
Open eVision
General Purpose Libraries

USER GUIDE

© EURESYS s.a. 2021 - Document D122ET-Using General Purpose Libraries .NET-Open eVision-

2

This documentation is provided with Open eVision 2.16.1 (doc build 1156).
www.euresys.com

Open eVision User Guide

https://www.euresys.com/

3

Contents
1. Dealing with Pixel Containers and Files 5
1.1. Pixel Container Definition 5
1.2. Pixel Container Types 7
1.3. Supported Image File Types 8
1.4. Pixel and File Types Compatibility 9
1.5. Color Types 11

2. Manipulating Pixels Containers and Files 12
2.1. Pixel Container File Save 12
2.2. Pixel Container File Load 14
2.3. Memory Allocation 15
2.4. Image and Depth Map Buffer 16
2.5. Image Coordinate Systems 19
2.6. Image Drawing and Overlay 20
2.7. 3D Rendering of 2D Images 20
2.8. Vector Types and Main Properties 22
2.9. ROI Main Properties 26
2.10. Arbitrarily Shaped ROI (ERegion) 28
2.11. Flexible Masks 35
2.12. Profile 39

3. Image Pre-Processing Libraries 41
3.1. EasyImage - Pre-Processing Images 41
Intensity Transformation 41
Thresholding 44
Arithmetic and Logic 45
Non-Linear Filtering 48
Geometric Transforms 53
Noise Reduction and Estimation 55
Scalar Gradient 58
Vector Operations 58
Canny Edge Detector 60
Harris Corner Detector 61
Overlay 62
Operations on Interlaced Video Frames 63
Flexible Masks in EasyImage 63
Computing Image Statistics 64

3.2. EasyColor - Pre-Processing Color Images 68
Bayer Conversion 72
LUT for Gain/Offset (Color) 75
LUT for Color Calibration 76
LUT for Color Balance 76

4. Using Open eVision Studio 79
4.1. Selecting your Programming Language 79
4.2. Navigating the Interface 80
4.3. Running Tools on Images 81
Step 1: Selecting a Tool 81
Step 2: Opening an Image 82
Step 3: Managing ROIs 83
Step 4: Configuring the Tool 85
Step 5: Running the Tool and Checking Execution Time 86
Step 6: Using the Generated Code 88

4.4. Pre-Processing and Saving Images 89
5. Tutorials 91

Open eVision User Guide

4

5.1. EasyImage 91
Converting a Gray-Level Image into a Binary Image 91
Extracting an Object Contour 92
Transforming a Gray-Level image into its Black and White Edges 94
Detecting the Corners of an Object Using Harris Corner Detector 95
Detecting a Horizontal or Vertical Line Using Projection 95
Creating a Flexible Mask 96
Computing Gray-Level Statistics Using a Flexible Mask 98
Detecting the Corners of an Object Using Hit-and-Miss Transform 99
Extracting a Vector Using Profile Function 100
Enhancing an X-ray image 101
Correcting Non-Uniform Illumination 102
Correcting Shear Effect 103
Correcting Skew Effect 104

5.2. EasyColor 105
Performing Thresholding on Color Images 105
Performing Color Segmentation 107

6. Code Snippets 109
6.1. Basic Types 110
Loading and Saving Images 110
Interfacing Third-Party Images 110
Retrieving Pixel Values 111
ROI Placement 111
Vector Management 111
Exception Management 112

6.2. EasyImage 113
Thresholding 113
Single Thresholding 113
Double Thresholding 113
Histogram-Based Single Thresholding 114
Histogram-Based Double Thresholding 114

Arithmetic and Logic Operations 115
Convolution 115
Pre-Defined Kernel Filtering 115
User-Defined Kernel Filtering 116

Non-Linear Filtering 116
Morphological Filtering 116
Hit-and-Miss Transform 117

Vector Operations 118
Path Sampling 118
Profile Sampling 118

Statistics 119
Image Statistics 119
Sliding Windows Statistics 119
Histogram-Based Statistics 120

Noise Reduction by Integration 120
Temporal Noise Reduction 120
Recursive Average 121

Feature Point Detectors 121
Harris Corner Detector 121
Canny Edge Detector 122

Using Flexible Masks 122
6.3. EasyColor 124
Colorimetric Systems Conversion 124
Color Components 124
White Balance 125
Pseudo-Coloring 125
Bayer Pattern Decoding 126

Open eVision User Guide

5

1. Dealing with Pixel Containers and
Files

1.1. Pixel Container Definition

Images

Open eVision image objects contain image data that represents rectangular images.

Each image object has a data buffer, accessible via a pointer, where pixel values are stored
contiguously, row by row.

Image main parameters

An Open eVision image object has a rectangular array of pixels characterized by EBaseROI
parameters .

l Width is the number of columns (pixels) per row of the image.
l Height is the number of rows of the image. (Maximum width / height is 32,767 (215-1) in
Open eVision 32-bit, and 2,147,483,647 (231-1) in Open eVision 64-bit.)

l Size is the width and height.

The Plane parameter contains the number of color components. Gray-level images = 1. Color
images = 3.

Classes

Image and ROI classes derive from abstract class EBaseROI and inherit all its properties.

Open eVision User Guide

ebaseroi-class.htm
ebaseroi-width.htm
ebaseroi-height.htm
ebaseroi-setsize.htm
ebaseroi-planesperpixel.htm
ebaseroi-class.htm

6

Depth maps

A depth map is a way to represent a 3D object using a 2D grayscale image where each pixel in
the image represents a 3D point.

The pixel coordinates are the representation of the X and Y coordinates of the point while the
grayscale value of the pixel is a representation of the Z coordinate of the point.

Point clouds

A point cloud (https://en.wikipedia.org/wiki/Point_cloud) is an unstructured set of 3D points
representing discrete positions on the surface of an object.

Open eVision User Guide

7

3D point clouds are produced by various 3D scanning techniques, such as Laser Triangulation,
Time of Flight or Structured Lighting.

1.2. Pixel Container Types

Reference

Images

Several image types are supported according to their pixel types: black and white, gray levels,
color, etc.

Easy.GetBestMatchingImageType returns the best matching image type for a given file on disk.

BW1 1-bit black and white images (8 pixels
are stored in 1 byte) EImageBW1

BW8 8-bit grayscale images (each pixel is
stored in 1 byte) EImageBW8

BW16 16-bit grayscale images (each pixel is
stored in 2 bytes) EImageBW16

BW32 32-bit grayscale images (each pixel is
stored in 4 bytes) EImageBW32

C15

15-bit color images (each pixel is
stored in 2 bytes).
Compatible with Microsoft® Windows
RGB15 color images and MultiCam
RGB15 format.

EImageC15

Open eVision User Guide

eimagetype-enum.htm
easy-getbestmatchingimagetype.htm
eimagebw1-class.htm
eimagebw8-class.htm
eimagebw16-class.htm
eimagebw32-class.htm
eimagec15-class.htm

8

C16

16-bit color images (each pixel is
stored in 2 bytes).
Compatible with Microsoft® Windows
RGB16 color images and MultiCam
RGB16 format.

EImageC16

C24

C24 images store 24-bit color images
(each pixel is stored in 3 bytes).
Compatible with Microsoft® Windows
RGB24 color images and MultiCam
RGB24 format.

EImageC24

C24A

C24A images store 32-bit color images
(each pixel is stored in 4 bytes).
Compatible with Microsoft® Windows
RGB32 color images and MultiCam
RGB32 format.

EImageC24A

Depth Maps

8 and 16-bit depth map values are stored in buffers compatible with the 2D Open eVision
images.

EDepth8 8-bit depth map (each pixel is stored in
1 byte as an integer) EDepthMap8

EDepth16 16-bit depth map (each pixel is stored
in 2 bytes as a fixed point) EDepthMap16

EDepth32f 32-bit depth map (each pixel is stored
in 4 bytes as a float) EDepthMap32f

Point Clouds

Point Cloud Set of points coordinates (stored as
float) EPointCloud

1.3. Supported Image File Types

Reference

Type Description

BMP Uncompressed image data format (Windows Bitmap Format)

JPEG Lossy data compression standard issued by the Joint Photographic Expert
Group registered as ISO/IEC 10918-1. Compression irretrievably loses quality.

JFIF JPEG File Interchange Format

JPEG-2000
Data compression standard issued by the Joint Photographic Expert Group
registered as ISO/IEC 15444-1 and ISO/IEC 15444-2. Open eVision supports
only lossy compression format, file format and code stream variants.

Open eVision User Guide

eimagec16-class.htm
eimagec24-class.htm
eimagec24a-class.htm
edepthmap8-class.htm
edepthmap16-class.htm
edepthmap32f-class.htm
epointcloud-class.htm
eimagefiletype-enum.htm

9

Type Description

- code stream describes the image samples.
- file format includes meta-information such as image resolution and color
space.

PNG Lossless data compression method (Portable Network Graphics).

Serialized Euresys proprietary image file format obtained from the serialization of Open
eVision image objects.

TIFF

Tag Image File Format is currently controlled by Adobe Systems and uses the
LibTIFF third-party library to process images written for 5.0 or 6.0 TIFF
specification.
File save operations are lossless and use CCITT 1D compression for 1-bit
binary pixel types and LZW compression for all others.
File load operations support all TIFF variants listed in the LibTIFF
specification.

1.4. Pixel and File Types Compatibility

Depth map to image conversion

For 8- and 16-bit depth maps, the AsImage()method returns a compatible image object
(respectively EImageBW8 and EImageBW16) that can be used with Open eVision’s 2D processing
features.

Pixel and file types compatibility

Pixel access

The recommended method to access pixels is to use SetImagePtr and GetImagePtr to embed the
image buffer access in your own code. See also Image Construction and Memory Allocation and
Retrieving Pixel Values.

Use of the following methods should be limited because of the overhead incurred by each
function call:

Direct access

EROIBW8.GetPixel and SetPixelmethods are implemented in all images and ROI classes to read
and write a pixel value at given coordinates. To scan all pixels of an image, you could run a
double loop on the X and Y coordinates and use GetPixel or SetPixel each iteration, but this is not
recommended.

Open eVision User Guide

ebaseroi-setimageptr.htm
ebaseroi-getimageptr.htm
eroibw8-getpixel.htm
eroibw8-setpixel.htm

10

TIP
For performance reasons, these accessors should not be used when a
significant number of pixels needs to be processed. When that is the case,
retrieving the internal buffer pointer using GetBufferPtr() and iterating on the
pointer is recommended.

Quick Access to BW8 Pixels

In BW8 images, a call to EBW8PixelAccessor.GetPixel or SetPixel will be faster than a direct
EROIBW8.GetPixel or SetPixel.

Supported structures

l EBW1, EBW8, EBW32
l EC15 (*), EC16 (*), EC24 (*)
l EC24A
l EDepth8, EDepth16, EDepth32f,

(*) These formats support RGB15 (5-5-5 bit packing), RGB16 (5-6-5 bit packing) and RGB32 (RGB
+ alpha channel) but they must be converted to/from EC24 using EasyImage.Convert before any
processing.

NOTE
Transition with versions prior to eVision 6.5 should be seamless: image pixel
types were defined using typedef of integral types, pixel values were treated
as unsigned numbers and implicit conversion to/from previous types is
provided.

Pixel and File Type compatibility during Load or Save operations

Type BMP JPEG JPEG2000 PNG TIFF Serialized

BW1 Ok N/A N/A Ok Ok Ok

BW8 Ok Ok Ok Ok Ok Ok

BW16 N/A N/A Ok Ok Ok
(***) Ok

BW32 N/A N/A N/A N/A Ok
(***) Ok

C15 Ok Ok (**) Ok (**) Ok (**) Ok (**) Ok

C16 Ok Ok (**) Ok (**) Ok (**) Ok (**) Ok

C24 Ok Ok Ok Ok Ok (**) Ok

C24A Ok N/A N/A Ok N/A Ok

Depth8 Ok Ok Ok Ok Ok Ok

Open eVision User Guide

ebw8pixelaccessor-getpixel_.htm
ebw8pixelaccessor-setpixel.htm
eroibw8-getpixel.htm
eroibw8-setpixel.htm
ebw1-struct.htm
ebw8-struct.htm
ebw32-struct.htm
ec15-struct.htm
ec16-struct.htm
ec24-struct.htm
ec24a-struct.htm
edepth8-struct.htm
edepth16-struct.htm
edepth32f-struct.htm
easyimage-convert.htm

11

Type BMP JPEG JPEG2000 PNG TIFF Serialized

Depth16 N/A N/A Ok Ok Ok
(***) Ok

Depth32f N/A N/A N/A N/A N/A Ok

N/A: Not supported. An exception occurs if you use the combination.

Ok: Image integrity is preserved with no data loss (apart from JPEG and JPEG2000, lossy
compression).

(**) C15 and C16 formats are automatically converted into C24 during the save operation.

(***) BW16 and BW32 are not supported by Baseline TIFF readers.

1.5. Color Types

EISH: Intensity, Saturation, Hue color system.

ELAB: CIE Lightness, a*, b* color system.

ELCH: Lightness, Chroma, Hue color system.

ELSH: Lightness, Saturation, Hue color system.

ELUV: CIE Lightness, u*, v* color system.

ERGB: NTSC/PAL/SMPTE Red, Green, Blue color system.

EVSH: Value, Saturation, Hue color system.

EXYZ: CIE XYZ color system.

EYIQ: CCIR Luma, Inphase, Quadrature color system.

EYSH: CCIR Luma, Saturation, Hue color system.

EYUV: CCIR Luma, U Chroma, V Chroma color system.

Open eVision User Guide

eish-struct.htm
elab-struct.htm
elch-struct.htm
elsh-struct.htm
eluv-struct.htm
ergb-struct.htm
evsh-struct.htm
exyz-struct.htm
eyiq-struct.htm
eysh-struct.htm
eyuv-struct.htm

12

2. Manipulating Pixels Containers and
Files

2.1. Pixel Container File Save

Images and depth maps

The Savemethod of an image or the SaveImagemethod of a depth map or a ZMap saves the image
data of an image or of a depth map or a ZMap object into a file using two arguments:

□ Path: path, file name and file name extension.
□ Image File Type: if omitted, the file name extension is used.

Images bigger than 65,536 (either width or height) must be saved in Open eVision proprietary
format.

Save throws an exception when:
□ The requested image file format is incompatible with the image pixel types
□ The Auto file type selection method and the file name extension is not supported

TIP
When saving a 16-bit depth map, the fixed point precision is lost and the
pixels are considered as 16-bit integers.

Image file type arguments

Argument Image File Type

EImageFileType_Auto(*) Automatically determined by the filename extension. See below.

EImageFileType_Euresys Open eVision Serialization.

EImageFileType_Bmp Windows bitmap - BMP

EImageFileType_Jpeg JPEG File Interchange Format - JFIF

EImageFileType_Jpeg2000 JPEG 2000 File format/Code Stream -JPEG2000

EImageFileType_Png Portable Network Graphics - PNG

EImageFileType_Tiff Tagged Image File Format - TIFF
(*) Default value.

Open eVision User Guide

ebaseroi-save.htm
edepthmap8-saveimage.htm
ebaseroi-save.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm

13

Assigned image file type if argument is ImageFileType_Auto or missing

File name extension(*) Automatically assigned image file type

BMP Windows Bitmap Format

JPEG, JPG JPEG File Interchange Format - JFIF

JP2 JPEG 2000 file format

J2K, J2C JPEG 2000 Code Stream

PNG Portable Network Graphics

TIFF, TIF Tagged Image File Format
(*) Case-insensitive.

Saving JPEG and JPEG2000 lossy compressions

SaveJpeg and SaveJpeg2K specify the compression quality when saving compressed images. They
have two arguments:

□ Path: a string of characters including the path, filename, and file name extension.
□ Compression quality of the image file, an integer value in range [0: 100].

SaveJpeg saves image data using JPEG File Interchange Format – JFIF.
SaveJpeg2K saves image data using JPEG 2000 File format.

JPEG compression values

JPEG compression Description

JPEG_DEFAULT_QUALITY (-1) Default quality (*)

100 Superb image quality, lowest compression factor

75 Good image quality (*)

50 Normal image quality

25 Average image quality

10 Bad Image quality
(*) The default quality corresponds to the good image quality (75).

Representative JPEG 2000 compression quality values

JPEG 2000 compression Description

-1 Default quality (*)

1 Highest image quality, lowest compression factor

16 Good Image Quality (*) (16:1 rate)

512 Lowest image quality, highest compression factor
(*) The default quality corresponds to the good image quality (16:1 rate).

Open eVision User Guide

ebaseroi-savejpeg.htm
ebaseroi-savejpeg2k.htm
ebaseroi-save.htm
ebaseroi-savejpeg2k.htm

14

Saving point clouds

Use the following methods to save a point cloud in a specific format:
□ EPointCloud::Save: Open eVision proprietary file format.
□ EPointCloud::SaveCSV: CSV file.
□ EPointCloud::SaveOBJ: OBJ file.
□ EPointCloud::SavePCD: PCD file.
□ EPointCloud::SavePLY: PLY file.
□ EPointCloud::SaveXYZ: XYZ file.

TIP
The PCD format is supported in ASCII and binary modes.

2.2. Pixel Container File Load

Loading images and depth maps

● Use the Loadmethod to load image data into an image object:
□ It has one argument: the path: path, filename, and file name extension.
□ File type is determined by the file format.
□ The destination image is automatically resized according to the size of the image on disk.

● The Loadmethod throws an exception when:
□ File type identification fails
□ File type is incompatible with pixel type of the image object

TIP
Serialized image files of Open eVision 1.1 and newer are incompatible with
serialized image files of previous Open eVision versions.

TIP
When loading a BW16 image (with integer values) in a depth map, the fixed
point precision set in the depth map (0 by default) is left unchanged and
used.

Open eVision User Guide

epointcloud-save.htm
epointcloud-savecsv.htm
epointcloud-saveobj.htm
epointcloud-savepcd.htm
epointcloud-saveply.htm
epointcloud-savexyz.htm
ebaseroi-load.htm
ebaseroi-load.htm

15

Loading point clouds

Use the following methods to load a point cloud saved in a specific format:
□ EPointCloud::Load: Open eVision proprietary file format.
□ EPointCloud::LoadCSV: CSV file.
□ EPointCloud::LoadOBJ: OBJ file.
□ EPointCloud::LoadPCD: PCD file.
□ EPointCloud::LoadPLY: PLY file.
□ EPointCloud::LoadXYZ: XYZ file.

TIP
- The PCD format is supported in ASCII and binary modes.
- The PLY is supported only in ASCII mode.

2.3. Memory Allocation

An image can be constructed with an internal or external memory allocation.

Internal memory allocation

The image object dynamically allocates and deallocates a buffer.
□ Memory management is transparent.
□ When the image size changes, reallocation occurs.
□ When an image object is destroyed, the buffer is deallocated.

To declare an image with internal memory allocation:

a. Construct an image object, for instance EImageBW8, either with width and height arguments,
OR using the SetSize function.

b. Access a given pixel. There are several functions that do this. GetImagePtr returns a pointer
to the first byte of the pixel at the given coordinates.

External memory allocation

The user controls buffer allocation or links a third-party image in the memory buffer to an Open
eVision image.

□ Image size and buffer address must be specified.
□ When an image object is destroyed, the buffer is unaffected.

Open eVision User Guide

epointcloud-load.htm
epointcloud-loadcsv.htm
epointcloud-loadobj.htm
epointcloud-loadpcd.htm
epointcloud-loadply.htm
epointcloud-loadxyz.htm
eimagebw8-class.htm
ebaseroi-setsize.htm
ebaseroi-getimageptr.htm

16

To declare an image with external memory allocation:

a. Declare an image object, for instance EImageBW8.

b. Create a suitably sized and aligned buffer (see Image Buffer).

c. Assign the buffer to the image with SetImagePtr.

NOTE
If your buffer rows are not aligned on 4 bytes, you cannot use SetImagePtr. In
that case, use InitializeFromUnalignedBuffer instead.
Please note, however, that this allocates the memory internally and copies
the external buffer into the internal one instead of using the external one
directly.

2.4. Image and Depth Map Buffer

Image and depth map pixels are stored contiguously, from left to right and from top row to
bottom row, in Windows bitmap format (top-down DIB -device-independent bitmap-) into an
associated buffer.

The buffer address is a pointer to the start address of the buffer, which contains the top left
pixel of the image.

Image buffer pitch

● Alignment must be a multiple of 4 bytes.

● Open eVision 1.2 onwards default pitch is 32 bytes for performance reasons (Open eVision
1.1.5 was 8 bytes).

Open eVision User Guide

eimagebw8-class.htm
ebaseroi-setimageptr.htm
ebaseroi-setimageptr.htm
eimagebw8-initializefromunalignedbuffer.htm

17

Memory layout

● EImageBW1 stores 8 pixels in one byte.

Example memory layout of the first 2 pixels of a BW1 image buffer:

● EImageBW8 and EDepthMap8 store each pixel in one byte.

