
Open eVision
Matching and Measurement Tools

USER GUIDE

© EURESYS s.a. 2021 - Document D124ET-Using Matching and Measurement Tools C++-Open eVision-



2

This documentation is provided with Open eVision 2.16.1 (doc build 1156).
www.euresys.com

Open eVision User Guide

https://www.euresys.com/


3

Contents
1. Dealing with Pixel Containers and Files 6
1.1. Pixel Container Definition 6
1.2. Pixel Container Types 8
1.3. Supported Image File Types 9
1.4. Pixel and File Types Compatibility 10
1.5. Color Types 12

2. Manipulating Pixels Containers and Files 13
2.1. Pixel Container File Save 13
2.2. Pixel Container File Load 15
2.3. Memory Allocation 16
2.4. Image and Depth Map Buffer 17
2.5. Image Coordinate Systems 20
2.6. Image Drawing and Overlay 21
2.7. 3D Rendering of 2D Images 21
2.8. Vector Types and Main Properties 23
2.9. ROI Main Properties 27
2.10. Arbitrarily Shaped ROI (ERegion) 29
2.11. Flexible Masks 36
2.12. Profile 40

3. Matching and Measurement Tools 42
3.1. EasyObject - Analyzing Blobs 42
Image Segmenters 45
Image Encoder 49
Holes Construction 51
Normal vs. Continuous Mode 52
Selecting and Sorting Blobs 55
Object Template Matcher 56
Advanced Features 59
Computable Features 59
Draw Coded Elements 64
Flexible Masks in EasyObject 65

3.2. EasyGauge - Measuring down to Sub-Pixel 67
Workflow 67
Gauge Definitions 69
Find Transition Points Using Peak Analysis 72
Find Shapes Using Geometric Models 77
Gauge Manipulation: Draw, Drag, Plot, Group 79
Calibration and Transformation 80
Calibration Using EWorldShape 81
Advanced Features 84
Unwarp an Image 86

3.3. EasyFind - Matching Geometric Patterns 88
Workflow 88
Learning Process 91
Finding Process 92
Advanced Features 93

3.4. EasyMatch - Matching Area Patterns 94
Workflow 94
Learning Process 95
Matching Process 97
Advanced Features 97

3.5. EChecker2 - Validating Golden Templates 98
EChecker2 98

Open eVision User Guide



4

Creating a Model 99
Inspecting an Image 102

4. Using Open eVision Studio 104
4.1. Selecting your Programming Language 104
4.2. Navigating the Interface 105
4.3. Running Tools on Images 106
Step 1: Selecting a Tool 106
Step 2: Opening an Image 107
Step 3: Managing ROIs 108
Step 4: Configuring the Tool 110
Step 5: Running the Tool and Checking Execution Time 111
Step 6: Using the Generated Code 113

4.4. Pre-Processing and Saving Images 114
5. Tutorials 116
5.1. EasyObject 116
Removing Non-Significant Objects After Image Segmentation 116
Detecting Differences Between Images Using Min-Max References 118
Detecting Printing Errors Using a Flexible Mask 119

5.2. EasyGauge 121
Measuring the Rotation Angle of an Object 121
Measuring the Diameter of a Circle 122
Measuring a Distorted Rectangle 124
Locating Points Regarding to a Coordinate System 126
Unwarping a Distorted Image 128

5.3. EasyFind 129
Detecting Highly-Degraded Occurrences of a Reference Model in Multiple Files 129
Improving the Score of Found Instances by Using "Don't Care Areas" 131

5.4. EasyMatch 134
Learning a Pattern and Creating an EasyMatch Model File 134
Matching a Pattern According to a Model File 134
Learning a Pattern According to an ROI 135
Improving the Score of Matching Instances by Using "Don't Care Areas" 137

6. Code Snippets 140
6.1. Basic Types 141
Loading and Saving Images 141
Interfacing Third-Party Images 141
Retrieving Pixel Values 142
ROI Placement 142
Vector Management 143
Exception Management 143

6.2. EasyObject 144
Constructing the Blobs 144
Image Encoder 144
Image Segmenter 144
Holes Extraction 145
Continuous Mode 146

Computing Blobs Features 146
Selecting and Sorting Blobs 147
Using Flexible Masks 147
Constructing Blobs 147
Generating a Flexible Mask from an Encoded Image 148
Generating a Flexible Mask from a Blob Selection 148

Using the Object Template Matcher 149
6.3. EasyGauge 151
Point Location 151
Line Fitting 151
Circle Fitting 152

Open eVision User Guide



5

Rectangle Fitting 153
Wedge Fitting 153
Gauge Grouping 154
Gauge Hierarchy 154
Complex Measurement 154

Calibration using EWorldShape 155
Calibration by Guesswork 155
Landmark-Based Calibration 156
Dot Grid-Based Calibration 156
Coordinates Transform 157
Image Unwarping 157

6.4. EasyFind 159
Pattern Learning 159
Setting Search Parameters 159
Pattern Finding and Retrieving Results 160

6.5. EasyMatch 161
Pattern Learning 161
Setting Search Parameters 161
Pattern Matching and Retrieving Results 162

Open eVision User Guide



6

1. Dealing with Pixel Containers and
Files

1.1. Pixel Container Definition

Images

Open eVision image objects contain image data that represents rectangular images.

Each image object has a data buffer, accessible via a pointer, where pixel values are stored
contiguously, row by row.

Image main parameters

An Open eVision image object has a rectangular array of pixels characterized by EBaseROI
parameters .

l Width is the number of columns (pixels) per row of the image.
l Height is the number of rows of the image. (Maximum width / height is 32,767 (215-1) in
Open eVision 32-bit, and 2,147,483,647 (231-1) in Open eVision 64-bit.)

l Size is the width and height.

The Plane parameter contains the number of color components. Gray-level images = 1. Color
images = 3.

Classes

Image and ROI classes derive from abstract class EBaseROI and inherit all its properties.

Open eVision User Guide

ebaseroi-class.htm
ebaseroi-width.htm
ebaseroi-height.htm
ebaseroi-setsize.htm
ebaseroi-planesperpixel.htm
ebaseroi-class.htm


7

Depth maps

A depth map is a way to represent a 3D object using a 2D grayscale image where each pixel in
the image represents a 3D point.

The pixel coordinates are the representation of the X and Y coordinates of the point while the
grayscale value of the pixel is a representation of the Z coordinate of the point.

Point clouds

A point cloud (https://en.wikipedia.org/wiki/Point_cloud) is an unstructured set of 3D points
representing discrete positions on the surface of an object.

Open eVision User Guide



8

3D point clouds are produced by various 3D scanning techniques, such as Laser Triangulation,
Time of Flight or Structured Lighting.

1.2. Pixel Container Types

Reference

Images

Several image types are supported according to their pixel types: black and white, gray levels,
color, etc.

Easy.GetBestMatchingImageType returns the best matching image type for a given file on disk.

BW1 1-bit black and white images (8 pixels
are stored in 1 byte) EImageBW1

BW8 8-bit grayscale images (each pixel is
stored in 1 byte) EImageBW8

BW16 16-bit grayscale images (each pixel is
stored in 2 bytes) EImageBW16

BW32 32-bit grayscale images (each pixel is
stored in 4 bytes) EImageBW32

C15

15-bit color images (each pixel is
stored in 2 bytes).
Compatible with Microsoft® Windows
RGB15 color images and MultiCam
RGB15 format.

EImageC15

Open eVision User Guide

eimagetype-enum.htm
easy-getbestmatchingimagetype.htm
eimagebw1-class.htm
eimagebw8-class.htm
eimagebw16-class.htm
eimagebw32-class.htm
eimagec15-class.htm


9

C16

16-bit color images (each pixel is
stored in 2 bytes).
Compatible with Microsoft® Windows
RGB16 color images and MultiCam
RGB16 format.

EImageC16

C24

C24 images store 24-bit color images
(each pixel is stored in 3 bytes).
Compatible with Microsoft® Windows
RGB24 color images and MultiCam
RGB24 format.

EImageC24

C24A

C24A images store 32-bit color images
(each pixel is stored in 4 bytes).
Compatible with Microsoft® Windows
RGB32 color images and MultiCam
RGB32 format.

EImageC24A

Depth Maps

8 and 16-bit depth map values are stored in buffers compatible with the 2D Open eVision
images.

EDepth8 8-bit depth map (each pixel is stored in
1 byte as an integer) EDepthMap8

EDepth16 16-bit depth map (each pixel is stored
in 2 bytes as a fixed point) EDepthMap16

EDepth32f 32-bit depth map (each pixel is stored
in 4 bytes as a float) EDepthMap32f

Point Clouds

Point Cloud Set of points coordinates (stored as
float) EPointCloud

1.3. Supported Image File Types

Reference

Type Description

BMP Uncompressed image data format (Windows Bitmap Format)

JPEG Lossy data compression standard issued by the Joint Photographic Expert
Group registered as ISO/IEC 10918-1. Compression irretrievably loses quality.

JFIF JPEG File Interchange Format

JPEG-2000
Data compression standard issued by the Joint Photographic Expert Group
registered as ISO/IEC 15444-1 and ISO/IEC 15444-2. Open eVision supports
only lossy compression format, file format and code stream variants.

Open eVision User Guide

eimagec16-class.htm
eimagec24-class.htm
eimagec24a-class.htm
edepthmap8-class.htm
edepthmap16-class.htm
edepthmap32f-class.htm
epointcloud-class.htm
eimagefiletype-enum.htm


10

Type Description

- code stream describes the image samples.
- file format includes meta-information such as image resolution and color
space.

PNG Lossless data compression method (Portable Network Graphics).

Serialized Euresys proprietary image file format obtained from the serialization of Open
eVision image objects.

TIFF

Tag Image File Format is currently controlled by Adobe Systems and uses the
LibTIFF third-party library to process images written for 5.0 or 6.0 TIFF
specification.
File save operations are lossless and use CCITT 1D compression for 1-bit
binary pixel types and LZW compression for all others.
File load operations support all TIFF variants listed in the LibTIFF
specification.

1.4. Pixel and File Types Compatibility

Depth map to image conversion

For 8- and 16-bit depth maps, the AsImage()method returns a compatible image object
(respectively EImageBW8 and EImageBW16) that can be used with Open eVision’s 2D processing
features.

Pixel and file types compatibility

Pixel access

The recommended method to access pixels is to use SetImagePtr and GetImagePtr to embed the
image buffer access in your own code. See also Image Construction and Memory Allocation and
Retrieving Pixel Values.

Use of the following methods should be limited because of the overhead incurred by each
function call:

Direct access

EROIBW8::GetPixel and SetPixelmethods are implemented in all images and ROI classes to read
and write a pixel value at given coordinates. To scan all pixels of an image, you could run a
double loop on the X and Y coordinates and use GetPixel or SetPixel each iteration, but this is not
recommended.

Open eVision User Guide

ebaseroi-setimageptr.htm
ebaseroi-getimageptr.htm
eroibw8-getpixel.htm
eroibw8-setpixel.htm


11

TIP
For performance reasons, these accessors should not be used when a
significant number of pixels needs to be processed. When that is the case,
retrieving the internal buffer pointer using GetBufferPtr() and iterating on the
pointer is recommended.

Quick Access to BW8 Pixels

In BW8 images, a call to EBW8PixelAccessor::GetPixel or SetPixel will be faster than a direct
EROIBW8::GetPixel or SetPixel.

Supported structures

l EBW1, EBW8, EBW32
l EC15 (*), EC16 (*), EC24 (*)
l EC24A
l EDepth8, EDepth16, EDepth32f,

(*) These formats support RGB15 (5-5-5 bit packing), RGB16 (5-6-5 bit packing) and RGB32 (RGB
+ alpha channel) but they must be converted to/from EC24 using EasyImage::Convert before any
processing.

NOTE
Transition with versions prior to eVision 6.5 should be seamless: image pixel
types were defined using typedef of integral types, pixel values were treated
as unsigned numbers and implicit conversion to/from previous types is
provided.

Pixel and File Type compatibility during Load or Save operations

Type BMP JPEG JPEG2000 PNG TIFF Serialized

BW1 Ok N/A N/A Ok Ok Ok

BW8 Ok Ok Ok Ok Ok Ok

BW16 N/A N/A Ok Ok Ok
(***) Ok

BW32 N/A N/A N/A N/A Ok
(***) Ok

C15 Ok Ok (**) Ok (**) Ok (**) Ok (**) Ok

C16 Ok Ok (**) Ok (**) Ok (**) Ok (**) Ok

C24 Ok Ok Ok Ok Ok (**) Ok

C24A Ok N/A N/A Ok N/A Ok

Depth8 Ok Ok Ok Ok Ok Ok

Open eVision User Guide

ebw8pixelaccessor-getpixel_.htm
ebw8pixelaccessor-setpixel.htm
eroibw8-getpixel.htm
eroibw8-setpixel.htm
ebw1-struct.htm
ebw8-struct.htm
ebw32-struct.htm
ec15-struct.htm
ec16-struct.htm
ec24-struct.htm
ec24a-struct.htm
edepth8-struct.htm
edepth16-struct.htm
edepth32f-struct.htm
easyimage-convert.htm


12

Type BMP JPEG JPEG2000 PNG TIFF Serialized

Depth16 N/A N/A Ok Ok Ok
(***) Ok

Depth32f N/A N/A N/A N/A N/A Ok

N/A: Not supported. An exception occurs if you use the combination.

Ok: Image integrity is preserved with no data loss (apart from JPEG and JPEG2000, lossy
compression).

(**) C15 and C16 formats are automatically converted into C24 during the save operation.

(***) BW16 and BW32 are not supported by Baseline TIFF readers.

1.5. Color Types

EISH: Intensity, Saturation, Hue color system.

ELAB: CIE Lightness, a*, b* color system.

ELCH: Lightness, Chroma, Hue color system.

ELSH: Lightness, Saturation, Hue color system.

ELUV: CIE Lightness, u*, v* color system.

ERGB: NTSC/PAL/SMPTE Red, Green, Blue color system.

EVSH: Value, Saturation, Hue color system.

EXYZ: CIE XYZ color system.

EYIQ: CCIR Luma, Inphase, Quadrature color system.

EYSH: CCIR Luma, Saturation, Hue color system.

EYUV: CCIR Luma, U Chroma, V Chroma color system.

Open eVision User Guide

eish-struct.htm
elab-struct.htm
elch-struct.htm
elsh-struct.htm
eluv-struct.htm
ergb-struct.htm
evsh-struct.htm
exyz-struct.htm
eyiq-struct.htm
eysh-struct.htm
eyuv-struct.htm


13

2. Manipulating Pixels Containers and
Files

2.1. Pixel Container File Save

Images and depth maps

The Savemethod of an image or the SaveImagemethod of a depth map or a ZMap saves the image
data of an image or of a depth map or a ZMap object into a file using two arguments:

□ Path: path, file name and file name extension.
□ Image File Type: if omitted, the file name extension is used.

Images bigger than 65,536 (either width or height) must be saved in Open eVision proprietary
format.

Save throws an exception when:
□ The requested image file format is incompatible with the image pixel types
□ The Auto file type selection method and the file name extension is not supported

TIP
When saving a 16-bit depth map, the fixed point precision is lost and the
pixels are considered as 16-bit integers.

Image file type arguments

Argument Image File Type

EImageFileType_Auto(*) Automatically determined by the filename extension. See below.

EImageFileType_Euresys Open eVision Serialization.

EImageFileType_Bmp Windows bitmap - BMP

EImageFileType_Jpeg JPEG File Interchange Format - JFIF

EImageFileType_Jpeg2000 JPEG 2000 File format/Code Stream -JPEG2000

EImageFileType_Png Portable Network Graphics - PNG

EImageFileType_Tiff Tagged Image File Format - TIFF
(*) Default value.

Open eVision User Guide

ebaseroi-save.htm
edepthmap8-saveimage.htm
ebaseroi-save.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm


14

Assigned image file type if argument is ImageFileType_Auto or missing

File name extension(*) Automatically assigned image file type

BMP Windows Bitmap Format

JPEG, JPG JPEG File Interchange Format - JFIF

JP2 JPEG 2000 file format

J2K, J2C JPEG 2000 Code Stream

PNG Portable Network Graphics

TIFF, TIF Tagged Image File Format
(*) Case-insensitive.

Saving JPEG and JPEG2000 lossy compressions

SaveJpeg and SaveJpeg2K specify the compression quality when saving compressed images. They
have two arguments:

□ Path: a string of characters including the path, filename, and file name extension.
□ Compression quality of the image file, an integer value in range [0: 100].

SaveJpeg saves image data using JPEG File Interchange Format – JFIF.
SaveJpeg2K saves image data using JPEG 2000 File format.

JPEG compression values

JPEG compression Description

JPEG_DEFAULT_QUALITY (-1) Default quality (*)

100 Superb image quality, lowest compression factor

75 Good image quality (*)

50 Normal image quality

25 Average image quality

10 Bad Image quality
(*) The default quality corresponds to the good image quality (75).

Representative JPEG 2000 compression quality values

JPEG 2000 compression Description

-1 Default quality (*)

1 Highest image quality, lowest compression factor

16 Good Image Quality (*) (16:1 rate)

512 Lowest image quality, highest compression factor
(*) The default quality corresponds to the good image quality (16:1 rate).

Open eVision User Guide

ebaseroi-savejpeg.htm
ebaseroi-savejpeg2k.htm
ebaseroi-save.htm
ebaseroi-savejpeg2k.htm


15

Saving point clouds

Use the following methods to save a point cloud in a specific format:
□ EPointCloud::Save: Open eVision proprietary file format.
□ EPointCloud::SaveCSV: CSV file.
□ EPointCloud::SaveOBJ: OBJ file.
□ EPointCloud::SavePCD: PCD file.
□ EPointCloud::SavePLY: PLY file.
□ EPointCloud::SaveXYZ: XYZ file.

TIP
The PCD format is supported in ASCII and binary modes.

2.2. Pixel Container File Load

Loading images and depth maps

● Use the Loadmethod to load image data into an image object:
□ It has one argument: the path: path, filename, and file name extension.
□ File type is determined by the file format.
□ The destination image is automatically resized according to the size of the image on disk.

● The Loadmethod throws an exception when:
□ File type identification fails
□ File type is incompatible with pixel type of the image object

TIP
Serialized image files of Open eVision 1.1 and newer are incompatible with
serialized image files of previous Open eVision versions.

TIP
When loading a BW16 image (with integer values) in a depth map, the fixed
point precision set in the depth map (0 by default) is left unchanged and
used.

Open eVision User Guide

epointcloud-save.htm
epointcloud-savecsv.htm
epointcloud-saveobj.htm
epointcloud-savepcd.htm
epointcloud-saveply.htm
epointcloud-savexyz.htm
ebaseroi-load.htm
ebaseroi-load.htm


16

Loading point clouds

Use the following methods to load a point cloud saved in a specific format:
□ EPointCloud::Load: Open eVision proprietary file format.
□ EPointCloud::LoadCSV: CSV file.
□ EPointCloud::LoadOBJ: OBJ file.
□ EPointCloud::LoadPCD: PCD file.
□ EPointCloud::LoadPLY: PLY file.
□ EPointCloud::LoadXYZ: XYZ file.

TIP
- The PCD format is supported in ASCII and binary modes.
- The PLY is supported only in ASCII mode.

2.3. Memory Allocation

An image can be constructed with an internal or external memory allocation.

Internal memory allocation

The image object dynamically allocates and deallocates a buffer.
□ Memory management is transparent.
□ When the image size changes, reallocation occurs.
□ When an image object is destroyed, the buffer is deallocated.

To declare an image with internal memory allocation:

a. Construct an image object, for instance EImageBW8, either with width and height arguments,
OR using the SetSize function.

b. Access a given pixel. There are several functions that do this. GetImagePtr returns a pointer
to the first byte of the pixel at the given coordinates.

External memory allocation

The user controls buffer allocation or links a third-party image in the memory buffer to an Open
eVision image.

□ Image size and buffer address must be specified.
□ When an image object is destroyed, the buffer is unaffected.

Open eVision User Guide

epointcloud-load.htm
epointcloud-loadcsv.htm
epointcloud-loadobj.htm
epointcloud-loadpcd.htm
epointcloud-loadply.htm
epointcloud-loadxyz.htm
eimagebw8-class.htm
ebaseroi-setsize.htm
ebaseroi-getimageptr.htm


17

To declare an image with external memory allocation:

a. Declare an image object, for instance EImageBW8.

b. Create a suitably sized and aligned buffer (see Image Buffer).

c. Assign the buffer to the image with SetImagePtr.

NOTE
If your buffer rows are not aligned on 4 bytes, you cannot use SetImagePtr. In
that case, use InitializeFromUnalignedBuffer instead.
Please note, however, that this allocates the memory internally and copies
the external buffer into the internal one instead of using the external one
directly.

2.4. Image and Depth Map Buffer

Image and depth map pixels are stored contiguously, from left to right and from top row to
bottom row, in Windows bitmap format (top-down DIB -device-independent bitmap-) into an
associated buffer.

The buffer address is a pointer to the start address of the buffer, which contains the top left
pixel of the image.

Image buffer pitch

● Alignment must be a multiple of 4 bytes.

● Open eVision 1.2 onwards default pitch is 32 bytes for performance reasons (Open eVision
1.1.5 was 8 bytes).

Open eVision User Guide

eimagebw8-class.htm
ebaseroi-setimageptr.htm
ebaseroi-setimageptr.htm
eimagebw8-initializefromunalignedbuffer.htm


18

Memory layout

● EImageBW1 stores 8 pixels in one byte.

