Compute the filtered ZMap. The new ZMap is called averagedZMap
// The size of the kernel is 7x7, the threshold is 30.0
EZMap_6 averagedZMap;
averagedZMap.SetSize(zmap);
EStatistics::ComputeAverageMap(zmap, averagedZMap, 3, 0.2);
// Compute the filtered ZMap. From averagedZMap, compute filteredZMap

// The size of the kernel is 3+x3+, the threshold is 20.0
EZMap+6 filteredZMap;
filteredZMap.SetSize(zmap);

EFilters::RemoveNoise(averagedZMap, filteredZMap, ENoiseRemovalMethod_AbsoluteDifferenceFromMean, +5, 20.0, 0.2);

ComputePixelStatistics

The ComputePixelStatistics() method returns basic statistical information about pixel values:

- Minimum
- Maximum
- Average
- Standard deviation
- Number of valid (not undefined) pixels).

Use an **ERegion** object to specify the region of the ZMap or depth map used to compute the statistics.

ComputeStatistics

The ComputeStatistics() method returns the same information as the ComputePixelStatistics() method, but scaled with respect to the Z resolution.

Use an **ERegion** object to specify the region of the ZMap or depth map used to compute the statistics.

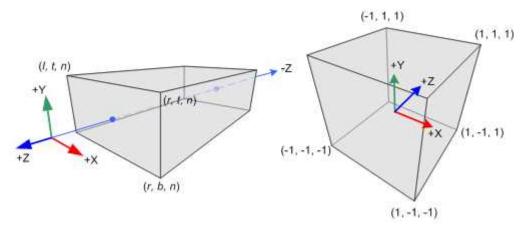
1.3. Point Cloud

Mapping Attributes

- In addition to the (x, y, z) coordinates, you can store other components in an EPointCloud such as normals, colors, intensities, textures, indexes, confidences and other custom attributes.
- When you use additional components, a mapping exists between each 3D point and an attribute and the different operations performed on the point cloud conserve this mapping.
- To add components to an EPointCloud, use the functions FillAttributeBuffer or AddCustomAttributeBuffer.
 - □ You can also save and load these attributes from point cloud files.
 - Several file formats are supported, but we recommend the formats PCD and PLY for handling additional components.

Coordinates Transformations

Geometric transformations


Transforms allow you to reposition the point cloud inside the 3D space.

Open eVision provides you with the following basic transformations:

- □ Rotation around the X, Y or Z axis
- □ Translation along the X, Y and/or Z axis
- Scaling, around the origin, and either isotropic (the same in all directions) or anisotropic (different along the different axis)

It also provides you with projection transformations, both orthographic and perspective:

 An orthographic projection transforms a volume of space in the shape of a rectangular parallelepiped (and the points it contains) into the canonical view (a cubic space of size 2 and centered on the origin).

□ A perspective projection transforms a volume of space in the shape of a frustum (basically a truncated pyramid) into the canonical view. This projection allows you to simulate the perspective effect given by an eye or a camera.

□ Use the class E3DTransformMatrix to create the geometric transformations. The class EAffineTransformer applies a transformation defined by a E3DTransformMatrix to a point cloud.

Reducing a Point Cloud

Cropping

Cropping allows you to exclude points from the point cloud based on geometrical considerations.

Open eVision provides the following cropping functions:

- ESimpleCropper: simple cropping on the X, Y and/or Z coordinates (aligned rectangle 3D region)
- ERectangularCropper: cropping the points outside (or inside) an oriented rectangular parallelepiped
- **ESphericalCropper:** cropping the points outside (or inside) a sphere.
- **EPlaneCropper:** cropping the points depending on their position with respect to a plane

These classes produce a new point cloud with the selected points.

Decimation

- Open eVision offers 2 capabilities to decimate an EPointCloud:
 - ERandomDecimator decimates the cloud by copying a specified number of points, randomly selected, to a new point cloud.
 - EGridDecimator splits the space using a grid of given size; the new cloud is created by averaging the points of every grid together, resulting in a regularly sampled cloud.
- To use ERandomDecimator, specify the number of points to keep as a parameter of the constructor.

```
EPointCloud pc;
pc.LoadPCD("c:\\images\\data.pcd");
```

// Explicitly decimate the point cloud

ERandomDecimator decimator(5000); EPointCloud pcDecimated;

decimator.Decimate(pc, pcDecimated);
pcDecimated.SavePCD("c:\\images\\decimatedData.pcd");

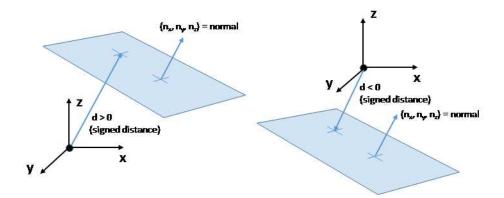
• To use EGridDecimator, specify the cell size, either as a E3DPoint or as a float if cell is cubic.

```
EPointCloud pc;
pc.LoadPCD("c:\\images\\data.pcd");
```

// Explicitly decimate the point cloud

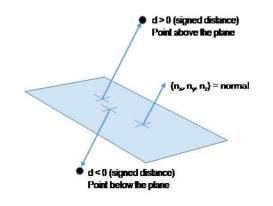
```
EGridDecimator decimator(µ0.f);
EPointCloud pcDecimated;
```

```
decimator.Decimate(pc, pcDecimated);
pcDecimated.SavePCD("c:\\images\\decimatedData.pcd");
```



Managing Planes

E3DPlane

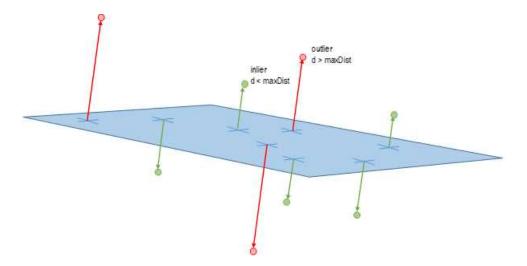
A plane can be represented as an E3DPlane object.


This plane is characterized by:

- □ Its normal which is a vector of norm 1, perpendicular to the plane.
- Its signed distance from the origin, which is the smallest distance from the origin to the plane. The signed distance is positive when the vector binding the origin to the closest point on the plane has the same direction as the normal and is negative when it has the opposite direction.

Once a plane is defined, you can measure the signed distance between this plane and any point in the space (using the method DistanceTo()):

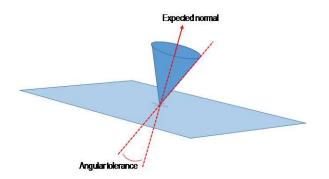
- A positive distance means that the vector connecting the plane to the point has the same direction as the normal.
- □ A negative distance means that the vector has the opposite direction.


EPlaneFinder

You can search for a plane in a point cloud using the object EPlaneFinder object.

The main parameters of this object are:

- The maximum distance between the searched plane and a point that belongs to this plane.
- The expected ratio between the numbers of inliers and the total number of points in the point cloud.
 - An **inlier** is a point that belongs to a plane (closer than this maximum distance).
 - An **outlier** is a point that is not an inlier.


The picture below illustrates how points of the space are classified as inliers (in green) and outliers (in red) according to their distance to the searched plane.

- A EPlaneFinder object produces a E3DPlane object.
 - □ The algorithm searches for a plane containing as many inliers as possible.
 - □ This plane is the biggest plane if the samples are evenly distributed.
- The maximum distance between the plane and the inliers is a mandatory parameter.
 - It should include the deviation due to the noise.
 - It should also take the warpage into account.
- The parameter that specifies the ratio of inliers with respect to the total number of points has a default value of 0.3. This means that we estimate that about 30% of the points belong to the plane.
 - Description This parameter is not as critical as the maximum distance.
 - It affects the maximum time that the algorithm spends to search a plane and its robustness.
- For more fine-grained control, you can specify the ratio of inliers as a range.
 - □ The min of the range is the minimum ratio of inliers for a plane to be considered as valid.
 - The algorithm stops searching for a plane when it finds one with the max of the range inliers.
 - □ The bigger the min of the range and the smaller the max, the faster the algorithm is.
 - Specifyng the range as a single value x is equivalent to setting a range of [x/2, x].

- You can specify the expected normal vector to the searched plane.
 - Specify also an angular tolerance with respect to this direction.
 - The algorithm only searches for a plane that satisfies the condition.
 - Set this condition may speed up the plane search.

- You can specify 1 or 2 points contained in the searched plane.
 - These points are not specified as inliers (points closer to the plane than its maximum distance) but as points exactly contained in the main plane.
 - They may not be exactly in the final plane after the final fitting step detailed below.
 - The algorithm only searches for a plane that satisfies the condition.
 - □ Set this condition may speed up the plane search.

Once the main plane is found, a fit is done on all the inliers points and the result is returned (see EPlaneFitter below).

Decimation

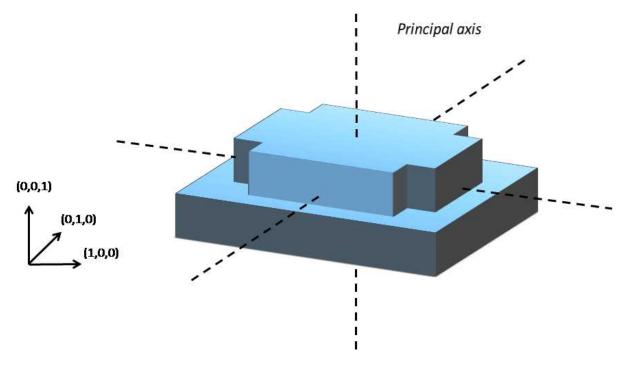
By default, the EPlaneFinder decimates the input point cloud to accelerate the search.

- The default decimator reduces the input point cloud to 10,000 points.
- You can disable this decimation.
- You can change the number of points the cloud is reduced to.
- You can decimate a point cloud explicitly.
 - □ Use an ERandomDecimator object.
 - □ Use the decimated point cloud as input for the EPlaneFinder.
 - Disable the default decimator.

EPlaneFitter

The EPlaneFitter operator computes a fit on all the points of a point cloud and returns a E3DPlane object. The "average" plane, that minimizes the orthogonal distance of the points to the plane, is returned.

Aligning


EPrincipalAxisExtractor

The EPrincipalAxisExtractor computes the "principal axis" of an object from a point cloud (EPointCloud) and returns a E3DTranformMatrix containing a solid transformation that defines a new orthogonal basis.

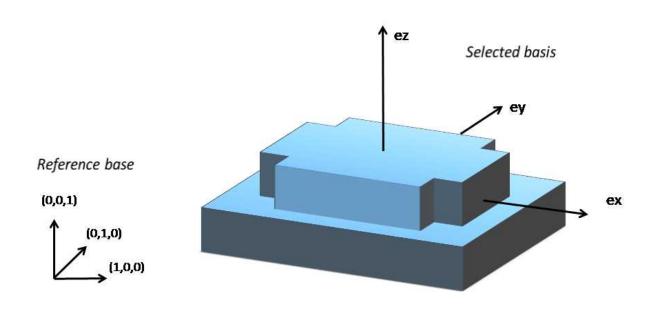
This new orthogonal basis has the following characteristics:

- □ The center is the center of gravity of the point cloud.
- The axes are oriented along the "principal axis" of the object. This is the result of the "PCA" calculation (principal axis analysis).
- The directions of the axes are selected so that the new basis is as close as possible of the basis defined by the reference transformation.

The next figure illustrates the orientation of the principal axes of an object.

The principal axes extraction is done using the Extract() method that takes a EPointCloud as input and returns an E3DTransformMatrix. Optionally, you can pass 3 other output parameters by reference to retrieve the value of the standard deviation along the 3 principal axes.

You can use the returned E3DTranformMatrix object to transform the 3D coordinates of a point. For example, apply the transformation matrix to the origin (0, 0, 0) to return the center of gravity of the object.



Specification of a reference transformation

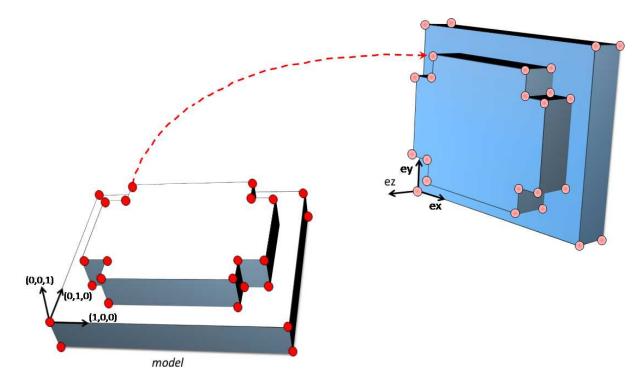
The reference transformation is an optional parameter of the EPrincipalAxisExtractor object. It defines a reference basis used to select an orthogonal basis out of the principal axes. The selected basis will be the closest to the reference basis.

TIP

If no reference transformation was supplied, the default reference basis is ((0, 0, 1), (0, 1, 0), (0, 0, 1)), that corresponds to the identity transformation. On the figure below, the default reference basis determines the direction of the axes **ex**, **ey** and **ez**.

EFeaturesAligner

A EFeaturesAligner object finds the best transformation that maps a list of points to another list of points.


- The first list of points is called the "model". It is stored in the EFeaturesAligner object.
- The second list of points is called "measured points". It is passed as a parameter to the Compute() method. If successful, the result of this method is a E3DTransformMatrix object.
- The 2 lists should form matching pairs. In other words, the first point of the first list matches the first point of the second list, the second point of the first list matches the second point of the second list, and so on…

With the Polarity parameter, you can define which transformation is returned. It can be either:

- □ The one that moves one point from the first list (the model) to the second list of points (the measured points) if the polarity parameter is set to EAlignmentPolarity_ModelToMeasured (default).
- □ The one that moves a point from the second list (the measured points) to the first list (the model) if the polarity parameter is set to EAlignmentPolarity_MeasuredToModel.

The figure below illustrates the computation of the alignment transformation. In this example a model is aligned to an object using the coordinates of their corners.

Once the transformation is computed, use the method GetOrthoBasis of the E3DTransformMatrix object to get the basis (**ex**, **ey**, **ez**) and the center point **t** that defines the new basis.

You can also apply the computed transformation on any 3D point as illustrated in the code below.

```
E3DTransformMatrix alignBase;
E3DPoint ex, ey, ez, t;
std::vector<E3DPoint> model3d;
std::vector<E3DPoint> points3d;
// add points to model3d and points3d
// ...
AlignTool.SetModelPoints(model3d);
alignBase = alignTool.Compute(points3d);
// Get the orthogonal basis and store it in ex, ey, ez and t
alignBase.GetOrthoBasis(ex, ey, ez, t);
// Applying the transformation on point PL, results in point PLD
E3DPoint PL = E3DPoint(...);
E3DPoint PLb = alignBase*PL;
```

As you can see, the application of the transformation on a point is simply done by multiplying the transformation matrix by the point (as done in the example above).

On the other hand, if you need to transform a point cloud or a list of points, it is more efficient to use the ApplyTransform() method of an EAffineTransformer object.

1.4. Mesh

A mesh is a geometric representation of a 3D surface. The surface is defined by a triangle mesh connecting the 3D points. Like a point cloud, a mesh is expressed in the metric space.

Like a point cloud, you can generate a mesh from a depth map and use it to produce a ZMap.

Generation

An EMesh object is generated from a depth map using the EDepthMapToMeshConverter class.

Like EDepthMapToPointCloudConverter, this class uses a calibration model to transform the depth map pixels to 3D world positions. In addition, the depth map pixel connectivity is used to build the triangle mesh. Adjacent pixels produce surface triangles.

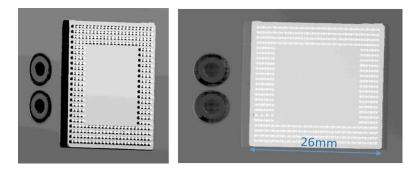
Use SetCalibrationModel() to select a calibration model and the method Convert() to generate an EMesh from an 8 bits or 16 bits depth map.

Access and usage

In an EMesh object the 3D world positions are stored as an EPointCloud (accessible through the method GetPointCloud()). The triangle mesh is stored as an array of point indexes, where 3 consecutive indexes define a triangle. The method GetTriangleIndexes() provides a read-only access to the triangle mesh.

You can use either the Open eVision proprietary format to save and load EMesh objects using the Save() and Load() methods, or use the STL standard file format (https://en.wikipedia.org/wiki/STL_(file_format)) using the SaveSTL() and LoadSTL() methods which respectively write to and read from ASCII or binary STL files.

You can use an EMesh to produce a ZMap (see "Generating a ZMap" on page 268). Because an EMesh represents a surface, the so generated ZMap can show better continuity and less undefined pixels.



1.5. ZMap

Generating a ZMap

A ZMap is the projection of a point cloud or a mesh on a reference plane, with the distance coded as grayscale values:

- □ They are grayscale images, compatible with all Open eVision 2D libraries.
- □ They are distortion free, with affine transformation from/to metric coordinate system.