Example memory layout of the first pixels of a BW8 image buffer:

● EImageBW16 stores each pixel in a 16-bit word (two bytes).

Example memory layout of the first pixels of a BW16 image buffer:

● EImageC15 stores each pixel in 2 bytes. Each color component is coded with 5-bits.
The 16th bit is left unused.

Open eVision User Guide

eimagebw1-class.htm
eimagebw8-class.htm
edepthmap8-class.htm
eimagebw16-class.htm
eimagec15-class.htm

18

Example memory layout of the first pixels of a C15 image buffer:

● EImageC16 stores each pixel in 2 bytes. The first and third color components are coded with 5-
bits.
The second color component is coded with 6-bits.

Example memory layout of the first pixels of a C16 image buffer:

● EDepthMap16 store each pixel in 2 bytes using a fixed point format.

● EImageC24 stores each pixel in 3 bytes. Each color component is coded with 8-bits.

Example memory layout of the first pixels of a C24 image buffer:

Open eVision User Guide

eimagec16-class.htm
edepthmap16-class.htm
eimagec24-class.htm

19

● EImageC24A stores each pixel in 4 bytes. Each color component is coded with 8-bits.
The alpha channel is also coded with 8-bits.

Example memory layout of the first pixels of a C24A image buffer:

● EDepthMap32f store each pixel in 4 bytes using a float format.

2.5. Image Coordinate Systems

The conventions below apply to all Open eVision functions and results.
□ Pixel coordinates are usually given as integer numbers.
□ Some results can use subpixel precision with real (floating point) numbers.
□ Some exceptions apply and are documented per librarie.

Integer coordinates

● The origin (0,0) of the coordinate system is the upper left pixel of the image.

● The lower right pixel is (width-1, height-1).

Open eVision User Guide

eimagec24a-class.htm
edepthmap32f-class.htm

20

Real coordinates

● With floating point (x,y) coordinates, the origin is the upper left corner of the upper left pixel.

● The first pixel area ranges in [0,1[for X and Y axis.

● Coordinates greater or equal than the width or the height are outside the image.

2.6. Image Drawing and Overlay

● Drawing uses Windows GDI (Graphics Device Interface) system calls.
□ MFC (Microsoft Foundation Class) applications normally use OnDraw event handler to draw,

where a pointer to a device context is available.
□ Borland/CodeGear OWL or VCL use a Paint event handler.

● The color palette in 256-color display mode gives optimal rendering.

● Gray-level images can be improved using LUTs (LookUp Tables) (using histogram stretching
techniques or pseudo-coloring).

● The zoom can be different horizontally and vertically.

● DrawFrameWithCurrentPenmethod draws a frame.

● Non-destructive overlaying drawing operations do not alter the image contents, such as
MoveTo/LineTo.

● Destructive overlaying drawing operations alter the image contents by drawing inside the
image such as Easy::OpenImageGraphicContext. Gray-level [color] images can only receive a gray-
level [color] overlay.

2.7. 3D Rendering of 2D Images

These images are viewed by rotating them around the X-axis, then the Y-axis.

Open eVision User Guide

ebaseroi-drawframewithcurrentpen.htm
easy-openimagegraphiccontext.htm

21

Gray 3D rendering

Easy::Render3D prepares a 3-dimensional rendering where gray-level values are altitudes.
Magnification factors in the three directions (X = width, Y = height and Z = depth) can be given.
The rendered image appears as independent dots whose size can be adjusted to make the
surface more or less opaque.

3D rendering

Color histogram 3D rendering

Easy::RenderColorHistogram prepares a 3-dimensional rendering of a color image histogram.
The pixels are drawn in the RGB space (not XY-plane) to show clustering and dispersion of RGB
values.
This function can process pixels in other color systems (using EasyColor to convert), but the raw
RGB image is required to display the pixels in their usual colors.

Magnification factors in all three directions (X = red, Y = green and Z = blue) can be given.

Color histogram rendering

Open eVision User Guide

easy-render3d.htm
easy-rendercolorhistogram.htm

22

2.8. Vector Types and Main Properties

A vector is a one-dimensional array of pixels (taken from an image profile or contour).

EVector is the base class for all vectors. It contains all non-type-specific methods, mainly for
counting elements and serialization.

Profile in a C24 image, RGB values plot along profile and RGB values array (EC24Vector)

A vector manages an array of elements. Memory allocation is transparent, so vectors can be
resized dynamically. Whenever a function uses a vector, the vector type, size and structure are
automatically adjusted to suit the function needs.

The use of vectors is quite straightforward:

● To create a vector of the appropriate type:
□ Use its constructor and preallocate elements if required.

● To fill a vector with values:
□ Call the EVector::Emptymember to empty it.
□ Call the EC24Vector::AddElementmember to add elements one by one.
□ Use the indexing to access any element.

● To access a vector element, either for reading or writing:
□ Use the brackets operator EC24Vector::operator[].

● To determine the current number of elements:
□ Use the EVector::NumElementsmember.

● To draw the vector:
□ A pixel vector is a plot of the element values as a function of the element index, so its

graphical appearance depends on its type. You can draw a vector in a window. For
legibility, the drawing should appear on a neutral background.

□ Drawing is done in the device context associated to the desired window. By default,
curves are drawn in blue and annotations in black. You can define: graphicContext, width,
height, originX, originY, color0, color1 and color2.

□ The EC24Vector has three curves drawn instead of one, each corresponding to a color
component. By default the red, blue and green pens are used.

Open eVision User Guide

evector-class.htm
ec24vector-class.htm
evector-empty.htm
ec24vector-addelement.htm
ec24vector-operator_index.htm
evector-numelements.htm
ec24vector-class.htm

23

Vector types

● EBW8Vector: a sequence of gray-level pixel values, often extracted from an image profile
(used by EasyImage::Lut, EasyImage::SetupEqualize, EasyImage::ImageToLineSegment,
EasyImage::LineSegmentToImage, EasyImage::ProfileDerivative...).

Graphical representation of an EBW8Vector (see Draw method)

● EBW16Vector: a sequence of gray-level pixel values, using an extended range (16 bits), mainly
for intermediate computations.

Graphical representation of an EBW16Vector

● EBW32Vector: a sequence of gray-level pixel values, using an extended range (32 bits), mainly
for intermediate computations
(used in EasyImage::ProjectOnARow, EasyImage::ProjectOnAColumn, ...).

Graphical representation of an EBW32Vector

Open eVision User Guide

ebw8vector-class.htm
easyimage-lut.htm
easyimage-setupequalize.htm
easyimage-imagetolinesegment.htm
easyimage-linesegmenttoimage.htm
easyimage-profilederivative.htm
ebw8vector-class.htm
ebw8vector-draw.htm
ebw16vector-class.htm
ebw16vector-class.htm
ebw32vector-class.htm
easyimage-projectonarow.htm
easyimage-projectonacolumn.htm
ebw32vector-class.htm

24

● EC24Vector: a sequence of color pixel values, often extracted from an image profile
(used by EasyImage::ImageToLineSegment, EasyImage::LineSegmentToImage,
EasyImage::ProfileDerivative, ...).

Graphical representation of an EC24Vector

● EBW8PathVector: a sequence of gray-level pixel values, extracted from an image profile or
contour, with corresponding pixel coordinates
(used by EasyImage::ImageToPath, EasyImage::PathToImage, ...).

Graphical representation of an EBW8PathVector (see Draw method)

● EBW16PathVector: a sequence of gray-level pixel values, extracted from an image profile or
contour, with corresponding pixel coordinates
(used by EasyImage::ImageToPath, EasyImage::PathToImage, ...).

Graphical representation of an EBW16PathVector (see Draw method)

Open eVision User Guide

ec24vector-class.htm
easyimage-imagetolinesegment.htm
easyimage-linesegmenttoimage.htm
easyimage-profilederivative.htm
ec24vector-class.htm
ebw8pathvector-class.htm
easyimage-imagetopath.htm
easyimage-pathtoimage.htm
ebw8pathvector-class.htm
ebw8pathvector-draw.htm
ebw16pathvector-class.htm
easyimage-imagetopath.htm
easyimage-pathtoimage.htm
ebw16pathvector-class.htm
ebw16pathvector-draw.htm

25

● EC24PathVector: a sequence of color pixel values, extracted from an image profile or contour,
with corresponding pixel coordinates
(used by EasyImage::ImageToPath, EasyImage::PathToImage, ...).

Graphical representation of an EC24PathVector (see Draw method)

● EBWHistogramVector: a sequence of frequency counts of pixels in a BW8 or BW16 image
(used by EasyImage::IsodataThreshold, EasyImage::Histogram, EasyImage::AnalyseHistogram,
EasyImage::SetupEqualize, ...).

Graphical representation of an EBWHistogramVector (see Draw method)

● EPathVector: a sequence of pixel coordinates. The corresponding pixels need not be
contiguous
(used by EasyImage::PathToImage and EasyImage::Contour).

Graphical representation of an EPathVector (see Draw method)

● EPeakVector: peaks found in an image profile
(used by EasyImage::GetProfilePeaks).

● EColorVector: a description of colors
(used by EasyColor::ClassAverages and EasyColor::ClassVariances).

Open eVision User Guide

ec24pathvector-class.htm
easyimage-imagetopath.htm
easyimage-pathtoimage.htm
ec24pathvector-class.htm
ec24pathvector-draw.htm
ebwhistogramvector-class.htm
easyimage-isodatathreshold.htm
easyimage-histogram.htm
easyimage-analysehistogram.htm
easyimage-setupequalize.htm
ebwhistogramvector-class.htm
ebwhistogramvector-draw.htm
epathvector-class.htm
easyimage-pathtoimage.htm
easyimage-contour.htm
epathvector-class.htm
epathvector-draw.htm
epeakvector-class.htm
easyimage-getprofilepeaks.htm
ecolorvector-class.htm
easycolor-classaverages.htm
easycolor-classvariances.htm

26

2.9. ROI Main Properties

ROIs are defined by a width, a height, and origin x and y coordinates.
The origins are specified with respect to the top left corner in the parent image or ROI.
The ROI must be wholly contained in its parent image.
The processing/analysis time of a BW1 ROI is faster if OrgX and Width are multiples of 8.

Save and load

You can save or load an ROI as a separate image, to be used as if it was a full image. The ROIs
perform no memory allocation at all and never duplicate parts of their parent image, the
parent image provides them with access to its image data.

The image size of the new file must match the size of the ROI being loaded into it. The image
around the ROI remains unchanged.

ROI Classes

An Open eVision ROI inherits parameters from the abstract class EBaseROI.

There are several ROI types, according to their pixel type. They have the same characteristics as
the corresponding image types.

□ EROIBW1
□ EROIBW8
□ EROIBW16
□ EROIBW32
□ EROIC15
□ EROIC16
□ EROIC24
□ EROIC24A

Attachment

An ROI must be attached to a parent (image/ROI) with parameters that set the parent, position
and size, and these links are updated transparently, avoiding dangling pointers.
A normal image cannot be attached to another image or ROI.

Nesting

Set and Get functions change or query the width, height and position of the origin of an ROI,
with respect to its immediate or topmost parent image.

An image may accommodate an arbitrary number of ROIs, which can be nested in a hierarchical
way. Moving the ROI also moves the embedded ROIs accordingly. The image/ROI classes provide
several methods to traverse the hierarchy of ROIs associated with an image.

Open eVision User Guide

ebaseroi-width.htm
ebaseroi-height.htm
ebaseroi-orgx.htm
ebaseroi-orgy.htm
ebaseroi-orgx.htm
ebaseroi-width.htm
ebaseroi-save.htm
ebaseroi-load.htm
ebaseroi-class.htm
eroibw1-class.htm
eroibw8-class.htm
eroibw16-class.htm
eroibw32-class.htm
eroic15-class.htm
eroic16-class.htm
eroic24-class.htm
eroic24a-class.htm
ebaseroi-attach.htm

27

Nested ROIs: Two sub-ROIs attached to an ROI, itself attached to the parent image

Cropping

CropToImage crops an ROI which is partially out of its image. The resized ROI never grows.
An exception is thrown if a function attempts to use an ROI that has limits that extend outside
of the parents.

NOTE
(In Open eVision 1.0.1 and earlier, an ROI was silently resized or repositioned
when placed out of its image and sometimes grew. If ROI limits extended
outside parents, they were silently resized to remain within parent limits.)

Resizing and moving

ROIs can easily be resized and positioned by two functions and dragging handles:

● EBaseROI.Drag adjusts the ROI coordinates while the cursor moves.

● EBaseROI.HitTest informs if the cursor is placed over a dragging handle.
□ Once the handle is known, the cursor shape can be changed by an OnSetCursor MFC event

handler. HitTest is unpredictable if called while dragging is in progress.
□ HitTest can be used in an OnSetCursor MFC event handler to change the cursor shape, or

before a dragging operation like OnLButtonDown,
(or EvSetCursor and EvLButtonDown in Borland/CodeGear's OWL)
(or FormMouseMove and FormMouseDown in Borland/CodeGear's VCL).

Open eVision User Guide

ebaseroi-croptoimage.htm
ebaseroi-drag.htm
ebaseroi-hittest.htm

28

2.10. Arbitrarily Shaped ROI (ERegion)

See also: example: Inspecting Pads Using Regions / code snippets: ERegion

Regions or arbitrarily shaped ROI

You define and use regions of interest (ROI) to restrict the area processed with your vision tool
and to reduce and optimize the processing time.

In Open eVision:
□ An ROI (EROIxxx class) designates a rectangular region of interest.
□ A region (ERegion class) designates an arbitrarily shaped ROI. With regions, you can

determine precisely which part of the image, down to a single pixel, is used for your
processing.

Currently, only the following Open eVision methods support ERegions:

Library Method
EasyImage::Threshold
EasyImage::Copy
EasyImage::ConvolKernel
EasyImage::ConvolSymmetricKernel
EasyImage::ConvolLowpass1
EasyImage::ConvolLowpass2
EasyImage::ConvolLowpass3
EasyImage::ConvolUniform
EasyImage::ConvolGaussian
EasyImage::ConvolHighpass1
EasyImage::ConvolHighpass2
EasyImage::ConvolGradientX
EasyImage::ConvolGradientY
EasyImage::ConvolGradient
EasyImage::ConvolSobelX
EasyImage::ConvolSobelY
EasyImage::ConvolSobel
EasyImage::ConvolPrewittX
EasyImage::ConvolPrewittY
EasyImage::ConvolPrewitt
EasyImage::ConvolRoberts
EasyImage::ConvolLaplacianX
EasyImage::ConvolLaplacianY
EasyImage::ConvolLaplacian8
EasyImage::DilateBox
EasyImage::ErodeBox
EasyImage::OpenBox

EasyImage EasyImage::CloseBox
EasyImage::WhiteTopHatBox
EasyImage::BlackTopHatBox
EasyImage::MorphoGradientBox
EasyImage::ErodeDisk

Open eVision User Guide

../../../../../Content/05 Resources/03 2D Application Examples/Inspecting Pads Using Regions.htm
../../../../../Content/05 Resources/02 Code Snippets/01b ERegion/ERegion.htm
eregion-class.htm
eregion-class.htm
easyimage-threshold.htm
easyimage-copy.htm
easyimage-convolkernel.htm
easyimage-convolsymmetrickernel.htm
easyimage-convollowpass1.htm
easyimage-convollowpass2.htm
easyimage-convollowpass3.htm
easyimage-convoluniform.htm
easyimage-convolgaussian.htm
easyimage-convolhighpass1.htm
easyimage-convolhighpass2.htm
easyimage-convolgradientx.htm
easyimage-convolgradienty.htm
easyimage-convolgradient.htm
easyimage-convolsobelx.htm
easyimage-convolsobely.htm
easyimage-convolsobel.htm
easyimage-convolprewittx.htm
easyimage-convolprewitty.htm
easyimage-convolprewitt.htm
easyimage-convolroberts.htm
easyimage-convollaplacianx.htm
easyimage-convollaplaciany.htm
easyimage-convollaplacian8.htm
easyimage-dilatebox.htm
easyimage-erodebox.htm
easyimage-openbox.htm
easyimage-closebox.htm
easyimage-whitetophatbox.htm
easyimage-blacktophatbox.htm
easyimage-morphogradientbox.htm
easyimage-erodedisk.htm

29

Library Method
EasyImage::DilateDisk
EasyImage::OpenDisk
EasyImage::CloseDisk
EasyImage::WhiteTopHatDisk
EasyImage::BlackTopHatDisk
EasyImage::MorphoGradientDisk
EasyImage::Median
EasyImage::ScaleRotate
EasyImage::DoubleThreshold
EasyImage::Histogram
EasyImage::Area
EasyImage::AreaDoubleThreshold
EasyImage::BinaryMoments
EasyImage::WeightedMoments
EasyImage::GravityCenter
EasyImage::PixelCount
EasyImage::PixelMax
EasyImage::PixelMin
EasyImage::PixelAverage
EasyImage::PixelStat
EasyImage::PixelVariance
EasyImage::PixelStdDev
EasyImage::PixelCompare

Easy3D

EDepthMapToMeshConverter::Convert
EDepthMapToPointCloudConverter::Convert
EStatistics::ComputePixelStatistics
EStatistics::ComputeStatistics
E3DObjectExtractor::Extract
EZMapToPointCloudConverter::Convert

EasyObject EImageEncoder::Encode

EasyFind
EPatternFinder::Find
EPatternFinder::Learn

EasyOCR2
EOCR2::Read
EOCR2::Detect

EasyGauge

EPointGauge::Measure
ELineGauge::Measure
ERectangleGauge::Measure
ECircleGauge::Measure
EWedgeGauge::Measure

EasyMatch
EMatcher::LearnPattern
EMatcher::Match

EasyQRCode
EQRCodeReader::SetSearchField
EQRCodeReader::Read

TIP
In the future Open eVision releases, the support of ERegions will be gradually
extended to all operators.

Open eVision User Guide

easyimage-dilatedisk.htm
easyimage-opendisk.htm
easyimage-closedisk.htm
easyimage-whitetophatdisk.htm
easyimage-blacktophatdisk.htm
easyimage-morphogradientdisk.htm
easyimage-median.htm
easyimage-scalerotate.htm
easyimage-doublethreshold.htm
easyimage-histogram.htm
easyimage-area.htm
easyimage-areadoublethreshold.htm
easyimage-binarymoments.htm
easyimage-weightedmoments.htm
easyimage-gravitycenter.htm
easyimage-pixelcount.htm
easyimage-pixelmax.htm
easyimage-pixelmin.htm
easyimage-pixelaverage.htm
easyimage-pixelstat.htm
easyimage-pixelvariance.htm
easyimage-pixelstddev.htm
easyimage-pixelcompare.htm
edepthmaptomeshconverter-convert.htm
edepthmaptopointcloudconverter-convert.htm
estatistics-computepixelstatistics.htm
estatistics-computestatistics.htm
../../../../../Content/reference/e3dobjectextractor-extract.htm
../../../../../Content/reference/ezmaptopointcloudconverter-convert.htm
eimageencoder-encode.htm
epatternfinder-find.htm
../../../../../Content/reference/epatternfinder-learn.htm
../../../../../Content/reference/eocr2-read.htm
../../../../../Content/reference/eocr2-detect.htm
../../../../../Content/reference/epointgauge-measure.htm
../../../../../Content/reference/elinegauge-measure.htm
../../../../../Content/reference/erectanglegauge-measure.htm
../../../../../Content/reference/ecirclegauge-measure.htm
../../../../../Content/reference/ewedgegauge-measure.htm
../../../../../Content/reference/ematcher-learnpattern.htm
../../../../../Content/reference/ematcher-match.htm
eqrcodereader-searchfield.htm
eqrcodereader-read.htm

30

Creating regions

Open eVision offers multiple ways to create regions, depending on the shape you need:

The ERegion is the base class for all regions and the most versatile. It encodes a region using a
Run-Length Encoded (RLE) representation.

□ The RLE representation of a region is made of runs (horizontal, 1-pixel high slices).
□ The runs are stored in the form of their ordinate, starting abscissa and length.

Run-Length Encoding of a circle-shaped region

To create a region, either:
□ Use one of the geometry-based region classes.
□ Use the result of another tool, such as EasyFind, EasyMatch or EasyObject.
□ Combine or modify other regions.
□ Use a mask image.
□ Directly provide the list of runs.

Geometry-based regions

Geometry based regions are specialized classes of regions that are encompassed in simple
geometries. Open eVision currently provides classes based on a rectangle, a circle, an ellipse or
a polygon.

Use these classes to setup geometric regions and modify them with translation, rotation and
scaling. The transformation operators return new regions, leaving the source object unchanged.

● ERectangleRegion
□ The contour of an ERectangleRegion class is a rectangle.
□ Define it using its center, width, height and angle.
□ Alternatively, use an ERectangle instance, such as one returned by an ERectangleGauge

instance.