Example memory layout of the first 2 pixels of a BW1 image buffer:

● EImageBW8 and EDepthMap8 store each pixel in one byte.

Example memory layout of the first pixels of a BW8 image buffer:

● EImageBW16 stores each pixel in a 16-bit word (two bytes).

Example memory layout of the first pixels of a BW16 image buffer:

● EImageC15 stores each pixel in 2 bytes. Each color component is coded with 5-bits.
The 16th bit is left unused.

Open eVision User Guide

eimagebw1-class.htm
eimagebw8-class.htm
edepthmap8-class.htm
eimagebw16-class.htm
eimagec15-class.htm


19

Example memory layout of the first pixels of a C15 image buffer:

● EImageC16 stores each pixel in 2 bytes. The first and third color components are coded with 5-
bits.
The second color component is coded with 6-bits.

Example memory layout of the first pixels of a C16 image buffer:

● EDepthMap16 store each pixel in 2 bytes using a fixed point format.

● EImageC24 stores each pixel in 3 bytes. Each color component is coded with 8-bits.

Example memory layout of the first pixels of a C24 image buffer:

Open eVision User Guide

eimagec16-class.htm
edepthmap16-class.htm
eimagec24-class.htm


20

● EImageC24A stores each pixel in 4 bytes. Each color component is coded with 8-bits.
The alpha channel is also coded with 8-bits.

Example memory layout of the first pixels of a C24A image buffer:

● EDepthMap32f store each pixel in 4 bytes using a float format.

2.5. Image Coordinate Systems

The conventions below apply to all Open eVision functions and results.
□ Pixel coordinates are usually given as integer numbers.
□ Some results can use subpixel precision with real (floating point) numbers.
□ Some exceptions apply and are documented per librarie.

Integer coordinates

● The origin (0,0) of the coordinate system is the upper left pixel of the image.

● The lower right pixel is (width-1, height-1).

Open eVision User Guide

eimagec24a-class.htm
edepthmap32f-class.htm


21

Real coordinates

● With floating point (x,y) coordinates, the origin is the upper left corner of the upper left pixel.

● The first pixel area ranges in [0,1[ for X and Y axis.

● Coordinates greater or equal than the width or the height are outside the image.

2.6. Image Drawing and Overlay

● Drawing uses Windows GDI (Graphics Device Interface) system calls.
□ MFC (Microsoft Foundation Class) applications normally use OnDraw event handler to draw,

where a pointer to a device context is available.
□ Borland/CodeGear OWL or VCL use a Paint event handler.

● The color palette in 256-color display mode gives optimal rendering.

● Gray-level images can be improved using LUTs (LookUp Tables) (using histogram stretching
techniques or pseudo-coloring).

● The zoom can be different horizontally and vertically.

● DrawFrameWithCurrentPenmethod draws a frame.

● Non-destructive overlaying drawing operations do not alter the image contents, such as
MoveTo/LineTo. 

● Destructive overlaying drawing operations alter the image contents by drawing inside the
image such as Easy::OpenImageGraphicContext. Gray-level [color] images can only receive a gray-
level [color] overlay.

2.7. 3D Rendering of 2D Images

These images are viewed by rotating them around the X-axis, then the Y-axis.

Open eVision User Guide

ebaseroi-drawframewithcurrentpen.htm
easy-openimagegraphiccontext.htm


22

Gray 3D rendering

Easy::Render3D prepares a 3-dimensional rendering where gray-level values are altitudes.
Magnification factors in the three directions (X = width, Y = height and Z = depth) can be given.
The rendered image appears as independent dots whose size can be adjusted to make the
surface more or less opaque.

3D rendering

Color histogram 3D rendering

Easy::RenderColorHistogram prepares a 3-dimensional rendering of a color image histogram.
The pixels are drawn in the RGB space (not XY-plane) to show clustering and dispersion of RGB
values.
This function can process pixels in other color systems (using EasyColor to convert), but the raw
RGB image is required to display the pixels in their usual colors.

Magnification factors in all three directions (X = red, Y = green and Z = blue) can be given.

Color histogram rendering

Open eVision User Guide

easy-render3d.htm
easy-rendercolorhistogram.htm


23

2.8. Vector Types and Main Properties

A vector is a one-dimensional array of pixels (taken from an image profile or contour).

EVector is the base class for all vectors. It contains all non-type-specific methods, mainly for
counting elements and serialization.

Profile in a C24 image, RGB values plot along profile and RGB values array (EC24Vector)

A vector manages an array of elements. Memory allocation is transparent, so vectors can be
resized dynamically. Whenever a function uses a vector, the vector type, size and structure are
automatically adjusted to suit the function needs.

The use of vectors is quite straightforward:

● To create a vector of the appropriate type:
□ Use its constructor and preallocate elements if required.

● To fill a vector with values:
□ Call the EVector::Emptymember to empty it.
□ Call the EC24Vector::AddElementmember to add elements one by one.
□ Use the indexing to access any element.

● To access a vector element, either for reading or writing:
□ Use the brackets operator EC24Vector::operator[].

● To determine the current number of elements:
□ Use the EVector::NumElementsmember.

● To draw the vector:
□ A pixel vector is a plot of the element values as a function of the element index, so its

graphical appearance depends on its type. You can draw a vector in a window. For
legibility, the drawing should appear on a neutral background.

□ Drawing is done in the device context associated to the desired window. By default,
curves are drawn in blue and annotations in black. You can define: graphicContext, width,
height, originX, originY, color0, color1 and color2.

□ The EC24Vector has three curves drawn instead of one, each corresponding to a color
component. By default the red, blue and green pens are used.

Open eVision User Guide

evector-class.htm
ec24vector-class.htm
evector-empty.htm
ec24vector-addelement.htm
ec24vector-operator_index.htm
evector-numelements.htm
ec24vector-class.htm


24

Vector types

● EBW8Vector: a sequence of gray-level pixel values, often extracted from an image profile
(used by EasyImage::Lut, EasyImage::SetupEqualize, EasyImage::ImageToLineSegment,
EasyImage::LineSegmentToImage, EasyImage::ProfileDerivative...).

Graphical representation of an EBW8Vector (see Draw method)

● EBW16Vector: a sequence of gray-level pixel values, using an extended range (16 bits), mainly
for intermediate computations.

Graphical representation of an EBW16Vector

● EBW32Vector: a sequence of gray-level pixel values, using an extended range (32 bits), mainly
for intermediate computations
(used in EasyImage::ProjectOnARow, EasyImage::ProjectOnAColumn, ...).

Graphical representation of an EBW32Vector

Open eVision User Guide

ebw8vector-class.htm
easyimage-lut.htm
easyimage-setupequalize.htm
easyimage-imagetolinesegment.htm
easyimage-linesegmenttoimage.htm
easyimage-profilederivative.htm
ebw8vector-class.htm
ebw8vector-draw.htm
ebw16vector-class.htm
ebw16vector-class.htm
ebw32vector-class.htm
easyimage-projectonarow.htm
easyimage-projectonacolumn.htm
ebw32vector-class.htm


25

● EC24Vector: a sequence of color pixel values, often extracted from an image profile
(used by EasyImage::ImageToLineSegment, EasyImage::LineSegmentToImage,
EasyImage::ProfileDerivative, ...).

Graphical representation of an EC24Vector

● EBW8PathVector: a sequence of gray-level pixel values, extracted from an image profile or
contour, with corresponding pixel coordinates
(used by EasyImage::ImageToPath, EasyImage::PathToImage, ...).

Graphical representation of an EBW8PathVector (see Draw method)

● EBW16PathVector: a sequence of gray-level pixel values, extracted from an image profile or
contour, with corresponding pixel coordinates
(used by EasyImage::ImageToPath, EasyImage::PathToImage, ...).

Graphical representation of an EBW16PathVector (see Draw method)

Open eVision User Guide

ec24vector-class.htm
easyimage-imagetolinesegment.htm
easyimage-linesegmenttoimage.htm
easyimage-profilederivative.htm
ec24vector-class.htm
ebw8pathvector-class.htm
easyimage-imagetopath.htm
easyimage-pathtoimage.htm
ebw8pathvector-class.htm
ebw8pathvector-draw.htm
ebw16pathvector-class.htm
easyimage-imagetopath.htm
easyimage-pathtoimage.htm
ebw16pathvector-class.htm
ebw16pathvector-draw.htm


26

● EC24PathVector: a sequence of color pixel values, extracted from an image profile or contour,
with corresponding pixel coordinates
(used by EasyImage::ImageToPath, EasyImage::PathToImage, ...).

Graphical representation of an EC24PathVector (see Draw method)

● EBWHistogramVector: a sequence of frequency counts of pixels in a BW8 or BW16 image
(used by EasyImage::IsodataThreshold, EasyImage::Histogram, EasyImage::AnalyseHistogram,
EasyImage::SetupEqualize, ...).

Graphical representation of an EBWHistogramVector (see Draw method)

● EPathVector: a sequence of pixel coordinates. The corresponding pixels need not be
contiguous
(used by EasyImage::PathToImage and EasyImage::Contour).

Graphical representation of an EPathVector (see Draw method)

● EPeakVector: peaks found in an image profile
(used by EasyImage::GetProfilePeaks).

● EColorVector: a description of colors
(used by EasyColor::ClassAverages and EasyColor::ClassVariances).

Open eVision User Guide

ec24pathvector-class.htm
easyimage-imagetopath.htm
easyimage-pathtoimage.htm
ec24pathvector-class.htm
ec24pathvector-draw.htm
ebwhistogramvector-class.htm
easyimage-isodatathreshold.htm
easyimage-histogram.htm
easyimage-analysehistogram.htm
easyimage-setupequalize.htm
ebwhistogramvector-class.htm
ebwhistogramvector-draw.htm
epathvector-class.htm
easyimage-pathtoimage.htm
easyimage-contour.htm
epathvector-class.htm
epathvector-draw.htm
epeakvector-class.htm
easyimage-getprofilepeaks.htm
ecolorvector-class.htm
easycolor-classaverages.htm
easycolor-classvariances.htm


27

2.9. ROI Main Properties

ROIs are defined by a width, a height, and origin x and y coordinates.
The origins are specified with respect to the top left corner in the parent image or ROI.
The ROI must be wholly contained in its parent image.
The processing/analysis time of a BW1 ROI is faster if OrgX and Width are multiples of 8.

Save and load

You can save or load an ROI as a separate image, to be used as if it was a full image. The ROIs
perform no memory allocation at all and never duplicate parts of their parent image, the
parent image provides them with access to its image data.

The image size of the new file must match the size of the ROI being loaded into it. The image
around the ROI remains unchanged.

ROI Classes

An Open eVision ROI inherits parameters from the abstract class EBaseROI.

There are several ROI types, according to their pixel type. They have the same characteristics as
the corresponding image types.

□ EROIBW1
□ EROIBW8
□ EROIBW16
□ EROIBW32
□ EROIC15
□ EROIC16
□ EROIC24
□ EROIC24A

Attachment

An ROI must be attached to a parent (image/ROI) with parameters that set the parent, position
and size, and these links are updated transparently, avoiding dangling pointers.
A normal image cannot be attached to another image or ROI.

Nesting

Set and Get functions change or query the width, height and position of the origin of an ROI,
with respect to its immediate or topmost parent image.

An image may accommodate an arbitrary number of ROIs, which can be nested in a hierarchical
way. Moving the ROI also moves the embedded ROIs accordingly. The image/ROI classes provide
several methods to traverse the hierarchy of ROIs associated with an image.

Open eVision User Guide

ebaseroi-width.htm
ebaseroi-height.htm
ebaseroi-orgx.htm
ebaseroi-orgy.htm
ebaseroi-orgx.htm
ebaseroi-width.htm
ebaseroi-save.htm
ebaseroi-load.htm
ebaseroi-class.htm
eroibw1-class.htm
eroibw8-class.htm
eroibw16-class.htm
eroibw32-class.htm
eroic15-class.htm
eroic16-class.htm
eroic24-class.htm
eroic24a-class.htm
ebaseroi-attach.htm


28

Nested ROIs: Two sub-ROIs attached to an ROI, itself attached to the parent image

Cropping

CropToImage crops an ROI which is partially out of its image. The resized ROI never grows.
An exception is thrown if a function attempts to use an ROI that has limits that extend outside
of the parents.

NOTE
(In Open eVision 1.0.1 and earlier, an ROI was silently resized or repositioned
when placed out of its image and sometimes grew. If ROI limits extended
outside parents, they were silently resized to remain within parent limits.)

Resizing and moving

ROIs can easily be resized and positioned by two functions and dragging handles:

● EBaseROI::Drag adjusts the ROI coordinates while the cursor moves.

● EBaseROI::HitTest informs if the cursor is placed over a dragging handle.
□ Once the handle is known, the cursor shape can be changed by an OnSetCursor MFC event

handler. HitTest is unpredictable if called while dragging is in progress.
□ HitTest can be used in an OnSetCursor MFC event handler to change the cursor shape, or

before a dragging operation like OnLButtonDown,
(or EvSetCursor and EvLButtonDown in Borland/CodeGear's OWL)
(or FormMouseMove and FormMouseDown in Borland/CodeGear's VCL).

Open eVision User Guide

ebaseroi-croptoimage.htm
ebaseroi-drag.htm
ebaseroi-hittest.htm


29

2.10. Arbitrarily Shaped ROI (ERegion)

See also: example: Inspecting Pads Using Regions / code snippets: ERegion

Regions or arbitrarily shaped ROI

You define and use regions of interest (ROI) to restrict the area processed with your vision tool
and to reduce and optimize the processing time.

In Open eVision:
□ An ROI (EROIxxx class) designates a rectangular region of interest.
□ A region (ERegion class) designates an arbitrarily shaped ROI. With regions, you can

determine precisely which part of the image, down to a single pixel, is used for your
processing.

Currently, only the following Open eVision methods support ERegions:

Library Method
EasyImage::Threshold
EasyImage::Copy
EasyImage::ConvolKernel
EasyImage::ConvolSymmetricKernel
EasyImage::ConvolLowpass1
EasyImage::ConvolLowpass2
EasyImage::ConvolLowpass3
EasyImage::ConvolUniform
EasyImage::ConvolGaussian
EasyImage::ConvolHighpass1
EasyImage::ConvolHighpass2
EasyImage::ConvolGradientX
EasyImage::ConvolGradientY
EasyImage::ConvolGradient
EasyImage::ConvolSobelX
EasyImage::ConvolSobelY
EasyImage::ConvolSobel
EasyImage::ConvolPrewittX
EasyImage::ConvolPrewittY
EasyImage::ConvolPrewitt
EasyImage::ConvolRoberts
EasyImage::ConvolLaplacianX
EasyImage::ConvolLaplacianY
EasyImage::ConvolLaplacian8
EasyImage::DilateBox
EasyImage::ErodeBox
EasyImage::OpenBox

EasyImage EasyImage::CloseBox
EasyImage::WhiteTopHatBox
EasyImage::BlackTopHatBox
EasyImage::MorphoGradientBox
EasyImage::ErodeDisk

Open eVision User Guide

../../../../../Content/05 Resources/03 2D Application Examples/Inspecting Pads Using Regions.htm
../../../../../Content/05 Resources/02 Code Snippets/01b ERegion/ERegion.htm
eregion-class.htm
eregion-class.htm
easyimage-threshold.htm
easyimage-copy.htm
easyimage-convolkernel.htm
easyimage-convolsymmetrickernel.htm
easyimage-convollowpass1.htm
easyimage-convollowpass2.htm
easyimage-convollowpass3.htm
easyimage-convoluniform.htm
easyimage-convolgaussian.htm
easyimage-convolhighpass1.htm
easyimage-convolhighpass2.htm
easyimage-convolgradientx.htm
easyimage-convolgradienty.htm
easyimage-convolgradient.htm
easyimage-convolsobelx.htm
easyimage-convolsobely.htm
easyimage-convolsobel.htm
easyimage-convolprewittx.htm
easyimage-convolprewitty.htm
easyimage-convolprewitt.htm
easyimage-convolroberts.htm
easyimage-convollaplacianx.htm
easyimage-convollaplaciany.htm
easyimage-convollaplacian8.htm
easyimage-dilatebox.htm
easyimage-erodebox.htm
easyimage-openbox.htm
easyimage-closebox.htm
easyimage-whitetophatbox.htm
easyimage-blacktophatbox.htm
easyimage-morphogradientbox.htm
easyimage-erodedisk.htm


30

Library Method
EasyImage::DilateDisk
EasyImage::OpenDisk
EasyImage::CloseDisk
EasyImage::WhiteTopHatDisk
EasyImage::BlackTopHatDisk
EasyImage::MorphoGradientDisk
EasyImage::Median
EasyImage::ScaleRotate
EasyImage::DoubleThreshold
EasyImage::Histogram
EasyImage::Area
EasyImage::AreaDoubleThreshold
EasyImage::BinaryMoments
EasyImage::WeightedMoments
EasyImage::GravityCenter
EasyImage::PixelCount
EasyImage::PixelMax
EasyImage::PixelMin
EasyImage::PixelAverage
EasyImage::PixelStat
EasyImage::PixelVariance
EasyImage::PixelStdDev
EasyImage::PixelCompare

Easy3D

EDepthMapToMeshConverter::Convert
EDepthMapToPointCloudConverter::Convert
EStatistics::ComputePixelStatistics
EStatistics::ComputeStatistics
E3DObjectExtractor::Extract
EZMapToPointCloudConverter::Convert

EasyObject EImageEncoder::Encode

EasyFind
EPatternFinder::Find
EPatternFinder::Learn

EasyOCR2
EOCR2::Read
EOCR2::Detect

EasyGauge

EPointGauge::Measure
ELineGauge::Measure
ERectangleGauge::Measure
ECircleGauge::Measure
EWedgeGauge::Measure

EasyMatch
EMatcher::LearnPattern
EMatcher::Match

EasyQRCode
EQRCodeReader::SetSearchField
EQRCodeReader::Read

TIP
In the future Open eVision releases, the support of ERegions will be gradually
extended to all operators.

Open eVision User Guide

easyimage-dilatedisk.htm
easyimage-opendisk.htm
easyimage-closedisk.htm
easyimage-whitetophatdisk.htm
easyimage-blacktophatdisk.htm
easyimage-morphogradientdisk.htm
easyimage-median.htm
easyimage-scalerotate.htm
easyimage-doublethreshold.htm
easyimage-histogram.htm
easyimage-area.htm
easyimage-areadoublethreshold.htm
easyimage-binarymoments.htm
easyimage-weightedmoments.htm
easyimage-gravitycenter.htm
easyimage-pixelcount.htm
easyimage-pixelmax.htm
easyimage-pixelmin.htm
easyimage-pixelaverage.htm
easyimage-pixelstat.htm
easyimage-pixelvariance.htm
easyimage-pixelstddev.htm
easyimage-pixelcompare.htm
edepthmaptomeshconverter-convert.htm
edepthmaptopointcloudconverter-convert.htm
estatistics-computepixelstatistics.htm
estatistics-computestatistics.htm
../../../../../Content/reference/e3dobjectextractor-extract.htm
../../../../../Content/reference/ezmaptopointcloudconverter-convert.htm
eimageencoder-encode.htm
epatternfinder-find.htm
../../../../../Content/reference/epatternfinder-learn.htm
../../../../../Content/reference/eocr2-read.htm
../../../../../Content/reference/eocr2-detect.htm
../../../../../Content/reference/epointgauge-measure.htm
../../../../../Content/reference/elinegauge-measure.htm
../../../../../Content/reference/erectanglegauge-measure.htm
../../../../../Content/reference/ecirclegauge-measure.htm
../../../../../Content/reference/ewedgegauge-measure.htm
../../../../../Content/reference/ematcher-learnpattern.htm
../../../../../Content/reference/ematcher-match.htm
eqrcodereader-searchfield.htm
eqrcodereader-read.htm


31

Creating regions

Open eVision offers multiple ways to create regions, depending on the shape you need:

The ERegion is the base class for all regions and the most versatile. It encodes a region using a
Run-Length Encoded (RLE) representation.

□ The RLE representation of a region is made of runs (horizontal, 1-pixel high slices).
□ The runs are stored in the form of their ordinate, starting abscissa and length.

Run-Length Encoding of a circle-shaped region

To create a region, either:
□ Use one of the geometry-based region classes.
□ Use the result of another tool, such as EasyFind, EasyMatch or EasyObject.
□ Combine or modify other regions.
□ Use a mask image.
□ Directly provide the list of runs.

Geometry-based regions

Geometry based regions are specialized classes of regions that are encompassed in simple
geometries. Open eVision currently provides classes based on a rectangle, a circle, an ellipse or
a polygon.

Use these classes to setup geometric regions and modify them with translation, rotation and
scaling. The transformation operators return new regions, leaving the source object unchanged.

● ERectangleRegion
□ The contour of an ERectangleRegion class is a rectangle.
□ Define it using its center, width, height and angle.
□ Alternatively, use an ERectangle instance, such as one returned by an ERectangleGauge

instance.

Rectangle region separating a bar code from the background

Open eVision User Guide

eregion-class.htm
erectangle-class.htm
erectangle-class.htm
erectangle-class.htm
erectanglegauge-class.htm


32

● ECircleRegion
□ The contour of an ECircleRegion class is a circle.
□ Define it using its center and radius or 3 non-aligned points.
□ Alternatively, use an ECircle instance, such as one returned by an ECircleGauge instance.