A depth map (left) and the corresponding ZMap (right), with default generation parameters and undefined pixel filling enabled

All Open eVision 2D processing are available on ZMaps: filtering, thresholding, blob extraction, measuring with EasyGauge, model matching with EasyFind or EasyMatch…

The EPointCloudToZMapConverter class implements the conversion from a point cloud to a ZMap (EMeshToZMapConverter converts a mesh to a ZMap). With all parameters at default value, the Convert method automatically chooses the projection plane, the orientation, the map size and the resolution.

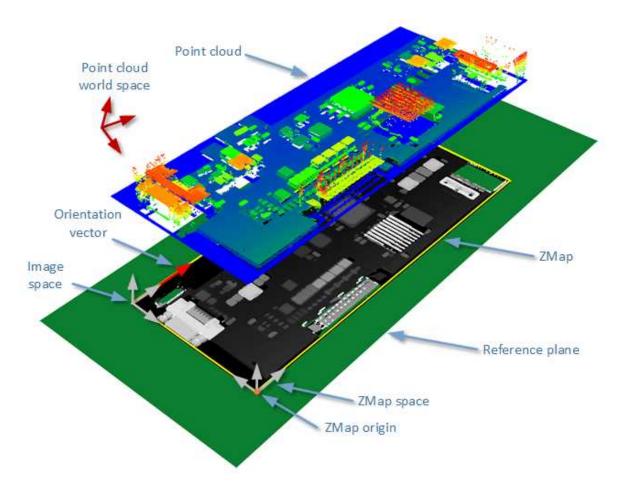
Several methods are available to further control the conversion:

• SetReferencePlane defines a world space projection plane. The values of the ZMap pixels are the distance of the point cloud to that reference plane.

By default, the reference plane crosses the origin and is perpendicular to the world Z axis. The plane is defined as a E3DPlane object.

• SetOrientationVector sets a world space vector representing the expected direction of the X (width) axis of the ZMap.

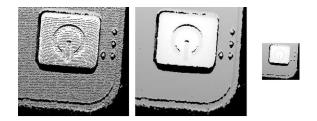
The orientation vector allows you to "rotate" the object around the normal of the reference plane.


- SetOrigin specifies the world position that is on the ZMap lower left pixel (0, 0).
- SetMapSize defines the resolution (number of pixels in X and Y axis) of the generated ZMap.
- SetMapXYResolution adjusts the X and Y resolution of the ZMap pixels, in world space unit per pixel (for example mm/pixel). This value is used to compute the ZMap size (width and height), depending on the projected size of the point cloud on the reference plane.

- SetMapZResolution sets the Z resolution, in world space unit per pixel unit (gray value). The Z resolution is used to compute the transformation of the distance to the reference plan to the integer 8, 16 or 32 bits pixel value.
- EnableFillMode and SetFillMode control the options used to fill the "hole" in the ZMap. A hole exists when no 3D point is projected in the ZMap at a pixel position.

The methods SetReferencePlane, SetOrientationVector and SetOrigin are used to set up the transformation between the world space and the ZMap space. This transformation is rigid (distances are kept).

Alternatively, it is possible to directly set that transformation with the method SetWorldToZMapTransform using a rigid matrix as parameter. In that case, the reference plane, the orientation vector and the origin parameters are ignored.


The projection of a point cloud on a ZMap, showing 3 coordinate systems: the world space, the ZMap space and the pixel space.

The Convert method performs the effective projection of a point cloud (EPointCloud) or a 3D object (EMesh) to the 8, 16 or 32 bits ZMap.

When generating a ZMap from a point cloud, only individual points are projected on the ZMap. Depending on the point cloud density and the ZMap resolution, some regions of the ZMap may remain "undefined". To get around this problem, adjust the resolution of the ZMap (SetMapXYResolution method) to remove "holes" on the ZMap.

By default, the point cloud to ZMap converter performs a filling algorithm. This process tries to replace undefined pixels with locally interpolated values.

Left: high resolution ZMap, the pixel scale exceeds the point cloud density Center: the same generator parameters with the filling enabled Right: a reduced ZMap scale/resolution, without filling

As a mesh defines a surface, its triangles are projected onto the ZMap plane. Thus, the generated image shows better continuity and less undefined pixels. However, the generation of a ZMap from an EMesh is slower than from an EPointCloud.

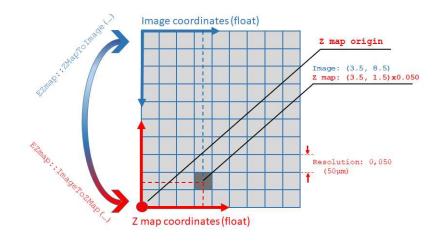
Creating a Point Cloud from a ZMap

To generate a point cloud from a ZMap, use the EZMapToPointCloudConverter class.

The Convert()method takes:

- A ZMap source
- A **EPointCloud** destination.
- 2 optional parameters:
 - An ERegion that defines the domain of the ZMap to convert.
 By default, Open eVision uses all the defined pixels of the ZMap generate the point cloud.
 - A parameter to select the world space (by default) or the ZMap space to store the resulting positions in the point cloud.

Managing the Coordinates


Coordinate systems on a ZMap

A ZMap has multiple coordinate systems:

- □ The **world space** system is the original, metric space from which the ZMap has been generated. Point clouds and meshes are expressed in the world coordinate system.
- □ The **ZMap space** is defined by a rigid transformation of the **world space**. The basis linked to this transformation is attached to the lower left corner of the ZMap.
- The image space is the system attached to the image representation of the ZMap. Its origin is the upper left corner of the ZMap and its unit length is one pixel along the X and Y axis.

The transformations between:

- □ The **image space** and the **ZMap space** include a scale factor.
- □ The **ZMap space** and the **world space** are solid transformations.

EZMap

The EZMap object exposes a set of methods to convert coordinates between world, ZMap and image spaces:

- □ ImageToZMap converts a 2D position in the image to ZMap coordinates.
- **ZMapToImage** is the reciprocal operation and converts a ZMap position to an image position.
- ZMapToWorld is a method to transform positions from the 3D ZMap space to the 3D world space. The world space is the original point cloud or mesh space.
- □ WorldToZMap is the reciprocal operation, converting from world space to ZMap.
- ImageToWorld and WorldToImage combine the functions above to transform directly from image space to world space (or the other way).

These methods only perform geometric transformations between the various coordinate systems and do not access the actual ZMap gray scale values.

The functions that access the pixel values are:

- □ GetWorldPositionFromPixelPosition() is a method transforming the actual pixel value at integer position (u, v) to the original world space. This method queries the ZMap internal representation to get the pixel value w and transform the pixel space (u, v, w) coordinates to a world space position.
- GetPixelPositionFromWorldPosition() is a method to get a pixel value from a world position. The world position is projected on the ZMap and the pixel value is returned. If the world position is outside the ZMap domain, the method returns FALSE.

1.6. 3D Viewer

The class E3DViewer is an interactive 3D viewer for point clouds, ZMaps and meshes.

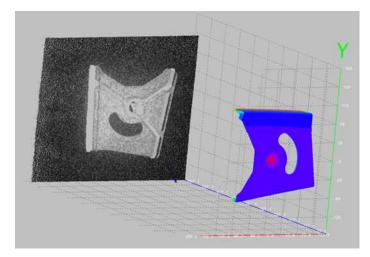
- □ It features multiple sources display, color ramps, 3D point picking and text label display.
- It is compatible with Windows and Linux and can be integrated to Win32, MFC and QT frameworks.

Creating a 3D viewer

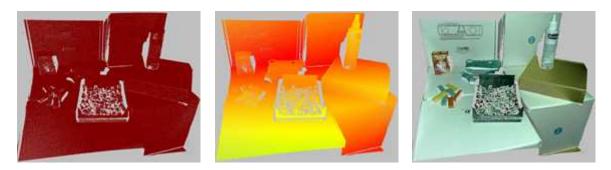
- The general constructor of a 3D viewer is: E3DViewer(EUIAPI uiApi, int orgX, int orgY, int width, int height, int parent)
- The way to use it depends on the Operating System and the User Interface API.

Windows only

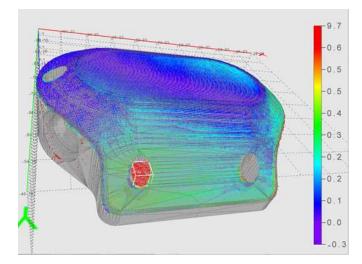
- To create a 3D viewer stand-alone window:
 Use E3DViewer(EUIAP::EUIAPI_Win32, orgX, orgY, width, height)
- To create a 3D viewer as a part of another window in an MFC application:
 - □ Use E3DViewer(EUIAP::EUIAPI_Win32, orgX, orgY, width, height, handle to the parent window)
 - □ See the MsVc 3DViewer sample.


Windows and Linux

- To create a 3D viewer in a Qt application:
 - Use E3DViewer(EUIAP::EUIAPI_Qt, orgX, orgY, width, height)
 - You must instance the class inside a QOpenGLWidget object.
 - □ See the 3DViewer Qt sample.

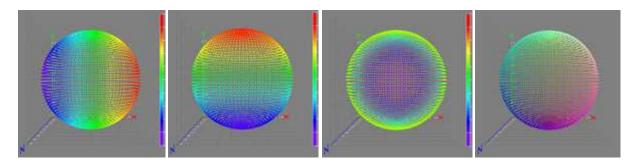

Managing the render sources

• A render source is a displayed entity. It can be an EPointCloud, an EZMap or an EMesh. You can display one or several render sources simultaneously in the 3D viewer.


A point cloud displayed in gray scale and a mesh in false colors in the 3D viewer

- To manage the list of render sources, use the methods:
 - AddRenderSource to add another render source to the current list. The render source has a name for further reference.
 - □ SetRenderSource to change the content of the render source.
 - □ RemoveRenderSource to remove a render source from the current list.
- The render sources API exposes several display attributes:
 - Visibility (controlled by ShowRenderSource/ HideRenderSource)
 - □ Color mode (SetRenderSourceColorMode): choose between constant color, color ramp or point cloud color attributes.
 - Opacity (SetRenderSourceOpacity)
 - Depint size (SetRenderSourcePointSize): applies to point clouds and ZMaps only.
 - □ Wire frame (SetRenderSourceWireFrame): applies to meshes only.

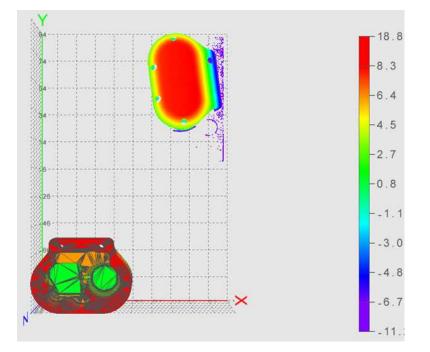
A point cloud displayed with constant color, color ramp or color attributes (data courtesy of Zivid)



A mesh with wireframe and transparency, combined with a point cloud with color ramp

Using a color ramp

- When the color mode of a render source is ESourceColorMode_Ramp, the color of each point is calculated from the position or the attribute of the point.
- Use SetColorRampMode to choose the color ramp:
 - □ EColorRampMode_HueFromX/Y/Z computes the colors from respectively X/Y/Z point coordinates (EColorRampMode_HueFromZ is the default color ramp mode).
 - □ EColorRampMode_RGBCube computes the colors by mixing X,Y,Z point coordinates.
 - EColorRampMode_HueFromIntensity computes the colors from the intensity attribute of the point.
 - EColorRampMode_HueFromConfidence computes the colors from the confidence attribute of the point.
 - EColorRampMode_HueFromDistance computes the colors from the distance attribute of the point.



Color ramp modes Hue from X/Y/Z and RGB cube

• When a color ramp is defined, you can display a legend at the right side of the window (default position). To control the color ramp legend aspect, use the methods Show/HideColorRampLegend, SetColorRampGraduationColor and SetColorRampLocation.

• When the "Smart color ramp" is enabled with the method <u>SetEnableSmartColorRamp</u>, an outlier filtering processing is applied to remove the noise and spread the colors on the main part of the object. The outliers are then displayed with constant red or blue colors.

A color ramp EColorRampMode_HueFromZ with outlier removal process: - The extreme points with Z coordinate between 8.3 and 18.8 are drawn in red - The Z coordinate of 98% of the points are between -6.7 and 8.3

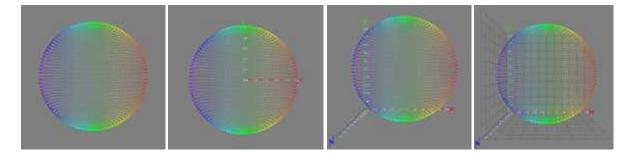
Interactive controls

On Windows, the interactive controls are built in the class E3DViewer.

• The following interactions are possible:

Intercation	Control	
Rotate the view	left-click + mouse move	
Translate the view	right-click + mouse move	
Change the view distance	mouse wheel	
Reset the view	r	
View along the positive / negative X axis	x / shift+x	
View along the positive / negative Y axis	y / shift+y	
View along the positive / negative Z axis	z / shift+z	
Show / hide the axis	а	
Enable / disable the wireframe mode	W	
Increase / decrease the point size	plus sign (+) / minus sign (-)	

- Use the following methods to implement custom view controls:
 - □ LockRotationInitialPosition, UpdateRotationPosition and LockRotationFinalPosition correspond to the sequence click-drag-release to change the viewpoint by rotation.
 - LockTranslationInitialPosition, UpdateTranslationPosition and LockTranslationFinalPosition correspond to the sequence click-drag-release to change the viewpoint by translation.
 - UpdateViewDistance changes the view distance, usually controlled by the mouse wheel.
 - ResetView restores the default viewpoint.

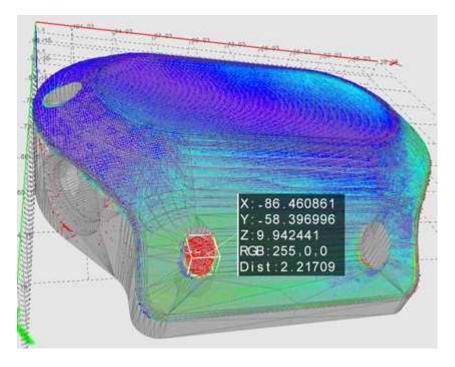

See the Qt 3DViewer sample for a use case of this view control API.

- You can also directly configure the view position with the methods:
 - SetViewTarget (by default, it is the center of the object).
 - □ SetViewAngle to choose the orientation of the view.
 - □ SetViewDistance to choose the distance to the view target.

View parameters

You can customize the 3D view and:

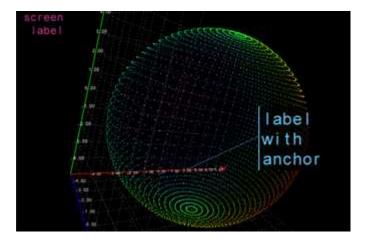
- □ Change the field of view with SetFieldOfView.
- □ Switch between the perspective and the orthographic view with SetProjectionType.
- □ Enable or disable the display of the X, Y and Z axis with SetRenderAxis.
- Switch the axis origin between the world origin and the object center with SetAxisOrigin.
- □ Enable or disable the display of a grid with SetRenderGrid.
- □ Activate an auto rotate animation with SetAutoRotate.
- Use a decimation level (remove some points to speed up the rendering) with SetRenderDecimationLevel.



No axis / world centered axis / bounding box axis / axis with grid

Picking a 3D point

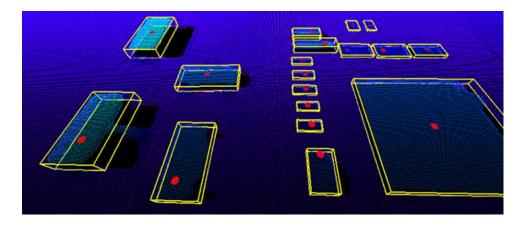
• Picking a point means detecting the point closest to the given coordinates in a E3DViewer window. You can then display the detected 3D point, with attributes, as a text label.


Displayed coordinates and attributes of a picked point on the 3D view

- The distance threshold used to select a picked point is defined by <u>SetPickingDistanceThreshold</u>. There is no picked point if the point cloud distance to the picked position is greater than this threshold.
- On the Win32 interface framework, the built-in control for the picking is **ctrl** + **left-click**. You can also control the picking with the methods: Pick3DPoint, GetLastPickedPoint and ResetPicking.
- To configure the display of the picking label, use SetPickingDisplay, SetPickingLabelSize, SetPickingLabelColor and SetPickingLabelFixed.

Text labels and 3D objects

• You can add custom text labels and 3D objects to the current view of the 3D viewer.