Rectangle region separating a bar code from the background

Open eVision User Guide

eregion-class.htm
erectangle-class.htm
erectangle-class.htm
erectangle-class.htm
erectanglegauge-class.htm

31

● ECircleRegion
□ The contour of an ECircleRegion class is a circle.
□ Define it using its center and radius or 3 non-aligned points.
□ Alternatively, use an ECircle instance, such as one returned by an ECircleGauge instance.

Circle region encompassing the useful part of an X-Ray image

● EEllipseRegion
□ The contour of an EEllipseRegion class is an ellipse.
□ Define it using its center, long and short radius and angle.

Ellipse region encompassing a waffle

● EPolygonRegion
□ The contour of an EPolygonRegion class is a polygon.
□ It is constructed using the list of its vertices.

Polygon region encompassing a key

Open eVision User Guide

ecircleregion-class.htm
ecircleregion-class.htm
ecircle-class.htm
ecirclegauge-class.htm
eellipseregion-class.htm
eellipseregion-class.htm
epolygonregion-class.htm
epolygonregion-class.htm

32

Using the result of other tools

The ERegion class provides a set of specialized constructors to create regions from the results of
another tool.

In a tool chain, these constructors restrict the processing of a tool to the area issued from the
previous tool.

Open eVision provides constructors for the following tools:
□ EasyFind: EFoundPattern
□ EasyMatch: EMatchPosition
□ EasyGauge: ECircle and ERectangle
□ EasyObject: ECodedElement

TIP
When compatible, Open eVision also provides specialized constructors for
the geometry-based regions. For instance, ECircleRegion provides a
constructor using an ECircle.

Combining regions

Use the following operations to create a new region by combining existing regions:

● Union
□ The ERegion::Union(const ERegion&, const ERegion&)method returns the region that is the

addition of the two regions passed as arguments.

Union of 2 circles

● Intersection
□ The ERegion::Intersection(const ERegion&, const ERegion&)method returns the region that is

the intersection of the two regions passed as argument.

Intersection of 2 circles

Open eVision User Guide

eregion-class.htm
efoundpattern-class.htm
ematchposition-struct.htm
ecircle-class.htm
erectangle-class.htm
ecodedelement-class.htm
ecircleregion-class.htm
ecircle-class.htm
eregion-union.htm
eregion-intersection.htm

33

● Subtraction
□ The ERegion::Subtraction(const ERegion&, const ERegion&)method returns the first region

passed as argument after removing the second one.

Subtraction of 2 circles

Morphological operations on regions

The initial arbitrary region used to illustrate the different morphological operations

● Grow
□ The ERegion::Grow(int radius)method returns a region that is the dilation of the region by

a disk with a radius equals to the argument.

Grow of the arbitrary region

● Shrink
□ The ERegion::Shrink(int radius)method returns a region that is the erosion of the region

by a disk with a radius equals to the argument.

Shrink of the arbitrary region

Open eVision User Guide

eregion-subtraction.htm
eregion-grow.htm
eregion-shrink.htm

34

● Contour
□ The ERegion::Contour(int thickness, bool centered = true)method returns a region that is

the contour of the region.

Contour of the arbitrary region

Free-hand drawing a region

● The ERegionFreeHandPainter class provides the methods that allow you to create a region by
hand, using the mouse or any other user input method.

● The RegionFreeHand sample, available both in C++ and C#, shows how to use this class to draw
a region on an image.

Using regions

The tools supporting regions provide methods that follow one of these conventions:
□ Method(const EImage& source, const ERegion& region)
□ Method(const EImage& source, const ERegion& region, EImage& destination)

NOTE
The source, the region and the destination must be compatible. It means
that the region must at least partly fit in the source, and that source and
destination must have the same size.

Preparing the region

● Open eVision automatically prepares the regions when it applies them to an image, but this
preparation can take some time.

● If you do not want your first call to a method to take longer than the next ones, you can
prepare the region in advance by using the appropriate Prepare()method.

● To manually prepare the regions, adapt the internal RLE description to your images.

Drawing regions

The ERegion classes provide several methods to display the regions:

● ERegion::Draw() draws the region area, in a semi-transparent way, in the provided device
context.

● ERegion::DrawContour() draws the region contour in the provided device context.

Open eVision User Guide

eregion-contour.htm
eregionfreehandpainter-class.htm
eregion-prepare.htm
eregion-class.htm
eregion-draw.htm
eregion-drawcontour.htm

35

● ERegion::ToImage() renders the region as a mask into the provided destination image.
□ You can configure the foreground and the background colors.
□ If you initialized your image with a width and a height, Open eVision renders the region

inside those bounds.
□ If not, Open eVision resizes the image to contain the whole region.
□ Use ToImage() to create masks for the Open eVision functions that support them.

ERegions and EROIs

● The older EROI classes of Open eVision are compatible with the new regions.

● Some tools allow the usage of regions with source and/or destinations that are ERoi instead
of EImage follow one of these conventions:
□ Method(const ERoi& source, const ERegion& region)
□ Method(const ERoi& source, const ERegion& region, ERoi& destination)

TIP
In that case, the coordinates used for the region are relative to the reduced
ROI space instead of the whole image space .

ERegion and 3D

● The new regions are compatible with the 2.5D representations of Easy3D (EDepthMap and
EZMap).

● You can also reduce the domain of processing when using these classes.

2.11. Flexible Masks

ROIs vs flexible masks

ROIs and masks restrict processing to part of an image:
□ "ROI Main Properties" on page 26 apply to all Open eVision functions. Using Regions of

Interest accelerates processing by reducing the number of pixels. Open eVision supports
hierarchically nested rectangular ROIs.

□ Flexible Masks are recommended to process disconnected ROIs or non-rectangular
shapes. They are supported by some EasyObject and EasyImage library functions.

Open eVision User Guide

eregion-toimage.htm
eregion-toimage.htm
edepthmap-class.htm
ezmap-class.htm
EasyObject - Analyzing Blobs.htm

36

Flexible Masks

A flexible mask is a BW8 image with the same height and width as the source image. It contains
shapes of areas that must be processed and ignored areas (that will not be considered during
processing):

□ All pixels of the flexible mask having a value of 0 define the ignored areas.
□ All pixels of the flexible mask having any other value than 0 define the areas to be

processed.

Source image Associated mask Processed masked image

A flexible mask can be generated by any application that outputs BW8 images and by some
EasyObject and EasyImage functions.

Flexible Masks in EasyImage

Code Snippets

Source image (left) and mask variable (right)

Simple steps to use flexible masks in Easyimage

1. Call the functions from EasyImage that take an input mask as an argument. For
instance, one can evaluate the average value of the pixels in the white layer and after in the
black layer.

2. Display the results.

Resulting image

Open eVision User Guide

EasyObject - Analyzing Blobs.htm

37

EasyImage Functions that support flexible masks

● EImageEncoder.Encode has a flexible mask argument for BW1, BW8, BW16, and C24 source
images.

● AutoThreshold.

● Histogram (function HistogramThreshold has no overload with mask argument).

● RmsNoise, SignalNoiseRatio.

● Overlay (no overload with mask argument for BW8 source images).

● ProjectOnAColumn, ProjectOnARow (Vector projection).

● ImageToLineSegment, ImageToPath (Vector profile).

Flexible Masks in EasyObject

A flexible mask can be generated by any application that outputs BW8 images or uses the Open
eVision image processing functions.

EasyObject can use flexible masks to restrict blob analysis to complex or disconnected shaped
regions of the image.

If an object of interest has the same gray level as other regions of the image, you can define
"keep" and "ignore" areas using flexible masks and Encode functions.

A flexible mask is a BW8 image with the same height and width as the source image.
□ A pixel value of 0 in the flexible mask masks the corresponding source image pixel so it

doesn't appear in the encoded image.
□ Any other pixel value in the flexible mask causes the pixel to be encoded.

EasyObject functions that create flexible masks

Source image

1) ECodedImage2.RenderMask: from a layer of an encoded image

1. To encode and extract a flexible mask, first construct a coded image from the source image.

2. Choose a segmentation method (for the image above the default method
GrayscaleSingleThreshold is suitable).

3. Select the layer(s) of the coded image that should be encoded (i.e. white and black layers
using minimum residue thresholding).

4. Make the mask image the desired size using mask.SetSize(sourceImage.GetWidth(),
sourceImage.GetHeight()).

Open eVision User Guide

eimageencoder-encode.htm
easyimage-autothreshold.htm
easyimage-histogram.htm
easyimage-histogramthreshold.htm
easyimage-rmsnoise.htm
easyimage-signalnoiseratio.htm
easyimage-overlay.htm
easyimage-projectonacolumn.htm
easyimage-projectonarow.htm
easyimage-imagetolinesegment.htm
easyimage-imagetopath.htm
eimageencoder-encode.htm

38

5. Exploit the flexible mask as an argument to ECodedImage2.RenderMask.

BW8 resulting image that can be used as a flexible mask

2) ECodedElement.RenderMask: from a blob or hole

1. Select the coded elements of interest.

2. Create a loop extracting a mask from selected coded elements of the coded image using
ECodedElement.RenderMask.

3. Optionally, compute the feature value over each of these selected coded elements.

BW8 resulting image that can be used as a flexible mask

3) EObjectSelection.RenderMask: from a selection of blobs

EObjectSelection.RenderMask can, for example, discard small objects resulting from noise.

BW8 resulting image that can be used as a flexible mask

Open eVision User Guide

ecodedimage2-rendermask.htm
ecodedelement-rendermask.htm
eobjectselection-rendermask.htm

39

Example: Restrict the areas encoded by EasyObject

Find four circles (left) Flexible mask can isolate the central chip (right)

1. Declare a new ECodedImage2 object.

2. Setup variables: first declare source image and flexible mask, then load them.

3. Declare an EImageEncoder object and, if applicable, select the appropriate segmenter. Setup
the segmenter and choose the appropriate layer(s) to encode.

4. Encode the source image. Encoding a layer with just the area in the flexible mask is then
pretty straightforward.
We see that the circles are correctly segmented in the black layer with the grayscale single
threshold segmenter:

5. Select all objects of the coded image.

6. Select objects of interest by filtering out objects that are too small.

7. Display the blob feature by iterating over the selected objects to display the chosen feature.

2.12. Profile

Code Snippets

Profile Sampling

A profile is a series of pixel values sampled along a line/path/contour in an image.

● EasyImage.ImageToLineSegment copies the pixel values along a given line segment (arbitrarily
oriented and wholly contained within the image) to a vector. The vector length is adjusted
automatically. This function supports flexible masks.

● A path is a series of pixel coordinates stored in a vector.
EasyImage.ImageToPath copies the corresponding pixel values to the vector. This function
supports flexible masks.

Open eVision User Guide

ecodedimage2-class.htm
eimageencoder-class.htm
egrayscalesinglethresholdsegmenter-class.htm
egrayscalesinglethresholdsegmenter-class.htm
easyimage-imagetolinesegment.htm
epathvector-class.htm
epath-struct.htm
easyimage-imagetopath.htm

40

● A contour is a closed or not (connected) path, forming the boundary of an object.
EasyImage.Contour follows the contour of an object, and stores its constituent pixels values
inside a profile vector.

Profile Analysis

The profile can be processed to find peaks or transitions:

● A transition corresponds to an object edge (black to white or white to black). It can be
detected by taking the first derivative of the signal (which transforms transitions (edges)
into peaks) and looking for peaks in it.
EasyImage.ProfileDerivative computes the first derivative of a profile extracted from a gray-
level image.
The EBW8 data type only handles unsigned values, so the derivative is shifted up by 128.
Values under [above] 128 correspond to negative [positive] derivative (decreasing
[increasing] slope).

● A peak is the portion of the signal that is above [or below] a given threshold - the maximum
or minimum of the signal. This may correspond to the crossing of a white or black line or
thin feature. It is defined by its:
□ Amplitude: difference between the threshold value and the max [or min] signal value.
□ Area: surface between the signal curve and the horizontal line at the given threshold.

EasyImage.GetProfilePeaks detects max and min peaks in a gray-level profile. To eliminate false
peaks due to noise, two selection criteria are used. The result is stored in a peaks vector.

Profile Insertion Into an Image

EasyImage.LineSegmentToImage copies the pixel values from a vector or constant to the pixels of a
given line segment (arbitrarily oriented and wholly contained within the image).

EasyImage.PathToImage copies the pixel values from a vector or a constant to the pixels of a given
path.

Open eVision User Guide

easyimage-contour.htm
easyimage-profilederivative.htm
ebw8-struct.htm
epeak-struct.htm
epeak-amplitude.htm
epeak-area.htm
easyimage-getprofilepeaks.htm
epeakvector-class.htm
easyimage-linesegmenttoimage.htm
easyimage-pathtoimage.htm

41

3. Image Pre-Processing Libraries

3.1. EasyImage - Pre-Processing Images

EasyImage operations prepare images so that further processing gets better results by:
□ isolating defects using thresholding or intensity transformations
□ compensating perspective effects (for non-flat surfaces such as a bottle label)
□ processing complex or disconnected shapes using flexible masks

The main functions are:
□ Intensity Transformations change the gray-level of each pixel to clarify objects (histogram

stretching).
□ Thresholding transforms a binary image into a bi- or tri-level grayscale image by

classifying the pixel values.
□ Arithmetic and logic functions manipulate pixels in two images, or one image and a

constant.
□ Non-Linear Filtering functions use non-linear combinations of neighboring pixels (using a

kernel) to highlight a shape, or to remove noise.
□ Geometric transforms move selected pixels to realign, resize, rotate and warp.
□ Noise Reduction and Estimation functions ensure that noise is not unacceptably

enhanced by other operations (thresholding, high-pass filtering).
□ Gradient Scalar generates a gradient direction or gradient magnitude map from a gray-

level image.
□ Vector operations extract 1-dimensional data from an image into a vector, for example to

detect scratches or outlines, or to clarify images.
□ Harris corner detector returns a vector of points of interest in a BW8 image.
□ Canny edge detector returns a BW8 image of the edges found in a BW8 image.
□ Overlay overlays an image on top of a color image.
□ Operations on Interlaced Video Frames eliminate interlaced image artifacts by rebuilding

or re-aligning fields.
□ Flexible Masks help process irregular shapes in EasyImage.

Intensity Transformation
These EasyImage functions change the gray-levels of pixels to increase contrast.

Gain offset

Gain Offset changes each pixel to [old gray value * Gain coefficient + Offset].

l gain adjusts contrast. It should remain close to 1.
l offset adjusts intensity (brightness). It can be positive or negative.
l The resulting values are always saturated to range [0..255].

In this example, the resulting image has better contrast and is brighter than the source image.

Open eVision User Guide

easyimage-class.htm
easyimage-gainoffset.htm

42

Source and result images (with gain = 1.2 and offset = +12)

Color images have three separate gain and offset values, one per color component (red, green,
blue).

Example of gain/offset applied on a color image

Normalization

Normalizemakes images of the same scene comparable, even with different lighting.

It compares the average gray level (brightness) and standard deviation (contrast) of the source
image and a reference image. Then, it normalizes the source image with gain and offset
coefficients such that the output image has the same brightness and contrast as the reference
image. This operation assumes that the camera response is reasonably linear and the image
does not saturate.

The reference image (from which the average and standard deviation are computed),
the source image (too bright),

and the normalized image (contrast and brightness are the same as the reference image)

Uniformization

Uniformize compensates for non-uniform illumination and/or camera sensitivity based on one or
two reference images. The reference image should not contain saturated pixel values and have
minimum noise.

Open eVision User Guide

easyimage-normalize.htm
easyimage-uniformize.htm

43

l When one reference image is used, the transformation is similar to an adaptive (space-
variant) gain; each pixel in the reference image encodes the gain for the corresponding
pixel in the source image.

l When two reference images are used, the transformation is similar to an adaptive gain
and offset; each pixel in the reference images encodes either the gain or the offset for the
corresponding pixel in the source image.

Example of an image uniformized with two reference images

Lookup tables

Lut uses a lookup table of new pixel values to replace the current ones - efficient for BW8 and
BW16 images. If the transform function never changes, it is best to use a lookup table.

Example of a transform

Open eVision User Guide

easyimage-lut.htm

44

Thresholding
Code Snippets

Thresholding transforms an image by classifying the pixel values using these methods:

l "Automatic thresholding" on page 44 (BW8 and BW16 images only)
l "AutoThreshold" on page 45 (BW8 and BW16 images only)
l "Manual thresholding" on page 45 using one or two threshold values
l "Histogram based" on page 45 (computed before using the thresholding function)

These functions also return the average gray levels of each pixel below and above the threshold.

Keys to successful thresholding

l Object and background areas should be of uniform color and illumination. Image
uniformization may be required prior to thresholding.

l The gray level range of the object and background must be sufficiently different (all
background pixels should be darker than the darkest object pixel).

l You must decide if the threshold value should be:
o constant: absolute threshold
o adapted to ambient light intensity: relative or automatic threshold

Automatic thresholding

The threshold is calculated automatically if you use one of these arguments with the
EasyImage.Threshold function.

Min Residue: Minimizes the quadratic difference between the source and the resulting image
(default if the Threshold function is invoked without an argument).

Max Entropy: Maximizes the entropy (that is, the amount of information) between object and
background of the resulting image.

Open eVision User Guide

easyimage-threshold.htm

45

Isodata: Calculates a threshold value that is an average of the gray levels: halfway between the
average gray level of pixels below the threshold, and the average gray level of pixels above the
threshold.

Manual thresholding

Manual thresholds require that the user supplies one or two threshold values:

l one value to the Threshold function to classify source image pixels (BW8/BW16/C24) into
two classes and create a bi-level image. This can be:

o relativeThreshold is the percentage of pixels below the threshold. The Threshold
function then computes the appropriate threshold value, or

o absoluteThreshold. This value must be within the range of pixel values in the source
image.

l two values to the DoubleThreshold function to classify source image pixels (BW8/BW16) into
three classes and create a tri-level image.

o LowThreshold is the lower limit of the threshold
o HighThreshold is the upper limit of the threshold

Histogram based

When a histogram of the source image is available, you can speed up the automatic
thresholding operation by computing the threshold value from the histogram (using
HistogramThreshold or HistogramThresholdBW16) and using that value in a manual thresholding
operation.

These functions also return the average gray levels of each pixel below and above the threshold.

AutoThreshold

When no source image histogram is available, AutoThreshold can still calculate a threshold value
using these threshold modes: EThresholdMode_Relative, _MinResidue, _MaxEntropy and _
Isodata.

This function supports flexible masks.

Arithmetic and Logic
Code Snippets

Reasons you may use arithmetic and logic are:

l to emphasize differences between images by subtracting the pixels (a conformity
check).

l to compensate for non-uniform lighting by dividing the target image by the image of
the background alone.

l to remove unwanted areas of an image by preparing an appropriate mask, and clearing
all the pixels that belong to the mask by using logical combinations of pixels.

l to create a combined image by combining the pixels of two source images to generate a
resulting image.

Arithmetic operations are handled by the Oper function, EArithmeticLogicOperation enum lists all
supported operators.

Open eVision User Guide

easyimage-threshold.htm
easyimage-doublethreshold.htm
easyimage-histogramthreshold.htm
easyimage-histogramthresholdbw16.htm
easyimage-autothreshold.htm
ethresholdmode-enum.htm
easyimage-oper.htm
earithmeticlogicoperation-enum.htm

46

These operations can be applied to images and constants, they have one or two source
arguments (image or integer constants) and one destination argument. If the source operands
are a color and a gray-level image, each color component combines with the gray-level
component to give a color image. Histogram equalization can improve your results.

Arithmetic and logic combinations

Allowed combinations

General Copy Invert Shift Logical Overlay Set
Const BW8 -> Image BW8 x
Const C24 -> Image C24 x
Image BW8 -> Image BW8 x x
Image BW8 -> Image C24 x x x
Image C24 -> Image C24 x x
Const BW8, Image BW8 -> Image
BW8 x

Image BW8, Const BW8 -> Image
BW8 x x x

Image BW8, Image BW8 -> Image
BW8 x x x

Image BW8, Image BW8 -> Image
C24 x x

Const C24, Image C24 -> Image C24 x
Image C24, Const C24 -> Image C24 x x
Image C24, Image C24 -> Image C24 x x
Image C24, Image BW8 -> Image
C24 x x x

Image BW8, Image C24 -> Image
C24 x x x

NOTE
Note: For logical operators, a pixel with value 0 is assumed FALSE,
otherwise TRUE. The result of a logical operation is 0 when FALSE and 255
otherwise.