Circle region encompassing the useful part of an X-Ray image

● EEllipseRegion
□ The contour of an EEllipseRegion class is an ellipse.
□ Define it using its center, long and short radius and angle.

Ellipse region encompassing a waffle

● EPolygonRegion
□ The contour of an EPolygonRegion class is a polygon.
□ It is constructed using the list of its vertices.

Polygon region encompassing a key

Open eVision User Guide

ecircleregion-class.htm
ecircleregion-class.htm
ecircle-class.htm
ecirclegauge-class.htm
eellipseregion-class.htm
eellipseregion-class.htm
epolygonregion-class.htm
epolygonregion-class.htm


33

Using the result of other tools

The ERegion class provides a set of specialized constructors to create regions from the results of
another tool.

In a tool chain, these constructors restrict the processing of a tool to the area issued from the
previous tool.

Open eVision provides constructors for the following tools:
□ EasyFind: EFoundPattern
□ EasyMatch: EMatchPosition
□ EasyGauge: ECircle and ERectangle
□ EasyObject: ECodedElement

TIP
When compatible, Open eVision also provides specialized constructors for
the geometry-based regions. For instance, ECircleRegion provides a
constructor using an ECircle.

Combining regions

Use the following operations to create a new region by combining existing regions:

● Union
□ The ERegion::Union(const ERegion&, const ERegion&)method returns the region that is the

addition of the two regions passed as arguments.

Union of 2 circles

● Intersection
□ The ERegion::Intersection(const ERegion&, const ERegion&)method returns the region that is

the intersection of the two regions passed as argument.

Intersection of 2 circles

Open eVision User Guide

eregion-class.htm
efoundpattern-class.htm
ematchposition-struct.htm
ecircle-class.htm
erectangle-class.htm
ecodedelement-class.htm
ecircleregion-class.htm
ecircle-class.htm
eregion-union.htm
eregion-intersection.htm


34

● Subtraction
□ The ERegion::Subtraction(const ERegion&, const ERegion&)method returns the first region

passed as argument after removing the second one.

Subtraction of 2 circles

Morphological operations on regions

The initial arbitrary region used to illustrate the different morphological operations

● Grow
□ The ERegion::Grow(int radius)method returns a region that is the dilation of the region by

a disk with a radius equals to the argument.

Grow of the arbitrary region

● Shrink
□ The ERegion::Shrink(int radius)method returns a region that is the erosion of the region

by a disk with a radius equals to the argument.

Shrink of the arbitrary region

Open eVision User Guide

eregion-subtraction.htm
eregion-grow.htm
eregion-shrink.htm


35

● Contour
□ The ERegion::Contour(int thickness, bool centered = true)method returns a region that is

the contour of the region.

Contour of the arbitrary region

Free-hand drawing a region

● The ERegionFreeHandPainter class provides the methods that allow you to create a region by
hand, using the mouse or any other user input method.

● The RegionFreeHand sample, available both in C++ and C#, shows how to use this class to draw
a region on an image.

Using regions

The tools supporting regions provide methods that follow one of these conventions:
□ Method(const EImage& source, const ERegion& region)
□ Method(const EImage& source, const ERegion& region, EImage& destination)

NOTE
The source, the region and the destination must be compatible. It means
that the region must at least partly fit in the source, and that source and
destination must have the same size.

Preparing the region

● Open eVision automatically prepares the regions when it applies them to an image, but this
preparation can take some time.

● If you do not want your first call to a method to take longer than the next ones, you can
prepare the region in advance by using the appropriate Prepare()method.

● To manually prepare the regions, adapt the internal RLE description to your images.

Drawing regions

The ERegion classes provide several methods to display the regions:

● ERegion::Draw() draws the region area, in a semi-transparent way, in the provided device
context.

● ERegion::DrawContour() draws the region contour in the provided device context.

Open eVision User Guide

eregion-contour.htm
eregionfreehandpainter-class.htm
eregion-prepare.htm
eregion-class.htm
eregion-draw.htm
eregion-drawcontour.htm


36

● ERegion::ToImage() renders the region as a mask into the provided destination image.
□ You can configure the foreground and the background colors.
□ If you initialized your image with a width and a height, Open eVision renders the region

inside those bounds.
□ If not, Open eVision resizes the image to contain the whole region.
□ Use ToImage() to create masks for the Open eVision functions that support them.

ERegions and EROIs

● The older EROI classes of Open eVision are compatible with the new regions.

● Some tools allow the usage of regions with source and/or destinations that are ERoi instead
of EImage follow one of these conventions:
□ Method(const ERoi& source, const ERegion& region)
□ Method(const ERoi& source, const ERegion& region, ERoi& destination)

TIP
In that case, the coordinates used for the region are relative to the reduced
ROI space instead of the whole image space .

ERegion and 3D

● The new regions are compatible with the 2.5D representations of Easy3D (EDepthMap and
EZMap).

● You can also reduce the domain of processing when using these classes.

2.11. Flexible Masks

ROIs vs flexible masks

ROIs and masks restrict processing to part of an image:
□ "ROI Main Properties" on page 27 apply to all Open eVision functions. Using Regions of

Interest accelerates processing by reducing the number of pixels. Open eVision supports
hierarchically nested rectangular ROIs.

□ Flexible Masks are recommended to process disconnected ROIs or non-rectangular
shapes. They are supported by some EasyObject and EasyImage library functions.

Open eVision User Guide

eregion-toimage.htm
eregion-toimage.htm
edepthmap-class.htm
ezmap-class.htm
EasyImage - Pre-Processing Images.htm


37

Flexible Masks

A flexible mask is a BW8 image with the same height and width as the source image. It contains
shapes of areas that must be processed and ignored areas (that will not be considered during
processing):

□ All pixels of the flexible mask having a value of 0 define the ignored areas.
□ All pixels of the flexible mask having any other value than 0 define the areas to be

processed.

Source image Associated mask Processed masked image

A flexible mask can be generated by any application that outputs BW8 images and by some
EasyObject and EasyImage functions.

Flexible Masks in EasyImage

Code Snippets

Source image (left) and mask variable (right)

Simple steps to use flexible masks in Easyimage

1. Call the functions from EasyImage that take an input mask as an argument. For
instance, one can evaluate the average value of the pixels in the white layer and after in the
black layer.

2. Display the results.

Resulting image

Open eVision User Guide

EasyImage - Pre-Processing Images.htm
using-flexible-masks-easyimage.htm


38

EasyImage Functions that support flexible masks

● EImageEncoder::Encode has a flexible mask argument for BW1, BW8, BW16, and C24 source
images.

● AutoThreshold.

● Histogram (function HistogramThreshold has no overload with mask argument).

● RmsNoise, SignalNoiseRatio.

● Overlay (no overload with mask argument for BW8 source images).

● ProjectOnAColumn, ProjectOnARow (Vector projection).

● ImageToLineSegment, ImageToPath (Vector profile).

Flexible Masks in EasyObject

A flexible mask can be generated by any application that outputs BW8 images or uses the Open
eVision image processing functions.

EasyObject can use flexible masks to restrict blob analysis to complex or disconnected shaped
regions of the image.

If an object of interest has the same gray level as other regions of the image, you can define
"keep" and "ignore" areas using flexible masks and Encode functions.

A flexible mask is a BW8 image with the same height and width as the source image.
□ A pixel value of 0 in the flexible mask masks the corresponding source image pixel so it

doesn't appear in the encoded image.
□ Any other pixel value in the flexible mask causes the pixel to be encoded.

EasyObject functions that create flexible masks

Source image

1) ECodedImage2::RenderMask: from a layer of an encoded image

1. To encode and extract a flexible mask, first construct a coded image from the source image.

2. Choose a segmentation method (for the image above the default method
GrayscaleSingleThreshold is suitable).

3. Select the layer(s) of the coded image that should be encoded (i.e. white and black layers
using minimum residue thresholding).

4. Make the mask image the desired size using mask.SetSize(sourceImage.GetWidth(),
sourceImage.GetHeight()).

Open eVision User Guide

eimageencoder-encode.htm
easyimage-autothreshold.htm
easyimage-histogram.htm
easyimage-histogramthreshold.htm
easyimage-rmsnoise.htm
easyimage-signalnoiseratio.htm
easyimage-overlay.htm
easyimage-projectonacolumn.htm
easyimage-projectonarow.htm
easyimage-imagetolinesegment.htm
easyimage-imagetopath.htm
eimageencoder-encode.htm


39

5. Exploit the flexible mask as an argument to ECodedImage2::RenderMask.

BW8 resulting image that can be used as a flexible mask

2) ECodedElement::RenderMask: from a blob or hole

1. Select the coded elements of interest.

2. Create a loop extracting a mask from selected coded elements of the coded image using
ECodedElement::RenderMask.

3. Optionally, compute the feature value over each of these selected coded elements.

BW8 resulting image that can be used as a flexible mask

3) EObjectSelection::RenderMask: from a selection of blobs

EObjectSelection::RenderMask can, for example, discard small objects resulting from noise.

BW8 resulting image that can be used as a flexible mask

Open eVision User Guide

ecodedimage2-rendermask.htm
ecodedelement-rendermask.htm
eobjectselection-rendermask.htm


40

Example: Restrict the areas encoded by EasyObject

Find four circles (left) Flexible mask can isolate the central chip (right)

1. Declare a new ECodedImage2 object.

2. Setup variables: first declare source image and flexible mask, then load them.

3. Declare an EImageEncoder object and, if applicable, select the appropriate segmenter. Setup
the segmenter and choose the appropriate layer(s) to encode.

4. Encode the source image. Encoding a layer with just the area in the flexible mask is then
pretty straightforward.
We see that the circles are correctly segmented in the black layer with the grayscale single
threshold segmenter:

5. Select all objects of the coded image.

6. Select objects of interest by filtering out objects that are too small.

7. Display the blob feature by iterating over the selected objects to display the chosen feature.

2.12. Profile

Code Snippets

Profile Sampling

A profile is a series of pixel values sampled along a line/path/contour in an image.

● EasyImage::ImageToLineSegment copies the pixel values along a given line segment (arbitrarily
oriented and wholly contained within the image) to a vector. The vector length is adjusted
automatically. This function supports flexible masks.

● A path is a series of pixel coordinates stored in a vector.
EasyImage::ImageToPath copies the corresponding pixel values to the vector. This function
supports flexible masks.

Open eVision User Guide

ecodedimage2-class.htm
eimageencoder-class.htm
egrayscalesinglethresholdsegmenter-class.htm
egrayscalesinglethresholdsegmenter-class.htm
profile-sampling.htm
easyimage-imagetolinesegment.htm
epathvector-class.htm
epath-struct.htm
easyimage-imagetopath.htm


41

● A contour is a closed or not (connected) path, forming the boundary of an object.
EasyImage::Contour follows the contour of an object, and stores its constituent pixels values
inside a profile vector.

Profile Analysis

The profile can be processed to find peaks or transitions:

● A transition corresponds to an object edge (black to white or white to black). It can be
detected by taking the first derivative of the signal (which transforms transitions (edges)
into peaks) and looking for peaks in it.
EasyImage::ProfileDerivative computes the first derivative of a profile extracted from a gray-
level image.
The EBW8 data type only handles unsigned values, so the derivative is shifted up by 128.
Values under [above] 128 correspond to negative [positive] derivative (decreasing
[increasing] slope).

● A peak is the portion of the signal that is above [or below] a given threshold - the maximum
or minimum of the signal. This may correspond to the crossing of a white or black line or
thin feature. It is defined by its:
□ Amplitude: difference between the threshold value and the max [or min] signal value.
□ Area: surface between the signal curve and the horizontal line at the given threshold.

EasyImage::GetProfilePeaks detects max and min peaks in a gray-level profile. To eliminate false
peaks due to noise, two selection criteria are used. The result is stored in a peaks vector.

Profile Insertion Into an Image

EasyImage::LineSegmentToImage copies the pixel values from a vector or constant to the pixels of a
given line segment (arbitrarily oriented and wholly contained within the image).

EasyImage::PathToImage copies the pixel values from a vector or a constant to the pixels of a given
path.

Open eVision User Guide

easyimage-contour.htm
easyimage-profilederivative.htm
ebw8-struct.htm
epeak-struct.htm
epeak-amplitude.htm
epeak-area.htm
easyimage-getprofilepeaks.htm
epeakvector-class.htm
easyimage-linesegmenttoimage.htm
easyimage-pathtoimage.htm


42

3. Matching and Measurement Tools

3.1. EasyObject - Analyzing Blobs

Reference | Code Snippets

The EasyObject library picks out features in an image by creating and processing blobs (objects
or holes that have the same gray level range).

This library can be used for BW1, BW8, BW16 and C24 source images and is accessible from the
ECodedImage2 class which has improved execution time, especially for large images with many
objects.

Open eVision User Guide

ecodedimage2-class.htm
easyobject-library.htm
ecodedimage2-class.htm


43

Workflow

Open eVision User Guide



44

Blob Definition

A blob is a grouping of neighboring pixels of the same gray level range.
Blobs may be objects or holes in objects. EasyObject functions analyze both objects and holes.
When blobs are built, the inclusion relationship between holes and objects is computed.

Even though holes may be the actual objects of interest, it is easier to find an object of interest,
then detect its holes (with EasyObject) and measure their characteristics (with EasyGauge or
EasyObject).

Blobs are handled as independent entities:

l They can be selected by means of the layer they belong to, their position, a rectangular
ROI or their computed features. The selection criteria can be combined (select the small
objects; among these, select those close to the right edge...).

l They can be listed and sorted by their geometric characteristics: such as area, width, or
ellipse of inertia.

Blob analysis can be restricted to rectangular and nested ROIs, and to complex or disconnected-
shape regions using flexible masks.

Build Blobs

EasyObject chooses objects of interest and constructs blobs/holes in two steps:

1. Segment: classifies the source image pixels, creates layers, and constructs the runs (a run
is a sequence of adjacent pixels in a row, that share the same property).

2. Encode: assembles runs, to build blobs for each layer.
You select which objects or holes are kept.
EImageEncoder::Encode analyzes the blobs and stores the result into a coded image which
has a set of superimposed, mutually exclusive image layers, where the pixels of each layer
have properties in common, such as being above a threshold.
Flexible masks can restrict encoding to an arbitrary shaped area.

There is no need to build holes, they are constructed on-the-fly when required.

Functions

l Segmentation GetSegmentationMethod and SetSegmentationMethod
l Grayscale single threshold EGrayscaleSingleThresholdSegmenter
l Grayscale double threshold EGrayscaleDoubleThresholdSegmenter
l Color single threshold EColorSingleThresholdSegmenter
l Color range threshold EColorRangeThresholdSegmenter
l Reference image EReferenceImageSegmenter
l Image range EImageRangeSegmenter
l Labeled image ELabeledImageSegmenter
l Binary images EBinaryImageSegmenter

Pixel aggregation (encoder)

l Layer selection
l Object construction: run aggregation into objects
l Hole construction: run aggregation into holes

Open eVision User Guide

eimageencoder-encode.htm
eimageencoder-segmentationmethod.htm
eimageencoder-segmentationmethod.htm
egrayscalesinglethresholdsegmenter-class.htm
egrayscaledoublethresholdsegmenter-class.htm
ecolorsinglethresholdsegmenter-class.htm
ecolorrangethresholdsegmenter-class.htm
ereferenceimagesegmenter-class.htm
eimagerangesegmenter-class.htm
elabeledimagesegmenter-class.htm
ebinaryimagesegmenter-class.htm


45

Extract objects (using geometric parameters)

Once an image has been encoded, the coded elements (objects or holes) are accessible through
the abstract class ECodedElement which provides a large set of methods applicable to a particular
coded element:

Features computation and display

The objects, holes and their features can be efficiently accessed randomly (in an index-based
fashion).

Image Segmenters
Code Snippets

There are several ways to segment pixels. The method is chosen with GetSegmentationMethod and
SetSegmentationMethod.

1. Grayscale Single Threshold (default)

EGrayscaleSingleThresholdSegmenter is applicable to BW8 and BW16 grayscale images and produces
coded images with two layers:

l The black layer (usually Layer 0) contains unmasked pixels with a gray value below the
Threshold value.

l The white layer (usually Layer 1) contains the remaining unmasked pixels, i.e. unmasked
pixels having a gray value greater or equal to the Threshold value.

EasyObject provides 5 thresholding methods:

l Absolute (integer value): represents the first gray value of the white layer. Set with
SetAbsoluteThresholdmethod and got with GetAbsoluteThresholdmethod.

l Relative (%): represents the fraction of image pixels that belong to the Black layer, it is a
user-defined float value in range 0 to 1. Set with SetRelativeThresholdmethod and got with
GetRelativeThresholdmethod.

l Minimum Residue (default): The threshold is an automatically computed value such that
the quadratic difference between the source and thresholded image is minimized.

l Maximum Entropy: automatically computed value such that the entropy (i.e. the amount
of information) of the resulting thresholded image is maximized.

l IsoData: automatically computed value that lies halfway between the average dark gray
value (gray levels below the threshold) and average light gray values (gray levels above
the threshold).

Grayscale Single Threshold with a minimum residue thresholding method is the default. Only
objects whose pixels have a value that is above this threshold are encoded.

Open eVision User Guide

ecodedelement-class.htm
eimageencoder-segmentationmethod.htm
eimageencoder-segmentationmethod.htm
egrayscalesinglethresholdsegmenter-class.htm
egrayscalesinglethresholdsegmenter-absolutethreshold.htm
egrayscalesinglethresholdsegmenter-absolutethreshold.htm
egrayscalesinglethresholdsegmenter-relativethreshold.htm
egrayscalesinglethresholdsegmenter-relativethreshold.htm


46

2. Grayscale Double Threshold

EGrayscaleDoubleThresholdSegmenter is applicable to BW8 and BW16 grayscale images and produces
coded images with three layers:

l The black layer (usually Layer 0) contains unmasked pixels having a gray value below the
Low Threshold value.

l The white layer (usually Layer 2) contains unmasked pixels having a gray value above or
equal the High Threshold value.

l The neutral layer (usually Layer 1) contains the remaining unmasked pixels.

The Low Threshold and High Threshold are user-defined integer values, set with
SetLowThreshold and SetHighThresholdmethods, and got with GetLowThreshold and GetHighThreshold
methods.

3. Color Single Threshold

EColorSingleThresholdSegmenter is applicable to C24 color images; it produces coded images with
two layers:

l The white layer (usually Layer 1) contains unmasked pixels that belong to the cube of the
color space defined by the threshold point and the white point (255,255,255).

l The black layer(usually Layer 0) contains the remaining unmasked pixels.

The Color Threshold is a set of three user-defined integer values designating a color in the
color space, set with SetThresholdmethod and got with GetThresholdmethod.

4. Color Range Threshold

EColorRangeThresholdSegmenter is applicable to C24 color images; it produces coded images with
two layers:

l The white layer(usually Layer 1) contains unmasked pixels that belong to the cube of the
color space defined by the Low Threshold point and the High Threshold point.

l The black layer (usually Layer 0) contains the remaining unmasked pixels.

The Low Threshold and High Threshold are each a set of three user-defined integer values
designating a color in the color space, set with SetLowThreshold and SetHighThresholdmethods and
got with GetLowThreshold and GetHighThresholdmethods.

5. Image Range

The following cases need a segmentation using pixel-by-pixel thresholding which gives an
allowed range of values for each pixel:

l when the background is not uniform enough,
l when the illumination is not uniform across the image,
l when only differences between the image and a reference image (ideal) are to be
enhanced,

The allowed range for each pixel is specified using two images: a low reference image with the
minimum values allowed for each pixel, a high reference image with the maximum values. The
reference images are thus the source image minus (or plus) a fixed value all over the image
(assuming noise distribution is uniform and additive).
The difficulty is preparing suitable high and low reference images.

Open eVision User Guide

egrayscaledoublethresholdsegmenter-class.htm
egrayscaledoublethresholdsegmenter-lowthreshold.htm
egrayscaledoublethresholdsegmenter-highthreshold.htm
egrayscaledoublethresholdsegmenter-lowthreshold.htm
egrayscaledoublethresholdsegmenter-highthreshold.htm
ecolorsinglethresholdsegmenter-class.htm
ecolorsinglethresholdsegmenter-threshold.htm
ecolorsinglethresholdsegmenter-threshold.htm
ecolorrangethresholdsegmenter-class.htm
ecolorrangethresholdsegmenter-lowthreshold.htm
ecolorrangethresholdsegmenter-highthreshold.htm
ecolorrangethresholdsegmenter-lowthreshold.htm
ecolorrangethresholdsegmenter-highthreshold.htm


47

Preparing high and low reference images

You can start from an image of the scene without defects and add security margins before
comparison.

Source image

Gray-level tolerance must be provided for noise and illumination variations.

Gray-level tolerance margins

The image may have a slight shift in some direction which can be corrected by enlarging the
light and dark areas using dilate and erode morphological operations. This geometric tolerance
margin is roughly as large as the morphological filter size.

Geometric tolerance margins

Combining both kinds of tolerance margins gives the best results.

Combined margins

Open eVision User Guide



48

Image Segmenter

EImageRangeSegmenter and EReferenceImageSegmenter are applicable to BW8, BW16, and C24
images; and produce coded images with two layers.