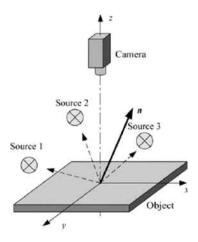
A screen label in the top left corner and a text label with 3D anchor

- To control the text label display, use:
 - AddTextLabel to add a text label with or without a 3D anchor. AddTextLabel returns an ID used for further reference.
 - □ EditTextLabel to change the position, color, size or text of a label.
 - □ GetTextLabel to get the attributes of a label.
 - RemoveTextLabel to remove a label.
 - □ ClearTextLabels to remove all labels.
- The class E3DViewer can also display E3D0bject over a point cloud, a ZMap or a mesh. Use the tools Easy3DObject and Easy3DMatch to create the E3D0bjects.
- Use the methods Register3D0bjects and RemoveCurrent3D0bjects to manage the list of E3D0bjects that you want to display.

An E3DObject contains several features (center point, bounding box, base plane…). Use the methods Show / HideFeatureFor3DObject and Show / HideFeatureForAll3DObjects to select the displayed features.

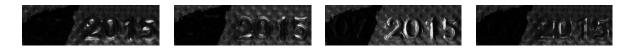
See the **3DObjectExtraction** MSCV sample as an example for the display of **E3DObjects**.

3D objects drawn with a point cloud displaying the bounding boxes and the top positions

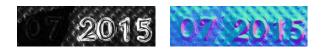


1.7. Photometric Stereo

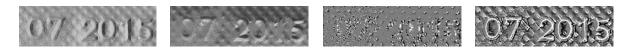
Photometric Stereo and Process


Introduction

The Photometric Stereo is a technique used to estimate the normals at the surface of an object.


Photometric stereo setup Source: https://www.researchgate.net/figure/Principle-of-photometric-stereo_fig7_222422584

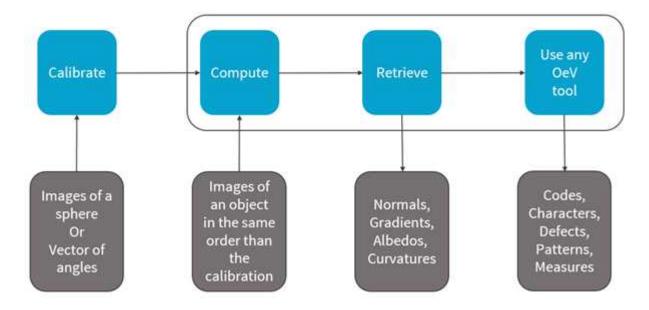
• It takes at least 3 images of the same object taken under different known light directions.


Inputs: images with different light directions

• It produces an image containing the fraction of light reflected (called *albedo*) and the normal of the surface at each pixel.

Outputs: albedos - normals

• The normals are processed to compute gradients and curvatures, allowing to easily see bumps and holes.


Outputs: gradients X - gradients Y - gaussian curvatures - mean curvatures

Process

You can use the object Easy3D::PhotometricStereoImager in a 4-step process:

- 1. Calibrate the setup from a sphere or from predefined angles (once per setup).
- 2. Perform the photometric stereo computation on the object images.
- 3. Retrieve the results.
- 4. Use and apply the Open eVision tools on the results.

Photometric stereo process

Resources

- The example described here demonstrates how to perform photometric stereo with Open eVision 3D libraries and tools.
- A sample application is also distributed with the source code. You can find it in …\Sample Programs\MsVc samples\PhotometricStereo.
- This example and the sample application are based on the following resources:
 Open eVision 2.15
 - Microsoft Visual Studio 2017

📕 ΝΟΤΕ

The license for Easy3D is necessary to use the photometric stereo tools.

Calibration

- You can perform the calibration either:
 - By setting the calibration angles.
 - □ By computing the calibration angles from images of a (hemi)sphere.

Azimuth and elevation

- To define a light direction, two angles are necessary, the azimuth and the elevation.
- When facing the image, the X-axis points right, Y points top and Z points towards the camera.
- The azimuth angles are oriented trigonometrically around the Z-axis.
 - A light source on the right of the image has an azimuth of 0°.
 - □ A light source on the top of the image has an azimuth of 90°.
- The elevation is the angle formed by the base plane and the light source.
 - □ A light source on the horizon has an elevation of 0°.
 - □ A light source on the camera has an elevation of 90°.

Code snippet

• The following code snippet shows how to perform the calibration from a (hemi)sphere.

EPhotometricStereoImager photometricStereo;

```
std::vector<EImageBW8> calibrationImages;
// Load calibration images (Todo)
```

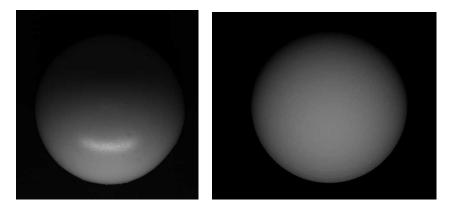
std::vector<EROIBW8> calibrationROIs;
// Set the calibration ROIs (Todo)// Calibrate
float score = photometricStereo.CalibrateFromSphere(calibrationROIs);

• If the sphere is not detected, the calibration fails and generates an EException (EError EError_ SphereDetectionFailed).

In that case, you can pass the position of the circle to the method:

```
ECircle circle;
```

// Define circle (Todo)


photometricStereo.CalibrateFromSphere(calibrationROIs, circle)

- The method returns a score that indicates the reliability of the calibration.
 - □ The higher the value, the better the calibration.
 - □ The score range is [0, 1].
 - □ The scores above 0.75 are considered as good.
 - □ The scores below 0.50 are considered as bad.
 - □ The scores in between are considered as acceptable.
 - The method never fails. A bad score does not mean that you will not get good results on your images. It means that, if you do not, it is probably due to the calibration.

- The score is composed of 2 factors:
 - □ The lambertian (matte) of your sphere (the more lambertian the better).
 - The plausibility of the detected light directions.

The following figure shows the scores for 2 examples.

2 images from different spheres:

left: a high reflection and a score of 0.70 - right: perfectly lambertian and a score of 0.96

• You can also directly set the calibration angles and retrieve them.

Use Easy::SetAngleUnit to define the angle unit.

Easy::SetAngleUnit(EAngleUnit_Degrees);

std::vector<float> azimuths, elevations;

// Define the values of the angles (Todo)

photometricStereo.SetCalibrationAngles(azimuths, elevations);

Computation and Results

Computation

• Once the calibration is done, you can perform the photometric stereo computation on the object images.

```
std::vector<EImageBW8> objectImages;
```

```
// Load object images in the same order than the calibration images/angles (Todo)
```

```
std::vector<EROIBW8> objectROIs;
```

```
// Set the object ROIs (Todo)
```

```
// Compute
photometricStereo.Compute(objectROIs);
```


• You can also use an ERegion.

ECircleRegion circle;

```
// Define the ERegion (Todo)
```

// Compute

photometricStereo.Compute(objectROIs, circle);

• The computation time is proportional to the number of pixels in the image.

To reduce this time, you can:

- Set a smaller ROI.
- □ Use an ERegion.
- Use several threads.

The following table shows the computation time in different configurations (when computing albedos, mean and gaussian curvatures with high contrast, see below).

Number of lights	Image size	Number of threads	Computation time (s)	
4 4096 × 3072	4006 × 2072	1	1.473	
	4	0.596	V _{/2.5}	
4 1024 × 76	1024 × 768	1	0.092	
	1024 / 100	4	0.039	∠ /2.35

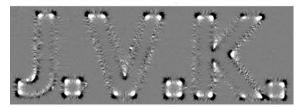
Retrieving the results

• Use the method Get... or Compute... of PhotometricStereoImager to retrieve your results.

// Retrieve the results
EImageC24 normals = photometricStereo.GetNormals();

EImageBW8 albedos = photometricStereo.GetAlbedos(Easy3D::EPhotometricStereoContrast_HighContrast);

```
EImageBW8 gradientsX = photometricStereo.GetGradientsX();
EImageBW8 gradientsY = photometricStereo.GetGradientsY();
```


EImageBW8 gaussianCurvatures = photometricStereo.ComputeGaussianCurvatures(Easy3D::EPhotometricStereoContrast_ HighContrast);

EImageBW8 meanCurvatures = photometricStereo.ComputeMeanCurvatures(Easy3D::EPhotometricStereoContrast_ HighContrast);

- The normals EImageC24 represents the x,y,z normals of the surface at each pixel.
 A RGB pixel intensity of (0, 128, 255) corresponds to a x,y,z normal of (-1, 0, 1)
- The albedos EImageBW8 represents the fraction of light reflected at each pixel.
 - Compared to the input image, the albedo is independent of the lighting direction and intensity.
 - □ The albedos are normalized to the full image range.
- The gradientsX and the gradientsY EImageBW8 represent the gradients of the surface along the Xand Y-axis.
 - □ The gradients are clipped to +/- 3.715 before being mapped to the full image range.

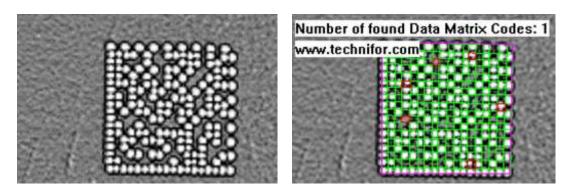
- The gaussianCurvatures and the meanCurvatures EImageBW8 represent the local curvature of the surface at each pixel.
 - The gaussian curvatures are important when the curvature of the object is big in 2 orthogonal directions.
 - □ The mean curvatures only need an important change in 1 direction.
 - You can think of the gaussian and the mean curvatures as a corner detector and an edge detector.

The gaussian curvature highlights the corners and the mean curvature highlights the edges

GetAlbedos, ComputeMeanCurvatures and ComputeGaussianCurvatures

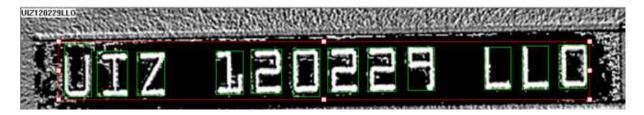
Most of the computations are done in the method Compute, however:

- 1. The last computations required for mean and gaussian curvatures are only performed when retrieving these maps to avoid computing them unnecessarily.
 - □ This is why these methods are named ComputeXXX instead of GetXXX.
 - □ The results are cached to avoid computing them several times.
- 2. Albedos, mean and gaussian curvatures are intrinsically floating point images. To convert them to EImageBW8, you can choose between several arguments:
 - □ EPhotometricStereoContrast_HighContrast to ignore outliers and produce images with a high contrast.
 - □ EPhotometricStereoContrast_FullRange to produce images where no data is ignored.
 - □ EPhotometricStereoContrast_FixedRange to produce images where the range is specified using an additional argument. This is especially useful when processing several different objects with a fixed threshold.

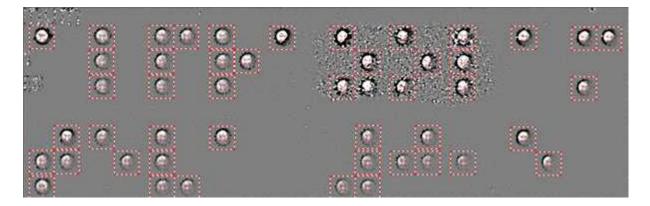


Processing the Results with Open eVision Tools

As the computation results are EImageBW8, you can process them with the various tools of Open eVision.

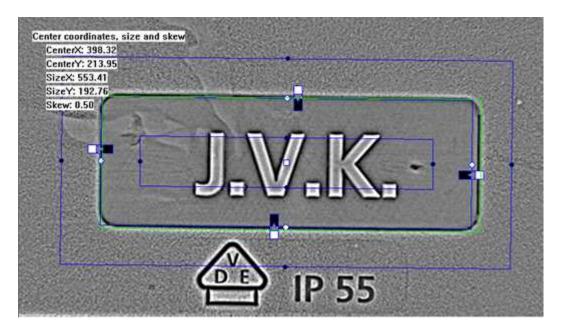

Here are some examples:

• Reading an embossed code with EasyBarCode2, EasyMatrixCode and EasyQRCode.

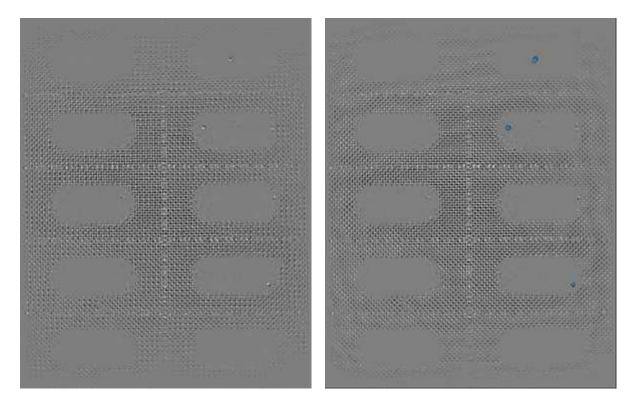

Mean curvatures of an engraved matrix code and EasyMatrixCode2 reading

• Reading an engraved text with EasyOCR2.

EasyOCR2 reading on the mean curvatures


• Finding patterns on embossed surfaces with EasyFind, EasyMatch and EasyObject.

EasyFind results on the gaussian curvatures to detect braille characters



• Measuring shapes with EasyGauge.

Rectangle measurement with EasyGauge on the mean curvatures

• Finding defects in objects with EasySegment.

Gaussian curvatures of a blister pack with 3 holes and EasySegment supervised potential results

Improving the Results

Using a dark image to account for ambient lighting

The photometric stereo assumes that each image is lit from a single light source.

- This assumption is not valid if the setup is exposed to (non-negligible) ambient lighting.
- To handle this issue, the EPhotometricStereoImager provides an EImageBW8 dark image to the methods Calibration and Compute.
 - This dark image is an image of the object under ambient light only (all setup lights are off).

The dark image

The object image: raw (left) and after correction with the dark image (right)

Using flat images to correct non-uniform lighting

Photometric stereo assumes that each image is lit from an intensity uniform light source.

- This means that each pixel is lit by the same quantity of light.
- This assumption is not valid in physical setups using leds, where the part of the image closest to the leds receives more light.
- To handle this issue, the EPhotometricStereoImager provides a method to register a flat image used by the method Compute.
 - This flat image is an image of a uniform background taken in the same lighting configuration.
- // calibrate imager or sets its angles (Todo)

std::vector<EImageBW8> flatImages;

// Load flat images in the same order than the calibration images/angles (Todo)

std::vector<EROIBW8> flatROIs;

// Set the flat images ROIs (Todo)

// Configure flat images, this could optionally be done with a dark image as well
photometricStereo.ConfigureNonUniformLightingCorrection(flatROIs);

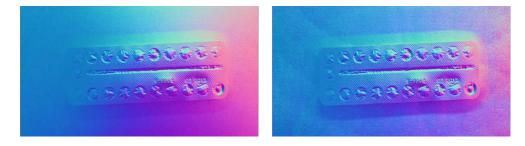
// Perform one or more computations, each will use the flat images (Todo)
photometricStereo.Compute(objectR0Is);

// Optional: non uniform lighting correction could be disabled or (re-)enabled
// using SetEnableNonUniformLightingCorrection

- The following example illustrates the effect of a non-uniform lighting correction on the object images.
 - The proximity of the light source generates a lighting effect on the left of the image that is visible on both the flat and the raw images.
 - □ This effect is corrected on the last image, where the brightest pixels are those oriented towards the surface.

The flat image

The object image: raw (left) and after correction with the flat image (right)



- The following examples illustrate the effects of a non-uniform lighting correction on 2 albedos images.
 - The corrected albedos show less burning on the extremities of the images.

The albedos images: raw (left) and after correction with the flat images (right)

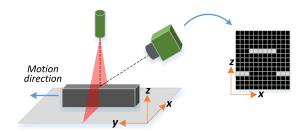
- The following examples illustrate the effects of a non-uniform lighting correction on a normals images.
 - The normals fields is more uniform.

The normals image: raw (left) and after correction with the flat image (right)

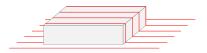
Effect of the distance between lights and object

There is a tradeoff in the distance between the light and the object (that is the elevation angle).

- When the elevation angle is high, the lighting is more uniform. This means that:
 - Definition The "burning" effects visible on some images is less important.
 - The shadows are also less of a problem.
- When the lighting source is close, the lighting directions are more diverse. This means that:
 The quantity of information used to build the photometric stereo is higher.


We recommend using elevation angles between 30 and 70°. We achieve our best results around 40°.

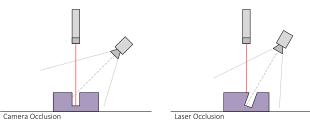
2. Easy3DLaserLine - Laser Line Extraction and Calibration


2.1. Laser Triangulation

In a laser-line triangulation system, a laser line is projected on the object to measure. A camera is looking at the laser line from a different point of view. The line deformation observed by the camera contains the shape information of the measured object.

The scanning of the object consists in moving it under the laser line and recording multiple images.

From the scanning you can reconstruct its 3D shape.



Occlusions

Using the laser triangulation method, the laser may be unable to reach some parts of the object or the camera may be unable to view them. This is called occlusion.