The classification of operations in the above table are:

General

l Compare (abs. value of the difference)
l Saturated sum

Open eVision User Guide

47

l Saturated difference
l Saturated product
l Saturated quotient
l Modulo
l Overflow-free sum
l Overflow-free difference
l Overflow-free product
l Overflow-free quotient
l Bitwise AND
l Bitwise OR
l Bitwise XOR
l Minimum
l Maximum
l Equal
l Not equal
l Greater or equal
l Lesser or equal
l Greater
l Lesser

Copy

l Sheer Copy

Invert

l Invert (negative)

Shift

l Left Shift
l Right Shift

Logical

l Logical AND
l Logical OR
l Logical XOR

Overlay

l Add an overlay

Set

Operators Copy if mask = 0 and Copy if mask <> 0 are very handy to perform masking: the first
image argument serves as a mask that allows or disallows changing the pixel values in the
destination image.

l Copy if mask = 0
l Copy if mask <> 0

Open eVision User Guide

48

Non-Linear Filtering
These functions use non-linear combinations of neighboring pixels to highlight a shape, or to
remove noise.

Most can be destructive (except top-hat and median filters) i.e. the source image is overwritten
by the destination image. Destructive operations are faster.

All have a gray image and a bilevel equivalent, for example ErodeBox and BiLevelErodeBox.

1. They define the required shape by a "Kernel" on page 48 (usually in a 3x3 matrix).
2. They slide this Kernel over the image to determine the value of the destination

pixel when a match is found:
l Erosion, Dilation: shrinks / grows image regions.
l Opening, Closing: removes / fills image region boundary pixels.
l Thinning, Thickening: erodes / dilates using image pattern matching.
l Top-Hat filters: retains all the tiny image details while removing everything
else.

l Morphological distance: indicates how many erosions are required to make a
pixel black.

l Morphological gradient: indicates the outer and inner edges of the erosion
and dilation processes.

l Median filter: removes impulsive noise.
l Hit-and-Miss transform: detects patterns of foreground /background pixels,
can create skeletons.

Kernel

Rectangular kernel of half width = 3 and half height = 2 (left) Circular kernel of half width
= 2 (right)

The morphological operators combine the pixel values in a neighborhood of given shape
(square, rectangular or circular) and replace the central pixel of the neighborhood by the
result.The combining function is non-linear, and in most cases is a rank filter: which considers
the N values in the given neighborhood, sorts them increasingly and selects the K-th largest.
Three special cases are most often used erosion, dilation andmedian filter where : K can be 1
(minimum of the set), N (maximum) or N/2 (median).

Open eVision User Guide

easyimage-erodebox.htm
easyimage-bilevelerodebox.htm

49

Erosion, Dilation, Opening, Closing, Top-Hat and Morphological Gradient operations all use
rectangular or circular kernels of odd size. Kernel size has an important impact on the result.

examples

HalfWidth/HalfHeight Actual width/height

0 1

1 3

2 5

3 7

Erosion, Dilation

Erosion reduces white objects and enlarges black objects, Dilation does the opposite.

Erosion Dilation

Erosion thins white objects by removing a layer of pixels along the objects edges: ErodeBox,
ErodeDisk. As the kernel size increases, white objects disappear and black ones get fatter.

Dilation thickens white objects by adding a layer of pixels along the objects edges: DilateBox,
DilateDisk. As the kernel size increases, white objects get fatter and black ones disappear.

Opening, Closing

Opening removes tiny white objects / dust. Closing removes tiny black holes / dust.

Opening Closing

An Opening is an erosion followed by a dilation using OpenBox, OpenDisk.
The global effect is to preserve the overall shape of objects, while removing white details that
are smaller than the kernel size.

A Closing is a dilation followed by an erosion using CloseBox, CloseDisk.
The global effect is to preserve the overall shape of objects, while removing the black details
that are smaller than the kernel size.

Thinning, Thickening

These functions use a 3x3 kernel to grow (Thick) or remove (Thin) pixels:

Open eVision User Guide

easyimage-erodebox.htm
easyimage-erodedisk.htm
easyimage-dilatebox.htm
easyimage-dilatedisk.htm
easyimage-openbox.htm
easyimage-opendisk.htm
easyimage-closebox.htm
easyimage-closedisk.htm
easyimage-thick.htm
easyimage-thin.htm

50

l Thinning: can help edge detectors by reducing lines to single pixel thickness.
l Thickening: can help determine approximate shape, or skeleton.

When a match is found between the kernel coefficients and the neighborhood of a pixel, the
pixel value is set to 255 if thickening, or 0 if thinning. The kernel coefficients are:

l 0: matching black pixel, value 0
l 1: matching non black pixel, value > 0
l -1: don't care

Top-Hat filters

Top-hat filters are excellent for improving non-uniform illumination.

White top-hat filter: source and destination images

They take the difference between an image and its opening (or closure). Thus, they keep the
features that an opening (or closing) would erase. The result is a perfectly flat background
where only black or white features smaller than the kernel size appear.

l White top-hat filter enhances thin white features: WhiteTopHatBox ,WhiteTopHatDisk.
l Black top-hat filter enhances thin black features:BlackTopHatBoxBlackTopHatDisk.

Morphological distance

Distance computes the morphological distance (number of erosion passes to set a pixel to black)
of a binary image (0 for black, non 0 for white) and creates a destination image, where each
pixel contains the morphological distance of the corresponding pixel in the source image.

Morphological gradient

The morphological gradient performs edge detection - it removes everything in the image but
the edges.

The morphological gradient is the difference between the dilation and the erosion of the image,
using the same structuring element.

MorphoGradientBox, MorphoGradientDisk.

Dilation – Erosion = Gradient

Open eVision User Guide

easyimage-whitetophatbox.htm
easyimage-whitetophatdisk.htm
easyimage-blacktophatbox.htm
easyimage-blacktophatdisk.htm
easyimage-distance.htm
easyimage-morphogradientbox.htm
easyimage-morphogradientdisk.htm

51

Median

The Median filter removes impulse noise, whilst preserving edges and image sharpness.
It replaces every pixel by the median (central value) of its neighbors in a 3x3 square kernel, thus,
outer pixels are discarded.

Median filter: source and destination images

Open eVision User Guide

easyimage-median.htm

52

Hit-and-Miss transform

Hit-and-miss transform operates on BW8, BW16 or C24 images or ROIs to detect a particular
pattern of foreground and background pixels in an image.

Hit-and-miss transform

The HitAndMiss function has three arguments:

l A pointer to the source image of type EROIBW8, EROIBW16, or EROIC24
l A pointer to the destination image of type corresponding to the type of the source image.
The sizes of the source and destination images must be identical.

l A kernel of type EHitAndMissKernel Two constructors are available for the kernel object:
o EHitAndMissKernel(int startX, int startY, int endX, int endY) where:

startX, startY are coordinates of the top left of the kernel, must be less than or
equal to zero.
endX, endY are coordinates of the bottom right of the kernel, must be greater than or
equal to zero.
The constructed kernel has no explicit restrictions on its size, and the following
characteristics:
kernel width = (endX – startX + 1), kernel height = (endY – startY + 1)

o EHitAndMissKernel(unsigned int halfSizeX, unsigned int halfSizeY) where:
halfSizeX is half of the kernel width – 1, must be greater than zero.
halfSizeY is half of the kernel height – 1, must be greater than zero.
The constructed kernel has the following characteristics:
kernel width = ((2 x halfSizeX) + 1), kernel height = ((2 x halfSizeY) + 1)
kernel StartX = - halfSizeX, kernel StartY = - halfSizeY

example: detecting corners in a binary image.

The hit-and-miss transform can be used to locate corners.

Binary source image

Open eVision User Guide

easyimage-hitandmiss.htm
eroibw8-class.htm
eroibw16-class.htm
eroic24-class.htm
ehitandmisskernel-class.htm
ehitandmisskernel-class.htm
ehitandmisskernel-class.htm

53

1. Define the kernel by detecting the left corner. The left corner pixel has black pixels on its
immediate left, top and bottom; and it has white pixels on its right. The following hit-and-miss
kernel will detect the left corner:

- +
- + +
- +

2. Apply the filter on the source image. Note that the resulting image should be properly sized.

Resulting image, highlighted pixel is located on left corner of rhombus

3. Locate the three remaining corners in the same way: Declare three kernels that are the
rotation of the filter above and apply them.

4. Detect the right, top and bottom corners.

Geometric Transforms
Geometric transformation moves selected pixels in an image, which is useful if a shape in an
image is too large / small / distorted, to make point-to-point comparisons possible.

The selected area may be any shape, but the resulting image is always rectangular. Pixels in the
destination image that have corresponding pixels that are outside of the selected area are
considered not relevant and are left black.

When the source coordinates for a destination pixel are not integer, an interpolation technique
is required.
The nearest neighborhood method is the quickest - it uses the closest source pixel.
The bi-linear interpolation method is more accurate but slower - it uses a weighted average of
the four neighboring source pixels.

Possible geometric transformations are:

Open eVision User Guide

54

Re-alignment

The simplest way to realign two misaligned images is to accurately locate features in both
images (landmarks or pivots, using pattern matching, point measurement or other) and realign
one of the images so that these features are superimposed.

You can register an image by realigning one, two or three pivot points to reference positions.
For best accuracy, the pivot points should be as far apart as possible.

l A single pivot point transform is a simple translation. If interpolation bits are used, sub-
pixel translation is achieved.

l Two pivot points use a combination of translation, rotation and optionally scaling. If
scaling is not allowed, the second pivot point may not be matched exactly. Scaling should
not normally be used unless it corresponds to a change of lens magnification or viewing
distance.

l Three pivot points use a combination of translation, rotation, shear correction and
optionally scaling. A shear effect can arise when acquiring images with a misaligned line-
scan camera.

Mirroring

This destructive feature modifies the source image to create a mirror image:

l horizontally (the columns are swapped) or
l vertically (the rows are swapped).

Translation, Scaling and Rotation

If the position or size of an object of interest changes, you can measure the change in position
or size and generate a corrected image using the ScaleRotate and Shrink functions.

EasyImage.ScaleRotate performs:

l Image translation: you provide the position coordinates of a pivot-point in the source
image and a corresponding pivot point in the destination image.

l Image scaling: you provide scaling factor values for X- and Y-axis.
l Image rotation: you provide a rotation angle value.

For resampling, the nearest neighbor rule or bilinear interpolation with 4 or 8 bits of accuracy is
used. The size of the destination image is arbitrary.

Scale and rotate example

Open eVision User Guide

easyimage-register.htm
easyimage-horizontalmirror.htm
easyimage-verticalmirror.htm
easyimage-scalerotate.htm

55

Shrink

EasyImage.Shrink: resizes an image to be smaller, applying pre-filtering to avoid aliasing.

LUT-based unwarping

If the feature of interest is distorted due to its shape (anamorphosized), you can unwarp a
circular ring-wedge shape (such as text on CD labels) into a straight rectangle. A ring-wedge is
delimited by two concentric circles and two straight lines passing through the center.

EasyImage.SetCircleWarp prepares warp images for use with function EasyImage.Warp which moves
each pixel to locations specified in the "warp" images which are used as lookup tables.

Noise Reduction and Estimation
Code Snippets

Noise can degrade the visual quality of images, and certain processing operations (thresholding,
high-pass filtering) will enhance noise in a non-acceptable way. Acquired images are always
noisy (this is best observed on live images where the pixel values fluctuate around the true
intensity). When acquired with 8 bits of accuracy, the noise level typically amounts to about 3 to
5 gray-level values. One distinguishes several forms of noise:

l additive: noise amplitude is not related to image contents
l multiplicative: noise amplitude is proportional to local intensity
l uniform: noise amplitude follows a smooth distribution centered around zero
l impulse: noise amplitude is infinite.

Impulse noise produces a "salt and pepper" effect, while uniform noise blends.

Spatial noise reduction (if you only have 1 image)

Reduces uniform and impulse noise but blurs edges.
Cannot distinguish noise from actual signal changes, so always spoils part of the signal.
Uses the correlation between neighboring pixel values to perform convolution or median
filtering:

l Convolution replaces the value at each pixel by a combination of its neighbors, leading
to a localized averaging. Linear filtering is recommended to reduce uniform noise. Beware
that it tends to blur edges.

Uniform noise reduction by low-pass filtering

l Median filtering replaces each pixel by the median value in the pixel neighborhood (5-th
largest value in a 3x3 neighborhood). This reduces impulse noise and keeps sharpness.

Open eVision User Guide

easyimage-shrink.htm
easyimage-setcirclewarp.htm
easyimage-warp.htm

56

Impulse noise reduction by median filtering

o EasyImage.Median
o EasyImage.BiLevelMedian

Temporal noise reduction (for several images, such as moving objects)

Temporal noise reduction is achieved by combining the successive values of individual pixels
across time. EasyImage implements recursive averaging and moving averaging.

EasyImage provides three ways to minimize noise by means of several images:

l Temporal average: just accumulates N images and average them; using standard
arithmetic operations, as illustrated below. Creates denoised image after N acquisitions
using average values. Noise varies from frame to frame while the signal remains
unchanged, so if several images of the same (still) scene are available, noise can be
separated from the signal.
The disadvantage of producing one denoised image after N acquisitions only, is that fast
display refresh is not possible.

Simple average

l Temporal moving average: accumulates the last N images and updates the denoised
image each time a new one is acquired, in such a way that the computation time does
not depend on N. The whole process is handled by EMovingAverage. The disadvantage of
this method is that it combines noisy images together.

Moving average

l Temporal recursive average: combines a noisy image with the previously denoised
image using EasyImage.RecursiveAverage.

Open eVision User Guide

easyimage-median.htm
easyimage-bilevelmedian.htm
emovingaverage-class.htm
easyimage-recursiveaverage.htm

57

Recursive average

Recursive averaging

This is a well known process for noise reduction by temporal integration. The principle is to
continuously update a noise-free image by blending it, using a linear combination, with the raw,
noisy, live image stream. Algorithmically, this amounts to the following:

where a is a mixture coefficient. The value of this coefficient can be adjusted so that a
prescribed noise reduction ratio is achieved.

This procedure is effective when applied to still images, but generates a trailing effect on
moving objects. The larger the noise reduction ratio, the heavier the trailing effect is. To work
around this, a non-linearity can be introduced in the blending process: small gray-level value
variations between successive images are usually noise, while large variations correspond to
changes in the image.

EasyImage.RecursiveAverage uses this observation and applies stronger noise reduction to small
variations and conversely. This reduces noise in still areas and trailing in moving areas.

For optimal performance, the non-linearity must be precomputed once for all using function
EasyImage.SetRecursiveAverageLUT.

NOTE
Before the first call to the EasyImage.RecursiveAveragemethod, the 16-bit work
image must be cleared (all pixel values set to zero).

Noise estimation (of image compared to reference image):

To estimate the amount of noise, two or more successive images are required. In the simplest
mode, two noisy images are compared. (Other modes are available: if a noise-free image is
available, it is compared to a noisy one; a noise-free image can also be built by temporal
averaging.) Calculates the root-mean-square amplitude and signal-to-noise ratio.

l EasyImage.RmsNoise computes the root-mean-square amplitude of noise, by comparing a
given image to a reference image. This function supports flexible mask and an input mask
argument. BW8, BW16 and C24 source images are supported.
The reference image can be noiseless (obtained by suppressing the source of noise), or
affected by a noise of the same distribution as the given image.

l EasyImage.SignalNoiseRatio computes the signal to noise ratio, in dB, by comparing a given
image to a reference image. This function supports flexible mask and an input mask
argument. BW8, BW16 and C24 source images are supported.
The reference image can be noiseless (obtained by suppressing the source of noise) or be
affected by a noise of the same distribution as the given image.

Signal amplitude is the sum of the squared pixel gray-level values.

Open eVision User Guide

easyimage-recursiveaverage.htm
easyimage-setrecursiveaveragelut.htm
easyimage-recursiveaverage.htm
easyimage-rmsnoise.htm
easyimage-signalnoiseratio.htm

58

Noise amplitude is the sum of the squared difference between the pixel gray-level values of the
given image and the reference.

Scalar Gradient
EasyImage.GradientScalar computes the (scalar) gradient image derived from a given source
image.

The scalar value derived from the gradient depends on the preset lookup-table image.

The gradient of a grayscale image corresponds to a vector, the components of which are the
partial derivatives of the gray-level signal in the horizontal and vertical direction. A vector can
be characterized by a direction and a length, corresponding to the gradient orientation, and the
gradient magnitude.

This function generates a gradient direction or gradient magnitude map (gray-level image) from
a given gray-level image.
For efficiency, a pre-computed lookup-table is used to define the desired transformation.
This lookup-table is stored as a standard EImageBW8/EImageBW16.
Use EasyImage.ArgumentImage or EasyImage.ModulusImage once before calling GradientScalar.

Vector Operations
Code Snippets / Code Snippets

Extracting 1-dimensional data from an image generates linear sets of data that are handled as
vectors. Subsequent operations are fast because of the reduced amount of data. The methods
are either:

Projection

Projects the sum or average of all gray color-level values in a given direction, into various vector
types (levels are added when projecting into an EBW32Vector and averaged when projecting into
an EBW8Vector, EBW16Vector or EC24Vector). These functions support flexible masks.

l EasyImage.ProjectOnAColumn projects an image horizontally onto a column.
l EasyImage.ProjectOnARow projects an image vertically onto a row.

Open eVision User Guide

easyimage-gradientscalar.htm
eimagebw8-class.htm
eimagebw16-class.htm
easyimage-argumentimage.htm
easyimage-modulusimage.htm
easyimage-gradientscalar.htm
ebw32vector-class.htm
ebw8vector-class.htm
ebw16vector-class.htm
ec24vector-class.htm
easyimage-projectonacolumn.htm
easyimage-projectonarow.htm

59

Profile

Samples a series of pixel values along a given segment, path or contour, then analyze and
modify their Peaks and Transitions to make images clearer:

1. Obtain the profile of a line segment / path / contour.

EasyImage.ImageToLineSegment copies the pixel values along a given line segment (arbitrarily
oriented) to a vector. The line segment must be entirely contained within the image. The
vector length is adjusted automatically. This function supports flexible masks.

EasyImage.ImageToPath copies the corresponding pixel values to the vector. This function
supports flexible masks. A path is a series of pixel coordinates stored in a vector.

EasyImage.Contour follows the contour of an object, and stores its constituent pixels values
inside a profile vector. A contour is a closed or not connected path, forming the boundary
of an object.

2. Analyse the profile to find peaks or transitions.

EasyImage.GetProfilePeaks detects max and min peaks in a gray-level profile. To eliminate
false peaks due to noise, two selection criteria are used. The result is stored in a peaks
vector.
A peak is a maximum or minimum of the signal which may correspond to the crossing of
a white or black line or thin feature. It is defined by its:

l Amplitude: difference between the threshold value and the max [or min] signal
value.

l Area: surface between the signal curve and the horizontal line at the given
threshold.

A transition corresponds to an object edge (black to white, or white to black). It can be
detected by taking the first derivative of the signal and looking for peaks in it.
EasyImage.ProfileDerivative computes the first derivative of a profile extracted from a gray-
level image. This derivative transforms transitions (edges) into peaks.
EBW8 data type only handles unsigned values, so the derivative is shifted up by 128. Values
under 128 correspond to negative derivative (decreasing slope), values above 128
correspond to positive derivative (increasing slope).

3. Insert the profile into an image.

Open eVision User Guide

easyimage-imagetolinesegment.htm
easyimage-imagetopath.htm
epathvector-class.htm
epath-struct.htm
easyimage-contour.htm
easyimage-getprofilepeaks.htm
epeakvector-class.htm
epeakvector-class.htm
epeak-struct.htm
epeak-amplitude.htm
epeak-area.htm
easyimage-profilederivative.htm
ebw8-struct.htm

60

EasyImage.LineSegmentToImage copies the pixel values from a vector or a constant to the
pixels of a given line segment (arbitrarily oriented). The line segment must be wholly
contained within the image.

EasyImage.PathToImage copies pixel values from a vector or a constant to the pixels of a
given path.

Canny Edge Detector
Code Snippets

The Canny edge detector facilitates:

l Good detection: finds all edges
l Good localization: the found edges are as close as possible to the "real" edges in the
image

l Minimal response: one edge response is accepted for each position, i.e. avoiding multiple
close or intersecting edge responses

Source image and the result after a Canny edge detection

The EasyImage Canny edge detector operates on a grayscale BW8 image and delivers a black-
and-white BW8 image where pixels have only 2 possible values: 0 and 255. Pixels corresponding
to edges in the source image are set to 255; all others are set to 0. It can adjust the scale
analysis, it doesn't allow sub-pixel interpolation and it delivers a binary image after
thresholding.

Canny edge detector example

The Canny edge detector requires only two parameters:

l Characteristic scale of the features of interest: the standard deviation of the Gaussian
filter used to smooth the source image.

Open eVision User Guide

easyimage-linesegmenttoimage.htm
easyimage-pathtoimage.htm

61

l Gradient threshold with hysteresis: maximum magnitude of the gradient of the source
image expressed as a fraction ranging from 0 to 1 (two values).