The low threshold and the high threshold are defined for each pixel individually by means of
two reference images of the same type as the source image: the Low Image and the High Image.
The Reference Image defines the reference threshold of each pixel individually.

l For grayscale images, the white layer (usually Layer 1) contains unmasked pixels having
a gray value in a range defined by the gray value of the corresponding unmasked pixels in
the Low, High or Reference Image.

l For color images, the white layer (usually Layer 1) contains unmasked pixels having a
color inside the cube of the color space defined by the colors of the corresponding
unmasked pixels in the Low, High or Reference Image.

l The black layer (usually Layer 0) contains the remaining unmasked pixels.

Pointers to the Low Image can be set or got using the functions associated with the type of the
source image:

l BW8: SetLowImageBW8 GetLowImageBW8
l BW16: SetLowImageBW16GetLowImageBW16
l C24: SetLowImageC24GetLowImageC24

Pointers to the High Image can be set or got using the functions associated with the type of the
source image:

l BW8: SetHighImageBW8GetHighImageBW8
l BW16 SetHighImageBW16GetHighImageBW16
l C24 SetHighImageC24GetHighImageC24

Pointers to the Reference Image can be set or got using the functions associated with the type
of the source image:

l BW8: SetReferenceImageBW8, GetReferenceImageBW8
l BW16: SetReferenceImageBW16, GetReferenceImageBW16
l C24: SetReferenceImageC24 , GetReferenceImageC24

6. Labeled Image

ELabeledImageSegmenter is applicable to is applicable to BW8 and BW16 grayscale images; it
produces coded images with a number of layers equal to the maximum number of gray values:
256 for BW8 images or 65536 for BW16 images. The layer n contains all the unmasked pixels
having a gray value equal to n.

By default, all layers are encoded. However, it is possible to restrict the encoding to a single
range of layers with SetMinLayer and SetMaxLayer functions which return the lowest and the
highest values of the index range respectively.

7. Binary Image

EBinaryImageSegmenter is applicable to BW1 binary images; it produces coded images with two
layers:

l Black layer (usually index 0) contains unmasked pixels with a binary value equal to zero.
l White layer (usually index 1) contains the remaining unmasked pixels, i.e. unmasked
pixels with a binary value equal to one.

Open eVision User Guide

eimagerangesegmenter-class.htm
ereferenceimagesegmenter-class.htm
eimagerangesegmenter-lowimagebw8.htm
eimagerangesegmenter-lowimagebw8.htm
eimagerangesegmenter-lowimagebw16.htm
eimagerangesegmenter-lowimagebw16.htm
eimagerangesegmenter-lowimagec24.htm
eimagerangesegmenter-lowimagec24.htm
eimagerangesegmenter-highimagebw8.htm
eimagerangesegmenter-highimagebw8.htm
eimagerangesegmenter-highimagebw16.htm
eimagerangesegmenter-highimagebw16.htm
eimagerangesegmenter-highimagec24.htm
eimagerangesegmenter-highimagec24.htm
ereferenceimagesegmenter-referenceimagebw8.htm
ereferenceimagesegmenter-referenceimagebw8.htm
ereferenceimagesegmenter-referenceimagebw16.htm
ereferenceimagesegmenter-referenceimagebw16.htm
ereferenceimagesegmenter-referenceimagec24.htm
ereferenceimagesegmenter-referenceimagec24.htm
elabeledimagesegmenter-class.htm
elabeledimagesegmenter-minlayer.htm
elabeledimagesegmenter-maxlayer.htm
ebinaryimagesegmenter-class.htm


49

Image Encoder
Reference | Code Snippets

The class representing the objects (EObject) derives from an abstract class ECodedElement.

Object building

Selecting the Layers to Encode

The segmentation methods (see Image Segmenters) determine which layer(s) to encode by
default, and do not encode pixels from the other layers.

Function GetMaxLayerIndex returns the highest Layer Index value. It is available for all segmenters.

Enabling/disabling layer encoding for each layer individually

The following tables list, for each layer, the Set/Get function and the default enable/disable
value.

Two-layer segmenters

Layer Set LayerEncoded function Get LayerEncoded function Default value

Black layer SetBlackLayerEncoded IsBlackLayerEncoded FALSE

White layer SetWhiteLayerEncoded IsWhiteLayerEncoded TRUE

Three-layer segmenters

Layer Set LayerEncoded function
name

Get LayerEncoded function
name

Default
value

Black layer SetBlackLayerEncoded IsBlackLayerEncoded FALSE

White layer SetWhiteLayerEncoded IsWhiteLayerEncoded FALSE

Neutral
layer SetNeutralLayerEncoded IsNeutralLayerEncoded TRUE

Manually Assigning a Layer Index to Each Layer Individually

The following tables list, for each layer, the Set/Get function and the default value.

Two-layer segmenters

Open eVision User Guide

eimageencoder-class.htm
eobject-class.htm
ecodedelement-class.htm


50

Layer Set LayerEncoded function
name

Get LayerEncoded function
name

Default
value

Black
layer SetBlackLayerIndex IsBlackLayerIndex 0

White
layer SetWhiteLayerIndex IsWhiteLayerIndex 1

Three-layer segmenters

Layer Set LayerEncoded function
name

Get LayerEncoded function
name

Default
value

Black layer SetBlackLayerIndex IsBlackLayerIndex 0

Neutral
layer SetNeutralLayerIndex IsNeutralLayerIndex 1

White layer SetWhiteLayerIndex IsWhiteLayerIndex 2

Runs

For the sake of computational efficiency, the objects are described as lists of runs. A run is a
sequence of adjacent pixels that share homogeneous properties (such as being above a given
threshold). These runs are merged in objects by the image encoder.

A single object with five enhanced runs

EasyObject can work at object level, and at run level which allows faster processing in critical
cases. This is useful to compute custom features on objects then list all runs belonging to a
given object as shown in this example of working at run level, with colored runs in the output
image.

1. Declare a new ECodedImage2 object.
2. Declare an EImageEncoder and, if applicable, select the appropriate segmenter. Setup

the segmenter and choose appropriate layer(s) to encode.
3. Set up an output image.
4. Encode the image.
5. Color the runs in the output image. Iterate over the objects of a specific layer by

constructing a loop and then a RunsIterator object. This iterator allows to browse
runs of the considered object. Once the iterator has finished a run of the
considered object, the inner loop processes the pixels spanned by this run in the
output image.

6. Select a specific layer.

Open eVision User Guide

ecodedimage2-class.htm
eimageencoder-class.htm
ecodedelement-runsiterator.htm


51

Source image (left) with the white layer rendered (right)

Connexity

Pixels can touch each other along an edge or by a corner. In Four Connexity only pixels touching
by an edge are considered neighbors. In Eight Connexity (the default) pixels touching by a
corner are also considered neighbors.

Multiple images can be encoded in continuous mode.

Holes Construction
Code Snippets

A hole is a set of connected pixels that are entirely surrounded by a parent object (4 or 8 pixels
depending on the connexity mode).

A hole has no child. Objects inside a hole are considered as separate objects.

EObject and EHole classes both derive from ECodedElement, so objects and holes are managed in the
same way and share the same functions.

Encoding the white layer (3 objects and 3 holes)

Open eVision User Guide

eobject-class.htm
ehole-class.htm
ecodedelement-class.htm


52

Encoding the black layer (4 objects and 3 holes)

How to Color holes

1. Declare a new ECodedImage2 object.
2. Declare an EImageEncoder and, if applicable, select and setup the appropriate segmenter,

and choose the appropriate layer(s) to encode.
3. Set up an output image.
4. Encode the image.
5. Declare a helper function to draw the runs. A helper function (see also section Object

Construction/Working at the Run Level) draws the runs in an output image, using, for
example, a given color. This function can be shared for objects and holes.

6. Draw the objects and their holes in the output image. It is necessary to iterate over
the objects of the chosen layer.
a. The helper function draws the runs of each object (DrawRuns) using a specific color.
b. The holes are iterated over the current object, and their runs are drawn.
c. Each hole of an object is drawn with a different color computed in the global

function (GetFadedColor) that returns a color. This color depends upon the hole
index, for example a gradation of red to green colors.

Raw image (left) Building of objects and all holes (right)

Normal vs. Continuous Mode
Code Snippets

Normal Mode (default)

In normal mode, the image encoder does not track blobs across several successive images.
EasyObject works with one image, without keeping blobs in memory. All the blobs are returned
as objects.

Open eVision User Guide

ecodedimage2-class.htm
eimageencoder-class.htm


53

Continuous Mode

In continuous mode EasyObject can process an image whose height is unknown or infinite (e.g.
coming from a line-scan camera). The image is split into several chunks that are fed into an
image encoder. Objects that straddle several successive image chunks can be detected.

The image encoder encodes only the objects that contain no run touching the last row of the
source image. Objects that touch the inferior border of the image are not written in the coded
image because they are expected to continue in subsequent image chunks, but they are kept in
memory and are processed when subsequent images are analyzed.

A large image is assumed to be divided into several chunks that are stored in the array EImageBW8
chunk[x].

In this example, we generate a sequence of color images that exhibit
objects encoded over successive chunks

Original image

Three chunks of the image

1. Draw the objects encoded in a layer of a coded image. This code is essentially the
same as in "Browsing Runs" code snippet. The only difference is that an offset can be
applied along the Y-axis.

2. Define a function to draw the objects of a layer. If a coded image contains objects that
were started in a previous image: the runs of this object from the previous image are
assigned with a negative Y-coordinate.
The zero Y-coordinate is the first row of the most recently encoded image. The
convention is to assign the lowest Y-coordinate to the oldest run in the encoded objects.
The method EImageEncoder::GetStartY obtains the Y-coordinate of this oldest run. It is
necessary to define a function that displays the content of a layer of a coded image.
Each object can be displayed with a different color( computed by GetFadedColor). This

Open eVision User Guide

eimagebw8-class.htm


54

function closely follows the function DrawRuns, but is adapted to continuous mode by
taking GetStartY into account.

3. Enable continuous mode in property EImageEncoder::SetContinuousModeEnabled. Additional
variables can be declared, for example to store the successive encoded image, or to hold
the output images.

4. Analyze the successive chunks. To encode successive chunks use Encode(chunk[count],
codedImage) and then DrawLayer. Note: The variable count spans integers 0, 1 and 2. When
an object from a chunk is not complete it is kept in the internal memory of the image
encoder.

Content of layerImage when count equals 0, after the application of DrawLayer.
Chunk of the large image that is under consideration.

Note that two objects in the lower-left of the image chunk are not encoded,
because they touch the border of the chunk.

When count reaches 1, one of these two objects becomes completed,
which leads to the encoding of the following image.
Two other objects are not encoded yet at this time.

Here is the result of the encoding of the last chunk (count = 2).

Three objects from the previous chunks have been closed, and have thus been encoded.

Flushing Continuous Mode

After encoding the three image chunks, there remains one object to be completed (in the
bottom-right corner of the large image). However, as there are no more chunks, it is necessary
to explicitly close this object and encode the remaining object using the flushing of the image
encoder. The internal memory of the image encoder is then empty.

Open eVision User Guide

eimageencoder-continuousmodeenabled.htm
eimageencoder-encode.htm
eimageencoder-flushcontinuousmode.htm
eimageencoder-flushcontinuousmode.htm


55

Result of the flush

Selecting and Sorting Blobs
Code Snippets

The object segmentation process considers any blob as an object, including noise pixels which
appear as tiny objects. You can select which blobs to keep using the class EObjectSelection.

Create / modify a selection

You can use the methods Add and Remove of the class EObjectSelection to:
□ Add or remove a single object , a hole or a whole layer to/from a selection.
□ Add or remove objects or holes based on some specified feature (see the feature list in

Computing the Coded Element Features).
□ Add or remove objects or holes based on their specific position, or whether they lie

within a specified ROI rectangle.
□ Add or remove objects based on their specific position, or whether they lie outside, on or

within a specified ROI rectangle or ERegion (AddObjectsUsingRectangle and
AddObjectsUsingRegion).

These actions can be cascaded and combined at will in a single selection.

Clear a selection

You can clear a previous selection using EObjectSelection::Clear.

Sort a selection

You can sort the elements of a selection according to any of their features.

Example

In this example, we select objects in the middle band of an image, with a surface >100 pixels.

Open eVision User Guide

eobjectselection-class.htm
eobjectselection-add.htm
eobjectselection-remove.htm
eobjectselection-class.htm
eobjectselection-addobjectsusingrectangle.htm
eobjectselection-addobjectsusingregion.htm
eobjectselection-clear.htm


56

Source image, and selection of objects

1. Declare a new ECodedImage2 object.

2. Declare an EImageEncoder object and, if applicable, select and setup the appropriate
segmenter and choose the appropriate layer(s) to encode.

3. Encode the source image.

4. Create a selection of objects. Create an instance of the EObjectSelection class and add
objects to this selection, for instance through EObjectSelection::AddObjects.

5. Remove objects based on the value of one feature at a time. The objects in a selection
can be unselected by calling one of the EObjectSelection::Removemethods.

6. Remove the objects based on their position using EObjectSelection::RemoveUsingFloatFeature.
For details, see also "Working at the Run Level".

7. Sort the selected objects using EObjectSelection::Sort.

8. Access the selected objects.

Object Template Matcher
The class EObjectTemplateMatcher is a tool designed to align and match the output of EasyObject to
a reference template. It is designed and developed to handle efficiently thousand of objects.

Open eVision User Guide

ecodedimage2-class.htm
eimageencoder-class.htm
eobjectselection-class.htm
eobjectselection-addobjects.htm
eobjectselection-remove.htm
eobjectselection-removeusingfloatfeature.htm
eobjectselection-sort.htm
eobjecttemplatematcher-class.htm


57

Creating the reference template

Use the method BuildTemplate to create the reference template, with one of the following
parameters:

□ An ECodedImage2, result of the method EImageEncoder::Encode.
□ An EObjectSelection, a selection (subset) of ECodedImage2 objects.
□ A list of positions, given by a vector of points (std::vector<EPoint>).

An encoding of the reference image for use as the template.
And the center positions of each object for use in the matching process.

Sorting the objects

● To perform the matching after setting up the template:
□ Use the method SortSelection with an EObjectSelection as parameter.
□ Or use the more generic method SortPositions with a std::vector<EPoint> as parameter.

● When you pass the objects in a selection as the sort method parameter, the bounding box
center of the objects is the position used for the matching with the template.

● Before the sorting, EObjectTemplateMatcher performs an optional global rigid alignment of the
submitted positions with the defined template.
□ This alignment only applies the translation and rotation transformations.
□ Use the method SetEnableAlignment to enable the alignment process.

Left: the template.
Right: the alignment of the submitted selection.

Open eVision User Guide

eobjecttemplatematcher-buildtemplate.htm
ecodedimage2-class.htm
eimageencoder-encode.htm
eobjectselection-class.htm
ecodedimage2-class.htm
../../../reference/eobjectsort-sortselection.htm
eobjectselection-class.htm
../../../reference/eobjectsort-sortpositions.htm
eobjecttemplatematcher-class.htm
../../../reference/eobjectsort-enablealignment.htm


58

● After the optional alignment, EObjectTemplateMatchermatches the submitted positions with the
reference template.
□ It uses the shortest distance criterion to pair these positions with the template.
□ You can set the maximum distance to constraint the search. This can speed up the

processing.

Retrieving the Sorting Results

● Use one of these methods to retrieve the sorting results:
□ GetSelectionIndexes returns, for each position in the template, the paired index in the

selection. The value -1 is used if the object in the template has no correspondence in the
selection.

□ GetTemplateIndexes returns, for each position in the selection, the paired index in the
template. The value -1 is used if the object in the selection has no correspondence in the
template.

□ GetUnpairedObjects returns the positions in the template and in the selection that have not
been paired.

● Use the method GetNumberOfPairedObjects to get the total number of paired objects.

● Use the methods Save and Load to store and retrieve the configuration of an
EObjectTemplateMatcher object, including the template.

Open eVision User Guide

eobjecttemplatematcher-class.htm
../../../reference/eobjectsort-selectionindexes.htm
../../../reference/eobjectsort-templateindexes.htm
../../../reference/eobjectsort-getunpairedobjects.htm
../../../reference/eobjectsort-numberofpairedobjects.htm
../../../reference/eobjectsort-save.htm
../../../reference/eobjectsort-load.htm
eobjecttemplatematcher-class.htm


59

Advanced Features

Computable Features

Methods prefixed with Get indicate a lazy evaluation: the result is computed on the first
invocation of the method and cached.

Methods prefixed with Compute indicate that the function is reevaluated at every invocation
and the result is never cached.

Open eVision User Guide



60

Position

Limit
(top, bottom, left, right)

ECodedElement::GetTopLimit
ECodedElement::GetBottomLimit
ECodedElement::GetLeftLimit
ECodedElement::GetRightLimit

Gravity center
(X and Y)

ECodedElement::GetGravityCenter
ECodedElement::GetGravityCenterX
ECodedElement::GetGravityCenterY

Weight gravity center
(X and Y) ECodedElement::ComputeWeightedGravityCenter

Gravity center and weight gravity center

The gravity center returns the abscissa of the gravity center of the coded element.

The weight gravity center computes the gravity center of a given image over a coded element.

Extents

Area (pixel count) ECodedElement::Area

Feret box
(center X and Y, height, width
with distinct orientation angles
at 22, 45, 68 degrees)

ECodedElement::ComputeFeretBox
ECodedElement::GetFeretBox22Box
ECodedElement::GetFeretBox22Center
ECodedElement::GetFeretBox22CenterX
ECodedElement::GetFeretBox22CenterY
ECodedElement::GetFeretBox22Height
ECodedElement::GetFeretBox22Width
ECodedElement::GetFeretBox45Box
ECodedElement::GetFeretBox45Center
ECodedElement::GetFeretBox45CenterX
ECodedElement::GetFeretBox45CenterY
ECodedElement::GetFeretBox45Height
ECodedElement::GetFeretBox45Width
ECodedElement::GetFeretBox68Box
ECodedElement::GetFeretBox68Center
ECodedElement::GetFeretBox68CenterX
ECodedElement::GetFeretBox68CenterY
ECodedElement::GetFeretBox68Height
ECodedElement::GetFeretBox68Width

Bounding box
(center X and Y, height, width)

ECodedElement::GetBoundingBox
ECodedElement::GetBoundingBoxCenter
ECodedElement::GetBoundingBoxCenterX
ECodedElement::GetBoundingBoxCenterY
ECodedElement::GetBoundingBoxHeight

Open eVision User Guide

ecodedelement-toplimit.htm
ecodedelement-bottomlimit.htm
ecodedelement-leftlimit.htm
ecodedelement-rightlimit.htm
ecodedelement-gravitycenter.htm
ecodedelement-gravitycenterx.htm
ecodedelement-gravitycentery.htm
ecodedelement-computeweightedgravitycenter.htm
ecodedelement-area.htm
ecodedelement-computeferetbox.htm
ecodedelement-feretbox22box.htm
ecodedelement-feretbox22center.htm
ecodedelement-feretbox22centerx.htm
ecodedelement-feretbox22centery.htm
ecodedelement-feretbox22height.htm
ecodedelement-feretbox22width.htm
ecodedelement-feretbox45box.htm
ecodedelement-feretbox45center.htm
ecodedelement-feretbox45centerx.htm
ecodedelement-feretbox45centery.htm
ecodedelement-feretbox45height.htm
ecodedelement-feretbox45width.htm
ecodedelement-feretbox68box.htm
ecodedelement-feretbox68center.htm
ecodedelement-feretbox68centerx.htm
ecodedelement-feretbox68centery.htm
ecodedelement-feretbox68height.htm
ecodedelement-feretbox68width.htm
ecodedelement-boundingbox.htm
ecodedelement-boundingboxcenter.htm
ecodedelement-boundingboxcenterx.htm
ecodedelement-boundingboxcentery.htm
ecodedelement-boundingboxheight.htm


61

ECodedElement::GetBoundingBoxWidth

Min. enclosing rectangle
(angle, center X and Y,
heath, width)

ECodedElement::MinimumEnclosingRectangle
ECodedElement::MinimumEnclosingRectangleAngle
ECodedElement::MinimumEnclosingRectangleCenter
ECodedElement::MinimumEnclosingRectangleCenterX
ECodedElement::MinimumEnclosingRectangleCenterY
ECodedElement::MinimumEnclosingRectangleHeight
ECodedElement::MinimumEnclosingRectangleWidth

Feret box

A feret box is a rectangle with the minimum surface rotated at a specified angle that contains all
the pixels center points of an object.

l Bounding box is the Feret box at 0°.
l Minimum enclosing rectangle is the Feret box with the minimum surface across all the
possible angles.

l Width of a FeretBox rectangle is the length of the rectangle side that exhibits the
smallest angle with the X-axis. This is NOT necessarily the smallest side!

l The height of a Feret box rectangle is the length of the other side of the rectangle.