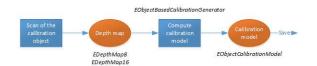
- On the left illustration, the camera does not see the bottom of the hole, inducing camera occlusion.
- On the right illustration, the laser does not reach the bottom of the hole, inducing laser occlusion.

TIP

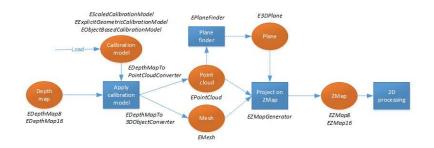
You can limit or avoid occlusions by using advanced scanning methods, for example by using two cameras or two lasers.

2.2. The Laser Line 3D Acquisition Pipeline

The 3D acquisition pipeline starts with the acquisition of a laser line profile and ends up with the point cloud, mesh or ZMap.


The source material for 3D processing is the depth map, coming from a Coaxlink Quad 3D-LLE or generated from a list of images.

3 types of depth map are available, one for each different pixel coding scheme (8, 16 or 32 bits).


The generation of a depth map, from a hardware or a software source

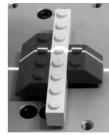
Some processing methods can use the depth map directly, but most measurement and matching processes need metric, distortion-free representations. Calibration of the laser triangulation setup is therefore required. Calibration is used to turn the depth map into a point cloud or mesh expressed in a metric space that we call "world space".

The generation of an object based calibration model, from a scan of the reference object

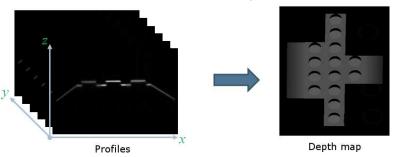
A point cloud is a list of 3D points, expressed in a world space coordinate system. The point cloud can be projected on a plane, producing a ZMap, which is a convenient and effective representation for 2D processing with a metric scale.

The workflow from the depth map to the ZMap

The following sections describe the classes and methods useful for a 3D workflow. The Use Case - Measuring a Remote Controller goes through this processing pipeline.


2.3. Laser Line Extraction

A Laser Line Extraction (LLE) algorithm is required to create a depth map from a sequence of profiles of the object captured by the camera sensor.

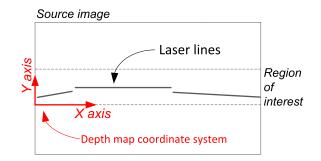

The objective of an LLE algorithm is to measure the line position along a vertical profile in every column of a sensor frame, within a user-defined region of interest (ROI).

For every step of the object position, the detection analyzes each column of a frame individually and produces a row of output positions, stored as gray values.

The figure below illustrates a depth map generation.

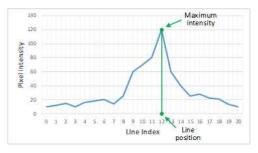
Scanned object

The ELaserLineExtractor class provides the laser line extraction functionality in Open eVision. It implements several algorithms to extract the laser line (see below for more details):


- Maximum detection returns the position of the pixel of maximum intensity. It's the fastest method but it doesn't support sub-pixel precision.
- □ **Peak detection** approach detects local maxima. If several maxima are detected, the one with the highest intensity is returned. The position is returned with sub-pixel precision.
- Center of gravity algorithm is suitable when the laser line is spread over several pixels. The position is returned with sub-pixel precision.

TIP

You can also set a threshold to exclude pixels with low intensity.


The line position returned by the laser line extraction algorithms is relative to the bottom of the region of interest. So, values in the depth map range from 0 (bottom of the ROI) to the height of the ROI.

Laser line extraction methods

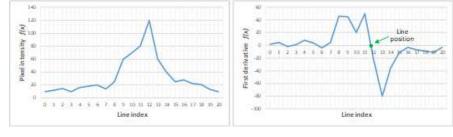
Maximum detection

The maximum detection algorithm analyzes all the pixels in a ROI column to determine the one with the maximum intensity. The figure below shows the laser line position on a given ROI column.

Maximum detection on a ROI profile

We also recommend to include in the processing chain:

- □ A low-pass filter to reduce the high frequency variations in the image.
- A threshold to eliminate the background noise from the sensor.



Peak detection

The peak detection algorithm relies on a discrete simplification of the first derivative function.

$$\frac{df}{dx} = f(x+1) - f(x-1) = f'(x)$$

The f'(x) outputs the slope of a given f(x) along the x.

f(x) and f'(x) plots

We compute the line position by detecting where f'(x) changes its signal based on the two-point form line equation:

$$y-y_1=rac{y_2-y_1}{x_2-x_1}(x-x_1)$$

where (x_1, y_1) and (x_2, y_2) are two points on the line with $x_2 \neq x_1$, we obtain the following equation for y = 0:

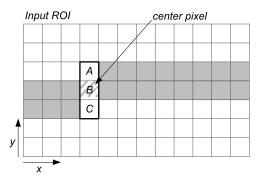
$$x = rac{x_1 y_2 - x_2 y_1}{y_2 - y_1}$$

Center of gravity

The center of gravity (CoG) method uses an algorithm that calculates the center of mass of an image object. Also known as "centroid of plane figures", the CoG is obtained by the following equations:

$$\overline{X} = rac{\sum ax}{\sum a}$$
 $\overline{Y} = rac{\sum ay}{\sum a}$

where \overline{X} and \overline{Y} are the coordinates of the CoG and a is the pixel intensity along the x and y axes.



Center of gravity on a ROI profile

Low-pass linear filter

Optionally, you can apply a low-pass linear filter in front of the line extraction in order to reduce noise and high frequencies in the image.

The low-pass filter applies a convolution operator on a 1 x 3 sliding window. The 3 elements of the convolution kernel (A, B and C) are configurable, accepting any positive integer. The figure below illustrates the positioning of the convolution kernel elements within a given ROI.

You can activate the low-pass filter for any of the laser line extraction methods with the method ELaserLineExtractor::SetEnableSmoothing(true/false). Parameters A, B and C are set with ELaserLineExtractor::SetSmoothingParameters(A, B, C).

2.4. Calibration

The calibration is used to apply the transformation between a depth map and a point cloud or a mesh.

There are 3 ways to set up this conversion:

- Apply a simple scale on the pixel coordinates of the depth map (EScaleCalibrationModel class)
- Use the explicit geometric model (EExplicitGeometricCalibrationModel class)
- Use the object-based calibration approach (EObjectBasedCalibrationModel class)

These models share the same base class ECalibrationModel and exposes the method Apply(), which is used to apply the conversion between a depth map pixel and a 3D point. It takes as input the coordinates of one point in a depth map and it returns the coordinates of the corresponding point in the 3D space.

The method Apply is not aware of the possible mirroring of the corresponding depth map and cannot make use of EDepthMap::AxisSystemType (see below). If necessary (when the corresponding depth map is vertically mirrored) the y coordinates should be flipped before calling the Apply method.

- □ The class EDepthMapToPointCloudConverter generates a point cloud from a depth map, using one of the calibration models.
- □ The class EDepthMapToMeshConverter generates a mesh from a depth map, using one of the calibration models.

By convention:

- □ The origin of the referential is the lower-left corner of the depth map.
- The center of the first pixel at the lower-left corner is at x = 0.5 and y = 0.5.
- The center of the pixel at the upper-right corner is at x = width 0.5 and y = height 0.5 where width is the width of the depth map and height is its height.

Mirrored depth maps

By default, Easy3D considers that the origin of the 3D axis of the depth map is the bottom left of the internal image buffer, and the Y axis is pointing up. This means that the depth map image is not seen as vertically mirrored compared to the real world image of the scanned object.

Nevertheless, depending on your acquisition setup this mirroring can happen (for example if the direction of the scan is inverted).

If this is your case, you can set the EDepthMap::SetAxisSystemType to EAxisSystem_UpperLeftCorner, meaning that the origin of the 3D axis is on the upper left corner and the Y axis is pointing down.

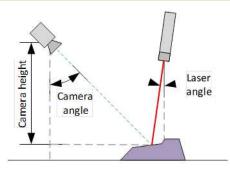
This value changes the behavior of the methods :

- EObjectBasedCalibrationGenerator.Compute
- DepthMapToPointCloudConverter.Convert
- DepthMapToMeshConverter.Convert

Scale calibration

The scale model (EScaleCalibrationModel) only applies a simple factor on the X, Y and Z axis. These factors are the only parameters of EScaleCalibrationModel.

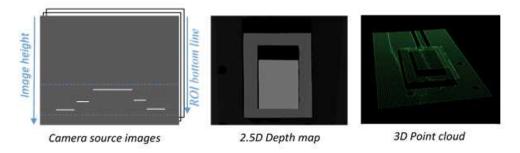
For depth maps coming from laser triangulation setup, this transformation does not produce corrected, metric points. It's main use is to display depth maps as 3D data with the E3DViewer class.


Explicit geometric calibration

The explicit geometric model (EExplicitGeometricCalibrationModel) defines a simple and ideal laser triangulation setup. The explicit calibration makes some strong assumptions on the setup geometry and can only be used when a minimum set of parameters are known:

- The angles of the camera and the laser plane, in the counter clockwise direction. The camera angle must be positive.
- □ The height of the camera above the scanned object.
- The field of view of the camera defined by the sensor size (mm) and the optical focal length (mm).
- The physical distance between two line scans of the depth map (depends on acquisition rate and motion speed).
- The size of the image and the ROI origin used in laser line extraction (between the top (0) and the bottom (height) of the image).

TIP


Use the "Easy3D_Setup_Configuration.xlsx" spreadsheet to compute and check your setup configuration and parameters.

Explicit calibration setup with camera angle, laser angle and camera height

The setup of an explicit geometric calibration uses the constructor of the EExplicitGeometricCalibrationModel class.

Object-based calibration

Object-based calibration gives real world, metric, coordinates from an arbitrary laser triangulation setup. From the scan of a reference object, the calibration process tries to calculate all the parameters required for the transformation to the world space (position and attributes of the camera, position of the laser plane, relative motion of the object, optical distortion…).

For more details, please refer to the "Object-Based Calibration Guidelines" on page 299 section.

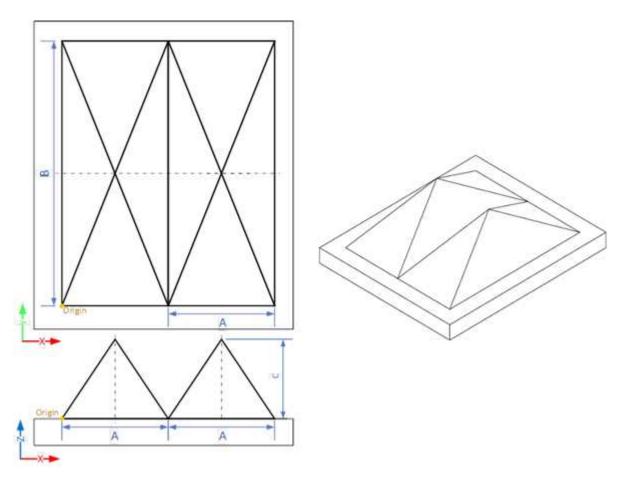
2.5. Object-Based Calibration Guidelines

Easy3D calibration is a powerful process that uses a single scan of a calibration object to calibrate a laser triangulation setup.

- **1.** The calibration process generates a calibration model.
- 2. Easy3D uses this calibration model to transform the laser profile scans (or depth maps) into metric, distortion free point clouds.
- The calibration model includes all the geometric parameters required for this transformation:
 - Description The relative position of the laser and the camera.
 - □ The projection and the distortion model of the camera.
 - □ The relative motion of the object.

This document explains all the steps involved in the calibration process, from the design of the calibration object to the Open eVision API.

The calibration object

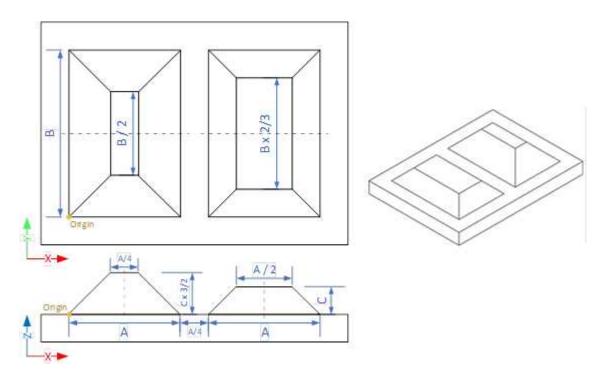

The general principle of Easy3D calibration is to match a scan of a known calibration object to its true geometric dimensions.

The double pyramid

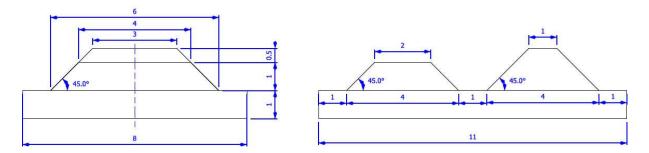
TIP

In Open eVision 2.7 the "double truncated pyramid" calibration object is recommended over the "double pyramid" model.

The dimensions of the "double pyramid" calibration object along the X-, Y- and Z-axes are named A, B and C respectively.



The "double pyramid" calibration model


The truncated double pyramid

- The dimensions of the "double truncated pyramid" calibration object the X-, Y- and Z-axes are named A, B and C respectively.
- The design of the double truncated pyramid must follow the ratios given in the illustration below.

The "double truncated pyramid" calibration model (recommended)

• For example, the provided CAD files of the calibration object use A = 4 cm, B = 6 cm and C = 1 cm. The Calibration Object Size, required for the calibration process, are the values A, B and C.

The "double truncated pyramid" calibration model with A = 4, B = 6 and C = 1

Building a calibration object

Overall dimensions

- Manufacture a calibration object that fits the working area of the project.
- For example, if the project targets the inspection of a PCB (a printed circuit board as illustrated), design your calibration object with:
 - a. The dimension A or B (it does not matter) similar to the width of the PCB.
 - **b.** The height (C) of only several millimeters.

TIP

This is not a strict requirement, if the scanned object is slightly larger or smaller than the calibration object, the calibration process is still valid.

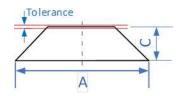
A PCB scanning setup with the associated calibration object The calibration object dimensions (A, B and C) match the width and the height of the PCB

TIP

There is no constraint on the orientation of the calibration object during the scan:

- The X-axis can be aligned with the motion direction or with the laser line.

- After the calibration process, the origin and axes of the 3D calibrated point
- cloud follow the conventions of the reference design.


A calibrated point cloud with the origin and the axis of the coordinates system The 3D origin is located at the external corner of the higher pyramid

Precision and tolerance

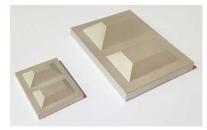
The relevant dimensions of the calibration object are the width, the length and the height of the pyramids (called A, B and C in the illustrations).

- □ The relative dimensions to A, B and C (B/2, A/4…) are important and you must execute them with the same precision.
- The dimensional tolerances are related to the overall expected precision.
 If you want to achieve measurements on the point cloud with a precision of 0.01 mm, the manufacturing of the calibration object must have the same precision.
- These tolerances only apply to the pyramids geometry, the calibration process does not use the dimensions of the support.
- The planar surfaces must be flat between 2 parallel planes separated by the target tolerance, as illustrated.

The tolerance of the pyramids sides is defined as the smallest distance between two parallel planes that contain the entire surface

Material and surface finishing

TIP


The goal is to obtain the laser profile as thinnest as possible over the whole object surface with the largest reflected energy.

The build material and the surface finishing are also important and must have:

- □ A good reflectance, with diffuse reflection (no specular reflections).
- No transmission and limited diffusion inside the material.

TIP

You can obtain a good surface finishing using aluminum material and blasting. Blasting gives the surfaces a satin gray finish.

2 aluminum machined calibration objects with a micro-abrasive blasting surface treatment

3D CAD models

The calibration object models are available in various 3D CAD format like STEP, OBJ and STL.

Download these files from the Open eVision download area in the Additional Resources section (www.euresys.com/Support).