The API of the Canny edge detector is a single class, ECannyEdgeDetector, with the following
methods:

l Apply: applies the Canny edge detector on an image/ROI.
l GetHighThreshold: returns the high hysteresis threshold to consider that a pixel is an edge.
l GetLowThreshold: returns the low hysteresis threshold to consider that a pixel is an edge.
l GetSmoothingScale: returns the scale of the features of interest.
l GetThresholdingMode: returns the mode of the hysteresis thresholding.
l ResetSmoothingScale: prevents the smoothing of the source image by a Gaussian filter.
l SetHighThreshold: sets the high hysteresis threshold to consider that a pixel is an edge.
l SetLowThreshold: sets the low hysteresis threshold to consider that a pixel is an edge.
l SetSmoothingScale: sets the scale of the features of interest.
l SetThresholdingMode: sets the mode of the hysteresis thresholding.

The result imagemust have the same dimensions as the input image.

Harris Corner Detector
Code Snippets

The Harris corner detector is invariant to rotation, illumination variation and image noise. It
operates on a grayscale BW8 image and delivers a vector of points of interest.

Harris corner detector example

The EasyImage Harris corner detector requires three parameters:

l The integration scale σi: the standard deviation of the Gaussian Filter used for scale
analysis.
σd = 0,7 x σi, where σd is the differentiation scale: the standard deviation of the Gaussian
Filter used for noise reduction during computation of the gradient.

l A corner threshold: a fraction ranging from 0 to 1 of the maximum value of the cornerness
of the source image.

l A Boolean that toggles sub-pixel detection.

The following characteristics are available for every point of interest:

l Corner position (pixel coordinates with sub-pixel accuracy if enabled).
l Cornerness measurement.
l Gradient magnitude with regards to the differentiation scale σd.

Open eVision User Guide

ecannyedgedetector-class.htm
ecannyedgedetector-apply.htm
ecannyedgedetector-highthreshold.htm
ecannyedgedetector-lowthreshold.htm
ecannyedgedetector-smoothingscale.htm
ecannyedgedetector-thresholdingmode.htm
ecannyedgedetector-resetsmoothingscale.htm
ecannyedgedetector-highthreshold.htm
ecannyedgedetector-lowthreshold.htm
ecannyedgedetector-smoothingscale.htm
ecannyedgedetector-thresholdingmode.htm

62

l Gradient value along the X-axis with regards to the differentiation scale σd.
l Gradient value along the Y-axis with regards to the differentiation scale σd

The API of the Harris corner detector is a single class named
EHarrisCornerDetector and these methods:

l Apply: applies the Harris corner detector on an image/ROI.
l EHarrisCornerDetector: constructs a EHarrisCornerDetector object initialized to its default
values.

l GetDerivationScale: returns the current derivation scale.
l GetScale: returns the integration scale.
l GetThreshold: returns the current threshold.
l GetThresholdingMode: returns the current thresholding mode for the cornerness measure.
l IsGradientNormalizationEnabled: returns whether the gradient is normalized before the
computation of the cornerness measure.

l IsSubpixelPrecisionEnabled: returns whether the sub-pixel interpolation is enabled.
l SetDerivationScale: sets the derivation scale.
l SetGradientNormalizationEnabled: sets whether the gradient is normalized before the
computation of the cornerness measure.

l SetScale: sets the integration scale.
l SetSubpixelPrecisionEnabled: sets whether the sub-pixel interpolation is enabled.
l SetThreshold: sets the threshold on the cornerness measure for a pixel to be considered as
a corner.

l SetThresholdingMode: sets the thresholding mode for the cornerness measure.

Basic usage of Harris Corner Detector

An object of the EHarrisCornerDetector class can be reused across Harris detector applications, in
order to reduce the setup time.

1. Create an instance of the detector and set the appropriate method, for instance, the
integration scale, SetScale, with the structures of interest that could have a spatial extent
of 2 pixels.

2. Apply the detector with two arguments to the new image : the input image and the
interest points in the input image EHarrisInterestPoints.

3. Access the individual elements of the output vector.

Overlay
EasyImage.Overlay overlays an image on the top of a color image, at a given position.

If a color image is provided as the source image, all the pixels of this image are copied to the
destination image, except the ones that equal the reference color. When a C24 image is used as
overlay source image, the color of the overlay in destination image is the same as the one in the
overlay source image, thus allowing multicolored overlays.

If a BW8 image is provided as the source image, all the overlay image pixels are copied to the
destination image, apart from those that are the reference color which are replaced by the
source images.

This function supports flexible mask and an input mask argument. C24, C15 and C16 source
images are supported.

Open eVision User Guide

eharriscornerdetector-class.htm
eharriscornerdetector-apply.htm
eharriscornerdetector-class.htm
eharriscornerdetector-class.htm
eharriscornerdetector-derivationscale.htm
eharriscornerdetector-integrationscale.htm
eharriscornerdetector-threshold.htm
eharriscornerdetector-thresholdingmode.htm
eharriscornerdetector-gradientnormalizationenabled.htm
eharriscornerdetector-subpixelprecisionenabled.htm
eharriscornerdetector-derivationscale.htm
eharriscornerdetector-gradientnormalizationenabled.htm
eharriscornerdetector-integrationscale.htm
eharriscornerdetector-subpixelprecisionenabled.htm
eharriscornerdetector-threshold.htm
eharriscornerdetector-thresholdingmode.htm
eharriscornerdetector-class.htm
eharriscornerdetector-integrationscale.htm
eharriscornerdetector-apply.htm
eharrisinterestpoints-class.htm
easyimage-overlay.htm

63

Operations on Interlaced Video Frames
When an image is interlaced, the two frames (even and odd lines) are not recorded at the same
time. If there is movement in the scene, a visible artifact can result (the edges of objects exhibit
a "comb" effect).

EasyImage.RealignFrame cures this problem if the movement is uniform and horizontal (objects on
a conveyor belt), by shifting one of the frames horizontally. The amplitude of the shift can be
estimated automatically.

EasyImage.GetFrame extracts the frame of given parity from an image while EasyImage.SetFrame
replaces the frame of given parity in an image.

EasyImage.MatchFrames determines the optimal shift amplitude by comparing two successive lines
of the image. These lines should be chosen such that they cross some edges or non-uniform
areas.

EasyImage.RebuildFrame rebuilds one frame of the image by interpolation between the lines of the
other frame.

EasyImage.SwapFrames: interchanges the even and odd rows of an image. This is helpful when
acquisition of an interlaced image has confused even and odd frames.

The same image should be used as source and destination because only the shifted rows are
copied. To use a different destination image, the source image must be copied first in the
destination image object.

The size of the destination image is determined as follows:

dstImage_Width = srcImage_Width

dstImage_Height = (srcImage_Height + 1 - odd) /2

Flexible Masks in EasyImage
Code Snippets

Source image (left) and mask variable (right)

Open eVision User Guide

easyimage-realignframe.htm
easyimage-getframe.htm
easyimage-setframe.htm
easyimage-matchframes.htm
easyimage-rebuildframe.htm
easyimage-swapframes.htm

64

Simple steps to use flexible masks in Easyimage

1. Call the functions from EasyImage that take an input mask as an argument. For
instance, one can evaluate the average value of the pixels in the white layer and after in the
black layer.

2. Display the results.

Resulting image

EasyImage functions that support flexible masks

● EImageEncoder::Encode has a flexible mask argument for BW1, BW8, BW16, and C24 source
images.

● EImageEncoder::AutoThreshold.

● EasyImage::Histogram (function EasyImage::HistogramThreshold has no overload with mask
argument).

● EasyImage::RmsNoise, EasyImage::SignalNoiseRatio.

● EasyImage::Overlay (no overload with mask argument for BW8 source images).

● EasyImage::ProjectOnAColumn, EasyImage::ProjectOnARow (vector projection).

● EasyImage::ImageToLineSegment, EasyImage::ImageToPath (vector profile).

Computing Image Statistics
Code Snippets

EasyObject statistics are related to the objects in an image.

EasyImage statistics are related to whole images (global illumination / contrast, saturation,
presence or absence of an object).

Sliding window (creates new image of avg or std deviation of gray-level
values)

The average and standard deviation of gray-level values can be computed in a sliding window,
i.e., computed for every position of a rectangular window centered on every pixel. The window
size is arbitrary.

NOTE
The computing time of these functions does not depend on the window size.

Open eVision User Guide

eimageencoder-encode.htm
easyimage-autothreshold.htm
easyimage-histogram.htm
easyimage-histogramthreshold.htm
easyimage-rmsnoise.htm
easyimage-signalnoiseratio.htm
easyimage-overlay.htm
easyimage-projectonacolumn.htm
easyimage-projectonarow.htm
easyimage-imagetolinesegment.htm
easyimage-imagetopath.htm
EasyObject - Analyzing Blobs.htm

65

The result of the operation is another image.

The local average, EasyImage.LocalAverage, corresponds to a strong low-pass filtering.

Sliding window average

The local standard deviation, EasyImage.LocalDeviation enhances the regions with a high
frequency contents, such as noisy or textured areas.

Sliding window standard deviation

Histogram computation and analysis(and LUT creation)

A histogram is a statistical summary of an image: it shows the number of occurrences of every
gray-level value in an image, and it's shape reveals characteristics of the image. For instance,
peaks in the histogram curve correspond to dominant colors in the image. If the histogram is bi-
modal, a large peak for the dark values corresponding to the background, and smaller peaks in
the light values.

Typical image histogram

Open eVision User Guide

easyimage-localaverage.htm
easyimage-localdeviation.htm

66

Histogram Computation

EasyImage.Histogram computes the histogram of an image. It can take a flexible mask as input
argument.
BW8, BW16 and BW32 source images are supported.

You can compute the cumulative histogram of an image, i.e. the count of pixels below a given
threshold value, by calling EasyImage.CumulateHistogram after EasyImage.Histogram.

Histogram Analysis

EasyImage.AnalyseHistogram and
EasyImage.AnalyseHistogramBW16 provide statistics and thresholding values:

l Total number of pixels.
l Smallest and largest pixel value (gray-level range).
l Average and standard deviation of the pixel values.
l Value and frequency of the most frequent pixel.
l Value and frequency of the least frequent pixel.

Histogram equalization

EasyImage.Equalize re-maps the gray levels so that the histogram fills in the whole dynamic range
as uniformly as possible.

This may be useful to maximize image contrast, or reveal a lot of image details in dark areas.

Equalized image and histogram

Setup a lookup table

EasyImage.SetupEqualize creates a LUT so you can work explicitly with the histogram and LUT
vectors. It can be more efficient to keep the image histogram for other purposes (i.e statistics)
and keep the equalization LUT to apply to other images.

Equalization lookup table

Open eVision User Guide

easyimage-histogram.htm
easyimage-cumulatehistogram.htm
easyimage-histogram.htm
easyimage-analysehistogram.htm
easyimage-analysehistogrambw16.htm
easyimage-equalize.htm
easyimage-setupequalize.htm

67

Image focus

Sharp focusing can be achieved if the EasyImage.Focusing quantity is maximum for a given image.
This function must be called multiple times with multiple images with a different focus for the
basis of an "auto-focus" system.

EasyImage.Focusing computes the total gradient energy of the image. You can then use this
gradient as a measure of the focusing of an image.

The gradients of the image show the edges of the structures present in the image, with strong
values if the image is well-focused and weaker values otherwise.

To compute the total gradient energy of the image, Open eVision:

a. Squares the pixel values of the horizontal and vertical gradient images.

b. Averages the squared pixel values over both images.

c. Sums the averages.

d. Takes the square root of the resulting value.

TIP
The resulting value is maximum if the image is well-focused.

A well-focused image, with its (absolute-valued) horizontal and vertical gradients.
The gradients show the edges of the structures with strong values. The total gradient

energy for this image is 17.9.

A badly focused image, with its (absolute-valued) horizontal and vertical gradients.
The gradients show the edges of the structures with weak values. The total gradient

energy for this image is 7.9.

EasyImage statistics functions

Area (number of pixels with values above/on/between thresholds)

Open eVision User Guide

easyimage-focusing.htm
easyimage-focusing.htm

68

l EasyImage.Area counts pixels with values above (or on) a threshold.
l EasyImage.AreaDoubleThreshold counts pixels whose values are comprised between (or on)
two thresholds.

Binary and weighted moments (object position and extent)

l EasyImage.BinaryMoments computes the 0th, 1st or 2nd order moments on a binarized image,
i.e. with a unit weight for those pixels with a value above or equal to the threshold, and
zero otherwise. It provides information such as object position and extent.

l EasyImage.WeightedMoments computes the 0th, 1st, 2nd, 3rd or 4th order weighted moments
on a gray-level image. The weight of a pixel is its gray-level value. It provides information
such as object position and extent.

Gravity center (average pixel coordinates above/on threshold)

l EasyImage.GravityCenter computes the coordinates of the gravity center of an image, i.e. the
average coordinates of the pixels above (or on) the threshold.

Pixel count (between 2 thresholds)

l EasyImage.PixelCount counts the pixels in the three value classes separated by two
thresholds.

Minimum, maximum and average gray-level value

l EasyImage.PixelMax computes the maximum gray-level value in an image.
l EasyImage.PixelMin computes the minimum gray-level value in an image.
l EasyImage.PixelAverage computes the average pixel value in a gray-level or color image. For
a color image, it computes the means of the three pixel color components, the variances
of the components and the covariances between pairs of components.

Average, variance and standard deviation

l EasyImage.PixelStat computes min, max and average gray-level values.
l EasyImage.PixelVariance computes average and variance of pixel values.
l EasyImage.PixelStdDev computes average and standard deviation of pixel values. For a color
image, it computes the standard deviations and correlation coefficients (covariance over
the product of standard deviations) of the pairs of pixel component values.

Number of different pixels by comparing 2 images

l EasyImage.PixelCompare counts the number of different pixels between two images.

3.2. EasyColor - Pre-Processing Color Images

Code Snippets

EasyColor makes color image processing as efficient as possible by detecting, classifying and
analyzing objects. Several conversion functions mean that any color system can be processed.

Open eVision User Guide

easyimage-area.htm
easyimage-areadoublethreshold.htm
easyimage-binarymoments.htm
easyimage-weightedmoments.htm
easyimage-gravitycenter.htm
easyimage-pixelcount.htm
easyimage-pixelmax.htm
easyimage-pixelmin.htm
easyimage-pixelaverage.htm
easyimage-pixelstat.htm
easyimage-pixelvariance.htm
easyimage-pixelstddev.htm
easyimage-pixelcompare.htm
easycolor-library.htm

69

Color definition and supported systems

What is color?

The human eye is sensitive to light:

l Intensity, or achromatic sensation, captured by grayscale images.
l Wavelength, or chromatic sensation, described in red, green and blue primary colors.
True color digital images (24 bits per pixel; 8 bits per RGB channel) represent as many
colors as the eye can distinguish.

Visible color gamut in the XYZ color space

There are three color systems:

l Mixture systems (RGB/XYZ) give the proportions of the three primaries to be combined.
l YUV Luma/chroma systems (XYZ/YUV) separate the achromatic (Y) and chromatic
sensations (U & V). Used when a black and white image is required as well (television).

l Intensity/saturation/hue systems (RGB/XYZ/YUV) separate achromatic (black and white
Intensity) from enhanced chromatic (color Saturation and Hue) sensations. Used to
eliminate lighting effects, or to convert RGB images to another color system. More
saturated colors are more vivid, less saturated ones are grayer.

In general:

l RGB is used by monitors, cameras and other display devices.
l YUV is used for efficient transmission of color images by compressing the chrominance
information.

l XYZ is used for device-independent color representation.

All image processing operations can use quantized coordinates: discrete values in the [0..255]
interval, which use a byte representation to store images in a frame buffer.

Color system conversion operations can also use simpler unquantized coordinates: continuous
values, often normalized to the [0..1] interval.

Open eVision User Guide

70

Color image processing

A color image is a vector field with three components per pixel. All three RGB components
reflected by an object have amplitude proportional to the intensity of the light source. By
considering the ratio of two color components, one obtains an illumination-independent image.
With a clever combination of three pieces of information per pixel, one can extract better
features.

There are 3 ways to process a color image:

l Component extraction: you can extract the most relevant feature from the triple color
information, to reduce the amount of data. For instance, objects may be distinguished by
their hue, a pre-processing step could transform the image to a gray-level image
containing only hue values.

l De-coupled transformation: you can perform operations separately on each color
component. For instance, adding two images together adds the red, green and blue
components and stores the result, component by component, in a resulting color image.

l Coupled transformation: you can combine all three color components to produce three
derived components. For example, converting YIQ to RGB.

Supported color systems

Easycolor supports color systems RGB, XYZ, L*a*b*, L*u*v*, YUV, YIQ, LCH, ISH/LSH, VSH and
YSH.

RGB is the preferred internal representation as it is compatible with 24-bit Windows Bitmaps.

RGB-based XYZ-based YUV-based

Mixture RGB XYZ —

Luma/Chroma — L*a*b*
L*u*v*

YUV
YIQ

Intensity/Saturation/Hue
ISH
LSH
VSH

LCH YSH

Transform using LUTs (LookUp Tables)

EasyColors Lookup tables provide an array of values that define what output corresponds to a
given input, so an image can be changed by a user-defined transformation.

A color pixel can take 16,777,216 (224) values, a full color LUT with these entries would occupy
50 MB of memory and transforms would be prohibitively time-consuming. Pre-computed LUTs
make color transforms feasible.

To transform a color image, you initialize a color LUT using one of the following functions:
□ "LUT for Gain/Offset (Color) " on page 75: EasyImage::GainOffset,
□ "LUT for Color Calibration" on page 76: EColorLookup::Calibrate,
□ "LUT for Color Balance" on page 76: EColorLookup::WhiteBalance,
□ EColorLookup::ConvertFromRGB, EColorLookup::ConvertToRGB.

Open eVision User Guide

rgb-color-system.htm
cie-xyz-color-system.htm
cie-l-a-b-color-system.htm
cie-l-u-v-color-system.htm
ccir-yuv-color-system.htm
ccir-yiq-color-system.htm
ish-color-system.htm
lsh-color-system.htm
vsh-color-system.htm
cie-lch-color-system.htm
ysh-color-system.htm
easyimage-gainoffset.htm
ecolorlookup-calibrate.htm
ecolorlookup-whitebalance.htm
ecolorlookup-convertfromrgb.htm
ecolorlookup-converttorgb.htm

71

This color LUT is then used in a transform operation such as EasyColor.Transform or you can
create a custom transform using EColorLookup which takes unquantized values (continuous,
normalized to [0..1] intervals), and specifies the source and destination color systems. Some
operations use the LUT on-the-fly thus avoid storing the transformed image, for example to
alter the U (of YUV) component while the image is in RGB format.

The optimum combination of accuracy and speed is determined by the choice of IndexBits and
Interpolation - the accuracy of the transformed values roughly corresponds to the number of
index bits.

l Fewer table entries mean smaller storage requirements, but less accuracy.
l No interpolation gives quicker running time, but less accuracy. Interpolation can recover
8 bits of accuracy per component. When the involved transform is linear (such as YUV to
RGB), interpolation always gives exact results, regardless of the number of table entries.

Index Bits Number of entries Table size (bytes)

4 2(3*4) = 4,096 14,739

5 2(3*5) = 32,768 107,811

6 2(3*6) = 262,144 823,875

Discrete quantized vs. continuous unquantized

Color coordinates in the classical systems are normally continuous values, often normalized to
the [0..1] interval. Computations on such values, termed unquantized, are simpler.

However, storage of images in a frame buffer imposes a byte representation, corresponding to
discrete values, in the [0..255] interval. Such values are termed quantized.

All image processing operations apply to quantized values, but conversion operations can also
be specified using unquantized coordinates.

Transform YUV444 / YUV422

YUV images can be minimized without degrading visual quality using function Format444To422 to
convert from 4:4:4 to 4:2:2 format (or you can convert Format 422 To 444).

l 4:4:4 uses 3 bytes of information per pixel.
l 4:2:2 uses 2 bytes of information per pixel.
It stores the even pixels of U and V chroma with the even and odd pixels of Y luma as
follows:

Y[even]U[even] Y[odd] V[even]

Merge, extract and color

A color image contains three color planes of continuous tone images.
A gray-level image can be a component of a color system.

Open eVision User Guide

easycolor-transform.htm
ecolorlookup-class.htm
ecolorlookup-indexbits.htm
ecolorlookup-interpolation.htm
easycolor-format444to422.htm
easycolor-format422to444.htm

72

Merge and extract components

EasyColor can change or extract one plane at a time, or all three together. See Compose, Decompose,
GetComponent, SetComponent.

These operations can use a color LUT to transform on the fly, they could build an RGB image
from lightness, saturation and hue planes.

NOTE
EasyColor functions perform the necessary interleaving / un-interleaving
operations to support Windows bitmap format of interleaved color planes
(blue, green and red pixels follow each other).

Pseudo-color to transform gray-level images to color

The trick is to define a regular gamut of 256 colors and each color will be assigned to pixels with
a corresponding gray-level value.
To define pseudo-color shades, you specify a trajectory in the color space of an arbitrary
system. You can then pseudo-color using the drawing functions color palette (see Image and
Vector Drawing) then save and/or transform it like any other color image.