Miscellaneous

Starting point of the object contour
(X and Y)

ECodedElement::GetContour
ECodedElement::GetContourX
ECodedElement::GetContourY

Largest run ECodedElement::GetLargestRun

Run count ECodedElement::GetRunCount

Object number
(index)

ECodedElement::GetLayerIndex
ECodedElement::GetElementIndex

Pixel gray-level value
(average, deviation, variance)

ECodedElement::ComputePixelGrayAverage
ECodedElement::ComputePixelGrayDeviation
ECodedElement::ComputePixelGrayVariance

Pixel gray-level value
(min and max)

ECodedElement::ComputePixelMax
ECodedElement::ComputePixelMin

Ellipse of inertia

Eccentricity of the ellipse of inertia ECodedElement::Eccentricity

Moment
ECodedElement::GetCentralMoment
ECodedElement::GetMoment
ECodedElement::GetNormalizedCentralMoment

Open eVision User Guide

ecodedelement-boundingboxwidth.htm
ecodedelement-minimumenclosingrectangle.htm
ecodedelement-minimumenclosingrectangleangle.htm
ecodedelement-minimumenclosingrectanglecenter.htm
ecodedelement-minimumenclosingrectanglecenterx.htm
ecodedelement-minimumenclosingrectanglecentery.htm
ecodedelement-minimumenclosingrectangleheight.htm
ecodedelement-minimumenclosingrectanglewidth.htm
ecodedelement-contour.htm
ecodedelement-contourx.htm
ecodedelement-contoury.htm
ecodedelement-largestrun.htm
ecodedelement-runcount.htm
ecodedelement-layerindex.htm
ecodedelement-elementindex.htm
ecodedelement-computepixelgrayaverage.htm
ecodedelement-computepixelgraydeviation.htm
ecodedelement-computepixelgrayvariance.htm
ecodedelement-computepixelmax.htm
ecodedelement-computepixelmin.htm
ecodedelement-eccentricity.htm
ecodedelement-getcentralmoment.htm
ecodedelement-getmoment.htm
ecodedelement-getnormalizedcentralmoment.htm


62

Ellipse
(angle, height, width)

ECodedElement::GetEllipseAngle
ECodedElement::GetEllipseHeight
ECodedElement::GetEllipseWidth

Second order geometric moments
(Sigma: X, XX, XY, Y, YY)

ECodedElement::GetSigmaX
ECodedElement::GetSigmaXX
ECodedElement::GetSigmaXY
ECodedElement::GetSigmaY
ECodedElement::GetSigmaYY

NOTE
The object perimeter can be measured indirectly by tracing the object
contour with contouring methods and counting the pixels.

From the standard geometric features, others can be derived. For instance, object elongation is
computed as the ratio of large to short ellipse axis or max height over max width. Object
circularity is defined as the ratio of the squared perimeter divided by four times pi multiplied by
the object area.

NOTE
Note. Formulas (N = area):

Open eVision User Guide

ecodedelement-ellipseangle.htm
ecodedelement-ellipseheight.htm
ecodedelement-ellipsewidth.htm
ecodedelement-sigmax.htm
ecodedelement-sigmaxx.htm
ecodedelement-sigmaxy.htm
ecodedelement-sigmay.htm
ecodedelement-sigmayy.htm


63

Convex Hull

The convex hull of a shape is the convex polygon of minimum area that completely surrounds
an object. The convex hull can be used to characterize the object footprint, as well as to observe
concavities. Given that the number of vertices of the convex hull is variable, they are stored in a
EPathVector container.

The corresponding function is ECodedElement::ComputeConvexHull.

Graphic Representation

The objects can be drawn onto the source image by means of ECodedImage2::Draw. The following
features also have a graphical representation that can be drawn by the means of
ECodedImage2::DrawFeature.

Objects Graphic

Bounding box

Convex hull

Ellipse

Feret box

Feret box with an angle of 22°

Feret box with an angle of 45°

Feret box with an angle of 68°

Gravity center

Open eVision User Guide

epathvector-class.htm
ecodedelement-computeconvexhull.htm
ecodedimage2-draw.htm
ecodedimage2-drawfeature.htm


64

Minimum enclosing rectangle

Weighted gravity center

Coordinate System and Conventions

Coordinate system

EasyObject uses a pixel coordinate system where the origin is conventionally at the top left
corner of the top left pixel of an image. Consequently, the fractional part of the coordinates of
the center of a pixel is ".5". This convention is best suited for the representation of sub-pixel
coordinates.

Angles

According to the mathematical conventions, the angles are now counted inversely: A positive
angle brings the X axis on the Y axis.

Evaluating the features

There is one property per feature, removing the need to access the feature through an enum.

Draw Coded Elements

Once an image has been encoded, the coded elements (object or hole) are accessible through
the abstract class ECodedElement and a large set of methods:

To draw coded elements

1. Declare a new ECodedImage2 object.
2. Declare an EImageEncoder object and, if applicable, select and setup the appropriate

segmenter and choose the appropriate layer(s) to encode.
3. Create an output image: copy, pixel by pixel, the (grayscale) source image into a

(color) output image if the drawing of the resulting features has to be colored.
4. Encode the source image.
5. Draw the features for each object in a layer.
6. Read the result, which can be rounded down. A specific drawing can be created to

mark the feature (for example, draw a target for a gravity center).

To render flexible masks use ECodedElement::RenderMask.

The objects, holes and their features can be efficiently accessed randomly (in an index-based
fashion).

Open eVision User Guide

ecodedelement-class.htm
ecodedimage2-class.htm
eimageencoder-class.htm
ecodedelement-rendermask.htm


65

Flexible Masks in EasyObject

See also: using Code Snippets : Creating Code Snippets

A flexible mask can be generated by any application that outputs BW8 images or uses the Open
eVision image processing functions.
EasyObject can use flexible masks to restrict blob analysis to complex or disconnected shaped
regions of the image.

If an object of interest has the same gray level as other regions of the image, you can define
"keep" and "ignore" areas using flexible masks and Encode functions.

A flexible mask is a BW8 image with the same height and width as the source image.
□ A pixel value of 0 in the flexible mask masks the corresponding source image pixel so it

doesn't appear in the encoded image.
□ Any other pixel value in the flexible mask causes the pixel to be encoded.

EasyObject functions that create flexible masks

Source image

1. ECodedImage2::RenderMask: from a layer of an encoded image

1. To encode and extract a flexible mask, first construct a coded image from the source image.

2. Choose a segmentation method (for the image above the default method
GrayscaleSingleThreshold is suitable).

3. Select the layer(s) of the coded image that should be encoded (i.e. white and black layers
using minimum residue thresholding).

4. Make the mask image the desired size using mask.SetSize(sourceImage.GetWidth(),
sourceImage.GetHeight()).

5. Exploit the flexible mask as an argument to ECodedImage2::RenderMask.

BW8 resulting image that can be used as a flexible mask

Open eVision User Guide

code-snippets.htm
eimageencoder-encode.htm
ecodedimage2-rendermask.htm


66

2. ECodedElement::RenderMask: from a blob or hole

1. Select the coded elements of interest.

2. Create a loop extracting a mask from selected coded elements of the coded image using
ECodedElement::RenderMask.

3. Optionally, compute the feature value over each of these selected coded elements.

BW8 resulting image that can be used as a flexible mask

3. EObjectSelection::RenderMask: from a selection of blobs

EObjectSelection::RenderMask can, for example, discard small objects resulting from noise.

BW8 resulting image that can be used as a flexible mask

Example: Restrict the areas encoded by EasyObject

Find four circles (left) Flexible mask can isolate the central chip (right)

1. Declare a new ECodedImage2 object.

2. Setup variables: first declare source image and flexible mask, then load them.

3. Declare an EImageEncoder object and, if applicable, select the appropriate segmenter. Setup
the segmenter and choose the appropriate layer(s) to encode.

Open eVision User Guide

ecodedelement-rendermask.htm
eobjectselection-rendermask.htm
ecodedimage2-class.htm
eimageencoder-class.htm


67

4. Encode the source image. Encoding a layer with just the area in the flexible mask is then
pretty straightforward.
We see that the circles are correctly segmented in the black layer with the grayscale single
threshold segmenter:

5. Select all objects of the coded image.

6. Select objects of interest by filtering out objects that are too small.

7. Display the blob feature by iterating over the selected objects to display the chosen feature.

3.2. EasyGauge - Measuring down to Sub-Pixel

Workflow

EasyGauge

EasyGauge library controls dimensions. It accurately determines position, orientation, curvature
and size of parts. It can interact graphically to place and size gauges, combine them in grouped
hierarchies, and store and retrieve them with all their parameters.

TIP
The theoretical best-case precision is 1/64th pixel for all EasyGauge
operators. In practice, you can assume a precision of 1/10th pixel.

Workflow

The gauge model can be built programmatically or in a graphical editor, then "played" in the
final application.
Choose the workflow that matches the complexity of your model and the accuracy required:
uncalibrated, calibrated or grouped.

Open eVision User Guide

egrayscalesinglethresholdsegmenter-class.htm
egrayscalesinglethresholdsegmenter-class.htm


68

Uncalibrated Gauging: for a simple model

EasyGauge basic use is straightforward.

a. Create a gauge object that corresponds to the required measurement.

b. Change the parameters whose default values are not appropriate.

c. Invoke the desired measurement function.

d. Read the resulting position parameters.

Uncalibrated gauging is easy to implement but has several drawbacks:
□ Measurements are performed in pixels, not millimeters.
□ Measurement models are not portable: gauge positions and sizes must be reworked if

viewing conditions change.
□ Optical distortion or perspective causes inaccurate measurements.

Calibrated gauging: for one or two simple measurement sites

Calibrated gauging is more accurate, and measures the inspected parts independently of the
viewing conditions.
All measurements are taken in the calibrated units, with any distortion implicitly compensated.
Refer to Calibration to learn how to master field-of-view calibration.

a. Create a calibrator object.

b. Place it on the inspected scene.

c. Adjust calibration parameters.

d. Attach a gauge.

Complex Gauging

Gauges can be grouped (see Gauge Manipulation Processes) and attached to another item:

● Attaching gauges to an EFrameShape object moves the gauges with the frame (translation
and/or rotation), the application program must adjust the frame position to track the
inspected part.

● Attaching gauges to another gauge moves them according to the measured position of the
supporting gauge. For example, if gauges are attached to a common rectangle gauge that is
detecting the outline of a part, all gauges automatically track the part when the rectangle
outline is fitted.

If using several measurement sites, you can save the complete model, with calibration modes,
coefficients, and attached gauges, in a single file.

NOTE
Unlike the rest of Open eVision, EasyGauge uses a pixel center origin (see
"Image Coordinate Systems" on page 20). The subpixel coordinate (0, 0) is
the center of the upper left pixel of the image.

Open eVision User Guide

eframeshape-class.htm


69

Gauge Definitions

Point gauge

You can select the most relevant transition points along a line segment probe that crosses one
or several objects edges. Crosswise and lengthwise filtering can be activated for noise
reduction.

Point location. Contrast-based selection

Rectangle Gauge

The placement of a rectangle gauge is defined by its nominal position (given by the coordinates
of its center), its nominal size and its rotation angle.

Each side of a rectangle can have its own transition detection parameters, and can be set to
active or inactive with the ActiveEdges property. When a side is active:

Open eVision User Guide

erectanglegauge-class.htm
erectangleshape-center.htm
erectangleshape-setsize.htm
erectangleshape-angle.htm
erectanglegauge-activeedges.htm


70

l setting the value of a parameter only applies to the currently active sides1.
l getting the value of a parameter yields a result only when the value of this property is the
same for all active sides.

l only active sides are used for measurement and model fitting.

These rules allow to set different parameters for different sides, and measure parallel sides or a
corner point instead of the whole rectangle. The four sides are denoted by letters "x", "y", "XX"
and "YY" respectively.

Naming conventions for the sides of a rectangle gauge

Usage

Define and position the gauge, then use Measure to fit the lines.
To obtain the rectangle properties, set ActualShape to TRUE to return the fitted line (TRUE value)
(default is FALSE).

Alternatively, MeasuredRectangle provides the results as an ERectangle object.

For instance, you can accurately locate the four corners (landmarks) of a rectangle using a
rectangle fitting gauge.

Locating a rectangle's corners

Wedge gauge

The placement of a wedge gauge is defined by its nominal position (given by the coordinates of
its center), its nominal inner and outer radius (inner and outer diameter), its breadth (difference
between radii), the angular position from where it extends and its angular amplitude.

The Setmember can distinguish between a full ring, a sector of a ring and a disk.

Open eVision User Guide

elinegauge-measure.htm
erectangleshape-class.htm
eshape-actualshape.htm
erectanglegauge-measuredrectangle.htm
erectangle-class.htm
ewedgegauge-class.htm
ewedgeshape-center.htm
ewedgeshape-innerradius.htm
ewedgeshape-outerradius.htm
ewedgeshape-innerdiameter.htm
ewedgeshape-outerdiameter.htm
ewedgeshape-breadth.htm
ewedgeshape-angle.htm
ewedgeshape-amplitude.htm


71

Each side of a wedge can have its own transition detection parameters and can be set to active
or inactive with the ActiveEdges property. When a side is active, this means that:

l setting the value of a parameter only applies to the currently active sides;
l getting the value of a parameter yields a result only when the value of this parameter is
the same for all active sides;

l only active sides are used for measurement and model fitting.

So different sides can have different parameters, and you can measure parallel arcs or oblique
sides, or a corner point, instead of the whole wedge. The four sides are denoted by letters "a",
"r", "AA" and "RR" respectively.

Naming conventions for the sides of a wedge gauge

Usage

Define and position the gauge, then use Measure to fit the lines.
To obtain the wedge properties, set the ActualShape property to TRUE to return the fitted line
(instead of the nominal line position FALSE, default).

Alternatively, MeasuredWedge provides the results as an EWedge object.

Line gauge

The placement of a line gauge is defined by its center coordinates, its length and its angle with
respect to the X-axis. To constrain the line slope value, set Angle and KnownAngle.

Line fitting

Open eVision User Guide

ewedgegauge-activeedges.htm
elinegauge-measure.htm
ewedgeshape-class.htm
eshape-actualshape.htm
ewedgegauge-measuredwedge.htm
ewedge-class.htm
elinegauge-class.htm
elineshape-center.htm
elineshape-length.htm
elineshape-angle.htm
elineshape-angle.htm
elinegauge-knownangle.htm


72

Usage

Define and position the gauge, then use Measure to fit the lines. To obtain the line properties, set
the ActualShape property to TRUE to return the fitted line (TRUE value) (instead of the nominal
line position FALSE value, default).

Alternatively, MeasuredLine provides the results as an ELine object.

Circle gauge

The placement of a circle gauge is defined by its nominal position (given by the coordinates of
its center), its nominal diameter (or radius), the angular position from where it extends and its
angular amplitude.

The Set member can distinguish between a full circle and an arc (the arc amplitude must be
specified).

Circle fitting

Usage

Once the gauge has been defined and positioned, use Measure to trigger the circle fitting
operation. To obtain the measurement results, set the ActualShapemode to TRUE. The
ActualShapemode determines whether an inquiry returns the fitted circle (TRUE value) or the
nominal circle position (FALSE value, default). The requested information is then retrieved by
means of the circle properties.

Alternatively, MeasuredCircle provides the results as an ECircle object.

Find Transition Points Using Peak Analysis
Finds the position of all transition points along a line segment probe that crosses one or several
objects edges, and allows selecting the most relevant ones. Crosswise and lengthwise filtering
can be activated for noise reduction.

Open eVision User Guide

elinegauge-measure.htm
eline-class.htm
eshape-actualshape.htm
elinegauge-measuredline.htm
eline-class.htm
ecirclegauge-class.htm
ecircleshape-center.htm
ecircleshape-diameter.htm
ecircleshape-radius.htm
ecircleshape-amplitude.htm
ecirclegauge-measure.htm
eshape-actualshape.htm
eshape-actualshape.htm
ecircleshape-class.htm
ecirclegauge-measuredcircle.htm
ecircle-class.htm


73

Point location. Contrast-based selection

Point Location principle

Point location principle (left) and S-shaped curve and its derivative (right)

On a linear profile extracted from an image, an edge appears as a transition from dark to light
(or vice versa). When plotting pixel values along the gauge, this transition appears as an S-
shaped curve. The first derivative of this curve exhibits a peak around the transition point. The
better the contrast, the sharper the transition and the higher the peak.

EasyGauge extracts the pixel values along a profile (red curve) then uses peak analysis to
determine the transition location. All the pixel values in the peak area1 are used to compute the
transition location.

l Sub-pixel accuracy is only possible if the transition is surrounded by almost uniform
regions of at least 2 pixels wide.

l BWB2 transitions have an increasing profile curve and the peak takes positive values.
Otherwise, the curve decreases and the peak extends negatively.

l You cannot normally detect peaks using the default threshold value (20) as BWB or WBW
transitions base the peak analysis on the gray level profile along the EPointGauge (or
sample path) and not its first derivative.

EPointGauge contains all point measurement parameters, with default values that detect
reasonably contrasted edges.

1Area between the derivative curve and a horizontal user-defined threshold level
2Black / White / Black

Open eVision User Guide

epointgauge-class.htm


74

EPointGauge parameters

Center: Nominal point position (will normally be different before and after measurement).
Tolerance: Tolerance value and gauge orientations.
TransitionType, TransitionChoice, TransitionIndex: Peak selection strategies.
Threshold: Noise immunity.
MinAmplitude, MinArea: Peak strength.
Thickness, Smoothing: Local filter widths.
RectangularSamplingArea Sets sampling area (rectangular by default) to transverse filtering mode.
Measure: Measures the object.
- In single transition mode, Valid returns True when an appropriate point was found. To obtain
measurement results, set ActualShape to True so that Center returns the located point. (False
default value returns nominal point position ).
- In multiple transition mode, NumMeasuredPoints returns the number of points found,
GetMeasuredPoint returns an EPoint object which contains located point information.
An integer index between 0 and GetNumMeasuredPoints-1 must be passed.
GetMeasuredPeak: Returns EPeak containing the peak's Area and Amplitude, and the delimiting
coordinates along the probe segment (Start, Length and Center values).

Select Peaks to improve edge precision

The threshold level is very important:

l Too high can cause significant peaks to be missed, and insufficient pixel values to achieve
good precision.

l Too low can cause false peaks because of noise.

To resolve this dilemma, the EasyGauge peak selection mechanism can reject low contrast or
false edges: transition strength is measured by peak amplitude and area. Every edge
measurement determines peak amplitude and area. If either value falls below the minimum
amplitude or minimum area, the peak is disregarded and no point is assumed at that location.

Threshold level selection (left) and Peak amplitude and area (right)

Multiple versus single transition

EasyGauge can measure several edge points in a single go and retrieve all results afterwards
while in multiple transition mode.

Open eVision User Guide

epointgauge-center.htm
epointgauge-tolerance.htm
epointgauge-transitiontype.htm
epointgauge-transitionchoice.htm
epointgauge-transitionindex.htm
epointgauge-threshold.htm
epointgauge-minamplitude.htm
epointgauge-minarea.htm
epointgauge-thickness.htm
epointgauge-smoothing.htm
epointgauge-rectangularsamplingarea.htm
epointgauge-measure.htm
epointgauge-valid.htm
eshape-actualshape.htm
epointgauge-center.htm
epointgauge-nummeasuredpoints.htm
epointgauge-getmeasuredpoint.htm
epoint-class.htm
epointgauge-getmeasuredpeak.htm
epeak-struct.htm
epeak-area.htm
epeak-amplitude.htm
epeak-start.htm
epeak-length.htm
epeak-center.htm
epointgauge-minamplitude.htm
epointgauge-minamplitude.htm
epointgauge-minarea.htm


75

Multiple transition (left) versus single transition (right)

You can select the single most relevant transition based on 4 criteria: the highest peak, the peak
with the largest area, the peak closest to the gauge center, or the N-th peak encountered
starting from one tip of the gauge.

Best area (first image) and best amplitude choices (2nd image), closest (3rd image) and
3rd from the start (4th image)

Positive or negative peak selection

Peak selection can also be refined by choosing the transition polarity: White to Black or Black to
White (i.e. positive or negative peak), or indifferent.

Black to white, white to black or indifferent polarities

Prefiltering

Prefiltering the image locally can reduce noise effects.
Transverse (lengthwise) filtering averages several parallel lines when sampling the image.
Longitudinal (crosswise) uniform filtering can also be applied to the resulting profile curve.

Open eVision User Guide



76

Thick point gauge for filtering

Transverse Filtering

Transverse filtering places parallel line segments in either a parallelogram or a rectangle
(default). This behavior can be toggled.
Parallelogram mode is faster than rectangular if the angle is close to 0° or 90°, or thickness is
less than 5. If thickness=1, no difference exists between the two modes.
thickness determines the number of parallel lines.
sampling area is the smallest region containing all the parallel line segments.

Rectangular sampling area (left) and Parallelogram sampling area (right)

Point Probe Position

The expected nominal position of a point gauge is specified by its center, orientation angle
with respect to the X-axis, and length tolerance that the point position can vary.

The results are the coordinates of the located points (the actual location) and the strength of
the transition (amplitude and area).
Low values indicate a weak edge, possibly corresponding to an unreliable or inaccurate
measurement.

Tuning Point Measurement Parameters for unclear edges

The EasyGauge default parameters and working modes are good for clear edges. More complex
situations may need parameter tuning.

1. Set the gauge point location and tolerance.
The center position and orientation are easy to decide based on a sample
image or on coordinate considerations. The tolerance depends on the edge
position variations. A larger tolerance increases the likelihood of hitting an
edge, but it may be a false edge or extraneous feature.

Open eVision User Guide

epointgauge-thickness.htm
epointgauge-rectangularsamplingarea.htm


77

2. Decide whether noise reduction is required. Lay the gauge over the
desired location and observe the profile curve and its derivative (play with the
filtering parameters while looking at the plotted curve). The curve regularity
gives an indication of the spread of the gray-level values.
When these coefficients are set, the gray-level profile will not change anymore.

3. Set the threshold value to be low enough for useful parts of the peaks to
cover enough pixels (to achieve better sub-pixel accuracy), but not lower than
the ambient image noise.