	Download	File size	Operating system
Release Notes	D101EN-Release_Notes-Open_eVision-2.7.0.12133.pdf	0.5 MB	Windows
Documentation	View Open eVision 2.7 online documentation (including PDFs)		Windows
	Open eVision Documentation EN 2.7.0.1113.exe	72 MB	Windows
	Open eVision Documentation EN CN 2.7.0.1113.exe	0.1 GB	Windows
	Open eVision Documentation EN JP 2.7.0.1113.exe	0.1 GB	Windows
	Open eVision Documentation EN KO 2.7.0.1113,exe	0.1 GB	Windows
Setup Files	Open eVision 2.7.0.12133 Installer.msi	0.2 GB	Windows
Additional Resources	Easy30 Calibration Models 2.7.0.12133.zip	0.8 MB	
Autorotian Resources	EasyDeepLearning Miniwattles Classifier 2.7.0.12133.zip	94 MR	

Download the calibration object models

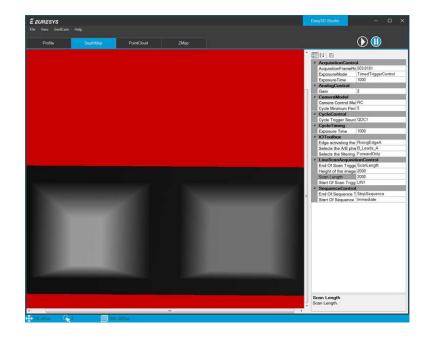
Scanning the calibration object

- The scan of the calibration object produces a depth map.
- To ensure a correct detection of the calibration object and a precise calibration model, you must fulfill the following criteria:
 - All faces of the calibration object must be visible on the depth map (this affects the orientation of both the camera and the laser).
 - □ No other object can be higher than the calibration object in the depth map.
 - □ The depth map must have at least 200 x 200 pixels.
 - □ The calibration object must cover at least 50% of the defined pixels of the depth map.
- Examples of bad scans:

Missing pixels on the side faces

Not enough lines

The calibration object is too small on the depth map

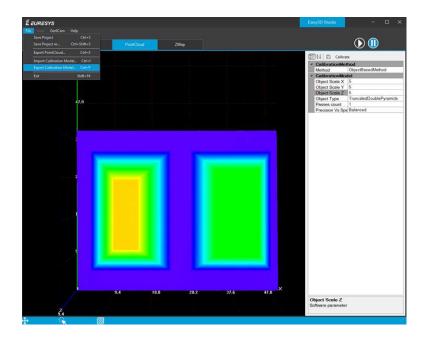

Calibration with Easy3D Studio

Easy3D Studio is a free application that helps you to set up a laser triangulation scanner. You can easily set the acquisition parameters of the Coaxlink Quad 3D LLE frame grabber and perform the calibration.

The DepthMap panel

This panel displays:

- □ The scanned image.
- □ The acquisition parameters on the right side.



The PointCloud panel

This panel displays:

- □ The depth map of the scanned image.
- The object-based calibration parameters on the right side.
- The Calibrate button computes the calibration model using the last scanned depth map.
- □ When the calibration model is ready, the depth map is transformed into a point cloud.
- □ You can export the calibration model for later use.

Required parameters

The calibration based on a calibration object requires several parameters:

- Set the Object Type as DoublePyramid or TruncatedDoublePyramid.
 - **The DoublePyramid object type is deprecated and not recommended.**
- Set the Object Size to represent the real size of the calibration object.
 - If your calibration object has a base of 20 mm by 30 mm and a height of 5 mm, set these values in the Object Size A/B/C parameters.
 - The point cloud after the calibration uses coordinates in millimeters.
- Set the parameter Precision Vs Speed Trade Off to define the time spent on the calibration process.
 - □ The 3 possible values are Fast, Balanced and Precise.
- Set the parameter Passes count to define the number of iterations used to refine the calibration model.
 - Use 1 for the fastest processing.
 - Use up to 3 for slower but potentially better calibration model.

Using the calibration with Open eVision

- The class EObjectBasedCalibrationModel is the container for the object based calibration model.
- The class EObjectBasedCalibrationGenerator performs the computation of such a model using an EDepthMap8/16/32f as input.

The following code snippet illustrates the calculation of a calibration model:

```
/\!/ Initialize a depth map from an image of a double truncated pyramid
```

```
EDepthMap=6 depth_map;
depth_map.LoadImage("ctx_calibration object.png"); // from Easy3D sample images
depth_map.SetZResolution(_, f / (_ << 5)); // ...5 fixed point pixel format
// Initialize the calibration generator
EObjectBasedCalibrationGenerator calib_generator;
calib_generator.SetCalibrationObjectType(EObjectBasedCalibrationType_TruncatedDoublePyramid, 40.f, 60.f, ..0.f);
// Type and size of the calibration object
// Compute the calibration modelEObjectBasedCalibrationModel calib_model;
calib_model = calib_generator.Compute(depth_map);
float error = calib_model.GetCalibrationError();
// Save the calibration model
calib_model.Save("calib.model");.
```

The following code snippet illustrates the use of a saved calibration model:

```
// Load a depth map (captured in the same context)EDepthMap_6 depth_map;
depth_map.LoadImage("ctx_ shapes.png");
depth_map.SetZResolution(_.f / (_ << 5));</pre>
```

```
// Initialize a converter, use the loaded modelEDepthMapToPointCloudConverter converter;
converter.SetCalibrationModel(calib_model);
```

```
// Convert the depth map to a metric point cloud and save itEPointCloud point_cloud;
converter.Convert(depth_map, point_cloud);
point_cloud.SavePCD("point_cloud.pcd");.
```

To experiment and learn about the Easy3D calibration, a C++ sample called 3DCalibration is provided with the source code in the Open eVision distribution.

3. Easy3DObject - Extracting 3D Objects

3.1. Purpose and Workflow

Introduction

- The Easy3D0bject tool extracts objects and their features from a ZMap.
 - □ The E3D0bjectExtractor class uses a set of criteria to select the objects to extract.
 - □ The extracted objects are instances of the ED30bject class.
- Open eVision provides a demo application with C++ source code and 2 C++ / C# samples:

This demo application exposes most of the features of the Easy3DObject tool.

Library workflow

- 1. Load or build a ZMap (from an image or a point cloud).
- 2. Construct an E3D0bjectExtractor instance.
- 3. Set the selection criteria of the E3D0bjectExtractor instance.
- 4. Extract the 3D objects, with or without an ERegion.
- 5. Get and process the extracted objects list.

Load or build a ZMap

A ZMap is a grayscale image with a metric coordinate system. It is sometimes referred to as a "height map".

You can create a ZMap from an 8- or a 16-bit image or generate it from a point cloud.

Before using an image as a ZMap, set the resolution.

The resolution is the metric size of a pixel (for example in mm / pixel) and the height difference between 2 consecutive grayscale levels.

- □ From a point cloud, use the EPointCloudToZMapConverter class to generate a ZMap. Choose the target ZMap resolution according to the point cloud sampling.
- Depending on the 3D scan precision, you can use a ZMap with 8- or 16-bit per pixel.

TIP A 16-bit processing is more accurate but slower than an 8-bit processing.

3.2. Object Features

Units

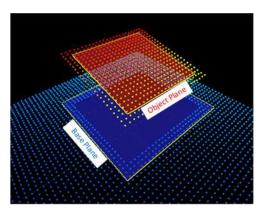
Both the E3D0bjectExtractor parameters and the E3D0bject features are expressed in metric units.

- For example: if the resolution of the input EZMap is expressed in mm / pixel, the length parameter is expressed in mm.
- □ Use the Resolution accessors of the EZMap to query and change its resolution.

Angles are expressed in the unit defined by Easy.AngleUnit.

TIP

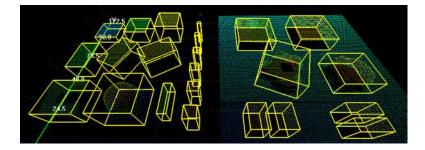
In this documentation, we use the default setting and all angles are expressed in degrees.


Object plane and base plane

The E3D0bjectExtractor fits a plane to the pixels of each E3D0bject output:

Use E3D0bject.Plane to access this plane.

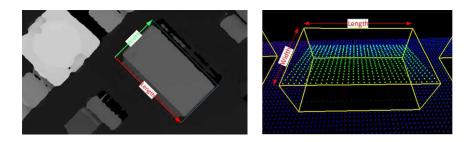
The E3D0bjectExtractor also tries to fit a plane to the pixels surrounding an E3D0bject


- This plane is called the *base plane*.
- □ It is an estimation of the local background around the object.
- □ If there are too many undefined pixels in this area, the base plane is equal to the reference plane of the input EZMap.

Bounding box

The *bounding box* is the minimal enclosing rectangle for all the object positions.

- □ It is oriented in the XY plane of the ZMap space (rotation around the Z axis of the ZMap).
- □ Its rotation is used as the orientation of the object (see E3D0bject.GetOrientation).
- □ Its X and Y sizes are the object length and width (see E3D0bject.GetLength and E3D0bject.GetWidth).
- □ Its Z size is always in the Z axis of the ZMap direction.

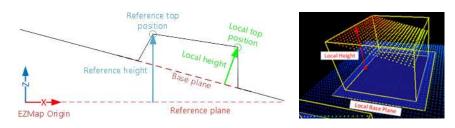


Length and width

The *length* of an object is the largest dimension on the XY plane in the ZMap space. It is the same as the size of the major axis of the bounding box.

The *width* of an object is the smallest dimension on the XY plane in the ZMap space. It is the same as the size of the minor axis of the bounding box.

Use the E3DObjectExtractor.LengthRange and the E3DObjectExtractor.WidthRange accessors to set the ranges of allowed values for the length and the width.


Local and reference top positions and heights

The *local top position* of an object is the position (3D coordinates) of the point in the E3D0bject that is the furthest from the base plane.

The *local height* of an object is the distance between the local top position and the base plane.

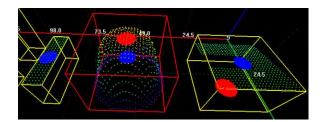
The *reference top position* of an object is the position (3D coordinates) of the point in the E3D0bject that is the furthest from the reference plane.

The *reference height* of an object is the distance between the reference top position and the reference plane.

If there are too many undefined pixels in the object surroundings:

- □ The base plane is equal to the reference plane of the input EZMap.
- □ The local top position is equal to the reference top position.
- □ The local height is equal to the reference height.

Use the E3D0bjectExtractor.LocalHeightRange and the E3D0bjectExtractor.ReferenceHeightRange accessors to set the ranges of allowed values for the local and the reference height.

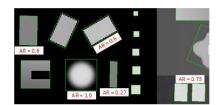


Average position

The *average position* is the arithmetic mean of the 3D positions of the object, also known as the barycenter.

In the illustration below:

- The average position is displayed in blue.
- The top position is displayed in red.
- On the left object, the average and the top positions are at the same place.
- On the center object the average position is "inside" the object.

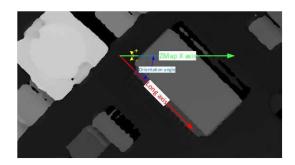


Aspect ratio

The *aspect ratio* is the width (the smallest dimension on the XY plane) divided by the length (the largest dimension).

- It lies between 0 and 1.
- □ The smaller the ratio, the more elongated the object is.
- A square has an aspect ratio of 1.

Use the E3DObjectExtractor.AspectRatioRange accessor to set the range of allowed values for the aspect ratio.



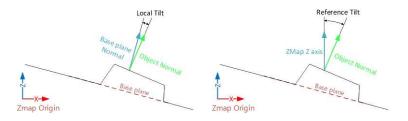
Orientation angle

The *orientation angle* is the angle between the X axis of the EZMap and the longest axis (the length) of the object.

- □ The angle is measured in the clockwise direction.
- □ The value must lie between -90° and +90°.

Use the E3D0bjectExtractor.OrientationRange accessor to set the range of allowed values for the orientation angle.

Local and reference tilt angles

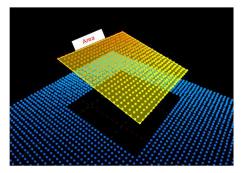

The *local tilt angle* is the angle between the base plane and the object plane.

- □ A value of 0 means that the object top surface is parallel to its base.
- □ The value must lie between 0° and +90°.

The *reference tilt angle* is the angle between the object plane and ZMap XY plane.

- □ A value of 0 means that the object top surface is parallel to its base.
- □ The value must lie between 0° and +90°.

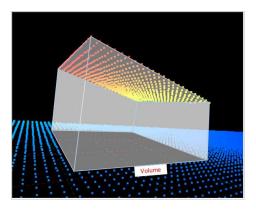
Use the E3DObjectExtractor.LocalTiltRange and the E3DObjectExtractor.ReferenceTiltRange accessors to set the range of allowed values for the tilt angles.



Area

The object *area* is the area of the top surface of the object projected on the reference plane of the EZMap.

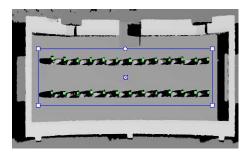
□ It is equal to [the number of pixels in the object] × [the x-resolution of the EZMap] × [the y-resolution of the EZMap].


Use the E3D0bjectExtractor.AreaRange accessor to set the range of allowed values for the area.

Volume

The object *volume* is the volume that lies between the top surface and the base plane of the object.

Use the E3D0bjectExtractor.VolumeRange accessor to set the range of allowed values for the volume.



3.3. Extracting and Using Objects

Extracting the objects

Use the E3D0bjectExtractor.Extract method to perform the objects extraction.

You can limit the extraction to an ERegion, for example to ignore parts of the ZMap that are not interesting and/or to speed up the extraction process.

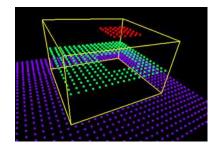
	the states of

The processing speed of the extraction depends directly on:

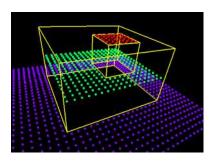
- □ The number of pixels in the ZMap or in the ERegion.
- □ The number of segmented objects.

TIP

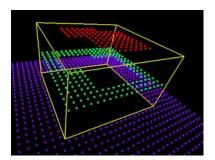
Adjust the extraction ranges to reduce the number of objects and speed up the extraction process.


Overlapped objects

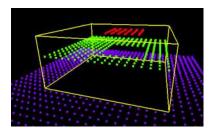
By default, the extraction does not produce objects that overlap on the ZMap. You must enable the <u>SetOverlappedObject</u> option to extract "stacked" objects.


The *area ratio* and the *height difference* parameters control how overlapped objects are extracted:

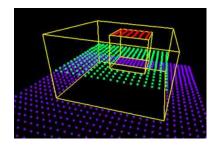
• The *area ratio* is configured by SetOverlappedAreaRatio. The area of the bottom object divided by the area of the top object must be larger or equal than that ratio.



Overlapped extraction is disabled.

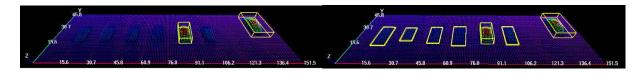


Overlapped extraction is enabled, with OverlappedAreaRatio = 4.


Overlapped extraction is enabled, with OverlappedAreaRatio = 4. The top object is too large to be extracted, the ratio of the areas is lower than 4.

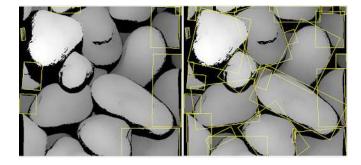
• The *height difference* is configured by SetOverlappedHeightDifference. This represent the minimum height difference between the top and the bottom object

Overlapped extraction is enabled, with OverlappedHeightDifference = 2. The height of the top object (red) from the bottom object (green) is too small, the object is not extracted.



Overlapped extraction is enabled, with OverlappedHeightDifference = 2. The height of the top object from the bottom object is larger than 2, the object is extracted.

Controlling the object detection


Two optional parameters affect the detection of the object:

- SetExtractionSensitivity controls the sensitivity of the extraction.
 - A higher value increases the ability to detect objects that are mixed with their surrounding, because their grey values are close to the background or because the transition (the gradient) between the object and the background is smooth.
 - This parameter value ranges from 0 to 1 (the default value is 0.6).

Extraction sensitivity: 0.5 (left) and 0.8 (right)

- SetContourReinforce affects the extraction of the objects.
 - As the extraction can fail when objects are close or touch each other, this parameter enables a filter to enhance the frontiers between objects and enable the extraction of such objects.
 - The filter can affect the measurements.

Contour reinforcement: OFF (left) and ON (right)

Using the objects

The E3D0bjectExtractor.Extract method populates a list of E3D0bject fulfilling your set criteria.

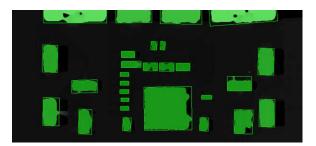
- Each E3D0bject is a collection of descriptive features of the associated 3D points in the EZMap, such as its oriented bounding box, its local height and its volume.
- □ Call the associated E3D0bject method to access a feature.
- □ The E3D0bject list is sorted from the smallest area to the largest area.

The code snippet below provides an example for extracting features from the E3D0bject list.

```
// get the extracted objects and loop over them
std::vector<Easy3D::E3DObject> objects = extractor.GetObjects();
int nObjects = objects.size();
for (int index = 0; index < nObjects; ++index)
{
    // inspect bounding box dimensions
    E3DPoint bbCenter = objects[index].GetBoundingBox().GetCenter();
    float bbHeight = objects[index].GetBoundingBox().GetXSize();
    float bbLength = objects[index].GetBoundingBox().GetYSize();
    // inspect object plane and base plane
    Easy3D::E3DPlane basePlane = objects[index].GetBasePlane();
    Easy3D::E3DPlane basePlane = objects[index].GetBasePlane();
    // inspect the ERegion that exactly contains the object
    ERegion objRegion = objects[index].GetRegion();
}</pre>
```

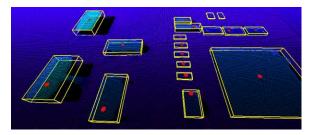
Visualizing the objects

To visualize some of these features in 2D or 3D:


- □ Use the E3D0bject.Draw method.
- □ Or submit a list of E3D0bject to an E3DViewer.