Gray-level and pseudo-colored image

Separate color objects

This EasyColor process takes a set of distinct colors and associates each pixel with the closest
color, using a layer index that can then be used in EasyObject with the labeled image segmenter
to improve blob creation.

Raw image and segmented image (3 colors)

Bayer Conversion
Code Snippets

Open eVision User Guide

easycolor-compose.htm
easycolor-decompose.htm
easycolor-getcomponent.htm
easycolor-setcomponent.htm
EasyObject - Analyzing Blobs.htm

73

The Bayer pattern is a color image encoding format for capturing color information from a
single sensor.
A color filter with a specific layout is placed in front of the sensor so that some of the pixels
receive red light only, while others receive green or blue only. That filter is also named Color
Filter Array or CFA.
An image encoded by the Bayer pattern has the same format as a gray-level image and conveys
three times less information. The true horizontal and vertical resolutions are smaller than those
of a true color image.

Bayer vs. true color format

TIP
- The Bayer pattern normally starts with a GB/RG block in the upper left
corner.
- If the image is cropped, this parity rule can be lost.
- Parity adjustment is not necessary when working on a Open eVision ROI.

The Bayer conversion method EasyColor.BayerToC24 transforms an image captured using the
Bayer pattern and stored as a gray-level image, into a true color image. That process is also
known as demosaicing.

Along with the gray-level input image, the Bayer configuration is mandatory.

There are 4 different arrangements of the Bayer pattern, defined by the first 2 pixels of the first
row of the image:

Several methods are available to reconstruct the missing pixels.
□ Some are fast but the resulting image may have artifacts, like the zipper effect or color

aliasing.
□ Some are slower but achieve better interpolation and produce less artifacts.

Open eVision User Guide

easycolor-bayertoc24.htm

74

Interpolation modes

The frame rate is given for the conversion of a 1280 x 720 image on a single core Intel I7-6600U
CPU.

● Mode 0
□ No interpolation
□ Frame rate: 943

● Mode 1
□ Linear interpolation on a 3x3 kernel
□ Frame rate: 2159

● Mode 2
□ Advanced interpolation on a 3x3 kernel
□ Frame rate: 1303

Open eVision User Guide

75

● Mode 3
□ Interpolation on a 5x5 kernel
□ Frame rate: 449

● Mode 4
□ Interpolation on 9x9 kernel
□ Frame rate: 22

The method EasyColor::C24ToBayer is the reciprocal function of EasyColor::BayerToC24. It converts
RGB color pixel images to Bayer images using the given EBayerConfiguration.

A Bayer encoded image is not compatible with a true color image (EC24), but you can apply white
balance and gamma correction with the EColorLookup parameter in EasyColor::TransformBayer.

LUT for Gain/Offset (Color)
Separate gains and offsets can be applied to each of the three components of an image
(contrast enhancement transform). The RGB image must be transformed to the targeted color
space, gains and offsets applied, then transformed back to RGB.

l When applied to a mixture representation, all three gains and offset should vary in a
similar way.

l When applied to luma/chroma representations, the gain and offset of the chromatic
components should vary in a similar way.

l When applied to intensity/saturation/hue representation, it makes no sense to apply gain
and offset to the hue component.

Open eVision User Guide

easycolor-c24tobayer.htm
easycolor-bayertoc24.htm
ecolorlookup-class.htm
easycolor-transformbayer.htm

76

Enhanced saturation / Uniform lightness

NOTE
The contrast enhancement function can be used to uniformize a given
component: setting the gain to 0 for some component has the same result
as setting all pixels to the value of the offset for this component.

LUT for Color Calibration
Color distortions introduced by the image acquisition chain can be corrected by comparing
sample colors from the image with their true values. A calibrated color chart, such as the IT8, is
required.

l Sample colors are the average color in a suitable ROI using PixelAverage.
l True color values are specified in the XYZ color system. Even though the reference colors
are described by their XYZ coordinates, the image to be calibrated must contain RGB
information.

The calibration transform can be based on one, three or four reference colors. In the first case,
calibration is a gain adjustment for the three color components. In the second and third case, a
linear or affine transform is used.

LUT for Color Balance
A color image can be improved by changing gamma correction and white balance.

These effects can be corrected efficiently by setting up a lookup table using WhiteBalance and
applying it on a series of images by means of Transform. The LUT only needs to be prepared once
(it implements a decoupled color transformation).

Gamma precompensation

Many color cameras use a gamma precompensation process that deals with the non-linear
response of the display device (such as a TV monitor).

Gamma precompensation should be used after processing because using it before would
change the result because of the nonlinearity introduced.

Open eVision User Guide

easyimage-pixelaverage.htm
ecolorlookup-whitebalance.htm
ecolorlookup-transform.htm

77

The precompensation process applies the inverse transform to the signal, so that the image
renders correctly on the display. Three predefined gamma values are available, depending on
the video standard at hand:

Video standard Gamma value EasyColor property

NTSC 1/2.2 CompensateNtscGamma

PAL 1/2.8 CompensatePalGamma

SMPTE 0.45 CompensateSmpteGamma

NOTE
Precompensation cancellation and pure precompensation correspond to
exponents that are inverse of each other.

Gamma precompensation cancellation

Many color cameras have a built-in gamma precompensation feature that can be turned off. If
this feature cannot be turned off and is not desired, its effect can be canceled by applying the
direct gamma transform. The following predefined gamma values are available for this purpose:

Video standard Gamma value EasyColor property

NTSC 2.2 NtscGamma

PAL 2.8 PalGamma

SMPTE 1/0.45 SmpteGamma

White balance

A camera may exhibit color imbalance, that is, the three color channels having mismatched
gains, or the illuminant (the light sources) not being perfectly white. When this occurs, the white
areas appear as an unsaturated color. The white balance correction automatically adjusts three
independent gains so that the components of a white pixel become equal. This means that a
white balance calibration step is required, during which a white surface must be shown to the
camera and the corresponding color component are measured. PixelAverage can be used for this
purpose.

Open eVision User Guide

easycolor-compensatentscgamma.htm
easycolor-compensatepalgamma.htm
easycolor-compensatesmptegamma.htm
easycolor-ntscgamma.htm
easycolor-palgamma.htm
easycolor-smptegamma.htm
easyimage-pixelaverage.htm

78

Raw image, and image with white balance and gamma precompensation

Open eVision User Guide

79

4. Using Open eVision Studio

4.1. Selecting your Programming Language

When you start Open eVision Studio for the first time, the following welcome screen is
displayed:

1. Select your programming language.

TIP
Your selection is saved and your programming language will be
automatically selected next time you start Open eVision Studio.

NOTE
When you change your programming language, any script present in the
scripting window is automatically deleted and the window content is reset.

2. Click on one of the Load buttons to already load one or several images for later processing.

3. Check the Do not show at startup box to hide this welcome screen next time you start Open
eVision Studio.

TIP
To access this welcome screen at any time, and change this setting, go to
the Help > Welcome Screen menu.

Open eVision User Guide

80

4.2. Navigating the Interface

Open eVision Studio graphical user interface (GUI) is organized as follows:

1. The main menu bar gives you access to the functions and tools of all libraries.

TIP
Open eVision Studio does not require any license and allows you to test all
libraries. Of course, if you copy code from Open eVision Studio in your own
application but you do not have the required license, you will receive a
"missing license" error at run-time.

2. The main toolbar gives you quick access to main Open eVision objects such as images,
shapes, gauges, bar codes, matrix codes...

3. The script window displays the code, in the programming language you selected,
corresponding to the actions you perform in Open eVision Studio. You can save or copy this
code in your own application at any time.

4. The image windows display the open images that you can process using the libraries and
tools.

5. The tool windows enable you to easily configure all the available tools. The corresponding
settings are automatically added in the script window for easy reuse.

TIP
Most tool windows are floating and you can easily move them outside the
Open eVision Studio main window to make better use of your screen size.

6. The execution time bar displays the precise time taken for the execution of the selected
functions (measured in milliseconds or microseconds) on your computer. This accurate
measurement helps you to evaluate the performance of your application.

Open eVision User Guide

81

7. The color toolbar displays current information such as the X and Y coordinates of the cursor
on an image and the corresponding pixel value.

8. The status bar displays general information about the application such as the active image
file path...

4.3. Running Tools on Images

Step 1: Selecting a Tool
When you use Open eVision Studio, the first step is to select the library and the tool you want to
use on your image.

To do so:

1. In the main menu bar, click on the library you want to use.

2. Click on the tool you want to use.

TIP
All libraries (except EasyImage, EasyColor and EasyGauge) expose only one
tool named New Xxx Tool. Some of these libraries also expose additional
functions.

3. In the dialog box, enter a Variable name for the variable that is automatically created and
that will contain the result of the processing.

Example of variable creation dialog box for EasyQRCode

4. Click OK.

The selected tool dialog box opens.

Open eVision User Guide

82

Example of variable creation dialog box for EasyQRCode

The next step is "Step 2: Opening an Image" on page 82.

Step 2: Opening an Image
Once you have selected your library and your tool, you need to open an image to apply this
tool.

In the Source Image area of the selected tool dialog box:

1. Open an image:

□ Click on the Open an Image button and select one or several (using SHIFT and CTRL)
images on your computer.

□ Or select one of the images (or one of the ROIs, if any) already open in the drop-down list.

NOTE
You can select only images with an appropriate file format (JPG, PNG, TIFF
or BMP) and in 8- and/or 24-bit depending on the library.

2. If you selected several images, activate one with the Load Previous or Load Next
buttons.

The tool is automatically applied on any loaded image and, at this stage, the result is displayed
based on the tool default settings.

Open eVision User Guide

83

The next step is "Step 3: Managing ROIs" on page 83.

Step 3: Managing ROIs
In some cases, most often to decrease the processing time or to single-out the object you want
to read, you do not want to process the whole image but only one or several well defined
rectangular parts of this image, or ROIs (Regions Of Interest).

TIP
In Open eVision, ROIs are attached to an image and exist only as long as the
parent image is available.

Creating a ROI

1. Open the image:
□ If the image is already open, activate the corresponding image window.
□ If the image is not open yet, go to the main menu: Image > Open... to open one.

2. To create an ROI, go to the main menu: Image > ROI Management....

The ROI Management window is displayed as illustrated below.

3. Select the image in the tree.

4. Click on the New button.

5. In the dialog box, enter a Variable name for the new ROI.

The ROI is represented as a color rectangle on your image as illustrated below.

Open eVision User Guide

84

6. Drag the ROI corner and side handles to move it to the required position.

7. Click on the Close button to close the ROI Management window .

The next step is "Step 4: Configuring the Tool" on page 85.

Managing ROIs

You can add, change and remove ROIs.

TIP
An image can have several ROIs. Each ROI can be attached directly to the
image (meaning that its position is relative to the image) or to another ROI
(meaning that its position is relative to this 'parent' ROI).

1. To manage ROIs, go to the main menu: Image > ROI Management....

The ROI Management window is displayed with the ROI relation tree as illustrated below.

If the Draw Rois box is checked, all ROIs are displayed on the image with a different color.

Open eVision User Guide

85

2. Select an ROI in the ROI relation tree.

3. Drag the ROI corner and side handles to change the position and size of the selected ROI (as
well as the position of all ROIs attached to it if any).

4. Click on the New button to add a new ROI attached to the selected ROI.

TIP
Select the image at the top of the ROI relation tree to attach the ROI directly
to the image.

5. Click on the Remove button to delete the selected ROI (and all ROIs attached to it if any).

6. Click on the Close button to close the ROI Management window.

Step 4: Configuring the Tool
Once your image, including its ROIs if you created some, is ready, you need to configure your
tool.

In the tool window:

1. Open the various tabs.

TIP
When you create a new tool, all parameters are set with their default value.

Open eVision User Guide

86

Example of the parameter tab of an EasyQRCode tool

2. In each tab, set the value of the parameters as desired.

Please refer to the "Functional Guide" and to the "Reference Manual" for detailed information
about the parameters, their function and their default value.

For specific actions such as learning or using gauges, please refer to the "Functional Guide".

3. Run the tool and analyze the results as described in the next step "Step 5: Running the Tool
and Checking Execution Time" on page 86.

Step 5: Running the Tool and Checking Execution Time
Once your tool parameters are set, run your tool and, if desired, check the execution time on
your computer.

In the tool window:

1. Click on the Read, Detect, Results or Execute button (depending on the library function), to
run the tool on the selected image.

2. Check the results on the image and in the Results field or area as illustrated below.

Open eVision User Guide

87

Example of results after reading a QRCode

3. If you do not have the expected results:
□ Try to change your parameters (start with default values then change one parameter at a

time).
□ If your image is not good enough, try to enhance it as described in .

4. Check the execution time in the execution time bar at the bottom left of the main Open
eVision Studio window.

The execution time

TIP
The execution time is the actual time that the processing took as measured
on your computer. It depends your computer processor, memory, operating
system... and, of course, on the processor load at the time of execution. Thus
this execution time slightly varies from execution to execution.

5. To get a more representative execution time, click on the Read, Detect, Results or Execute
button several times and calculate the mean execution time.

6. If your application requires that you reduce the execution time, try:
□ To change the tool parameters,
□ To add one or several ROIs on your image,
□ To enhance your image.

The next step is "Step 6: Using the Generated Code" on page 88.

Open eVision User Guide

88

Step 6: Using the Generated Code
By default, Open eVision Studio translates all the operations you perform in the interface into
code in the language you selected as illustrated below.

Once your tool results suit you, you can save or copy this generated code to use it in your own
application.

Copy and paste the code in your application

In the script window:

1. Select the code section you want to copy.

2. Right click on this code and click Copy in the menu.

3. Go to your development environment tool and paste the code in place.

Save the code

1. Go to the Scriptmenu.

2. Click on Save Script As....

3. Enter a file name and path to save the code as a text file.

Manage the generated code

In the Scriptmenu, you can:
□ Select the programming language (please note that if you change the language, the script

window content is automatically deleted).
□ Activate or deactivate the Script Code Generation. Deactivate this option if you want to

perform some operations without saving them as code.

Open eVision User Guide

89

4.4. Pre-Processing and Saving Images

When should you pre-process your images?

Of course, the best situation is to set up your image acquisition system to have good and easy
to process images so the Open eVision tools run smoothly and efficiently.

If this is not possible or easy to achieve, you can pre-process your images or your ROIs to
enhance and prepare them for the Open eVision tool you want to run.

Using the various available functions, you can adjust the gain and offset of your image, apply a
convolution, threshold, scale, rotate and white balance your image, enhance contours... using
EasyImage and EasyColor functions.

Pre-processing images

The difference between pre-processing an image and running tools is that the pre-processing
generates a new image while the tools mainly extract and retrieve information from the image
without changing it.

To pre-process an image or an ROI:

1. In the main menu bar, click on the library you want to use (EasyImage or EasyColor).

2. Click on the function you want to use.

Most function dialog boxes are similar to the one illustrated below with 2 image selection areas
and a parameter setting area.

Example of a pre-processing dialog box (Threshold with EasyImage)

3. If there are multiple versions for your selected function, open the corresponding tab.

4. In the Source Image area, open the source image (as described in "Step 2: Opening an
Image" on page 82).

5. In the Destination Image area, open or create a new destination image.

6. Set your parameters.

7. Click on the Execute button.

The pre-processed image is available in the destination image as illustrated below.

Open eVision User Guide

90

Source and destinations images (Threshold with EasyImage)

8. If you want to use the destination image outside of Open eVision Studio, save it as described
below.

Saving an image

1. Click on the image you want to save to makes its window active.

2. To open the save menu either:
□ Right-click in the image
□ Or open the main menu > Image

3. Click on Save as....

4. Select the file format (JPEG, JPEG2000, PNG, TIFF or Bitmap).

5. Enter a name and select a path.

6. Click on the Save button.

Open eVision User Guide

91

5. Tutorials

5.1. EasyImage

Converting a Gray-Level Image into a Binary Image
"Thresholding" on page 113

"Single Thresholding" on page 113 - "Double Thresholding" on page 113 - "Histogram-Based
Single Thresholding" on page 114 - "Histogram-Based Double Thresholding" on page 114

Objective

Following this tutorial, you will learn how to use EasyImage to convert a gray-level source image
into a binary destination image. Thresholding an image transforms all the gray pixels into black
or white pixels, depending on whether they are below or above a specified threshold.
Thresholding an image makes further analysis easier.

You'll need first to load an image (step 1). Then you'll set the thresholding parameters (step 2),
and perform the conversion (step 3).

Gray-level source image

Black and white destination image, after thresholding

Open eVision User Guide

92

Step 1: Load the source image

1. From the main menu, click EasyImage, then Threshold.

2. In the Simple Threshold tab, click the Open icon of the Source Image area, and load the
image file EasyMatch\Switch1.tif.

3. Keep the default variable name for the new Image object, and click OK.

Step 2: Set the thresholding parameters

1. In the right area of the Threshold dialog box, move the slider to change the threshold, and
see directly in the source image a preview of the result.

2. Select the Minimum residue option to set a pre-defined algorithm that finds automatically the
right threshold.

Step 3: Perform the conversion

1. Click the New icon in the Destination Image area to create a new destination image.

2. Keep the default settings for the new Image object, and click OK.

3. In the Threshold dialog box, click Execute to perform the thresholding in the destination
image.

Extracting an Object Contour

Objective

Following this tutorial, you will learn how to use EasyImage to trace an object outline in a gray-
level image. The contour extraction allows you to get in a path vector all the points that
constitute an object contour, just by clicking an edge of this object.

You'll need first to load an image (step 1) and set a vector that will contain all the contour
points (step 2). Then you'll click an object edge, and the contour will be extracted automatically
(step 3).

Open eVision User Guide

93

Contours are extracted from object edges

Step 1: Load the source image

1. From the main menu, click EasyImage, then Contour.

2. Click the Open icon of the Source Image area, and load the image file EasyMatch\Switch1.tif.

3. Keep the default variable name for the new image object, and click OK.

Step 2: Set the destination vector

1. Click the New icon in the Destination Vector area.

2. Keep the default settings and variable name for the new vector object.

3. Click OK.

Step 3: Extract the contour

1. When moving the cursor above the image, an arrow appears.

2. Move the arrow above an object edge, and click.

Open eVision User Guide

94

From this object edge, a contour is traced, and a red line appears around the object.

The destination vector is filled with the points constituting the contour.

Transforming a Gray-Level image into its Black and White
Edges

Objective

Following this tutorial, you will learn how to use EasyImage to transform a gray-level image to a
binary image, keeping only the edges detected in the image. The conversion uses the Canny
edge detector algorithm.

You'll need to load a source image (step 1), and simply apply the Canny edge transformation
(step 2).

Source image (left) and destination image after Canny edge transformation (right)

Step 1: Load the source image

1. From the main menu, click EasyImage, then Canny Edge Detector.

2. Keep the default variable name, and click OK.

3. Click the Open icon of the Source Image area, and load the image file EasyImage\Key1.tif.

4. Keep the default variable name, and click OK.

Step 2: Apply the Canny edge transformation

1. Click the New icon in the Destination Image area to create a new destination image.

2. Keep the default settings, and click OK.

3. In the canny edge detector dialog box, click Apply to perform the operation in the destination
image.

Open eVision User Guide

95

Detecting the Corners of an Object Using Harris Corner
Detector

Objective

Following this tutorial, you will learn how to use EasyImage to detect the corners of an object.
The detection uses the Harris corner detector algorithm.

You'll need to load a source image (step 1), and simply apply the Harris corner detection (step
2).

Corners are detected in the source image

Step 1: Load the source image

1. From the main menu, click EasyImage, then Harris Corner Detector.

2. Keep the default variable name, and click OK.

3. Click the Open icon of the Source Image area, and load the image file EasyGauge\Bracket1.tif.

4. Keep the default variable name, and click OK.

Step 2: Apply the Harris corner detection

1. In the Harris corner detector dialog box, enter 2.3 for the Scale property.

2. Click Apply to perform corners detection.

3. Click Results to display the coordinates of all detected corners.

4. The Columns button allows you to display additional properties in the results list.

Detecting a Horizontal or Vertical Line Using Projection

Open eVision User Guide

96

Objective

Following this tutorial, you will learn how to use EasyImage to detect defects
(horizontal/vertical line) in a gray-level image.

You'll need first to load a source image (step 1), set a vector (step 2), and then detect the defect
(horizontal line) (step 3).

Defects can be detected using the image projection

Step 1: Load the source image

1. From the main menu, click EasyImage, then Projection.

2. Click the Open icon of the Source Image area, and load the image file EasyImage\Leather.bmp.

3. Keep the default variable name for the new image object, and click OK.

Step 2: Set the destination vector

1. Click the New icon in the Destination Vector area.

2. Select the BW32 option for the vector type, and click OK.

Step 3: Detect the defects

1. In the Image Projection dialog box, select the column button, and click Execute to perform the
operation.

2. The resulting vector and the corresponding plot are displayed in the destination vector
window. The graphical result also appears on the image. Each vector value is the sum of all
pixels values across the corresponding horizontal row (or vertical column). By this mean,
horizontal (or vertical) defects are easily detected.