4. Remove weak or false edges using the list of peak amplitudes and areas.
Plotting these values along with good and extraneous peaks can help find
appropriate peak rejection limits.

5. Choose whether all transition points are needed or just the most
relevant. If all are required, they can be queried one after another. Otherwise,
a point selection strategy should be chosen based on strength, order or
transition polarity (black to white and/or conversely).

Find Shapes Using Geometric Models
ELineGauge, ECircleGauge, ERectangleGauge, or EWedgeGauge predefined geometric models can be fit
over the edges of an object. The targeted edge must be defined, and points sampled along it at
regularly spaced point measurement gauges. Model fitting in the least square sense can be
applied.

● Line: Measures position and orientation of straight edges.

● Circle: Measures position and curvature of a circle or arc.

● Rectangle: Measures position, orientation and size of a rectangle.

Open eVision User Guide

elinegauge-class.htm
ecirclegauge-class.htm
erectanglegauge-class.htm
ewedgegauge-class.htm


78

● Wedge: Measures position, orientation and size of a ring/ disk sector / curvilinear rectangle.

All gauge types share these common features:

● Point sampling
□ Point gauges are placed along the edges and point measurement carried out at regularly

spaced spots, which can be adjusted differently per side in rectangle and wedge gauges.
All point measurement parameters and operating modes are available.

□ SamplingStep sets the spacing of point location gauges along the model.
□ NumSamples returns the number of points sampled during the model fitting operation.

Sampling paths and sampled points

● Model fitting
□ The model is adjusted to minimize error residue and provide the best edge parameter

estimates. Rectangles and wedges have parallelism and concentricity constraints. Image
shows sampled points and fitted line.

● Outlier rejection
□ After model fitting, some points will be too far away from the fitted model and may harm

location accuracy. EasyGauge can tag them as outliers to be ignored using the
FilteringThreshold property.

□ The outlier elimination process can be repeated several times using NumFilteringPasses.
The number of valid sample points remaining after a model fitting operation is kept in
NumValidSamples.
The average distance of these points to the fitted model is returned by AverageDistance.

Open eVision User Guide

elinegauge-samplingstep.htm
elinegauge-numsamples.htm
elinegauge-filteringthreshold.htm
elinegauge-numfilteringpasses.htm
elinegauge-numvalidsamples.htm
elinegauge-averagedistance.htm


79

Gauge Manipulation: Draw, Drag, Plot, Group
EasyGauge provides means to graphically interact with gauges to place and size them, combine
them as a hierarchy of grouped items, and store/retrieve them and all working parameters
to/from model files.

Draw

Draw gives a graphical representation of a gauge. Drawing is done with the current pen in the
device context associated with the desired window. Depending on the operation, handles may
be displayed.

Drag

An operator can drag a gauge interactively over an image. Several dragging handles are
available.

l HitTest determines when the mouse cursor is over a handle. When it is, the cursor shape
should be changed for feedback, and a drag can take place.

l Dragmoves the handle and the corresponding gauge accordingly.

Plot

EasyGauge can Plot gray-level values along the sampled paths and/or its derivative - useful for
parameter tuning.
Point measurement gauges can plot after calling Measure.
Model fitting gauges can plot after calling MeasureSample with an index argument that lies
between 0 and GetNumSamples-1 (included).
To view the corresponding sampling path, use the method Draw with mode EDrawingMode_
SampledPath.

Group

Measurement gauges can be grouped (their relative placement remains fixed) to form a
dedicated tool that can be moved (translated and rotated) to follow the movement of inspected
items / probes before computing measurements.

Attach associates a gauge to a mother gauge or EFrameShape object.

NumDaughters, GetDaughter, or Mother retrieves information relative to attached daughters or mother.

Detach, DetachDaughters dissociates the gauge or daughters from the mother.

Open eVision User Guide

epointgauge-measure.htm
eshape-attach.htm
eframeshape-class.htm
eshape-numdaughters.htm
eshape-getdaughter.htm
eshape-mother.htm
eshape-detach.htm
eshape-detachdaughters.htm


80

Calibration and Transformation

Field-of-view calibration

Calibration establishes the relationship between real-world point
coordinates and image pixels. A simple calibration model computes faster, a
repeatable part position is easier to locate.

The Raw sensor coordinate system starts from upper left and extends
rightwards and downwards.
The range of abscissas is 0 to width-1 and the range of ordinates is 0 to
height-1 where integer coordinate values correspond to pixel centers.

The Centered sensor coordinate system starts at the center ([width-1]/2,
[height-1]/2 in the Raw system) and extends rightwards and upwards.

The real world 3D coordinates are defined in a 2D reference frame tied to a
reference plane. The origin and direction of the axis are normally aligned
with major features of the inspected parts.

Before World-to-Sensor Transform

Before converting from world to sensor coordinates, sources of distortion should be eliminated:
□ adjust sweep frequency or scanning speed to avoid non-square pixels.
□ adjust optical alignment to minimize perspective effect. The field of view should be

parallel to the sensor plane.
□ use long focal distances and good quality lenses to minimize Optical distortion.
□ use appropriate scale factor based on lens magnification, observation distance and

focusing.
□ minimize skew and translation effects by secure fixtures, and part-movement /

acquisition-triggering synchronization.

Effects of World-to-Sensor Transform

● No calibration. World and sensor coordinates are identical.

● Translated calibration: The coordinate origin can be moved. World
coordinates correspond to pixel units.

● Isotropic scaling (square pixels). A scale factor converts pixel values to
physical measurements.

Open eVision User Guide



81

● Anisotropic scaling (non-square pixels). Uses two scale factors with pixel
aspect ratio (X /Y ) in the range [-4/3, -3/4] (or [3/4, 4/3]). Pixels are always
displayed as square, so the image appears stretched.

● Scaled and skewed (square pixels). Real-world axis aligns with rotated
inspected part using translation, rotation and scaling.

● Scaled and skewed (non-square pixels). Distortion is apparent. Occurs
when camera scan speed does not match pixel spacing.

● Perspective distortion causes further away objects to look smaller; lines
remain straight but angles are not preserved.

● Optical distortion causes cushion or barrel appearance of rectangles.

● Combined distortions result in a complex, non linear, transform from real-
world to sensor spaces.

Calibration Using EWorldShape
The EWorldShape object can calibrate the whole field of view (in given imaging conditions with
fixed camera placement and lens magnification), if the optical setup is modified.
EWorldShape computes appropriate calibration coefficients and transforms measurement gauges
that are tied to it.
It can set world-to-sensor transform parameters, perform conversions from and to either
coordinate system, determine unknown calibration parameters, and save the parameters of a
given transform for later reuse.

After calibration EWorldShape can perform coordinate transform for arbitrary points using
SensorToWorld and WorldToSensor to:

□ measure non-square pixels and rotated coordinate axis.
□ correct perspective and optical distortion, with no performance loss.

There are several ways to obtain the calibration coefficients:

Open eVision User Guide

eworldshape-class.htm
eworldshape-class.htm
eworldshape-sensortoworld.htm
eworldshape-worldtosensor.htm


82

Estimate (feasible if no distortion correction is required and accuracy
requirements are low)

To estimate the calibration coefficients either locate the limits of the field of view and divide the
image resolution by the field of view size, or use the following procedure:

1. Take a picture of the part to be inspected or a calibration target (e.g. rectangle).

2. Locate feature points such as corners in the image (by the eye) and determine their
coordinates in pixel units —let (i,j).

3. Use the Euclidean distance formula to derive the calibration coefficient:
where C is a calibration coefficient, in pixels per unit, and D is the world distance between the
corresponding points, in units.

4. For non-square pixels repeat this operation for pairs of horizontal and vertical points.

To estimate a skew angle, apply this formula to two points on the X-axis in the world system:

Estimating scale factors and skew angle

When the calibration coefficients are available, use SetSensor to adjust them and set the
calibration mode, or set them individually using: SetSensorSize, SetFieldSize, SetResolution,
SetCenter, SetAngle.

Pass a set of reference points (landmarks) to a calibration function

Locate at least 4 landmarks and obtain their coordinates in sensor (using image processing) and
world coordinate systems (actual measurements). More landmarks give more accurate
calibration.

The resulting pixels aspect ratio (X resolution / Y resolution) must be in the range [-4/3, -3/4] (or
[3/4, 4/3]).

Use the method EWorldShape::AddLandmark to add reference points, then use
EWorldShape::AutoCalibrateLandmarks to calculate the calibration.

Analyze a Calibration target

A calibration target can be automatically analyzed to get an appropriate set of landmarks. It is
an easy way to achieve automatic calibration, provided an appropriate procedure is available to
extract the desired landmark point coordinates.

Open eVision relies on the use of a specific target holding a rectangular grid of symmetrical dots
(of any shape) with no other object on the grid.

Open eVision User Guide

eworldshape-addlandmark.htm
eworldshape-autocalibratelandmarks.htm


83

Dot Grid based calibration example

1. Grab an image of the calibration target in such a way that it covers the whole field of view (or
restricts the image of view to an ROI where only dots are visible).

2. Apply blob analysis to extract the coordinates of the centers of the dots, as can be done by
EasyObject.

3. Pass all points detected to AddPoint (sensor coordinates only).

4. Call RebuildGrid to reconstruct a grid to calibrate a field of view using an iterative algorithm
which computes the world coordinates of each dot.

a. The grid points nearest to the gravity center (g) of grid points are selected (g1 and g2) to
form the first reference oriented segment, of length A.

b. Starting from the extremity of the reference segment (g2), the algorithm determines
3 tolerance areas (white squares in the figure), in perpendicular directions. The tolerance
areas are centered at a distance A (length of the reference segment) from (g2). They are
square, with a side-length of A.
The algorithm searches for 1 neighboring point, in each of the 3 tolerance areas.
The grid will be correctly calibrated if each tolerance area contains a neighboring point.

c. The 3 perpendicular segments are the references of the next iterative searches. The
algorithm goes back to step 2.

5. Call Calibrate.

Open eVision User Guide

eworldshape-addpoint.htm
eworldshape-rebuildgrid.htm


84

If the grid exhibits too much distortion, grid reconstruction does not work as expected. The
following errors could happen:

1. A tolerance area does not contain a neighboring point (red square in the figure).

2. A tolerance area contains more than one neighboring point.

3. The point in the tolerance area is not the correct one. For instance, the point might be
diagonally connected (red point in the figure).

TIP
Use the method EWorldShape::AutoCalibrateDotGrid to automatically perform
the process above.

Advanced Features
The field-of-view calibration model can be tuned using these parameters:

Sensor width and height

The sensor width and sensor height give the logical image size, in pixels (always integers).

Field-of-view width and height

The field-of-view (f-o-v) width and height give the actual image size, in length units, i.e. the size
of the rectangle corresponding to the image edges in the world space. These values are related
to the pixel resolution by the following equations:

f-o-v width = pixel width * sensor width

f-o-v height = pixel height * sensor height

or

sensor width = f-o-v width * horizontal resolution

sensor height = f-o-v height * vertical resolution

By default pixel height is not specified, the pixels are assumed to be square (pixel width = pixel
height).

Open eVision User Guide

eworldshape-autocalibratedotgrid.htm
eworldshape-sensorwidth.htm
eworldshape-sensorheight.htm
eworldshape-fieldwidth.htm
eworldshape-fieldheight.htm


85

Ratio

Anisotropic aspect ratio

Center abscissa and ordinate

The center abscissa (x) and ordinate (y) indicate the image origin point (world coordinates (0,0)).
Default is the image center.

Skew angle

The skew angle is the angle formed by the real-world reference frame (X-axis) and the image
edge (horizontal). The default is no skew.

Skew angle

NOTE
When the pixels are not square, the EWorldShape object can convert the angle
between the world and sensor spaces.

X and Y tilt angles

The X and Y tilt angles describe the viewing plane direction. They correspond to the required
rotations around X and Y axis that bring the Z axis parallel to the optical axis.

Tilt X and tilt Y angles

Open eVision User Guide

eworldshape-centerx.htm
eworldshape-centery.htm
eworldshape-angle.htm
eworldshape-class.htm
eworldshape-tiltxangle.htm
eworldshape-tiltyangle.htm


86

Perspective strength

The perspective strength gives a relative measure of the perspective effect. The shorter the focal
length, the larger the value.

Weak and strong perspective

Distortion strength

Distortion strength gives a relative measure of radial distortion in the image corners, that is the
ratio of image diagonal length with and without distortion.

Positive and negative distortion

Calibration mode, expressed as a combination of options, can be accessed via CalibrationModes.

Effect of the Calibration Coefficients

No calibration coefficient: All coefficients combined.

Unwarp an Image
An EWorldShape object manages a field-of-view calibration context. Such an object is able to
represent the relationship between world coordinates (physical units) and sensor coordinates
(pixels), and account for the distortions inherent in the image formation process.

Open eVision User Guide

eworldshape-perspectivestrength.htm
eworldshape-distortionstrength.htm
ecalibrationmode-enum.htm
eworldshape-calibrationmodes.htm


87

Image calibration is an important process in quantitative measurement applications. It
establishes the relation between the location of points in an image (pixel indices) and the actual
positions of those points in the real world, on the inspected item.

Calibration can be setup by providing explicit calibration parameters of the calibration model,
or a set of known points (landmarks), or a calibration target.

The goal of calibration is twofold:

● To gain independence with respect to the viewing conditions (part placement in the field of
view, lens magnification, sensor resolution, ...), letting you describe the inspected item once
for all using absolute measurements.

Single model versus multiple viewing conditions

● To correct some distortion related to the imaging process (perspective effect, optical
aberrations, ...).

Removal of image distortion

The pixel indices in an image are usually integer numbers, but fractional values can occur when
using sub-pixel methods. They are normally obtained by processing an image and locating
known feature points. These values are called sensor coordinates.

Feature point in sensor space

The world coordinates describe the location of points on the inspected item are expressed in an
appropriate length measurement unit.
The world coordinates are actual dimensions, usually gathered from design drawings or by
mechanical measurements.
They require a reference frame to be defined.

Open eVision User Guide



88

Reference frame in world space

Unwarp

Unwarp an image using Unwarp, SetupUnwarp and UnwarpAfterSetup.
Using a lookup table before unwarping may speed up the process.

Distorted vs. Unwarped image

3.3. EasyFind - Matching Geometric Patterns

Workflow
EasyFind learns a reference model from a pattern, which is used to find similar patterns in other
images and retrieve information about these instances.
It is quick and robust, and very tolerant of noise, blur, occlusion, missing parts and changes in
illumination.

Open eVision User Guide

eworldshape-unwarp.htm
eworldshape-setupunwarp.htm
easyfind-library.htm


89

Workflow

Open eVision User Guide



90

Feature points definition

A feature point is a pair of coordinates (X, Y) and a type (Edge, Transition or Region).

EasyFind uses feature points to find instances in a search field.

● Edge feature points: an abrupt change of gray level between two regions indicates an edge
at this location in the search fields.

● Transition feature points: a smooth change of gray level between two regions indicates a
transition area in their neighborhood (represented by dots in the blue area of the example
above). The size of the neighborhood can be modified.

● Region feature points: identify 2 regions of roughly uniform gray levels:
□ dark region (represented by a family of dots in the red area of the example above),
□ bright region (represented by a family of dots in the green area).

Open eVision User Guide



91

Learning Process
EasyFind supports various pattern types (Consistent edges or Thin structures).
During the learning process, EasyFind computes for itself a feature model which is a set of all
extracted feature points from a bitmap representation of the pattern.

EasyFind only needs this feature model to start the finding function, but you can create your
own optimal model.

The optimal model depends on the type of pattern being searched for.

Consistent Edges

Models must be well contrasted with sharp edges. They should be substantially different from
the rest of the expected search fields. Can be scaled or rotated, very robust to: blurring, noise,
occlusion, illumination variation (point-by-point scores improves robustness and computation
time of the finding phase).

Good formodels with consistent edges, sharp contrast transitions, regions delineated by well
defined edges that are in approximately the same place for each instance in all search fields.

Choose the similar points with EPatternFinder::ContrastMode property:
□ PointByPointNormal: if points share the same contrast polarity.
□ PointbyPointInverse: if points exhibit opposite contrast polarity.
□ PointByPointAny: regardless of their respective contrast polarity.

Thin Structures (defined by edge feature points)

Can be scaled or rotated, robust to: blurring, noise, occlusion, illumination variation. Edges
must be consistent between thin elements and regions, and the contrast should be the same for
each thin element.

Good formodels containing thin elements.

Open eVision User Guide

epatternfinder-contrastmode.htm
efindcontrastmode-enum.htm
efindcontrastmode-enum.htm
efindcontrastmode-enum.htm


92

Check the Learned model is correct

EasyFind can draw the extracted feature points on the model using the DrawModelmethod of the
PatternFinder object.

On the examples, edge feature points appear as green points for Consistent Edges and Thin
Structures.

Finding Process
You can optimize the finding process by setting and saving some parameters in a configuration
file. You simply load this file and run to see what EasyFind has found in the reported
information.

Maximum number of expected instances

Set the maximum number of instances that EasyFind should return. In this example the number
was three.

Open eVision User Guide

epatternfinder-drawmodel.htm
epatternfinder-class.htm


93

Angles and scales (thin structure and consistent edges pattern types)

Ranges have a bias and a tolerance. For instance, for an angle bias of 20° and an angle tolerance
of 5°, EasyFind returns instances with an angle between 15° and 25° with respect to the learned
model (20° ± 5°).

Advanced Features

Find partial patterns

EasyFind can locate instances of thin structures and consistent edges that are partially out of
the search field, if the extension of the search field is set to > 0 pixels.

Tune Parameters

These parameters can be tuned for all models:
□ Adjust the Light Balance using model drawing to preview the model so that it fits the

useful parts of the pattern, then learn the model again.
□ Set the gray-level threshold (this overrides light balancing) and learn the model again.
□ Move the pivot to a specific place in the model like a corner or a hole. The pivot is the

location returned by EasyFind when it finds an instance (the center by default).

Open eVision User Guide

epatternfinder-lightbalance.htm
epatternfinder-drawmodel.htm


94

□ Ignored areas. Zero values indicate ignored areas. 255 values indicate areas taken into
account. For example: If the text in the center of the model differs from the instance, you
can indicate that EasyFind must not extract feature points from this part of the model.

● Thin Structures may benefit from tuning these parameters:
□ Automatic (thin elements with the same contrast between them and their neighboring

regions)
□ Thin elements darker than the neighborhood
□ Thin elements brighter than the neighborhood

3.4. EasyMatch - Matching Area Patterns

Workflow

EasyMatch

Reference

EasyMatch learns a pattern and finds exact matches:

1. The pattern is learned by defining an ROI that contains the object to be matched.
This ROI is created after iteratively learning from several images which contain the object.

2. The parameters are tuned to ensure the pattern is found reliably.

3. Images can now be searched for one or more occurrences of the pattern, which may be
translated, rotated or scaled.

Learning and Matching a pattern

Open eVision User Guide

ethinstructuremode-enum.htm
easymatch-library.htm
easymatch-library.htm


95

Learning workflow

Matching workflow

Learning Process
Select an image containing the pattern/ROI to be searched for and call LearnPattern. Pass an
arbitrary shaped region of interest (ERegion) to ignore the pixels outside of this region.

Open eVision User Guide

ematcher-learnpattern.htm


96

The resulting pattern can be saved as a model for later use. You can repeat this process to
search for and save multiple patterns.

Best pattern characteristics

● repeatable, you need to know if it can translate or rotate or scale.

● represent the object to be located.

It should:
□ Keep the same appearance whatever the lighting conditions.
□ Remain at a fixed location with respect to the part.
□ Be rigid and not change shape.

● exhibit good contrast in small and large scale. It should be distinctly visible from a
distance, and on a reduced image.

● not be invariant under the degrees of freedom to be measured. For instance, a pattern of
black and white horizontal stripes cannot detect horizontal translation; a cog wheel cannot
help measure large rotations.

● have a neutral background. If objects around the pattern in the ROI may change, this area
should be neutralized by means of "don't care" pixels or a mask.

● have contrasted margin around the objects so that foreground and background intensities
are seen.

Customize Parameters

Parameters can be tuned to minimize processing time, but it still takes longer than EasyFind as
the entire selected area is matched.

● DontCareThreshold: If don't care areas are required, the corresponding pixels must hold a value
below the DontCareThreshold.
If all the background can be ignored, merely adjusting the DontCareThreshold to the right
thresholding value can do.
Otherwise, when the don't care area is unrelated to the threshold pattern image, the
DontCareThreshold should be set to 1 and all pixels belonging to the don't care area should be
set to black (value 0).

Alternatively, pass an arbitrary shaped region of interest (ERegion) to ignore the pixels outside
of this region. It is equivalent to setting all pixels outside of the region to black and having a
DontCareThreshold set to 1.

● MinReducedArea: To improve time performance, EasyMatch sub-samples the pattern. This
parameter stipulates the minimum size of the pattern (as its area in pixels) during sub-
sampling. The smaller the value, the faster the matching process, but, set too low, it
decreases the matching process reliability.
The value of MinReducedArea is computed automatically if AdvancedLearning is enabled (default
behavior). Setting explicitly MinReducedArea will disable AdvancedLearning. A value of 64 is
usually a good compromise.

● AdvancedLearning: If the pattern is defined as a ROI of an image, AdvancedLearning optimizes
learning parameters, such as MinReducedArea, by using the whole image context.
AdvancedLearning is enabled by default, as it leads to better results in case of tiled or periodic
images. If MinReducedArea is set explicitly, AdvancedLearning is disabled. Please note that as
AdvancedLearning changes the number of pixels in the pattern, it can have a significant impact
on the matching process duration.