TIP

In an E3DViewer, use the ERenderStyle structure to choose your rendering style.


The following code snippets illustrate how to draw some object features:

In a 2D graphic context: Drawing a 2D Feature from the List of E3DObjects

In a 3D viewer: Drawing 3D Features from a List of E3DObjects

3.4. Use Case - Inspecting a PCB

The purpose of this use case is to test if all the components are present and correctly placed on the PCB.

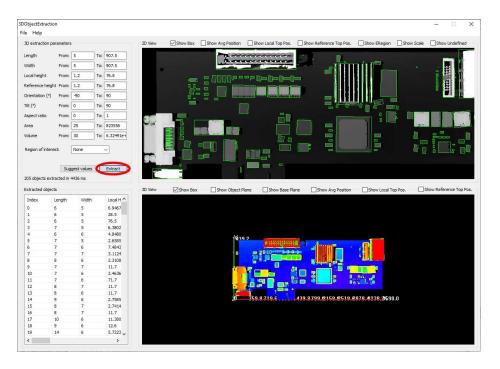
1. Load the PCB image.

Open			>
← → – ↑ 📴 « Images → Easy3D → Easy3DObject	ٽ ~	Search Easy3DObject	, p
Organize - New folder		E • [1 0
ExtractionTest.pn 9 9			
File name: PCB.png			~

2. Set the resolution.

- □ The provided PCB sample is an 8-bit gray scale image.
- □ Use a Z resolution of 0.3 metric unit per gray scale level for a realistic proportion.

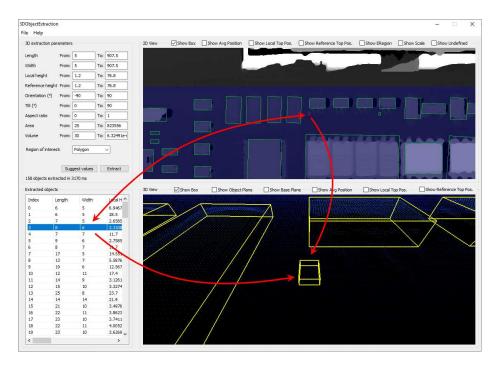
X Resolution:	1	unit / pixel
Y Resolution:	1	unit / pixel
Z Resolution:		unit / level
ZMap depth:	8	✓ bits / pixel


- 3. Keep the suggested parameters for a first extraction.
 - □ The suggested parameters are set from the ZMap width, height and resolution.

4. Click on the Extract button to perform the extraction.

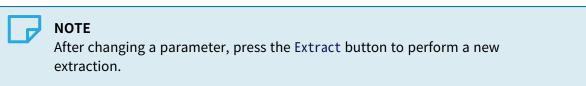
When the extraction is done:

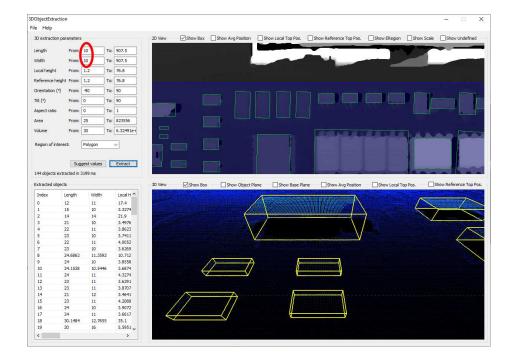
- The object list is filled.
- Click on a column title to sort the object list.
- The various measures are displayed.
- The 2D View and the 3D View show the extracted object bounding boxes.



- 5. Use a polygon region of interest to restrict the searched area.
 - You can limit the extraction to a region defined as a rectangle, a polygon or an ellipse in the demo application.
 - □ Use the Open eVision API, to define and use any ERegion.

- 6. Press again the Extract button to generate a new list of objects. Now, only the objects located inside the region are extracted.
- 7. The 2D View and 3D View automatically focus on the object selected in the list. You can also select an object by clicking on a bounding box in the 2D View.

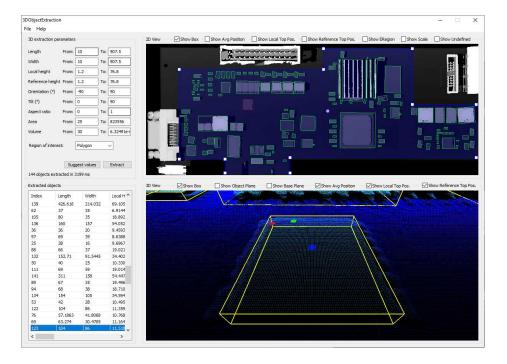


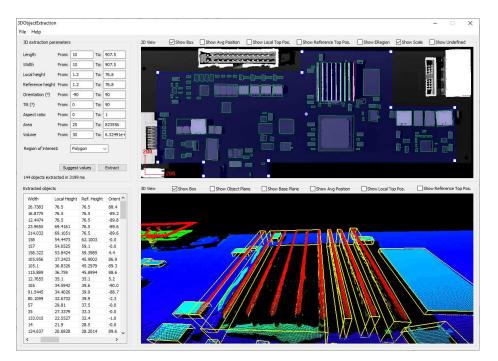


8. Use the size ranges to discard the smaller components.

To add or remove objects:

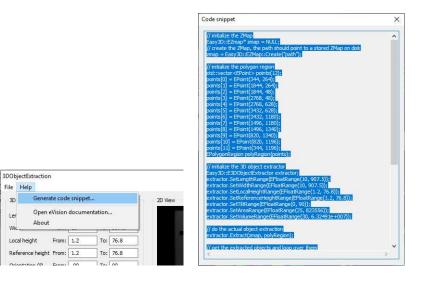
- Change the extraction parameters, like the length and width ranges.
- □ In the illustration below, objects smaller than 10x10 metric unit are not extracted.





- 9. Check or uncheck the boxes at the top of the views to toggle the display of most of the object features, either in the 2D View or the 3D View.
 - In the illustration below, the object list is sorted by local height.
 - The first object is selected and displayed in both views.

10.Adjust the extraction parameters to accept or reject objects based on the results.



11.Open the Help menu and click on Generate code snippet to generate the C++ code corresponding to the current configuration.

The generated code illustrates how you can:

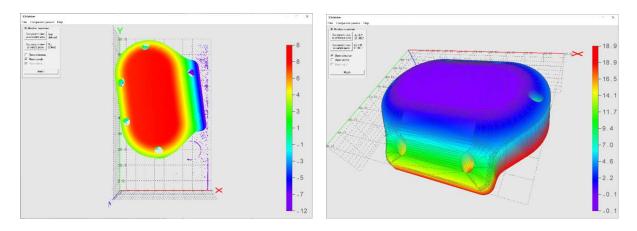
- Load a ZMap.
- Define a region.
- □ Set the configuration parameters of the extraction.
- Start the extraction process.
- Iterate through the resulting objects list.

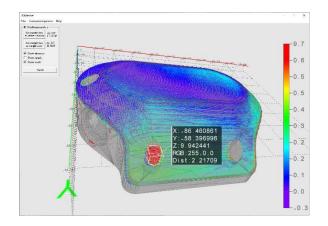
4. Easy3DMatch - 3D Alignment and Comparison

4.1. Purpose and Workflow

Purpose

Easy3DMatch allows you to:


- Align a scanned object with another scan or with a reference mesh.
 - The Easy3DMatch tool features alignment functions to find the exact pose (position and orientation) of acquired 3D objects using a reference model.
 - □ You can specify this model as a reference point cloud or as a 3D mesh from CAD software.


CAD model — sample point cloud — model and sample aligned (3D models courtesy of Direct Dimensions)

- Compare an aligned scan with a reference model or mesh:
 - a. Compute the local distances between 3D scans and a golden sample or a reference mesh.
 - **b.** Detect anomalies such as misplaced features, geometric distortions, gaps and bumps.

Reference — sample (3D CAD models courtesy of Direct Dimensions)

Result of the comparison

Workflow

- 1. Load a reference as:
 - A mesh (define its viewpoints)
 - A point cloud (with one viewpoint)
 - A ZMap
- **2.** Load a sample, either as:
 - A point cloud (with one viewpoint)
 - A ZMap

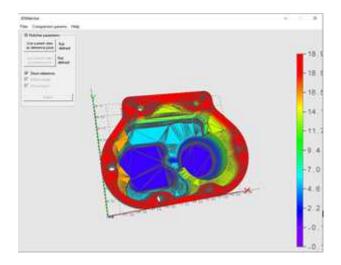
- **3.** Perform alignment and/or matching:
 - Optionally, align the sample and get its E3DAlignment with respect to the reference (E3DAligner).
 - □ Optionally, compare the sample to the reference by defining ROIs as 3DBox (E3DComparer).
 - Align the sample and compare it directly to the reference by defining ROIs as an ERegion (E3DMatcher).
- 4. Use the transformation from sample to model to locate the sample and/or process the detected E3DAnomalies.

Resources

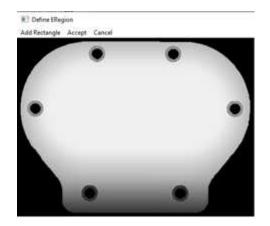
- The example described here demonstrates how to use Easy3DMatch with Open eVision 3D tools.
- You can also find a sample application, with its source code, in …\Sample Programs\MsVc samples\3DMatcher. Most of the illustrations are screenshots from this sample.
- The example and the sample application are based on the following resources:
 - Open eVision 2.16
 - Microsoft Visual Studio 2017
- You need the Easy3DMatch license to use it.

4.2. Alignment (E3DAligner)

Base case

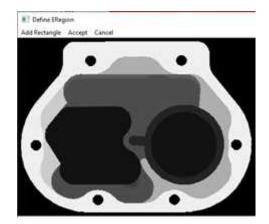

Use the class E3DAligner to load a reference and a sample and to find the transformation from the sample to the reference.

- 1. The first step is to set the reference using the method SetReference.
 - In addition to the mesh or the cloud, this method also takes one or several E3DPlane or azimuth and elevation angles (see "Calibration" on page 280 for a definition of the azimuth and the elevation).
 - □ The angles are used to compute the plane and are just an easier way to specify it.



- 2. The goal of the plane is to specify the face(s) of the object that can be visible on the sample.
 - You must do this only once for the reference and once for the sample(s), assuming they are all taken with the same scanner.

Here is an illustration of the process:



View of the CAD

Bottom face, corresponding to the plane of the normal (0, 0, -1) and equation z = 15 or an azimuth of 0° and an elevation of -90°

Top face of the object, corresponding to the plane of the normal (0, 0, 1) and equation z = -15

or an azimuth of 0° and an elevation of 90°.

- **3.** Call the method Align with a point cloud or a zmap and get an object E3DAlignment that contains:
 - □ The pose, an E3DTransformMatrix mapping the sample to the reference.
 - The error, indicating the quality of the matching.
 - The index of the reference pose that was matched. This is useful when several poses are defined (in the example above, there are 2 poses defined).

Defining a reprojection plane to improve the results

Ideally, the sample (and the point cloud or the ZMap used as reference) should be aligned on the viewpoint. This is however not always true, for example when the scanner does not lay on top of the object. In these cases, the user may specify the plane on which the object lays, either by giving an E3DPlane or a flat scan on which only the plane is visible.

In both cases, the plane normal must have the correct orientation (pointing upwards or downwards), that is if the plane is above the normal (z object > z plane), the z coordinate of the normal should be positive. This is specified either directly in the E3DPlane or by a boolean argument objectAbovePlane when giving a flat scan.

Code samples

Base sample

// load the reference mesh and define the pose
Easy3D::E3DAligner aligner;
Easy3D::EMesh cad;
cad.Load("…");
float azimuthReference = 0.f, elevationReference = 90.f;
aligner.SetReference(cad, azimuthReference, elevationReference);

// load the sample


```
Easy3D::EPointCloud sample;
sample.Load("…");
float azimuthSample = 0.f, elevationSample = 90.f;
// perform alignment
Easy3D::E3DAlignment alignment = aligner.Align(sample, azimuthSample, elevationSample);
Use a reprojection plane
// This code snippet shows how to set the
                                             11
// reprojection plane when performing alignment. //
// load the reference mesh and define the pose
Easy3D::E3DAligner aligner;
Easy3D::EMesh cad;
cad.Load("…");
Easy3D::E3DPlane refPlane(Easy3D::E3DPoint(0, 0, -), 0);
aligner.SetReference(cad, refPlane);
// define the reprojection plane
bool userKnowsPlaneAZEl = false; // depending on the user
if (userKnowsPlaneEquation)
ł
 Easy3D::E3DPlane reprojectionPlane(Easy3D::E3DPoint(0, 0, --), --5);
 aligner.SetScanReprojectionPlane(reprojectionPlane);
}
else
{
 Easy3D::EPointCloud cloud;
 cloud.Load("…");
 bool objectAbovePlane = true; // is the object above the plane on the cloud
 aligner.SetFlatScan(cloud, objectAbovePlane);
}
// load the sample
Easy3D::EPointCloud sample;
sample.Load("…");
float azimuthSample = 0.f, elevationSample = 90.f;
// perform alignment
Easy3D::E3DAlignment alignment = aligner.Align(sample, azimuthSample, elevationSample);
Use E3DAlignment to align a sample on the reference
```

// perform alignment (see previous examples)
Easy3D::E3DAlignment alignment;
EPointCloud sample;

// align sample on reference Easy3D::EPointCloud alignedSample; Easy3D::EAffineTransformer::ApplyMatrix(alignment.GetPose(), sample, alignedSample);

Computation Time

The following table shows the computation time on a representative object. The first step of an alignment is to decimate the given EPointCloud (a very large cloud may explain important computation times).

Number of threads	Computation times
1	811 ms
2	618 ms
4	570 ms

4.3. Comparison (E3DComparer)

Base case

Use the class E3DComparer to load a reference and an already aligned sample (for example by using E3DAligner) and to find the distance map between both as well as anomalies.

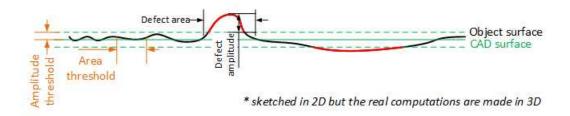
- To use the E3DComparer:
 - □ Use the method SetReference to specify the reference with either an EMesh or an EPointCloud.
 - Set the options of the comparison (ROIs and thresholds).
 - □ Call the method Compare with the sample EPointCloud.
 - Use ComputesAnomalies to retrieve the list of E3DAnomaly.
 - Use GetComparisonPointCloud to retrieve the EPointCloud containing the distances.
- An E3DAnomaly represents a specific area in which the discrepancies between the sample and the reference are important. They are represented by:
 - □ An EPointCloud containing all the points of the anomaly and their distance to the sample.
 - □ The area of the anomaly.
 - Its center of gravity.
 - A bounding box around the anomaly.

Note that the E3DAnomaly represents points on the reference (except on NoExtraMaterial regions and when the distance mode is set to EComparisonDistanceMode_Advanced for E3DMatcher).

• Use GetComparisonPointCloud to retrieve an EPointCloud containing distance and/or colors that represent the distance to the sample or the reference for each of these points.

SetROI and SetDontCare

- The class E3DComparer can perform the comparison on only a subset of the object. This has two benefits: it is faster and it allows to ignore false-positives when detecting anomalies.
 - □ Use SetROI with a vector of E3DBox to define the zones on which to perform a comparison.
 - Use SetDontCare to specify areas that are excluded from the comparison.
 - □ A point belonging to SetROI and SetDontCare boxes is not compared. By default, all points are compared.



SetNoExtraMaterial

- The class E3DComparer checks, for each point of the reference (in the ROI), the distance to its nearest neighbor in the sample.
 - This avoids false positives, where we would use points of the sample that are not part of the object (the plane on which the object lays for example).
 - □ This allows to detect missing points on the sample.
 - □ A drawback of this approach is that extra material, that is points that should not be in the sample (for example, a hole that is filled) are not detected. You can solve this problem by specifying a list of E3DBox containing the areas that should not contain extra material.

SetAnomalyThresholds

- An anomaly is a sufficiently large contiguous area of points whose distance to the scan is above a threshold.
 - □ To specify the two thresholds (distance and area), use the method SetAnomalyThresholds.
 - By default, these two thresholds are set relatively to the model size.
 - □ Aa a more advanced anomaly detection method, use SetAnomalyHysteresis.