Creating a Flexible Mask
"Using Flexible Masks" on page 122

Open eVision User Guide

97

Objective

Following this tutorial, you will learn how to create a flexible mask from a source image, to
restrict a future processing to an arbitrary-shaped do-care area.

Flexible masks can be created in any ways to build a bi-level image. Here, we will first load the
source image (step 1), and then successively invert it, and threshold it (steps 2-3). The resulting
image —the flexible mask— will be saved as a new image file (step 4). This new image file is a bi-
level image. However, there are still black areas that need to be erased, before using the image
as a flexible mask. You can use a third-party software, such as Paint, to clear the unwanted
areas.

Source image (left) and flexible mask image (right)

Step 1: Load the source image

1. From the main menu, click EasyImage, then Arithmetic & logic.

2. Click the Open icon of the Source Image 0 area, and load the image file EasyImage\Key1.tif.

3. Keep the default variable name for the new image object, and click OK.

Step 2: Invert the image

1. Click the New icon of the Destination area.

2. Keep the default settings for the new image object, and click OK.

3. In the Operation drop-down list, select Invert, and click Execute

Step 3: Threshold the image

1. From the main menu, click EasyImage, then Threshold.

2. In the Source Image area, select the inverted image from the drop-down list.

3. Click the New icon of the Destination area.

4. Keep the default settings for the new image object, and click OK.

5. Select the Absolute option, enter '46' as the threshold value, and click Execute.

Step 4: Save the flexible mask

1. Right-click in the destination image, and select Save As....

Open eVision User Guide

98

2. Type a file name for the new flexible mask file. Finally, click Save.

TIP
The new image now is a bi-level image. However, there are still black areas
that need to be erased, before using the image as a flexible mask. You can
use a third-party software, such as Paint, to clear the unwanted areas.

Computing Gray-Level Statistics Using a Flexible Mask
"Using Flexible Masks" on page 122

Objective

Following this tutorial, you will learn how to compute gray-level statistics on an arbitrary-
shaped area only.

You'll need first to load a source image (step 1), and a flexible mask image (step 2). The mask
image must be applied on the source image (step 3), to separate do-care areas (that must be
considered) and don't-care areas (that should not be considered). Finally, the gray-level
statistics are computed on the do-care area only (step 4).

Source image (left) and flexible mask image (right)

Step 1: Load the source image

1. From the main menu, click EasyImage, then Image Statistics, Gray Scale.

2. Click the Open icon of the Source Image area, and load the image file EasyImage\Key1.tif.

3. Keep the default variable name for the new image object, and click OK.

Step 2: Load the flexible mask image

1. From the main menu, click Image, then Open....

2. Load the image file EasyImage\Mask2.bmp.

3. Keep the default variable name for the new image, and click OK.

Open eVision User Guide

99

Step 3: Apply the flexible mask on the source image

1. In the Mask area of the Gray Scale Image Pixels Statistics dialog box, select the mask
image from the drop-down list.

2. The source image preview in the dialog box shows (in red diagonal lines) the don't-care area,
that is the area that will be not be considered when computing the gray-level statistics.

Step 4: Compute the gray-level statistics

1. Select the Pixel Count check-box.

2. Click Execute.

The results are displayed in the read-only fields below.

Detecting the Corners of an Object Using Hit-and-Miss
Transform
"Hit-and-Miss Transform" on page 117

Objective

Following this tutorial, you will learn how to use EasyImage to detect top corners in an image,
using the hit-and-miss transform.

You'll need to load a source image (step 1), set the kernel that represents a top corner (step 2),
and then set a destination image and simply execute the hit-and-miss transform (step 3).

Source image (left) and top corner detected in the source image (white dot)

Step 1: Load the source image

1. From the main menu, click EasyImage, then Hit And Miss.

2. Click the Open icon of the Source Image area, and load the image file EasyImage\Diamond.bmp.

3. Keep the default variable name, and click OK.

Step 2: Set the hit-and-miss kernel

● In the Hit And Miss dialog box, set the kernel according to the following values:

Open eVision User Guide

100

Kernel that detects top corners

Step 3: Apply the hit-and-miss transform

1. Click the New icon of the Destination Image area.

2. Keep the default parameters and variable name, and click OK.

3. Click Execute to perform the operation.

The top corner (white dot) is detected.

4. Try with other kernel configurations to detect the other corners.

Extracting a Vector Using Profile Function
"Profile Sampling" on page 118

Objective

Following this tutorial, you will learn how to use EasyImage to detect scratches.

You'll need first to load an image (step 1), set a destination vector, and detect the scratches
(step 2).

Scratches can be detected using a profile

Open eVision User Guide

101

Step 1: Load the source image

From the main menu, click EasyImage, then Profile.

1. Click the Open icon of the Source Image area, and load the image file EasyImage\Plastic.tif.

2. Keep the default variable name for the new image object, and click OK.

Step 2: Set the destination vector and detecting the scratches

1. Click the New icon in the Destination Vector area.

2. Select the BW8 option for the vector type, and click OK.

3. A profile appears on the image (red line segment). In the destination vector window, vector
values correspond to pixels along the line segment.

The scratch is detected as a sharp deviation in the vector graph.

4. Using the mouse, drag the handles to move or resize the red line segment, and observe the
plot evolution.

The sharp deviation appears whenever the line segment is placed across the scratch.

Enhancing an X-ray image

Objective

Following this tutorial, you will learn how to use EasyImage to enhance an X-ray image.

You'll need first to load an image (step 1), then define convolution parameters to enhance the
image (step 2).

Source image (left) and enhanced image, after predefined and user-defined convolutions
(right)

Open eVision User Guide

102

Step 1: Load the source image

1. From the main menu, click EasyImage, then Convolution.

2. Click the Open icon of the Source Image area, and load the image file EasyImage\XRay.bmp.

3. Keep the default variable name for the new image object, and click OK.

4. Click the New icon of the Destination Image area to create a new destination image.

5. Keep the default variable name and click OK.

Step 2: Set the convolution parameters

1. From the Predefined kernels drop-down list, select Highpass2, and click Execute to perform
the operation.

The image is no longer blurred but the result is bad because the filter has revealed the noise of
the source image. We need to create a new convolution kernel that will apply a softer high-pass
filtering.

2. Click the New icon next to the User defined kernels drop-down list.

3. Keep the default dimension (3x3) and variable name, and click OK.

4. Enter the following kernel data from left to right and top to bottom: -1, -1, -1; -1, 15, -1; -1, -1,
-1, and click Apply.

5. Click Execute in the Convolution dialog box to perform the operation. The image is much
clearer now.

Correcting Non-Uniform Illumination

Objective

Following this tutorial, you will learn how to use EasyImage to correct non-uniform illumination
in an image.

You'll need first to load an image (step 1), load a light reference image (step 2), and perform the
correction (step 3).

Open eVision User Guide

103

Source image, with non-uniform illumination (left) and corrected image (right)

Step 1: Load the source image

1. From the main menu, click EasyImage, then Uniformize.

2. Click the Open icon of the Source Image area, and load the image file EasyImage\Board
(original).tif.

3. Keep the default variable name for the new image object, and click OK.

Step 2: Load the reference image

1. Click the Open icon of the Light Reference area, and load the image file EasyImage\Board (light
reference).tif.

To obtain the light reference image, we used a white screen illuminated in the same condition
as the board (original image).

2. Keep the default variable name for the new image object, and click OK.

Step 3: Perform the correction

1. Click the New icon in the Destination Image area to create a new destination image.

2. Keep the default values and click OK.

3. Click Execute to perform the operation.

4. In both source and destination images, right-click and select 3D Rendering.

5. In the new 3D windows, click and drag the mouse to rotate the view. Compare the profiles.

Correcting Shear Effect

Objective

Following this tutorial, you will learn how to use EasyImage to correct a shear effect in an
image. The following image is taken by a line-scan camera. The camera sensor was misaligned,
resulting in a so-called shear effect.

You'll need first to load an image (step 1), create a destination image (step 2), and then set
pivots parameters to perform the correction (step 3).

Open eVision User Guide

104

Source image, with a shear effect (left) and corrected image (right)

Step 1: Load the source image

1. From the main menu, click EasyImage, then Register.

2. Click the Open icon of the Source Image area, and load the image file EasyImage\Shear.tif.

3. Keep the default variable name for the new image object, and click OK. Three pivots points
appear in the image.

Step 2: Create a destination image

1. Click the New icon of the Destination Image area.

2. Enter '768' and '576' as image width and height, and click OK to accept the default name.
Three pivots points appear in the image.

Step 3: Set the pivots parameters

1. In the source image, using the mouse, drag each pivot to the center of the fiducial marks (the
dots around the U18 area).

Notice that the source pivots coordinates, in the Register dialog box, have changed accordingly.

2. To correct the image, enter the following destination pivots coordinates:
□ X0: 170
□ Y0: 495
□ X1: 470
□ Y1: 495
□ X2: 170
□ Y2: 144

3. Click Execute to perform the operation.

Correcting Skew Effect

Open eVision User Guide

105

Objective

Following this tutorial, you will learn how to use EasyImage to correct skew effect in an image.

You'll need first to load an image (step 1), create a destination image (step 2), and then set a
correction angle to perform the correction (step 3).

Source image, with a skew effect (left) and corrected image (right)

Step 1: Loading the source image

1. From the main menu, click EasyImage, then Scale and Rotate.

2. Click the Open icon of the Source Image area, and load the image file EasyImage\CCD.tif.

3. Keep the default variable name for the new image object, and click OK.

Step 2: Creating a destination image

1. Click the New icon of the Destination Image area.

2. Enter '768' and '576' as image width and height, and click OK to accept the default name.

Step 3: Setting the correction angle

1. Select the Rotate option, and enter -16.17 in the Angle (Deg) field. (To measure this rotation
angle, refer to Measuring the rotation angle of an object.)

2. From the Interpolation bits drop-down list, select 8 bits to get a better result.

3. Click Execute to perform the operation.

5.2. EasyColor

Performing Thresholding on Color Images
"Color Components" on page 124

Open eVision User Guide

106

Objective

Following this tutorial, you will learn how to use EasyColor to segment a color source image, by
setting a threshold value for each color component of the current color system. For example, to
retrieve the solder pads on a PCB, you'll perform a color segmentation based on the golden
pixels (H), with a loose discrimination on the brightness (L) and saturation (S), to eliminate
surface and lighting effects.

You'll need first to load a color source image, create a destination image, and a color lookup
table (steps 1-3). Then, you'll set the color system and tune each component tolerance to get a
satisfying segmentation of the solder pads (step 4).

Source image

Thresholded image

Step 1: Load the source image

1. From the main menu, click EasyColor, then Threshold.

2. Click the Open icon of the Source Image area, and load the image file EasyColor\BGA Substrate
Color.jpg.

3. Keep the default variable name for the new Image object, and click OK.

4. Disable the Preview Mode check-box to see the raw source image.

Open eVision User Guide

107

Step 2: Create a destination image

1. Click the New icon of the Destination Image area.

2. Keep the default variable name for the new Image object, and click OK.

Step 3: Create a color lookup table

1. Click the New icon of the Color Lookup area.

2. Keep the default variable name for the new color lookup object, and click OK.

Step 4: Perform the color segmentation

1. Select LSH from the Color System drop-down list.

2. In the source image, click in a golden pad. The pixel lightness, saturation and hue values are
updated in the Color Threshold dialog box.

3. Adjust the tolerance of lightness and saturation to enlarge the range of thresholded pixels,
until you get a satisfying segmentation in the destination image.

Performing Color Segmentation
"Color Components" on page 124

Objective

Following this tutorial, you will learn how to use EasyImage to perform color segmentation.

You'll need first to load an image (step 1), create a color look-up table (step 2), and perform the
segmentation (step 3).

Source image

Segmented image

Step 1: Load the source image

1. From the main menu, click EasyColor, then Threshold.

2. Click the Open icon of the Source Image area, and load the image file EasyColor\Pills.tif.

3. Keep the default variable name for the new image object, and click OK.

Open eVision User Guide

108

4. Disable the Preview Mode check-box to see the raw source image.

Step 2: Create a color lookup table

1. Click the New icon of the Color Lookup area.

2. Keep the default variable name for the new color lookup object, and click OK.

Step 3: Perform the color segmentation

1. Select LSH from the Color System drop-down list.

2. In the source image, click in the center of a green pill. The pixel lightness, saturation and hue
values are updated in the Color Threshold dialog box.

3. Increase the lightness tolerance up to 120. Increase the saturation tolerance up to 50.

4. Enable the Preview Mode check-box to see the result of the segmentation. If needed, click in
the green pills to improve the result.

5. Click the New icon of the Destination Image area.

6. Keep the default settings for the new Image object, and click OK.

7. The new image is automatically thresholded. Clicking Execute will insert the corresponding
code into the script windows.

Open eVision User Guide

109

6. Code Snippets

Open eVision User Guide

110

6.1. Basic Types

Loading and Saving Images
Functional Guide | Reference: Load, Save, SaveJpeg

//
// This code snippet shows how to load and save an image. //
//

// Images constructor
EImageBW8 srcImage= new EImageBW8();
EImageBW8 dstImage= new EImageBW8();

// Load an image file
srcImage.Load("mySourceImage.bmp");

// ...

// Save the destination image into a file
dstImage.Save("myDestImage.bmp");

// Save the destination image into a jpeg file
// The default compression quality is 75
dstImage.Save("myDestImage.jpg");

// Save the destination image into a jpeg file
// set the compression quality to 50
dstImage.SaveJpeg("myDestImage50.jpg", 50);

Interfacing Third-Party Images
Functional Guide | Reference: SetImagePtr

///
// This code snippet shows how to link an Open eVision image //
// to an externally allocated buffer. //
///

// Images constructor
EImageBW8 srcImage= new EImageBW8();

// Size of the third-party image
int sizeX = bufferSizeX;
int sizeY = bufferSizeY;

//Pointer to the third-party image buffer
IntPtr imgPtr = bufferPointer;

// ...

// Link the Open eVision image to the third-party image
// Assuming the corresponding buffer is aligned on 4 bytes
srcImage.SetImagePtr(sizeX, sizeY, imgPtr);

Open eVision User Guide

ebaseroi-load.htm
ebaseroi-save.htm
ebaseroi-savejpeg.htm
ebaseroi-setimageptr.htm
ebaseroi-setimageptr.htm

111

Retrieving Pixel Values
Functional Guide | Reference: GetImagePtr

///
// This code snippet shows the recommended method to access //
// the pixel values in a BW8 image. //
///

using System.RunTime.InteropServices;

IntPtr pixAddr;
byte pix;

//...

for(int y = 0; y < height; ++y)
{

pixAddr = bw8Image.GetImagePtr(0,y);
for(int x = 0; x < width; ++x)

pix = Marshal.ReadByte(pixAddr,x);
}

ROI Placement
Functional Guide | Reference: Attach, SetPlacement

///
// This code snippet shows how to attach an ROI to an image //
// and set its placement. //
///

// Image constructor
EImageBW8 parentImage= new EImageBW8();

// ROI constructor
EROIBW8 myROI= new EROIBW8();

// Attach the ROI to the image
myROI.Attach(parentImage);

//Set the ROI position
myROI.SetPlacement(50, 50, 200, 100);

Vector Management
Functional Guide | Reference: Empty, AddElement

///
// This code snippet shows how to create a vector, fill it //
// and retrieve the value of a given element. //
///

// EBW8Vector constructor
EBW8Vector ramp= new EBW8Vector();
EBW8 bw8 = new EBW8();

// Clear the vector

Open eVision User Guide

ebaseroi-getimageptr.htm
ebaseroi-attach.htm
ebaseroi-setplacement.htm
ebaseroi-attach.htm
ebaseroi-setplacement.htm
evector-empty.htm
ebw8vector-addelement.htm

112

ramp.Empty();

// Fill the vector with increasing values
for(int i= 0; i < 128; i++)
{

bw8.Value = (byte)i;
ramp.AddElement(bw8);

}

// Retrieve the 10th element value
EBW8 value = ramp.GetElement(9);

Exception Management
Functional Guide | Reference: GetPixel, What

//
// This code snippet shows how to manage //
// Open eVision exceptions. //
//

try
{

// Image constructor
EImageC24 srcImage= new EImageC24();

// ...

// Retrieve the pixel value at coordinates (56, 73)
EC24 value= srcImage.GetPixel(56, 73);

}

catch(EException exc)
{

// Retrieve the exception description
string error = exc.What();

}

Open eVision User Guide

evector-empty.htm
ebw8vector-addelement.htm
eroic24-getpixel.htm
eexception-what.htm
eroic24-getpixel.htm
eexception-what.htm

113

6.2. EasyImage

Thresholding

Single Thresholding

Functional Guide | Reference: SetSize, Threshold

//
// This code snippet shows how to perform minimum residue //
// thresholding, absolute thresholding and relative //
// thresholding operations. //
//

// Images constructor
EImageBW8 srcImage= new EImageBW8();
EImageBW8 dstImage= new EImageBW8();

// ...

// Source and destination images must have the same size
dstImage.SetSize(srcImage);

// Minimum residue thresholding (default method)
EasyImage.Threshold(srcImage, dstImage);

// Absolute thresholding (threshold = 110)
EasyImage.Threshold(srcImage, dstImage, 110);

// Relative thresholding (70% black, 30% white)
EasyImage.Threshold(srcImage, dstImage, unchecked((uint)EThresholdMode.Relative), 0, 255, 0.7f);

Double Thresholding

Functional Guide | Reference: DoubleThreshold

//
// This code snippet shows how to perform a thresholding //
// operation based on low and high threshold values. //
//

// Images constructor
EImageBW8 srcImage= new EImageBW8();
EImageBW8 dstImage= new EImageBW8();

// ...

// Source and destination images must have the same size
dstImage.SetSize(srcImage);

// Double thresholding, low threshold = 50, high threshold = 150,
// pixels below 50 become black, pixels above 150 become white,
// pixels between thresholds become gray
EasyImage.DoubleThreshold(srcImage, dstImage, 50, 150, 0, 128, 255);

Open eVision User Guide

ebaseroi-setsize.htm
easyimage-doublethreshold.htm
ebaseroi-setsize.htm
easyimage-doublethreshold.htm

114

Histogram-Based Single Thresholding

Functional Guide | Reference: Histogram, HistogramThreshold

//
// This code snippet shows how to perform a minimum residue //
// thresholding operation based on an histogram. //
//

// Images constructor
EImageBW8 srcImage= new EImageBW8();
EImageBW8 dstImage= new EImageBW8();

// Histogram constructor
EBWHistogramVector histo= new EBWHistogramVector();

// Variables
uint thresholdValue= , unchecked((uint)EThresholdMode.MinResidue);
float avgBelowThr, avgAboveThr;

// ...

// Compute the histogram
EasyImage.Histogram(srcImage, histo);

// Compute the single threshold (and the average pixel values below and above the threshold)
EasyImage.HistogramThreshold(histo, ref thresholdValue, out avgBelowThr, out avgAboveThr);

// Source and destination images must have the same size
dstImage.SetSize(srcImage);

// Perform the single thresholding
EasyImage.Threshold(srcImage, dstImage, thresholdValue);

Histogram-Based Double Thresholding

Functional Guide | Reference: Histogram, ThreeLevelsMinResidueThreshold, DoubleThreshold

//
// This code snippet shows how to perform a double thresholding //
// operation. The low and high threshold values are computed //
// according to the minimum residue method based on an histogram. //
//

// Images constructor
EImageBW8 srcImage= new EImageBW8();
EImageBW8 dstImage= new EImageBW8();

// Histogram constructor
EBWHistogramVector histo= new EBWHistogramVector();

// Variables
EBW8 lowThr= new EBW8();
EBW8 highThr= new EBW8();
float avgBelowThr, avgBetweenThr, avgAboveThr;

// ...

// Compute the histogram
EasyImage.Histogram(srcImage, histo);

Open eVision User Guide

easyimage-histogram.htm
easyimage-histogramthreshold.htm
easyimage-histogram.htm
easyimage-threelevelsminresiduethreshold.htm
easyimage-doublethreshold.htm

115

// Compute the low and high threshold values automatically
// (and the average pixel values below, between and above the threshold)
EasyImage.ThreeLevelsMinResidueThreshold(histo, out lowThr, out highThr, out avgBelowThr, out avgBetweenThr, out
avgAboveThr);

// Source and destination images must have the same size
dstImage.SetSize(srcImage);

// Perform the double thresholding
EasyImage.DoubleThreshold(srcImage, dstImage, lowThr.Value , highThr.Value);

Arithmetic and Logic Operations
Functional Guide | Reference: Oper

//
// This code snippet shows how to apply miscellaneous //
// arithmetic and logic operations to images. //
//

// Images constructor
EImageBW8 srcGray0= new EImageBW8();
EImageBW8 srcGray1= new EImageBW8();
EImageBW8 dstGray= new EImageBW8();
EImageC24 srcColor= new EImageC24();
EImageC24 dstColor= new EImageC24();

EBW8 bw8Constant = new EBW8(2);
EC24 c24Constant = new EC24(128, 64, 196);

// ...