Open eVision User Guide

ematcher-dontcarethreshold.htm
ematcher-dontcarethreshold.htm
ematcher-dontcarethreshold.htm
ematcher-dontcarethreshold.htm
ematcher-minreducedarea.htm
ematcher-minreducedarea.htm
ematcher-advancedlearning.htm
ematcher-minreducedarea.htm
ematcher-advancedlearning.htm
ematcher-advancedlearning.htm
ematcher-advancedlearning.htm
ematcher-minreducedarea.htm
ematcher-advancedlearning.htm
ematcher-minreducedarea.htm
ematcher-advancedlearning.htm
ematcher-advancedlearning.htm


97

● FilteringMode: If the image has sharp gray-level transitions, it is better to choose a low-pass
kernel instead of the usual uniform kernel.

Learning a pattern

Matching Process
For each new image, one or more occurrences of the pattern is searched for, allowing it to
translate, rotate or scale, using a single function call:

□ Match: receives the target image/ROI as its argument and locates the desired occurrences
of the pattern. You can pass an arbitrary shaped region of interest (ERegion) to ignore the
pixels located outside of this region.

You can set these parameters:
□ Rotation range: MinAngle, MaxAngle.
□ Scaling range: MinScale, MaxScale.
□ Anisotropic scaling range: MinScaleX, MaxScaleX, MinScaleY, MaxScaleY.

The following functions return the result of the matching:
□ NumPositions returns the number of good matches found. A good match is defined as

having a score higher than prescribed value (the MinScore threshold value).
□ GetPosition returns the coordinates of the N-th good match. The positions are sorted by

decreasing score.

If you want to match several patterns against the same image, create an EMatcher object for each
pattern.

Matching a pattern

Advanced Features
The best way to speed up this process is to minimize rotation and scaling, and limit the number
of occurrences searched for.

● Learning time:

Open eVision User Guide

ematcher-filteringmode.htm
ematcher-match.htm
ematcher-minangle.htm
ematcher-maxangle.htm
ematcher-minscale.htm
ematcher-maxscale.htm
ematcher-minscalex.htm
ematcher-maxscalex.htm
ematcher-minscaley.htm
ematcher-maxscaley.htm
ematcher-numpositions.htm
ematcher-minscore.htm
ematcher-getposition.htm
ematcher-class.htm


98

□ Optimize number of searches: Searching all positions takes too long, so a sequence of
searches is performed at various scales (reductions). The coarsest reduction is quick and
approximate. Subsequent reductions work in a close neighborhood to improve location,
drastically reducing the number of positions to be tried. The location accuracy is given by
2K, where K is the reduction number.

□ MinReducedArea. Indicates how small the pattern can be made for rough location.

● Matching time:
□ Correlation mode (way to compare the pattern and the image): CorrelationMode. Can be

standard, offset-normalized, gain-normalized and fully normalized: the correlation is
computed on continuous tone values. Normalization copes with variable light conditions,
automatically adjusting the contrast and/or intensity of the pattern before comparison.

□ Contrast mode (way to deal with contrast inversions): ContrastMode. Lighting effects can
cause an object to appear with inverted contrast, you can choose whether to keep
inverted instances or not, and whether to match positive occurrences only, negative
occurrences only or both.

□ Maximum positions (expected number of matches): MaxPositions, MaxInitialPositions. You
can compel EasyMatch to consider more instances than needed at the coarse stage using
the MaxInitialPositions parameter (this number is progressively reduced to reach
MaxPositions in the final stage).

□ Minimum score (under which match is considered as false and is discarded): MinScore,
InitialMinScore.

□ Sub-pixel accuracy: Interpolate. The accuracy with which the pattern is measured can be
chosen (the less accurate, the faster). By default, the position parameters for each degree
of freedom are computed with a precision of a pixel. Lower precision can be enforced.
One tenth-of-a-pixel accuracy can be achieved.

□ Number of reduction steps: FinalReduction. Can speed up matching when coarse location
is sufficient, range [0...NumReductions-1].

□ Non-square pixels: GetPixelDimensions, SetPixelDimensions. When images are acquired with
non-square pixels, rotated objects appear skewed. Taking the pixel aspect ratio into
account can compensate for this effect.

□ "Don't care" pixels (ignored for correlation score) below the DontCareThreshold value. When
the pattern is inscribed in a rectangular ROI, some parts of the ROI can be ignored by
setting the pixels values below a threshold level. The same feature can be used if parts of
the template change from sample to sample.

3.5. EChecker2 - Validating Golden Templates

EChecker2
● EChecker2 is a tool that allows to inspect an image using a Golden Template validation.

It works in 2 steps:

a. The Model Creation involves pre-processing a set of reference images to compute a
model.
You can create the model once and archive the results in a Golden Template model for
later use.

b. The Inspection involves processing an image and checking its quality using the previously
computed model.

Open eVision User Guide

ematcher-minreducedarea.htm
ematcher-correlationmode.htm
ematcher-contrastmode.htm
ematcher-maxpositions.htm
ematcher-maxinitialpositions.htm
ematcher-maxinitialpositions.htm
ematcher-maxpositions.htm
ematcher-minscore.htm
ematcher-initialminscore.htm
ematcher-interpolate.htm
ematcher-finalreduction.htm
ematcher-numreductions.htm
ematcher-getpixeldimensions.htm
ematcher-setpixeldimensions.htm
ematcher-dontcarethreshold.htm


99

These 2 operations are totally independent and can even be programmed in separate
applications.

● EChecker2 is part of the EasyObject library.

● The following sections present the relevant API functions for use in the training and
inspection steps.

EChecker2 vs. EChecker

● EChecker2 supersedes the original EChecker:
□ It expands EChecker with an up-to-date API.
□ It adds the possibility to use geometrical pattern matching and a flexible number of

fiducials.
□ It works with the newer ECodedImage2.
□ It only requires the EasyObject license.

● For all these reasons, the original EChecker is now considered legacy and deprecated.

Creating a Model
During the model creation phase, the good images are processed to build the model that is
used in the inspection phase. The model includes the pixel acceptance ranges, in the form of 2
threshold images, as well as the information needed to realign and normalize the images.

To create a model, 2 operations are performed: initialization and training.

Initialization

● The initialization of the model creation process is done on a specific image, called the
reference.

● On this reference, the following information are defined or computed:
□ The global gray level metrics are computed as reference for the normalization process.

It is thus very important that the reference image is well lit and contrasted.
□ One or more ERegions are placed to define the location patterns (fiducial marks or

landmarks).
The location of these patterns is used as reference in the realignment process.

TIP
- If you use only 1 pattern, the only transformation handled is the
translation.
- With 2 or more patterns, the scaling and the rotation are also processed.

NOTE
- As per Open eVision 2.15, you can only use either 1 or 2 regions.
- The possibility to use more regions will be added in the future.

□ An ERegion is defined to delimit the area to be inspected.
This area should only include pixels of the rigid part (that moves with the fiducial marks),
and not the background.

Open eVision User Guide

eregion-class.htm
eregion-class.htm


100

● To perform the initialization, use the method EChecker2::Initialize.

Initialization: the fiducial regions and tolerances (green) and the inspection region (blue)

Training

● After the initialization, the main training phase begins.
□ All the training images are processed and are averaged using statistical training (see

below).
□ The training uses realignment to deal with displacement of the inspected part in the field

of view.
□ The training uses gray-level normalization to deal with global illumination changes.

● Ideally, use 16 images or more in training to create the low and high threshold images that
serve as the basis of the inspection process.

● To perform the training:
□ Use the method EChecker2::Train with class instances.
□ Use the method EChecker2::TrainFromImageFiles with a list of image files.

Open eVision User Guide

echecker2-initialize.htm
echecker2-train.htm
echecker2-trainfromimagefiles.htm


101

Statistical training

● Use several training images to optimize the assessment of normal gray-level variations and
acceptance intervals:
□ Consecutive images of the same part without any change (static test) generates a gray-

level distribution that corresponds to the noise distribution.
□ Consecutive images of different defect-free parts reveal variations due to the parts

themselves (as opposed to defects).

Accepted gray-level ranges

Model creation parameters

● Choose the TrainingMode to fit your needs:
□ Quick for a quick training process and simpler cases (well defined defects and stable

illumination).
□ Precise for more difficult cases.
□ Default: Precisemode.

● Set NormalizationMode to select the type of normalization used by EChecker2:
□ Moments: linear.
□ Threshold: non-linear.
□ NoNormalization: if your acquisition process already produces consistently lit images.
□ Default: Moments.

● Choose the FiducialMatchingMode to define the search of the fiducials inside the processed
images:
□ Geometric for well-defined fiducials that can potentially suffer from occlusion.
□ Area for less-well defined fiducials.
□ Default: Geometric.

● Set FiducialHorizontalTolerance and FiducialVerticalTolerance to adjust the search distance for
the fiducials from the reference position (after realignment).
□ Default: 30 pixels.

Open eVision User Guide

echecker2-trainingmode.htm
echecker2-normalizationmode.htm
echecker2-fiducialmatchingmode.htm
echecker2-fiducialhorizontaltolerance.htm
echecker2-fiducialverticaltolerance.htm


102

● Set InspectionTolerance to adjust the acceptance ranges during the inspection.
□ Use higher values to make the inspection process more tolerant to noise and/or texture.

NOTE
All these parameters have an influence on how the model is built, and, as
such, if any of these parameters is changed, you must restart the model
creation.

Model serialization

● After the training, use the methods EChecker2::Save and EChecker2::Load you can save the
created model in a single file including all the relevant information and to retrieved it.

Inspecting an Image
● Use the inspection on an image to assess it towards the trained model.

The process is straightforward:

a. The sample image is realigned with the model.

b. The gray-level is normalized.

c. This gray-level is combined with the high and low threshold images to populate an
ECodedImage2.

d. The computed blobs are made of pixels that fall out of the range defined by the threshold
images and thus represent potential defects.

The realigned Image

The low and high threshold images

Open eVision User Guide

echecker2-inspectiontolerance.htm
echecker2-save.htm
echecker2-load.htm


103

Detected defects after inspection

● When the inspection is done, you can discard the smaller defects (usually noise), as well as
measure the geometric characteristics (location, size, orientation...) using the standard
EasyObject2 processes.

● To perform the inspection, use the method EChecker2::Inspect.

Open eVision User Guide

echecker2-inspect.htm


104

4. Using Open eVision Studio

4.1. Selecting your Programming Language

When you start Open eVision Studio for the first time, the following welcome screen is
displayed:

1. Select your programming language.

TIP
Your selection is saved and your programming language will be
automatically selected next time you start Open eVision Studio.

NOTE
When you change your programming language, any script present in the
scripting window is automatically deleted and the window content is reset.

2. Click on one of the Load buttons to already load one or several images for later processing.

3. Check the Do not show at startup box to hide this welcome screen next time you start Open
eVision Studio.

TIP
To access this welcome screen at any time, and change this setting, go to
the Help > Welcome Screen menu.

Open eVision User Guide



105

4.2. Navigating the Interface

Open eVision Studio graphical user interface (GUI) is organized as follows:

1. The main menu bar gives you access to the functions and tools of all libraries.

TIP
Open eVision Studio does not require any license and allows you to test all
libraries. Of course, if you copy code from Open eVision Studio in your own
application but you do not have the required license, you will receive a
"missing license" error at run-time.

2. The main toolbar gives you quick access to main Open eVision objects such as images,
shapes, gauges, bar codes, matrix codes...

3. The script window displays the code, in the programming language you selected,
corresponding to the actions you perform in Open eVision Studio. You can save or copy this
code in your own application at any time.

4. The image windows display the open images that you can process using the libraries and
tools.

5. The tool windows enable you to easily configure all the available tools. The corresponding
settings are automatically added in the script window for easy reuse.

TIP
Most tool windows are floating and you can easily move them outside the
Open eVision Studio main window to make better use of your screen size.

6. The execution time bar displays the precise time taken for the execution of the selected
functions (measured in milliseconds or microseconds) on your computer. This accurate
measurement helps you to evaluate the performance of your application.

Open eVision User Guide



106

7. The color toolbar displays current information such as the X and Y coordinates of the cursor
on an image and the corresponding pixel value.

8. The status bar displays general information about the application such as the active image
file path...

4.3. Running Tools on Images

Step 1: Selecting a Tool
When you use Open eVision Studio, the first step is to select the library and the tool you want to
use on your image.

To do so:

1. In the main menu bar, click on the library you want to use.

2. Click on the tool you want to use.

TIP
All libraries (except EasyImage, EasyColor and EasyGauge) expose only one
tool named New Xxx Tool. Some of these libraries also expose additional
functions.

3. In the dialog box, enter a Variable name for the variable that is automatically created and
that will contain the result of the processing.

Example of variable creation dialog box for EasyQRCode

4. Click OK.

The selected tool dialog box opens.

Open eVision User Guide



107

Example of variable creation dialog box for EasyQRCode

The next step is "Step 2: Opening an Image" on page 107.

Step 2: Opening an Image
Once you have selected your library and your tool, you need to open an image to apply this
tool.

In the Source Image area of the selected tool dialog box:

1. Open an image:

□ Click on the Open an Image button and select one or several (using SHIFT and CTRL)
images on your computer.

□ Or select one of the images (or one of the ROIs, if any) already open in the drop-down list.

NOTE
You can select only images with an appropriate file format (JPG, PNG, TIFF
or BMP) and in 8- and/or 24-bit depending on the library.

2. If you selected several images, activate one with the  Load Previous or  Load Next
buttons.

The tool is automatically applied on any loaded image and, at this stage, the result is displayed
based on the tool default settings.

Open eVision User Guide



108

The next step is "Step 3: Managing ROIs" on page 108.

Step 3: Managing ROIs
In some cases, most often to decrease the processing time or to single-out the object you want
to read, you do not want to process the whole image but only one or several well defined
rectangular parts of this image, or ROIs (Regions Of Interest).

TIP
In Open eVision, ROIs are attached to an image and exist only as long as the
parent image is available.

Creating a ROI

1. Open the image:
□ If the image is already open, activate the corresponding image window.
□ If the image is not open yet, go to the main menu: Image > Open... to open one.

2. To create an ROI, go to the main menu: Image > ROI Management....

The ROI Management window is displayed as illustrated below.

3. Select the image in the tree.

4. Click on the New button.

5. In the dialog box, enter a Variable name for the new ROI.

The ROI is represented as a color rectangle on your image as illustrated below.

Open eVision User Guide



109

6. Drag the ROI corner and side handles to move it to the required position.

7. Click on the Close button to close the ROI Management window .

The next step is "Step 4: Configuring the Tool" on page 110.

Managing ROIs

You can add, change and remove ROIs.

TIP
An image can have several ROIs. Each ROI can be attached directly to the
image (meaning that its position is relative to the image) or to another ROI
(meaning that its position is relative to this 'parent' ROI).

1. To manage ROIs, go to the main menu: Image > ROI Management....

The ROI Management window is displayed with the ROI relation tree as illustrated below.

If the Draw Rois box is checked, all ROIs are displayed on the image with a different color.

Open eVision User Guide



110

2. Select an ROI in the ROI relation tree.

3. Drag the ROI corner and side handles to change the position and size of the selected ROI (as
well as the position of all ROIs attached to it if any).

4. Click on the New button to add a new ROI attached to the selected ROI.

TIP
Select the image at the top of the ROI relation tree to attach the ROI directly
to the image.

5. Click on the Remove button to delete the selected ROI (and all ROIs attached to it if any).

6. Click on the Close button to close the ROI Management window.

Step 4: Configuring the Tool
Once your image, including its ROIs if you created some, is ready, you need to configure your
tool.

In the tool window:

1. Open the various tabs.

TIP
When you create a new tool, all parameters are set with their default value.

Open eVision User Guide



111

Example of the parameter tab of an EasyQRCode tool

2. In each tab, set the value of the parameters as desired.

Please refer to the "Functional Guide" and to the "Reference Manual" for detailed information
about the parameters, their function and their default value.

For specific actions such as learning or using gauges, please refer to the "Functional Guide".

3. Run the tool and analyze the results as described in the next step "Step 5: Running the Tool
and Checking Execution Time" on page 111.

Step 5: Running the Tool and Checking Execution Time
Once your tool parameters are set, run your tool and, if desired, check the execution time on
your computer.

In the tool window:

1. Click on the Read, Detect, Results or Execute button (depending on the library function), to
run the tool on the selected image.

2. Check the results on the image and in the Results field or area as illustrated below.

Open eVision User Guide



112

Example of results after reading a QRCode

3. If you do not have the expected results:
□ Try to change your parameters (start with default values then change one parameter at a

time).
□ If your image is not good enough, try to enhance it as described in .

4. Check the execution time in the execution time bar at the bottom left of the main Open
eVision Studio window.

The execution time

TIP
The execution time is the actual time that the processing took as measured
on your computer. It depends your computer processor, memory, operating
system... and, of course, on the processor load at the time of execution. Thus
this execution time slightly varies from execution to execution.

5. To get a more representative execution time, click on the Read, Detect, Results or Execute
button several times and calculate the mean execution time.

6. If your application requires that you reduce the execution time, try:
□ To change the tool parameters,
□ To add one or several ROIs on your image,
□ To enhance your image.

The next step is "Step 6: Using the Generated Code" on page 113.

Open eVision User Guide



113

Step 6: Using the Generated Code
By default, Open eVision Studio translates all the operations you perform in the interface into
code in the language you selected as illustrated below.

Once your tool results suit you, you can save or copy this generated code to use it in your own
application.

Copy and paste the code in your application

In the script window:

1. Select the code section you want to copy.

2. Right click on this code and click Copy in the menu.

3. Go to your development environment tool and paste the code in place.

Save the code

1. Go to the Scriptmenu.

2. Click on Save Script As....

3. Enter a file name and path to save the code as a text file.

Manage the generated code

In the Scriptmenu, you can:
□ Select the programming language (please note that if you change the language, the script

window content is automatically deleted).
□ Activate or deactivate the Script Code Generation. Deactivate this option if you want to

perform some operations without saving them as code.

Open eVision User Guide



114

4.4. Pre-Processing and Saving Images

When should you pre-process your images?

Of course, the best situation is to set up your image acquisition system to have good and easy
to process images so the Open eVision tools run smoothly and efficiently.

If this is not possible or easy to achieve, you can pre-process your images or your ROIs to
enhance and prepare them for the Open eVision tool you want to run.

Using the various available functions, you can adjust the gain and offset of your image, apply a
convolution, threshold, scale, rotate and white balance your image, enhance contours... using
EasyImage and EasyColor functions.

Pre-processing images

The difference between pre-processing an image and running tools is that the pre-processing
generates a new image while the tools mainly extract and retrieve information from the image
without changing it.

To pre-process an image or an ROI:

1. In the main menu bar, click on the library you want to use (EasyImage or EasyColor).

2. Click on the function you want to use.

Most function dialog boxes are similar to the one illustrated below with 2 image selection areas
and a parameter setting area.

Example of a pre-processing dialog box (Threshold with EasyImage)

3. If there are multiple versions for your selected function, open the corresponding tab.

4. In the Source Image area, open the source image (as described in "Step 2: Opening an
Image" on page 107).

5. In the Destination Image area, open or create a new destination image.

6. Set your parameters.

7. Click on the Execute button.

The pre-processed image is available in the destination image as illustrated below.

Open eVision User Guide



115

Source and destinations images (Threshold with EasyImage)

8. If you want to use the destination image outside of Open eVision Studio, save it as described
below.

Saving an image

1. Click on the image you want to save to makes its window active.

2. To open the save menu either:
□ Right-click in the image
□ Or open the main menu > Image

3. Click on Save as....

4. Select the file format (JPEG, JPEG2000, PNG, TIFF or Bitmap).

5. Enter a name and select a path.

6. Click on the Save button.

Open eVision User Guide



116

5. Tutorials

5.1. EasyObject

Removing Non-Significant Objects After Image
Segmentation
"Image Segmenter" on page 144

Objective

Following this tutorial, you will learn how to use EasyObject to detect bad rice grains (largely
dark) among many normal rice grains (largely light).

You'll need first to load the source image (step 1). Then you'll perform the image segmentation,
based on a threshold value (step 2). All the detected objects are dark, but some are too small to
be significant. So, you'll set a minimum object area (number of pixels), and remove the smallest
objects (step 3). Finally, you'll get only the objects that really represent bad rice grains.

Source image

Open eVision User Guide



117

Bad rice grains are detected

Step 1: Load the source image

1. From the main menu, click EasyObject, then New EasyObject Tool.

2. Keep the default variable name for the new object, and click OK.

3. In the Encoder tab, click the Open icon of the Source Image area, and load the image file
EasyObject\Rice.jpg.

4. Keep the default variable name for the new image, and click OK.

Step 2: Perform image segmentation

1. In the Encoder tab, select the Black Layer check-box, and unselect the White Layer check-box.

2. Click the ... button around the Threshold field. In the Threshold dialog box, select Absolute,
enter '115', and click OK.

3. Click Encode to detect the dark objects. In the image, each object is drawn using a different
color.

4. Click Results to display the list of all the detected objects. Clicking an object in the image
highlights it in the list, and vice versa.