Illustration of the thresholds

SetAnomalyHysteresis

- You can use the method SetAnomalyHysteresis that is a more specific anomaly detection method.
 - With this method, a cluster of points should have a large enough subset of its points with an even larger distance to the sample to be an anomaly.
 - This may be useful if you do not want to consider as an anomaly the points with a medium distance unless they are close to points with a high distance.

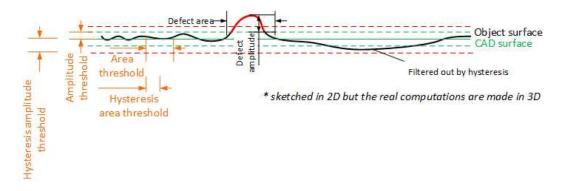


Illustration of the hysteresis thresholds

SetEnableAutomaticDecimation

- By default, the clouds are automatically decimated in such a way that the decimation error does not impact the anomalies detection.
 - This has the benefit of speeding up processing.
 - If the resolution of your point clouds is small with respect to your distance threshold, calling SetEnableAutomaticDecimation(false) could improve the speed as it will avoid useless decimation.

SetEnableAutomaticCrop

• By default, the sample clouds are automatically cropped around the reference to avoid computing distance for points that are not on the object (for example, the plane on which the object lays).

Prepare the reference

• If not called explicitly, the first call to Compare automatically computes the internal data structures.

Code samples

Minimal code

// load the reference golden scan and set reference Easy3D::E3DComparer comparer; Easy3D::EPointCloud cloud; cloud.Load("..."); comparer.SetReference(cloud);

```
// set thresholds
float distanceThresh = .2f, areaThresh = .f;
comparer.SetAnomalyThresholds(distanceThresh, areaThresh);
```

// prepare data structures (optional)
comparer.PrepareReference();

// load the sample and perform comparison
Easy3D::EPointCloud sample;
sample.Load("...");
comparer.Compare(sample);

```
// compute anomalies
std::vector<Easy3D::E3DAnomaly> anomalies = comparer.ComputesAnomalies();
```

// TODO: if (anomalies.size() != 0u): an anomaly was detected: inspect the sample manually? throw it away?

// get cloud to inspect it manually
Easy3D::EPointCloud visualisationCloud;
comparer.GetComparisonPointCloud(visualisationCloud);

Advanced code

```
// This code snippet shows how to set the options //
// when comparing two elements with E3DComparer. //
// load the reference golden scan and set reference
Easy3D::E3DComparer comparer;
Easy3D::EPointCloud cloud;
cloud.Load("…");
comparer.SetReference(cloud);
// set thresholds
float distanceThresh = .2f, areaThresh = .f;
float hystDistanceThresh = ...5f, hystAreaThresh = ...5f;
comparer.SetAnomalyThresholds(distanceThresh, areaThresh);
comparer.SetAnomalyHysteresis(hystDistanceThresh, hystAreaThresh); // defined relatively to base thresholds
// set ROIs
std::vector<Easy3D::E3DBox> rois = { Easy3D::E3DBox(-5, -5, -5) };
comparer.SetROI(rois);
std::vector<Easy3D::E3DBox> dontCare = { Easy3D::E3DBox(5, 5, 5) };
comparer.SetDontCare(dontCare);
std::vector<Easy3D::E3DBox> noExtraMaterial = { Easy3D::E3DBox(Easy3D::E3DPoint(-0, -5, 20), 0, 0, 0, 5, 5, 5) };
comparer.SetNoExtraMaterial(noExtraMaterial);
// prepare data structures (optional)
comparer.PrepareReference();
// load the sample and perform comparison
Easy3D::EPointCloud sample;
sample.Load("…");
comparer.Compare(sample);
// compute anomalies
std::vector<Easy3D::E3DAnomaly> anomalies = comparer.ComputesAnomalies();
// TODO: if (anomalies.size() != 0u): an anomaly was detected: inspect the sample manually? throw it away?
// get cloud to inspect it manually
Easy3D::EPointCloud visualisationCloud;
comparer.GetComparisonPointCloud(visualisationCloud);
```

Computation time

The following table shows the computation time on a representative object. The first step of a comparison is to decimate the given **EPointCloud** (a very large cloud may explain important computation times).

If you are using a mesh as reference without a specific ROI, the mesh contains many points that have no correspondence in the scan (hidden faces), this can increase processing time a hundred-fold.

Number of threads	Computation times
1	686 ms
2	484 ms
4	395 ms

4.4. Alignment and Comparison (E3DMatcher)

Base Case

Use the class E3DMatcher to load a reference and a sample and to align and compare them at the same time.

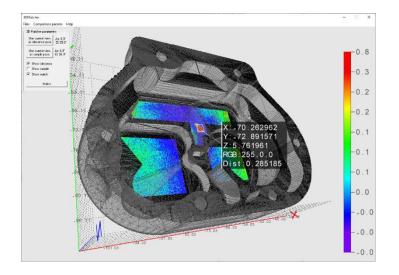
E3DMatcher inherits from E3DAligner (see "Alignment (E3DAligner)" on page 327) and implements an API close to the one of E3DComparer (see "Comparison (E3DComparer)" on page 331) with some extra capabilities due to the usage of the reference points of view used in E3DAligner.

To use the E3DMatcher:

- 1. The first step is to set the reference using the method SetReference.
 - □ In addition to the mesh or the cloud, this method also takes one or several E3DPlane or azimuth and elevation angles (see "Calibration" on page 280 for a definition of the azimuth and the elevation).
 - □ The angles are used to compute the plane and are just an easier way to specify it.
- 2. Set the options of the comparison (ROIs, thresholds, mode...) and optionally a reference plane.
- 3. Call the Match method with the sample point cloud and its reference plane.
 - This returns an E3DMatch object containing the anomalies and the E3DAlignment (E3DMatch inherits from E3DAlignment)
- 4. Optionally, use GetComparisonPointCloud to retrieve an EPointCloud that contains the distances.
- You can perform all these steps interactively in the E3DMatch sample.
- The main difference between E3DMatcher and E3DComparer is that the ROIs are defined using ERegion on the EZMap corresponding to the projection of the reference on the given E3DPlane.

This also allows for more advanced comparisons (see ComparisonDistanceMode and SetEnableMissingPointAsAnomaly).

SetComparisonDistanceMode


Use SetComparisonDistanceMode to select one of the methods available in the class E3DMatcher to compute the distances:

- EcomparisonDistanceMode_Fast: the fastest method but less precise on the edges.
- EcomparisonDistanceMode_Normal: the default method.
- EcomparisonDistanceMode_Advanced: the slowest method that penalizes more bumps.

SetAllComparisonROI

- The class E3DMatcher can perform the comparison on only a subset of the object. This has two benefits: it is faster and it allows to ignore false-positives when detecting anomalies.
 - Use SetAllComparisonROI with one on several Eregion to define the zones on which to perform a comparison.
 - These Eregion should be interpreted as a masking part of the object on a projected view.
 Use RetrieveReferencePoses to retrieve the corresponding view.

Only the areas on the ROI are compared

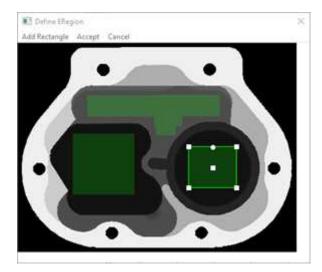
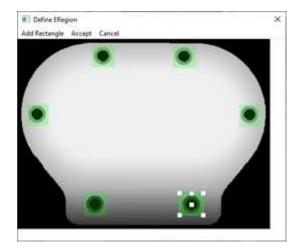
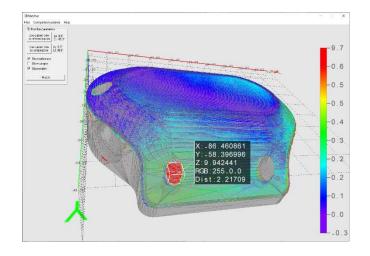
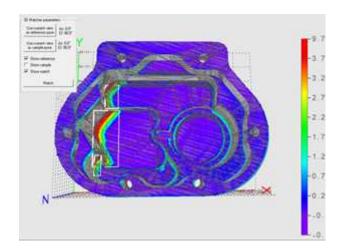



Illustration of setting ROI on a projection of the reference


SetAllComparisonNoExtraMaterial

- The class E3DMatcher checks, for each point of the reference (in the ROI), the distance to its nearest neighbor in the sample.
 - This avoids false positives, where we would use points of the sample that are not part of the object (the plane on which the object lays for example).
 - □ This allows to detect missing points on the sample.
 - □ A drawback of this approach is that extra material, that is points that should not be in the sample (for example, a hole that is filled) are not detected. You can solve this problem by specifying a list of E3DBox containing the areas that should not contain extra material.

We do not want the holes to be filled



A filled hole is reported as an anomaly

SetEnableMissingPointAsAnomaly

- By default, the points missing on the scan are considered as defaults.
 - In some case this may lead to false positives (a shadow on the sample is not necessarily a default, just the absence of information).
 - In other cases these points should be taken into account (for example, a deep hole in the object can result in the absence of points instead of the presence of misplaced points).
 - □ Use the method SetEnableMissingPointAsAnomaly to select one of these behaviors.

False anomalies due to shadows in the sample

SetAnomalyThresholds

- An anomaly is a sufficiently large contiguous area of points whose distance to the scan is above a threshold.
 - □ To specify the two thresholds (distance and area), use the method SetAnomalyThresholds.
 - By default, these two thresholds are set relatively to the model size.
 - □ Aa a more advanced anomaly detection method, use SetAnomalyHysteresis.

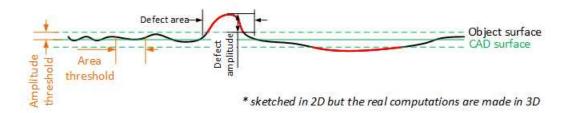


Illustration of the thresholds

SetAnomalyHysteresis

- You can use the method SetAnomalyHysteresis that is a more specific anomaly detection method.
 - With this method, a cluster of points should have a large enough subset of its points with an even larger distance to the sample to be an anomaly.
 - This may be useful if you do not want to consider as an anomaly the points with a medium distance unless they are close to points with a high distance.

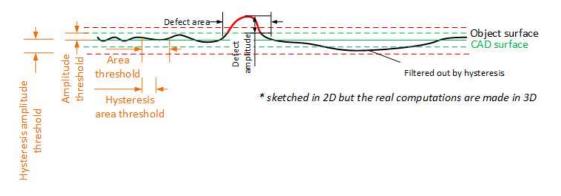


Illustration of the hysteresis thresholds

SetEnableAutomaticDecimation

- By default, the clouds are automatically decimated in such a way that the decimation error does not impact the anomalies detection.
 - □ This has the benefit of speeding up processing.
 - If the resolution of your point clouds is small with respect to your distance threshold, calling SetEnableAutomaticDecimation(false) could improve the speed as it will avoid useless decimation.

SetEnableAutomaticCrop

• By default, the sample clouds are automatically cropped around the reference to avoid computing distance for points that are not on the object (for example, the plane on which the object lays).

Prepare the reference

• If not called explicitly, the first call to Compare automatically computes the internal data structures.

Code samples

Minimal sample

// load the reference golden scan and set reference
Easy3D::E3DMatcher matcher;

Easy3D::EPointCloud reference; float azimuthReference = 0.f, elevationReference = 90.f; reference.Load("..."); matcher.SetReference(reference, azimuthReference, elevationReference);

// set thresholds

float distanceThresh = .2f, areaThresh = ...f;
matcher.SetAnomalyThresholds(distanceThresh, areaThresh);

// prepare data structures (optional)
matcher.PrepareReference();

// load the sample and perform comparison
Easy3D::EPointCloud sample;
float azimuthSample = 0.f, elevationSample = -90.f;
sample.Load("...");
Easy3D::E3DMatch match = matcher.Match(sample, azimuthSample, elevationSample);
std::vector<Easy3D::E3DAnomaly> anomalies = match.GetAnomalies();

// TODO: if (anomalies.size() != 0u): an anomaly was detected: inspect the sample manually? throw it away?

// get cloud to inspect it manually
Easy3D::EPointCloud visualisationCloud;
matcher.GetComparisonPointCloud(visualisationCloud);

Advanced sample

// load the reference golden scan and set reference Easy3D::E3DMatcher matcher; Easy3D::EPointCloud reference; float azimuthReference = 0.f, elevationReference = 90.f; reference.Load("..."); matcher.SetReference(reference, azimuthReference, elevationReference);

// use advanced comparison mode
matcher.SetComparisonDistanceMode(EComparisonDistanceMode_Advanced);

// ignore shadows
matcher.SetEnableMissingPointAsAnomaly(false);

// set thresholds
float distanceThresh = .2f, areaThresh = ..f;
float hystDistanceThresh = ..5f, hystAreaThresh = .5f;
matcher.SetAnomalyThresholds(distanceThresh, areaThresh);
matcher.SetAnomalyHysteresis(hystDistanceThresh, hystAreaThresh); // defined relatively to base thresholds

// retrieve reference poses (reference must have been set)
std::vector<Easy3D::EZMap8> referencePoseProjections;
matcher.RetrieveReferencePosesProjections(referencePoseProjections);

// set ROI on the left half of the object
ERectangleRegion roiRegion(0.f, 0.f, float(referencePoseProjections[0].GetWidth()) / 2.f, float
(referencePoseProjections[0].GetHeight()));
matcher.SetComparisonROI(&roiRegion);

// set No Extra material on the whole object
ERectangleRegion noExtraMatRegion(0.f, 0.f, float(referencePoseProjections[0].GetWidth()) / 2.f, float
(referencePoseProjections[0].GetHeight()));
matcher.SetComparisonNoExtraMaterial(&noExtraMatRegion);

// prepare data structures (optional)
matcher.PrepareReference();

// load the sample and perform comparison
Easy3D::EPointCloud sample;
float azimuthSample = 0.f, elevationSample = -90.f;
sample.Load("...");
Easy3D::E3DMatch match = matcher.Match(sample, azimuthSample, elevationSample);
std::vector<Easy3D::E3DAnomaly> anomalies = match.GetAnomalies();

// TODO: if (anomalies.size() != Ou):an anomaly was detected: inspect the sample manually? throw it away?

// get cloud to inspect it manually
Easy3D::EPointCloud visualisationCloud;
matcher.GetComparisonPointCloud(visualisationCloud);

Computation time

The following table shows the computation time on a representative object. The first step of an alignment is to decimate the given **EPointCloud** (a very large cloud may explain important computation times).

Number of threads	Computation times
1	1335 ms
2	1180 ms
4	1165 ms

PART VII ADVANCED PROGRAMMING

342

1. Multicore Processing

Multicore processing support in Open eVision

Since release 2.7, Open eVision supports multicore processing and some algorithms are optimized to take advantage of modern multicore CPUs.

- By default, parallel processing is disabled.
- To enable parallel processing in your current thread:
 - □ Use Easy::SetMaxNumberOfProcessingThreads() with a value greater than 1.
 - Set the number of threads up to the number of physical CPU cores available in your system (without including hyper-threading).
 - Of course, you can use less threads than the maximum possible to preserve some of your CPU power for other processes.

NOTE

Easy::SetMaxNumberOfProcessingThreads() only sets the maximum number of processing threads for the thread in which the function is called.

Multiprocessor-enabled features

Currently, only some features of Open eVision are multiprocessor-enabled.

These methods as well as the speed improvements that you can expect are:

Library	Method	Improvement (per additional processor)
EasyMatrixCode2	EMatrixCodeReader::Read	50%
Foovlmaga	Threshold on ERegion	75%
EasyImage	Statistics on ERegion	75%
	EPointCloudToZMapConverter::Convert	50%
	EDepthMapToPointCloudConverter::Convert	30%
Easy3D	EDepthMapToMeshConverter::Convert	30%
	EZMapToPointCloudConverter::Convert	30%
	ELaserLineExtractor::ExtractProfileFromFrame	30%
EasyClassify	EClassifier::Classify	2%
EasySegment	EUnsupervisedSegmenter::Apply	4%

Library	Method	Improvement (per additional processor)
	ERegion::ToImage	
Regions	ERegion::Union	
	ERegion::Intersection	
	ERegion::Subtraction	
EasyQRCode	EasyQRCode::Read (see documentation for optimization)	20%

Thread-safe classes

- Open eVision supports simultaneous execution by multiple (unlimited) threads on the same CPU, but data can only be accessed by one thread at a time So independent tasks can execute simultaneously in your application, but each bit of shared data must be controlled by a separate task.
- The following rules avoid data corruption, crashes and misbehaving programs.