// All images must have the same size
dstGray.SetSize(srcGray0);
dstColor.SetSize(srcColor);

// Subtract srcGray1 from srcGray0
EasyImage.Oper(EArithmeticLogicOperation.Subtract, srcGray0, srcGray1, dstGray);

// Multiply srcGray0 by a constant value
EasyImage.Oper(EArithmeticLogicOperation.Multiply, srcGray0, bw8Constant, dstGray);

// Add a constant value to srcColor
EasyImage.Oper(EArithmeticLogicOperation.Add, srcColor, c24Constant, dstColor);

// Erase (blacken) the destination image where the source image is black
bw8Constant.Value = (byte)0;
EasyImage.Oper(EArithmeticLogicOperation.SetZero, srcGray0, bw8Constant, dstGray);

Convolution

Pre-Defined Kernel Filtering

///
// This code snippet shows how to apply miscellaneous //
// convolution operations based on pre-defined kernels. //
///

Open eVision User Guide

easyimage-oper.htm

116

// Images constructor
EImageBW8 srcImage= new EImageBW8();
EImageBW8 dstImage= new EImageBW8();

// ...

// Source and destination images must have the same size
dstImage.SetSize(srcImage);

// Perform a Uniform filtering (5x5 kernel)
EasyImage.ConvolUniform(srcImage, dstImage, 2);

// Perform a Highpass filtering
EasyImage.ConvolHighpass1(srcImage, dstImage);

// Perform a Gradient filtering
EasyImage.ConvolGradient(srcImage, dstImage);

// Perform a Sobel filtering
EasyImage.ConvolSobel(srcImage, dstImage);

User-Defined Kernel Filtering

///
// This code snippet shows how to apply a convolution //
// operation based on a user-defined kernel. //
///

// Images constructor
EImageBW8 srcImage= new EImageBW8();
EImageBW8 dstImage= new EImageBW8();

// ...

// Create and define a user-defined kernel
// (Frei-Chen row gradient, positive only)
EKernel kernel= new EKernel();
kernel.SetKernelData(0.2929f, 0, -0.2929f,

0.4142f, 0, -0.4142f,
0.2929f, 0, -0.2929f);

// Source and destination images must have the same size
dstImage.SetSize(srcImage);

// Apply the convolution kernel
EasyImage.ConvolKernel(srcImage, dstImage, kernel);

Non-Linear Filtering
Functional Guide | Reference

Morphological Filtering

Functional Guide | Reference: ErodeBox, DilateBox, OpenDisk

///
// This code snippet shows how to apply miscellaneous //

Open eVision User Guide

easyimage-class.htm
easyimage-erodebox.htm
easyimage-dilatebox.htm
easyimage-opendisk.htm

117

// morphological filtering operations. //
///

// Images constructor
EImageBW8 srcImage= new EImageBW8();
EImageBW8 dstImage= new EImageBW8();

// ...

// Source and destination images must have the same size
dstImage.SetSize(srcImage);

// Perform an erosion (3x3 square kernel)
EasyImage.ErodeBox(srcImage, dstImage, 1);

// Perform a dilation (5x3 rectangular kernel)
EasyImage.DilateBox(srcImage, dstImage, 2, 1);

// Perform an Open operation (5x5 circular kernel)
EasyImage.OpenDisk(srcImage, dstImage, 2);

Hit-and-Miss Transform

Functional Guide | Reference: SetValue, HitAndMiss

//
// This code snippet shows how to highlight the left corner //
// of a rhombus by means of a Hit-and-Miss operation. //
//

// Images constructor
EImageBW8 srcImage= new EImageBW8();
EImageBW8 dstImage= new EImageBW8();

// ...

// Create and define a Hit-and-Miss kernel
// corresponding to the left corner of a rhombus
EHitAndMissKernel leftCorner= new EHitAndMissKernel(-1, -1, 1, 1);

// Left column of the kernel
leftCorner.SetValue(-1, 0, EHitAndMissValue.Background);

// Middle column of the kernel
leftCorner.SetValue(0, -1, EHitAndMissValue.Background);
leftCorner.SetValue(0, 0, EHitAndMissValue.Foreground);
leftCorner.SetValue(0, 1, EHitAndMissValue.Background);

// Right column of the kernel
leftCorner.SetValue(1, -1, EHitAndMissValue.Foreground);
leftCorner.SetValue(1, 0, EHitAndMissValue.Foreground);
leftCorner.SetValue(1, 1, EHitAndMissValue.Foreground);

// Source and destination images must have the same size
dstImage.SetSize(srcImage);

// Apply the Hit-and-Miss kernel
EasyImage.HitAndMiss(srcImage, dstImage, leftCorner);

Open eVision User Guide

ehitandmisskernel-setvalue.htm
easyimage-hitandmiss.htm

118

Vector Operations
Functional Guide | Reference

Path Sampling

Functional Guide | Reference: Empty, AddElement, ImageToPath

//
// This code snippet shows how to retrieve and store the //
// pixel values along a given path together with the //
// corresponding pixel coordinates. //
//

// Image constructor
EImageBW8 srcImage= new EImageBW8();

// ...

// Vector constructor
EBW8PathVector path= new EBW8PathVector();
EBW8 bw8= new EBW8(128);

// Path definition
path.Empty();
for (int i = 0; i < 100; i++)
{
EBW8Path p;
p.X = (short)i;
p.Y = (short)i;
p.Pixel = bw8;
path.AddElement(p);

}

// Get the image data along the path
EasyImage.ImageToPath(srcImage, path);
int pixel = path.GetElement(20).Pixel.UINT32Value;

Profile Sampling

Functional Guide | Reference: ImageToLineSegment, LineSegmentToImage

//
// This code snippet shows how to set, retrieve and store //
// the pixel values along a given line segment. //
//

// Image constructor
EImageBW8 srcImage= new EImageBW8();

// ...

// Vector constructor
EBW8Vector profile= new EBW8Vector();

// Get the image data along segment (10,512)-(500,40)
EasyImage.ImageToLineSegment(srcImage, profile, 10, 512, 500, 40);

Open eVision User Guide

easyimage-class.htm
evector-empty.htm
ebw8pathvector-addelement.htm
easyimage-imagetopath.htm
easyimage-imagetolinesegment.htm
easyimage-linesegmenttoimage.htm

119

// Set all these points to white (255) in the image
EBW8 white = new EBW8(255);
EasyImage.LineSegmentToImage(srcImage, white, 10, 512, 500, 40);

Statistics

Image Statistics

//
// This code snippet shows how to compute basic image statistics. //
//

// Image constructor
EImageBW8 srcImage= new EImageBW8();

// ...

// Count the number of pixels above the threshold (128)
int count;
EBW8 threshold = new EBW8(128);
EasyImage.Area(srcImage, threshold, out count);

// Compute the pixels' average and standard deviation values
float stdDev, average;
EasyImage.PixelStdDev(srcImage, out stdDev, out average);

// Compute the image gravity center (pixels above threshold)
float x, y;
EasyImage.GravityCenter(srcImage, 128, out x, out y);

Sliding Windows Statistics

Functional Guide | Reference: LocalAverage, LocalDeviation

//
// This code snippet shows how to perform sliding windows statistics. //
//

// Images constructor
EImageBW8 srcImage= new EImageBW8();
EImageBW8 dstImage0= new EImageBW8();
EImageBW8 dstImage1= new EImageBW8();

// ...

// All images must have the same size
dstImage0.SetSize(srcImage);
dstImage1.SetSize(srcImage);

// Local average in a 11x11 window
EasyImage.LocalAverage(srcImage, dstImage0, 5, 5);

// Local deviation in a 11x11 window
EasyImage.LocalDeviation(srcImage, dstImage1, 5, 5);

Open eVision User Guide

easyimage-localaverage.htm
easyimage-localdeviation.htm

120

Histogram-Based Statistics

Functional Guide | Reference: Histogram, AnalyseHistogram

///
// This code snippet shows how to compute statistics //
// based on an histogram. //
///

// Image constructor
EImageBW8 srcImage= new EImageBW8();

// ...

// Histogram constructor
EBWHistogramVector histo= new EBWHistogramVector();

// Compute the histogram
EasyImage.Histogram(srcImage, histo);

// Compute the average gray-level value
float average = EasyImage.AnalyseHistogram(histo, EHistogramFeature.AveragePixelValue, 0, 255);

// Compute the gray-level standard deviation
float deviation = EasyImage.AnalyseHistogram(histo, EHistogramFeature.PixelValueStdDev, 0, 255);

Noise Reduction by Integration
Functional Guide | Reference

Temporal Noise Reduction

Functional Guide | Reference: Oper

///
// This code snippet shows how to perform noise //
// reduction by temporal averaging. //
///

// Images constructor
EImageBW16 noisyImage= new EImageBW16();
EImageBW16 cleanImage= new EImageBW16();

// 16 bits work image used as an accumulator
EImageBW16 store= new EImageBW16();

// ...

// All images must have the same size
cleanImage.SetSize(noisyImage);
store.SetSize(noisyImage);

// Clear the accumulator image
EBW16 bw16= new EBW16(0);
EasyImage.Oper(EArithmeticLogicOperation.Copy, bw16, store);

// Accumulation loop
int n;

Open eVision User Guide

easyimage-histogram.htm
easyimage-analysehistogram.htm
easyimage-class.htm
easyimage-oper.htm

121

for (n = 0; n < 10; n++)
{

// Acquire a new image into noisyImage
// ...

// Add this new noisy image into the accumulator
EasyImage.Oper(EArithmeticLogicOperation.Add, noisyImage, store, store);

}

// Perform noise reduction
bw16.Value= (byte)n;
EasyImage.Oper(EArithmeticLogicOperation.Divide, store, bw16, cleanImage);

Recursive Average

Functional Guide | Reference: Oper, SetRecursiveAverageLUT, RecursiveAverage

///
// This code snippet shows how to perform noise //
// reduction by recursive averaging. //
///

// Images constructor
EImageBW8 noisyImage= new EImageBW8();
EImageBW8 cleanImage= new EImageBW8();

// 16 bits work image used as an accumulator
EImageBW16 store= new EImageBW16();

// ...

// All images must have the same size
cleanImage.SetSize(noisyImage);
store.SetSize(noisyImage);

// Clear the accumulator image
EBW16 bw16= new EBW16(0);
EasyImage.Oper(EArithmeticLogicOperation.Copy, bw16, store);

// Prepare the transfer lookup table (reduction factor = 3)
EBW16Vector lut= new EBW16Vector();
EasyImage.SetRecursiveAverageLUT(lut, 3.0f);

// Perform the noise reduction
EasyImage.RecursiveAverage(noisyImage, store, cleanImage, lut);

Feature Point Detectors

Harris Corner Detector

Functional Guide | Reference: GetPointCount, GetPoint

//
// This code snippet shows how to retrieve corners' coordinates //
// by means of the Harris corner detector algorithm. //
//

// Image constructor

Open eVision User Guide

easyimage-oper.htm
easyimage-setrecursiveaveragelut.htm
easyimage-recursiveaverage.htm
eharrisinterestpoints-pointcount.htm
eharrisinterestpoints-getpoint.htm

122

EImageBW8 srcImage= new EImageBW8();

// ...

// Harris corner detector
EHarrisCornerDetector harris= new EHarrisCornerDetector();
EHarrisInterestPoints interestPoints= new EHarrisInterestPoints();
harris.IntegrationScale= 2.0f;

// Perform the corner detection
harris.Apply(srcImage, interestPoints);

// Retrieve the number of corners
uint index = interestPoints.PointCount;

// Retrieve the first corner coordinates
EPoint point = interestPoints.GetPoint(0);
float x = point.X;
float y = point.Y;

Canny Edge Detector

Functional Guide | Reference: Apply

///
// This code snippet shows how to highlight edges //
// by means of the Canny edge detector algorithm. //
///

// Images constructor
EImageBW8 srcImage= new EImageBW8();
EImageBW8 dstImage= new EImageBW8();

// ...

// Canny edge detector
ECannyEdgeDetector canny= new ECannyEdgeDetector();

// Source and destination images must have the same size
dstImage.SetSize(srcImage);

// Perform the edges detection
canny.Apply(srcImage, dstImage);

Using Flexible Masks
Functional Guide | Reference

Computing Pixels Average

Functional Guide | Reference: PixelAverage

///
// This code snippet shows how to compute statistics //
// inside a region defined by a flexible mask. //
///

// Images constructor
EImageBW8 srcImage= new EImageBW8();

Open eVision User Guide

ecannyedgedetector-apply.htm
easyimage-class.htm
easyimage-pixelaverage.htm

123

EImageBW8 mask= new EImageBW8();

// ...

// Compute the average value of the source image pixels
// corresponding to the mask do-care areas only
float average;
EasyImage.PixelAverage(srcImage, mask, out average);

Open eVision User Guide

124

6.3. EasyColor

Colorimetric Systems Conversion
Functional Guide | Reference: ConvertFromRgb, Transform

//
// This code snippet shows how to convert a color image //
// from the RGB to the Lab colorimetric system. //
//

// Images constructor
EImageC24 srcImage= new EImageC24();
EImageC24 dstImage= new EImageC24();

// ...

// Prepare a lookup table for
// the RGB to La*b* conversion
EColorLookup lookup= new EColorLookup();
lookup.ConvertFromRgb(EColorSystem.Lab);

// Source and destination images must have the same size
dstImage.SetSize(srcImage);

// Perform the color conversion
EasyColor.Transform(srcImage, dstImage, lookup);

Color Components
Functional Guide | Reference: Compose, ConvertFromRgb, GetComponent

//
// This code snippet shows how to create a color image //
// from 3 grayscale images and extract the luminance //
// component from a color image. //
//

// Images constructor
EImageBW8 red= new EImageBW8();
EImageBW8 green= new EImageBW8();
EImageBW8 blue= new EImageBW8();
EImageC24 colorImage= new EImageC24();
EImageBW8 luminance= new EImageBW8();

// ...

// Source and destination images must have the same size
colorImage.SetSize(red);

// Combine the color planes into a color image
EasyColor.Compose(red, green, blue, colorImage);

// Prepare a lookup table for
// the RGB to LSH conversion
EColorLookup lookup= new EColorLookup();
lookup.ConvertFromRgb(EColorSystem.Lsh);

// Source and destination images must have the same size

Open eVision User Guide

ecolorlookup-convertfromrgb.htm
easycolor-transform.htm
easycolor-compose.htm
ecolorlookup-convertfromrgb.htm
easycolor-getcomponent.htm

125

luminance.SetSize(colorImage);

// Get the Luminance component
EasyColor.GetComponent(colorImage, luminance, 0, lookup);

White Balance
Functional Guide | Reference: PixelAverage, WhiteBalance, Transform

///
// This code snippet shows how to perform white balancing. //
///

// Images constructor
EImageC24 srcImage= new EImageC24();
EImageC24 dstImage= new EImageC24();
EImageC24 whiteRef= new EImageC24();

// ...

// Create a lookup table
EColorLookup lut= new EColorLookup();

// Measure the calibration values from a white reference image
float r, g, b;
EasyImage.PixelAverage(whiteRef, out r, out g, out b);

// Prepare the lookup table for
// a white balance operation
lut.WhiteBalance(1.00f, EasyColor.CompensateNtscGamma, r, g, b);

// Source and destination images must have the same size
dstImage.SetSize(srcImage);

// Perform the white balance operation
lut.Transform(srcImage, dstImage);

Pseudo-Coloring
Functional Guide | Reference: SetShading, PseudoColor

///
// This code snippet shows how to perform pseudo-coloring. //
///

// Images constructor
EImageBW8 srcImage= new EImageBW8();
EImageC24 dstImage= new EImageC24();

// ...

// Create a pseudo-color lookup table
EPseudoColorLookup pcLut= new EPseudoColorLookup();

// Define a shade of pure tints, from red to blue
EC24 red= new EC24(255, 0, 0);
EC24 blue= new EC24(0, 0, 255);
pcLut.SetShading(red, blue, EColorSystem.Ish);

// Source and destination images must have the same size

Open eVision User Guide

easyimage-pixelaverage.htm
ecolorlookup-whitebalance.htm
ecolorlookup-transform.htm
epseudocolorlookup-setshading.htm
easycolor-pseudocolor.htm

126

dstImage.SetSize(srcImage);

// Generate the pseudo-colored image
EasyColor.PseudoColor(srcImage, dstImage, pcLut);

Bayer Pattern Decoding
Functional Guide | Reference: BayerToC24

//
// This code snippet shows how to perform Bayer pattern decoding. //
//

// Images constructor
EImageBW8 bayerImage= new EImageBW8();
EImageC24 dstImage= new EImageC24();

// ...

// Source and destination images must have the same size
dstImage.SetSize(bayerImage);

// Convert to true color with simple interpolation, default parity assumed
EasyColor.BayerToC24(bayerImage, dstImage);

Open eVision User Guide

easycolor-bayertoc24.htm

	1. Dealing with Pixel Containers and Files
	1.1. Pixel Container Definition
	1.2. Pixel Container Types
	1.3. Supported Image File Types
	1.4. Pixel and File Types Compatibility
	1.5. Color Types

	2. Manipulating Pixels Containers and Files
	2.1. Pixel Container File Save
	2.2. Pixel Container File Load
	2.3. Memory Allocation
	2.4. Image and Depth Map Buffer
	2.5. Image Coordinate Systems
	2.6. Image Drawing and Overlay
	2.7. 3D Rendering of 2D Images
	2.8. Vector Types and Main Properties
	2.9. ROI Main Properties
	2.10. Arbitrarily Shaped ROI (ERegion)
	2.11. Flexible Masks
	2.12. Profile

	3. Image Pre-Processing Libraries
	3.1. EasyImage - Pre-Processing Images
	Intensity Transformation
	Thresholding
	Arithmetic and Logic
	Non-Linear Filtering
	Geometric Transforms
	Noise Reduction and Estimation
	Scalar Gradient
	Vector Operations
	Canny Edge Detector
	Harris Corner Detector
	Overlay
	Operations on Interlaced Video Frames
	Flexible Masks in EasyImage
	Computing Image Statistics

	3.2. EasyColor - Pre-Processing Color Images
	Bayer Conversion
	LUT for Gain/Offset (Color)
	LUT for Color Calibration
	LUT for Color Balance

	4. Using Open eVision Studio
	4.1. Selecting your Programming Language
	4.2. Navigating the Interface
	4.3. Running Tools on Images
	Step 1: Selecting a Tool
	Step 2: Opening an Image
	Step 3: Managing ROIs
	Step 4: Configuring the Tool
	Step 5: Running the Tool and Checking Execution Time
	Step 6: Using the Generated Code

	4.4. Pre-Processing and Saving Images

	5. Tutorials
	5.1. EasyImage
	Converting a Gray-Level Image into a Binary Image
	Extracting an Object Contour
	Transforming a Gray-Level image into its Black and White Edges
	Detecting the Corners of an Object Using Harris Corner Detector
	Detecting a Horizontal or Vertical Line Using Projection
	Creating a Flexible Mask
	Computing Gray-Level Statistics Using a Flexible Mask
	Detecting the Corners of an Object Using Hit-and-Miss Transform
	Extracting a Vector Using Profile Function
	Enhancing an X-ray image
	Correcting Non-Uniform Illumination
	Correcting Shear Effect
	Correcting Skew Effect

	5.2. EasyColor
	Performing Thresholding on Color Images
	Performing Color Segmentation

	6. Code Snippets
	6.1. Basic Types
	Loading and Saving Images
	Interfacing Third-Party Images
	Retrieving Pixel Values
	ROI Placement
	Vector Management
	Exception Management

	6.2. EasyImage
	Thresholding
	Single Thresholding
	Double Thresholding
	Histogram-Based Single Thresholding
	Histogram-Based Double Thresholding

	Arithmetic and Logic Operations
	Convolution
	Pre-Defined Kernel Filtering
	User-Defined Kernel Filtering

	Non-Linear Filtering
	Morphological Filtering
	Hit-and-Miss Transform

	Vector Operations
	Path Sampling
	Profile Sampling

	Statistics
	Image Statistics
	Sliding Windows Statistics
	Histogram-Based Statistics

	Noise Reduction by Integration
	Temporal Noise Reduction
	Recursive Average

	Feature Point Detectors
	Harris Corner Detector
	Canny Edge Detector

	Using Flexible Masks

	6.3. EasyColor
	Colorimetric Systems Conversion
	Color Components
	White Balance
	Pseudo-Coloring
	Bayer Pattern Decoding