Thread-safe basic types classes

Basic types	Recommendations	Restrictions
Basic pixel structures EColor, EPeak, EISH, ELAB, ELCH, ELSH, ELUV, EBW1, EBW8, EBW8Path, EBW16, EBW16Path, EBW32, EC15, EC16, EC24, EC24A, EC24Path, EPath, ERGB, ERGBColor, EVSH, EXYZ, EYIQ, EYSH, EYUV, EDepth8, EDepth16 and EDepth32f		No
Pixel collection classes EColorLookup, EPseudoColorLookup, EPeakVector, EBW8Vector, EBWHistogramVector, EBW8PathVector, EBW16PathVector, EBW16Vector, EBW32Vector, EC24Vector, EPathVector, EColorVector, EColorLookup and EC24PathVector	No restrictions on read-only access.	A single instance may not be modified by several threads. If a thread is modifying an instance, no other thread can access it.
Image classes ElmageBW1, ElmageBW8, ElmageBW16, ElmageBW32, ElmageC15, ElmageC16, ElmageC24and ElmageC24A	No restrictions on read-only access.	A single instance may not be modified by several threads. If a thread is modifying an instance, no other thread can access it.
3D map classes EDepthMap8, EDepthMap16 and EDepthMap32f EZMap8, EZMap16 and EZMap32f	No restrictions on read-only access.	A single instance may not be modified by several threads.

Basic types	Recommendations	Restrictions
		If a thread is modifying an instance, no other thread can access it.
Point cloud classes EPointCloud	No restrictions on read-only access.	A single instance may not be modified by several threads. If a thread is modifying an instance, no other thread can access it.
ROI classes EROIBW1, EROIBW8, EROIBW16, EROIBW32, EROIC15, EROIC16, EROIC24and EROIC24A ERegion, ERectangleRegion, ECircleRegion, EEllipseRegion and EPolygonRegion	No restrictions on read-only access.	A single instance may not be modified by several threads. If a thread is modifying an instance, no other thread can access it. Different ROI can be added or removed from an image or moved event if their parent image is the same. Consequently, different threads can work on different areas of an image possibly changing in position and size during the process.

Thread-safe library classes

Library	Recommendations	Restrictions
EasyImage and EasyColor	Static methods from this class (provided threading rules applying to their arguments are not broken).	No
EasyObject		No
EasyMatch, EasyFind, EasyQRCode and EasyOCR2 EMatcher, EMatchPosition, EPatternFinder and EFoundPattern		A single instance cannot be accessed from several threads. Search field (read-only) can be shared by different objects.
EasyGauge and Shape subclasses Gauging classes (EPointGauge, ELineGauge, ERectangleGauge, ECircleGauge, EWedgeGauge), EWorldShape and EFrameShape)		Can be attached, moved or removed from different threads, even in the same hierarchy. A single instance must not be used by different threads.

Library	Recommendations	Restrictions
Basic geometric classes (EFrame, EPoint, ECircle, ELine, ERectangle and EWedge)		Can be accessed from different threads provided that an instance is not used by two different threads simultaneously.
Gauging classes measuring and processing operations	May be executed in different threads with no blocking even if these gauges perform their measuring operations in the same image. Multiple CPU usage will be optimal.	A single instance cannot be read / modified by two threads .
EWorldShape		A single instance cannot be read / modified from different threads.
EasyOCR and EasyBarCode EOCR and EBarCode	Different instances may be created and used from different threads.	A single instance cannot be accessed from several threads.
EChecker	Different instances may be used from different threads.	
EasyMatrixCode EMatrixCodeReader	Multiple CPU usage will be optimal.	A single instance cannot be used by several threads. A single MatrixCode cannot be used in multiple threads.

2. EGrabberBridge - Using Images from Coaxlink

See also: code snippets: EGrabberBridge

EGrabberBridge and EGrabber

EGrabberBridge is a user-friendly namespace of conversion classes. These classes perform the direct conversion from a buffer originating from EGrabber, the API of Euresys Coaxlink frame grabbers, to an Open eVision data container.

See EGrabber documentation for more information about the EGrabber library.

Prerequisites and libraries

- Prerequisites:
 - Coaxlink 11.0.3 (or newer)
 - Open eVision 2.9 (or newer)
- To use EGrabberBridge in C++, include the main EGrabber headers before the Open eVision header.

#include "EGrabber.h"
#include "FormatConverter.h"
#include "Open_eVision_X_Y.h"

• To use EGrabberBridge in C#, reference the Coaxlink_NetApi.dll in addition to the Open eVision .NET assembly.

Data containers

- EGrabberBridge is part of the main Open eVision header.
- The FormatConverter header is required only if you need to perform pixel format conversion (see code snippets).
- Each EGrabberBridge class derives from a specific Open eVision data container.

The following classes are implemented:

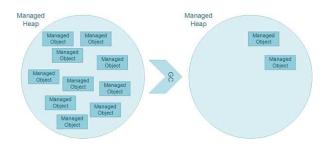
Base class	EGrabberBridge class	Corresponding GenAPI pixel format
DepthMap ₋₆	EGrabberBridge::EGrabberDepthMap _F 6	Coord3D_C⊨6
DepthMap8	EGrabberBridge::EGrabberDepthMap8	Coord3D_C8
EImageBW - 6	EGrabberBridge::EGrabberImageBW 6	Mono⊫6
EImageBW8	EGrabberBridge::EGrabberImageBW8	Mono8
EImageC24	EGrabberBridge::EGrabberImageC24	BGR8

• These classes have 2 constructors:

- □ 1 that requires only an EGrabber buffer descriptor (see EGrabber reference).
- 1 that requires an EGrabber buffer descriptor and an additional FormatConverter parameter used to perform the conversion from the pixel format of the buffer to the pixel format of your EGrabberBridge class, if these are different (see Using EGrabberBridge with Format Conversion code snippet).
- Scope and copy of the buffer:
 - Open eVision does not perform any copy of the buffer unless you require a pixel format conversion.
 - □ The availability of the EGrabberBridge data container buffer depends on the EGrabber buffer object or on the FormatConverter object if a copy is performed.

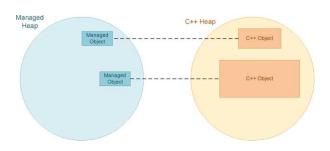
Examples and code snippets

- A sample (Using EGrabberBridge) illustrates the use of the EGrabberBridge classes using callbacks. The sample is available in C++ and in C# and is present in its corresponding samples solution under the EGrabberBridge name.
- A code snippet (Using EGrabberBridge with Format Conversion) is available to show how to use EGrabberBridge to perform the inversion of an image acquired using EGrabber.
- Camera and GenICam parameters can be handled through the EGrabber Object setters and getters (see EGrabber documentation).
- You can also test out parameters using the GenICam application (see GenICam documentation).


3. Handling the Memory in .NET

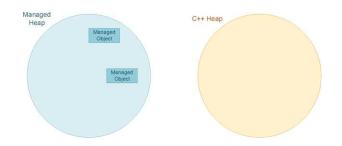
The memory management in .NET

• .NET keeps its objects in a special part of the memory called the *managed heap*.



• If that managed heap becomes too full, a specialized process called the *garbage collector* (*GC*) starts. This process cleans and removes from the memory the objects that are no longer in use.

Open eVision specificity


• The managed objects of Open eVision are linked to C++ objects that are stored outside of the managed memory space, in the heap memory of the DLL.

- As the .NET side of Open eVision objects is significantly smaller than their C++ side:
 - □ The memory usage is usually (much) bigger than the GC computation.
 - □ The GC is unable to free memory when needed.
 - So, it is important, in a .NET application using Open eVision managed objects, to call .Dispose() on them when you do not need them anymore.

This frees the C++ memory and allows the GC to work efficiently.

When to call .Dispose()

Call .Dispose() as soon as you don't need the object anymore.

Simple case

```
// Create finder
EPatterFinder finder = new EPatternFinder()
```

```
// Use finder
finder.Find(image);
```

```
// Finder has done its job, dispose
finder.Dispose();
```

TIP

However, be aware of a few tricky cases, especially on temporary values and nested classes as illustrated below.

Temporary values

```
// Call EasyMatrixCode2 Reader
mxc2Reader.Read(image);
```

```
// Get the first MXC decoded string
string decodedString = mxc2Reader.ReadResults[0].DecodedString;
```

```
// Cleanup
mxc2Reader.Dispose();
```

- Regarding the above code example:
 - □ It seems pretty straightforward but mxc2Reader.ReadResults[0] returns a temporary EMatrixCode object that you should dispose of too.
 - □ If called a few times, it does not pose any real problem.
 - □ If called a few thousand times, it can lead to memory issues.

The correct safe code is:

// Call EasyMatrixCode2 Reader
mxc2Reader.Read(image);

```
// Get the first MXC decoded string
EMatrixCode code = mxc2Reader.ReadResults[0];
string decodedString = code.DecodedString;
```

```
// Cleanup
code.Dispose();
mxc2Reader.Dispose();
```

Nested objects

Some of the Open eVision objects have other objects nested inside them. In that case, when you use the nested object, it is important to dispose of it before its host.

As an example, let's take the case of the EImageEncoder class of EasyObject2:

```
// Set the segmentation method to GrayscaleDoubleThreshold
encoder.SegmentationMethod= ESegmentationMethod.GrayscaleDoubleThreshold;
```

// Configure the segmenter object

encoder.GrayscaleDoubleThresholdSegmenter.HighThreshold = -50; encoder.GrayscaleDoubleThresholdSegmenter.LowThreshold = 50;

// Cleanup

encoder.Dispose();

- GrayscaleDoubleThresholdSegmenter is a segmenter object nested inside the EImageEncoder class.
- Accessing it with the encoder.GrayscaleDoubleThresholdSegmenter.HighThreshold = 50 and the ...LowThreshold = 50 lines create a wrapper around that segmenter that you should dispose to avoid any memory issue.
- The correct safe code is:

// Set the segmentation method to GrayscaleDoubleThreshold encoder.SegmentationMethod= ESegmentationMethod.GrayscaleDoubleThreshold;

// Retrieve the segmenter object EGrayscaleDoubleThresholdSegmenter = encoder.GrayscaleDoubleThresholdSegmenter;

```
// Configure the segmenter
segmenter.HighThreshold = _50;
segmenter.LowThreshold = 50;
```

// Cleanup
segmenter.Dispose();
encoder.Dispose();

NOTE

Always dispose of a nested object before its host object to avoid crashes of your application.

Good practice: use the using statement

An elegant way to manage the lifetime of a variable and to ensure that the disposal is done correctly is to code with the using statement.

• Instead of writing your code as follows:

```
EMatrixCodeReader reader = new EMatrixCodeReader();
...
...
```

- reader.Dispose();
- Use the using statement to ensure that .Dispose() is automatically called on reader when the statement closes.

```
using (EMatrixCodeReader reader = new EMatrixCodeReader())
```

```
{
```

. . .

}

Function scope and limitation

```
void function()
{
   EMatrixCodeReader reader = new EMatrixCodeReader();
   ...
}
```

In the above code, when the variable is released at the end of the function scope, you can believe that it is not necessary to call .Dispose() on a corresponding object.

However, the object is not automatically disposed of at the end of the function, even if the variable itself does not exist anymore.

- In practice, at the end of the function:
 - The object is released.
 - The GC can dispose of the object, but this is not immediate, as the GC only frees memory when needed.
 - □ Since it may take some time, if the C++ memory is already quite full, it may not be efficient enough.
- The correct safe code is:

```
void function()
{
   EMatrixCodeReader reader = new EMatrixCodeReader();
   ...
   reader.Dispose();
}
```


Disposing function arguments

In .NET, the Open eVision objects are always passed as references, without copy. This means that the object inside the function is the same one that has been passed to the function in the calling code.

```
void UseImage(EImageBW8 imageInFunction)
{
    imageInFunction.SetSize(+28, +28);
    ...
}
```

void MainFunction()

```
{
   EImageBW8 imageOutOfFunction = new EImageBW8();
   UseImage(imageOutOfFunction);
}
```

- }
- In the above example code:
 - imageInFunction and imageOutOfFunction are in fact the same image.
 - □ When you call .Dispose() on one image, both are disposed of.
 - Call .Dispose() on a function argument, but only when you don't need the object anymore, neither inside nor outside the function.

) TIP

To have a better view of an object lifetime, it is recommended, whenever possible, to dispose of the objects in the same scope as their creation.

```
    The correct safe code is:
```

```
void UseImage(EImageBW8 imageInFunction)
{
    imageInFunction.SetSize(+28, +28);
    ...
}
void MainFunction()
{
    EImageBW8 imageOutOfFunction = new EImageBW8();
    UseImage(imageOutOfFunction);
```

```
}
```

imageOutOfFunction.Dispose();

Good practice: set the variables to null

- Set a variable to null after disposing of its object.
 - It is not mandatory but it is considered a good practice.
 - It unlinks the reference to the object, and so it informs the GC that the object is not used anymore.
 - The GC is more susceptible to cleanup the object the next time it runs.
- Example:

```
// Cleanup
code.Dispose();
code = null;
```


4. Using Open eVision in a DLL

Follow these guidelines to use Open eVision inside one or several DLLs. Ignoring this may lead to random crashes usually due to incompatibilities between the memory representations and/or the conflicting CRT.

NOTE

Until Open eVision 2.14.1, a bug in the method Easy::Terminate may lead to a crash even if you follow these guidelines.

To avoid this, please use Open eVision 2.15 or later.

Depending on your configuration, implement one of the following scenarios. There are presented in the order of increasing complexity:

1. A single DLL called from an application NOT compiled with Open eVision

Inside your DLL, it is mandatory to follow these rules:

- Call Easy::Initialize before any other call to Open eVision (with the exception of Preconfiguration calls).
- Call Easy:: Terminate when you do not need Open eVision anymore.
- Destroy any object created in the DLL.
- In the DLL API, do not expose any Open eVision object (otherwise the application is compiled with Open eVision).
- If possible, use only standard C types.

In your application:

- Never use an Open eVision object as a global object.
 - □ Create the instance only after the DLL initialization.
 - You may use a global pointer or a reference to such an object.
- Never create an Open eVision object or make an Open eVision call inside DllMain.

2. A single DLL called from an application compiled with Open eVision

Inside your DLL and in the application, it is mandatory to follow these rules:

- Call Easy::Initialize before any other call to Open eVision (with the exception of Preconfiguration calls).
- Call Easy::Terminate when you do not need Open eVision anymore.
- Destroy in the DLL any object created in the DLL.
- Destroy in the application any object created in the application.

- In the DLL API, expose Open eVision objects only as pointers or references.
 - You may pass these pointers and references between the DLL and the application if and only if the compilation and linking parameters are strictly the same between the DLL and the application.
 - □ As this is difficult to achieve, avoid it as much as possible.
 - Be very careful when considering the lifetime of these objects.
- It is highly recommended to use the same exact version (all of Ma.Mi.Re.Bu) of Open eVision, the DLL and the application.
 - □ This is mandatory if you pass objects around.

In your application:

- Never use an Open eVision object as a global object.
 - Create the instance only after the DLL initialization.
 - □ You may use a global pointer or a reference to such an object.
- Never create an Open eVision object or make an Open eVision call inside DllMain.

3. Multiple DLLs called from an application NOT compiled with Open eVision

Inside all your DLLs, it is mandatory to follow these rules:

- Call Easy::Initialize before any other call to Open eVision (with the exception of Preconfiguration calls).
- Call Easy::Terminate when you do not need Open eVision anymore.
- Destroy in the same DLL any object created in a DLL.
- In the DLL API, expose Open eVision objects only as pointers or references.
 - You may pass these pointers and references between the DLLs if and only if the compilation and linking parameters are strictly the same between the DLLs.
 - □ Be very careful when considering the lifetime of these objects.
- In a DLL API, do not expose any Open eVision object (otherwise the application is compiled with Open eVision).
- If possible, use only standard C types.
- It is highly recommended to use the same exact version (all of Ma.Mi.Re.Bu) of Open eVision, the DLL and the application.
 - □ This is mandatory if you pass objects around.

In your application:

- Never use an Open eVision object as a global object.
 - Create the instance only after the DLL initialization.
 - □ You may use a global pointer or a reference to such an object.
- Never create an Open eVision object or make an Open eVision call inside DllMain.

4. Multiple DLLs called from an application compiled with Open eVision

Inside your DLLs and in the application, it is mandatory to follow these rules:

- Call Easy::Initialize before any other call to Open eVision (with the exception of Preconfiguration calls).
- Call Easy::Terminate when you do not need Open eVision anymore.
- Destroy in the same DLL any object created in a DLL.
- Destroy in the application any object created in the application.
- In the DLL API, expose Open eVision objects only as pointers or references.
 - You may pass these pointers and references between the DLLs if and only if the compilation and linking parameters are strictly the same between the DLLs.
 - You may pass these pointers and references between a DLL and the application if and only if the compilation and linking parameters are strictly the same between the DLL and the application.
 - □ As this is difficult to achieve, avoid it as much as possible.
 - Be very careful when considering the lifetime of these objects.
- It is highly recommended to use the same exact version (all of Ma.Mi.Re.Bu) of Open eVision, the DLL and the application.
 - This is mandatory if you pass objects around.

In your application:

- Never use an Open eVision object as a global object.
 - Create the instance only after the DLL initialization.
 - You may use a global pointer or a reference to such an object.
- Never create an Open eVision object or make an Open eVision call inside DllMain.