Step 3: Remove the smallest objects

1. In the objects list, click Columns.

2. Tick the Area check-box, and click OK. In the list view, a new Area column appears, displaying
each object area.

3. Click the Area column header to sort the objects. There are many small objects (area < 100)
that may be considered as noise.

4. In the Selection tab, select Area from the Feature drop-down list. Select 'Less' from the Mode
drop-down list. In the Threshold field, enter '100'.

5. Click Remove. All the objects with an area smaller than 100 pixels have been removed from the
list. The two remaining objects are the bad rice grains.

Open eVision User Guide



118

Detecting Differences Between Images Using Min-Max
References
"Selecting and Sorting Blobs" on page 147

Objective

Following this tutorial, you will learn how to use EasyObject to compare images. In this
example, we will check the quality of a PCB film.

You'll need first to load a reliable source image (step 1), from which two reference images (min
and max) will be built (step 2). Then you'll load another image to be inspected (step 3), and
perform the comparison with the min and max reference images (step 4). The differences will be
detected.

High (left) and low (right) threshold reference images

In another image, differences are detected

Step 1: Load the source image

1. From the main menu, click EasyObject, then Make Min Max.

2. Click the Open icon of the Source Image area, and load the image file EasyObject\FilmOk.png.

Open eVision User Guide



119

3. Enter 'filmOk' for the name of the new image, and click OK.

Step 2: Build min and max reference images

1. Click Execute. Min and Max reference images are created, based on the source image.
□ filmOkMax is computed by dilating filmOk a given number of times ('geometric margin') and

adding a constant ('gray level margin') to every pixel. filmOkMin is computed by eroding
filmOk the same number of times and subtracting the same constant to every pixel.

□ The geometric margin can be seen as a position tolerance between the image to be
inspected and the reference.

□ The gray level margin introduces a tolerance to lighting variations.

Step 3: Load an image to be inspected

1. From the main menu, click EasyObject, then New EasyObject Tool.

2. Keep the default variable name for the new object, and click OK.

3. In the Encoder tab, click the Open icon of the Source Image area, and load the image file
EasyObject\FilmBad.png.

4. Enter 'filmBad' for the name of the new image, and click OK

Step 4: Compare the image with the reference images

1. In the Encoder tab, select ImageRange in the segmentation method drop-down list.

2. Disable the White Layer check-box, and enable the Black Layer check-box.

3. Click the ... button around the High Image field. Select filmOkMax in the drop-down list, and
click OK.

4. Click the ... button around the Low Image field. Select filmOkMin in the drop-down list, and
click OK.

5. Click Encode. Eight differences are highlighted in the image.

6. Click Results to get further information about the detected objects. They may be further
filtered and analyzed using object features selection and sorting capabilities of EasyObject.

Detecting Printing Errors Using a Flexible Mask
"Generating a Flexible Mask from an Encoded Image" on page 148

Objective

Following this tutorial, you will learn how to use a flexible mask to target and search specific
areas in the image.

You'll need first to load a source image (step 1), and a flexible mask image (step 2), that can be
automatically applied on the source image to separate do-care areas (that must be considered)
and don't-care areas (that should not be considered). Then, you'll perform the inspection only
on do-care areas (step 3).

Open eVision User Guide



120

Source image

Mask image

Results

Step 1: Load the source image

1. From the main menu, click EasyObject, then New EasyObject Tool.

2. Keep the default variable name for the new object, and click OK.

3. In the Encoder tab, click the Open icon, and load the image file EasyObject\Mobile3.jpg.

Open eVision User Guide



121

4. Keep the default variable name for the new image, and click OK.

Step 2: Load the flexible mask image

1. In the Encoder tab, click the Open icon, and load the flexible mask image file
EasyObject\MobileMask.bmp.

2. Enter 'mask' for the name of the new image, and click OK. In the Mask area of the Encoder tab,
notice that the mask image is selected from the drop-down list: the mask is automatically
applied on the source image, because its name contains 'mask', and because it has been
loaded from the coded image dialog box. The source image preview in the dialog box shows
(in red diagonal lines) the don't-care area, that is the area that will be not be considered
when encoding the source image.

Step 3: Inspect the image

1. In the Segmentation area of the Encoder tab, click the ... button to display the threshold
dialog box.

2. Select Absolute and enter 202 for the threshold. Click OK to close the dialog box.

3. Click Encode to locate the objects (in the do-care areas only). In the source image, each object
is drawn using a different color. Three printing errors can be observed:
□ The digit '7' is partially printed.
□ The '+' sign is missing.
□ The handset is printed on a lighter tone.

4. Click Results to display the statistics on each object.
□ Selecting an object in the list highlights it in the image.
□ Selecting Columns and Drawing will display more options.

5.2. EasyGauge

Measuring the Rotation Angle of an Object
"Line Fitting" on page 151

Objective

Following this tutorial, you will learn how to use EasyGauge to measure the rotation angle of a
CCD sensor package. As we only need to retrieve an angle value, it's not required to work in a
calibrated field of view. All geometrical parameters and results will be express as numbers of
pixels.

You'll need to load the source image (step 1), and attach a line fitting gauge (step 2). The
inspection is automatically performed (step 3).

Open eVision User Guide



122

Line fitting gauge

Step 1: Load the source image

1. From the main menu, click EasyGauge, then New World Shape.

2. Keep the default variable name, and click OK.

3. From the Gauges tab, click the Open icon, and load the image file EasyImage\CCD.tif.

4. Keep the default variable name for the new image object, and click OK.

Step 2: Attach a line gauge to the image

1. In the Gauges tab of the world shape dialog box, right-click the world shape icon, select New >
Line Gauge from the contextual menu.

2. Keep the default variable name, and click OK. The line location gauge appears on the image.
It consists of the following elements:
□ A blue line segment along which the transitions search is carried out.
□ Five white handles, allowing the user to move and rotate the segment.
□ A gray arrow, indicating in which direction the segment is traversed.
□ Black and white rectangles, indicating which kind of transition is searched for.
□ Green line, indicating the transition points found (if any).

3. Using the handles, move, rotate and extend the line gauge, so that it is positioned on the
upper edge of the CCD package, with the gray arrow pointing downwards.

4. In the Measurement tab of the line gauge dialog box, choose 'White to Black' from the Type
dropdown list and 'From Begin' from the Choice dropdown list.

Step 3: Perform the inspection

1. The image is automatically inspected. However, clicking Process in the world shape dialog
box will insert the corresponding code into the script window.

2. Click the Results tab to retrieve the measured angle value.

3. To see the individual fitting points, select the Points checkbox under the Draw Samples area.

Measuring the Diameter of a Circle
"Circle Fitting" on page 152

Open eVision User Guide



123

Objective

Following this tutorial, you will learn how to use EasyGauge to measure the diameter of a circle
in an image.

You'll first load an image for calibration —a dot grid— (step 1), and calibrate the field of view
(step 2). Then you'll load the source image for inspection (step 3), and attach a circle fitting
gauge (step 4). The inspection is automatically performed (step 5). All measurement results are
expressed in physical units..

Measuring the diameter of a circle

Step 1: Load the calibration image

1. From the main menu, click EasyGauge, then New World Shape.

2. Keep the default variable name, and click OK.

3. In the Dot Grid Calibration tab, click the Open icon, and load the image file EasyGauge\Dot Grid
1.tif.

4. Keep the default variable name for the new image object, and click OK.

Step 2: Calibrate the field of view

● Click Calibrate. From now on, the field of view is calibrated, and all results will be expressed
in physical units.

Step 3: Load the source image

1. From the Gauges tab, click the Open icon, and load the image file EasyGauge\Bracket 6.tif.

2. Keep the default variable name, and click OK.

Open eVision User Guide



124

Step 4: Attach a circle gauge to the image

1. In the Gauges tab of the world shape dialog box, right-click the frame shape icon, select New >
Circle Gauge from the contextual menu.

2. Keep the default variable name, and click OK.

3. The circle location gauge appears on the image. It consists of the following elements:
□ A blue ring in which the circle is searched for.
□ A blue nominal circle.
□ Six white handles, allowing the user to move and rotate the segment.
□ A gray arrow, indicating in which direction the segment is traversed.
□ Black and white rectangles, indicating which kind of transition are searched for.
□ A green arc of circle, indicating the circle found (if any).

4. Using the handles, drag the circle fitting gauge around the upper bracket hole. Adjust the
nominal circle on the hole edge and extend the searching area if necessary.

5. In the Measurement tab of the circle gauge dialog box, select 'From Begin' from the Choice
dropdown list.

Step 5: Perform the inspection

1. The image is automatically inspected. However, clicking Process in the world shape dialog
box will insert the corresponding code into the script window.

2. Click the Results tab to retrieve the measured diameter. All measurement results are
expressed in physical units.

Measuring a Distorted Rectangle
"Rectangle Fitting" on page 153

Objective

Following this tutorial, you will learn how to use EasyGauge to perform measurements on a
distorted rectangle component.

To obtain measurement results in physical units, we need to work in a calibrated field of view.
You'll need first to load an image for calibration —a dot grid— (step 1), and calibrate the field of
view (step 2). Then you'll load the distorted image (step 3), and attach a rectangle fitting gauge
(step 4). The inspection is automatically performed (step 5). All measurement results are
expressed in physical units.

Open eVision User Guide



125

Measuring a distorted rectangle

Step 1: Load the calibration image

1. From the main menu, click EasyGauge, then New World Shape.

2. Keep the default variable name, and click OK.

3. In the Dot Grid Calibration tab, click the Open icon, and load the image file EasyGauge\Dot Grid
5.tif. This dot grid has been acquired in the same conditions and has the same distortion as
the image we want to inspect.

4. Keep the default variable name for the new image object, and click OK.

Step 2: Calibrate the field of view

● Click Calibrate. From now on, the field of view is calibrated, and all results will be expressed
in physical units.

Step 3: Load the distorted image

1. From the Gauges tab, click the Open icon, and load the image file EasyGauge\Distorted
Component.tif.

2. Keep the default variable name, and click OK.

Step 4: Attach a rectangle gauge to the image

1. In the Gauges tab, right-click the world shape icon, and select New > Rectangle Gauge from the
contextual menu.

2. Keep the default variable name, and click OK. The rectangle gauge dialog box is opened, and
the rectangle gauge is drawn on the image. It consists of the following elements:
□ A blue rectangular ring in which the rectangle is searched for.
□ A blue nominal rectangle.
□ Eleven white handles, allowing the user to move and extend the search area.
□ Gray arrows, indicating in which direction segments are examined.
□ Black and white rectangles, indicating which kind of transition are searched for.
□ A green rectangle, indicating the rectangle found (if any).

3. Due to the perspective effect, the rectangle gauge doesn't look like a rectangle. Using the
central handle, move the rectangle gauge in the image and observe the rectangle
deformation. Due to the calibration, the rectangle gauge shape adapts to the field of view
deformation. Extend the searching area, and adjust the nominal rectangle on the component
edges.

4. In the Measurement tab of the rectangle gauge dialog box, select 'White To Black' from the
Type dropdown list and 'From Begin' from the Choice dropdown list.

Step 5: Perform the inspection

1. The image is automatically inspected. However, clicking Process in the world shape dialog
box will insert the corresponding code into the script window.

2. Click the Results tab to retrieve the measured X and Y sizes. All measurement results are
expressed in physical units.

Open eVision User Guide



126

Locating Points Regarding to a Coordinate System
"Point Location" on page 151

Objective

Following this tutorial, you will learn how to use EasyGauge to perform lead frames inspection.
This operation determines the dimension, position, curvature, size, angle or diameter of the
lead frames with an excellent accuracy. Robustness is ensured by powerful edge-point selection
mechanisms that are intuitive and easy to tune, allowing measurement in cluttered images.

You'll first load an image for calibration —a dot grid— (step 1), and calibrate the field of view
(step 2). Then you'll load the lead frame image (step 3), and set a coordinate system (a frame
shape). Regarding to this coordinate system, you can define point gauges (steps 5-6). Finally,
you'll load another lead frame image, that has a slight angle deviation, so the coordinate system
has to be rotated (steps 7-8). The inspection is then automatically performed (step 9). All
measurement results are expressed in physical units.

Four point gauges over four sets of leads

Step 1: Load the calibration image

1. From the main menu, click EasyGauge, then New World Shape.

2. Keep the default variable name, and click OK.

3. In the Dot Grid Calibration tab, click the Open icon, and load the image file EasyGauge\Dot Grid
2.tif.

4. Keep the default variable name for the new image object, and click OK.

Step 2: Calibrating the field of view

1. Click Calibrate. From now on, the field of view is calibrated, and all results will be expressed
in physical units.

Step 3: Loading a lead frame image

1. From the Gauges tab, click the Open icon, and load the image file EasyGauge\Lead Frame 1.tif.

2. Keep the default variable name, and click OK.

Open eVision User Guide



127

Step 4: Setting a coordinate system

1. In the Gauges tab of the world shape dialog box, right-click the world shape icon, select New >
Frame Shape from the contextual menu.

2. Keep the default variable name, and click OK. The frame shape icon appears in the world
shape dialog box.

3. Drag the frame shape center approximately to the square center of the image.

Step 5: Attaching a point gauge to the frame shape

1. In the Gauges tab of the world shape dialog box, right-click the frame shape icon, select New >
Point Gauge from the contextual menu.

2. Keep the default variable name, and click OK. The point location gauge appears on the image.
It consists of the following elements:
□ A blue line segment along which the transitions search is carried out.
□ Three white handles, allowing the user to move and rotate the segment.
□ A gray arrow, indicating in which direction the segment is traversed.
□ Black and white rectangles, indicating which kind of transition is searched for.
□ Green crosses, indicating the transition points found (if any).

3. Place the point location gauge over a set of leads: in the Position tab of the point gauge
dialog box, set the Center Y property to 7, and the Tolerance property to 5.

Step 6: Attaching other point gauges to the frame shape

1. From the Gauges tab of the world shape dialog box, create three other point gauges (refer to
step 5).

2. Place these point location gauges over the remaining sets of leads :
□ Center Y = -7, Tolerance = 5
□ Center X = 7, Tolerance = 5, Angle = 90
□ Center X = -7, Tolerance = 5, Angle = 90

Step 7: Loading another lead frame image

1. From the Gauges tab, click the Open icon, and load the image file EasyGauge\Lead Frame 2.tif.

2. Keep the default variable name for the new image, and click OK.

Step 8: Tuning the coordinate system

1. In the frame shape dialog box, set the Angle property to 5.8.

2. Drag the frame shape center approximately to the square center of the image. All point
location gauges automatically follow.

Step 9: Performing the inspection

1. The image is automatically inspected. However, clicking Process in the world shape dialog
box will insert the corresponding code into the script window.

Open eVision User Guide



128

2. From the point gauge dialog boxes, click the Results tab to retrieve the located points
coordinates. All measurement results are expressed in physical units. The values refer to the
frame shape system.

Unwarping a Distorted Image

Objective

Following this tutorial, you will learn how to use EasyGauge to perform grid calibration, and
unwarp a distorted image.

You'll first load an image for calibration —a dot grid— (step 1), and calibrate the field of view
(step 2). Then you'll load the distorted image (step 3), and perform the unwarping operation
(step 4).

Distorted image

Unwarped image

Step 1: Load the calibration image

1. From the main menu, click EasyGauge, then New World Shape.

2. Keep the default variable name, and click OK.

3. In the Dot Grid Calibration tab, click the Open icon, and load the image file EasyGauge\Dot Grid
5.tif. This dot grid has been acquired in the same conditions and has the same distortion as
the image we want to unwarp.

4. Keep the default variable name for the new image object, and click OK.

Open eVision User Guide



129

Step 2: Calibrate the field of view

● Click Calibrate.

Step 3: Load the distorted image

1. From the Unwarping tab, click the Open icon, and load the image file EasyGauge\Distorted
component.tif.

2. Keep the default variable name, and click OK.

Step 4: Unwarp the distorted image

1. In the Destination Image area, click New icon to create a new image.

2. Keep the default image settings, and click OK.

3. Select Interpolate checkbox to improve resulting image quality.

4. Click Unwarp. In the destination image, all distortions are corrected.

5.3. EasyFind

Detecting Highly-Degraded Occurrences of a Reference
Model in Multiple Files
"Pattern Finding and Retrieving Results" on page 160

Objective

Following this tutorial, you will learn how to use EasyFind to detect in multiple images highly-
degraded occurrences of a reference model. The degradation can be due to noise, blur,
occlusion, missing parts or unstable illumination conditions.

You'll need first to load a reference image, define an ROI where EasyFind will learn the reference
model, and set rotation and scaling tolerances for the expected occurrences to search for (steps
1-4). Then you're ready to open multiple files, and perform automatic detection of occurrences
(even highly-degraded) of the reference model (steps 5-6).

Open eVision User Guide



130

Reference model

Occurrences of the reference model are found, even if highly-degraded

Step 1: Load the reference image

1. From the main menu, click EasyFind, then New EasyFind Tool.

2. Keep the default variable name for the new PatternFinder object, and click OK. The
PatternFinder management dialog box is opened.

3. In the Model tab, click the Open icon, and load the image file EasyFind\Fiducial 1.tif.

4. Keep the default variable name for the new image object, and click OK.

Step 2: Create an ROI to define the reference model on the reference
image

1. In the image, right-click and select New ROI... item from the menu.

2. Keep the default variable name for the new ROI object, and click OK. A default ROI is placed
over the image (blue rectangle with handles). The ROI management dialog box is opened.

3. Drag the ROI over the reference model and resize it using its handles. Alternatively, enter the
following coordinates in the ROI dialog box: 500, 365, 170, 170 for OrgX, OrgY, Width, and
Height respectively, and click Close.

Open eVision User Guide



131

Step 3: Learn the reference model

1. In the PatternFinder Model tab, select the ROI object from the source image drop-down list,
and click Learn. The reference model is perfectly detected (green edges).

2. In the PatternFinder Search Field tab, select the Image object from the source image drop-
down list. Tick the Draw Features check-box.

The model location and feature points are highlighted in the source image.

Step 4: Set rotation and scaling tolerances

● In the PatternFinder Allowances tab, set both angle tolerance and scale tolerance to 25.0.

Step 5: Select multiple images

1. In the PatternFinder Search Field tab, click the Open icon. Select the images files
EasyFind\Fiducial 2.tif to Fiducial 8.tif (use the shift key to select multiple files), and click
Open.

2. Keep the default variable name for the new Image object, and click OK. The last image
appears. The reference model is found, even if highly-degraded.

3. Detection of the reference model is automatically performed. It is not necessary to click Find
once a new image appears, as inspection is automatically performed. However, clicking Find
will insert the corresponding code into the script windows.

4. Click Results to find more information about the found instance.

Step 6: Browse multiple images

● In the PatternFinder Search Field tab, click the Load Next or Load Previous icons.

The image files appear, and the reference model is automatically detected.

Improving the Score of Found Instances by Using "Don't
Care Areas"
"Setting Search Parameters" on page 159

Objective

Following this tutorial, you will learn how to use EasyFind to handle "don't care areas" in
geometric pattern matching. "Don't care areas" help to define in the image the meaningful
features only, by masking the areas that might change from image to image, such as text and
numbers.

You'll need first to load a reference image, define an ROI where EasyFind will learn the reference
model, and set a rotation tolerance for the expected instances to search for (steps 1-4). Then
you're ready to perform automatic detection of instances of the reference model, without using
"don't care areas" (step 5). As the matching scores of the found instances are not high enough,
you'll define a "don't care area" on the reference model, and restart the detection. The
matching scores are slightly better (steps 6-7).

Open eVision User Guide



132

Reference model

Found instances and matching scores, without (left) and with (right) using "don't care
areas"

Step 1: Loading the reference image

1. From the main menu, click EasyFind, then New EasyFind Tool.

2. Keep the default variable name for the new PatternFinder object, and click OK. The
PatternFinder management dialog box is opened.

3. In the Model tab, click the Open icon, and load the image file EasyFind\Solder Pad 1.tif.

4. Keep the default variable name for the new Image object, and click OK.

Open eVision User Guide



133

Step 2: Creating an ROI to define the reference model on the reference
image

1. In the image, right-click and select New ROI... item from the menu.

2. Keep the default variable name for the new ROI object, and click OK. A default ROI is placed
over the image (blue rectangle with handles). The ROI management dialog box is opened.

3. Drag the ROI over the reference model and resize it using its handles. Alternatively, enter the
following coordinates in the ROI dialog box: 200, 130, 190, 130 for OrgX, OrgY, Width, and
Height respectively, and click Close.

Step 3: Learning the reference model

1. In the PatternFinder Model tab, select the ROI object from the source image drop-down list,
and click Learn. The reference model is detected.

2. In the PatternFinder Search Field tab, select the Image object from the source image drop-
down list. Tick the Draw Features check-box. The model location and feature points are
highlighted in the source image.

Step 4: Setting a rotation tolerance

1. In the PatternFinder Allowances tab, set the angle tolerance to 5.0.

Step 5: Detecting instances of the reference model without "don't care
areas"

1. In the PatternFinder Search Field tab, set Max Instances to 4, and click Find. The instances
matching the reference model are highlighted.

2. Click Results to see the matching score of each found instance. Even though the scores are
good, we can still improve them slightly by using a "don't care area" to mask the text
appearing in the learned pattern.

Step 6: Defining the "don't care area"

1. In the PatternFinder Don't Care Areas tab, select the Rectangle radio button from the Blacken
Inside group.

2. In the ROI defining the reference model, move your mouse pointer on the top-left corner of
the text "U9", left-click and drag the don't care area (rectangle with red stripes) to mask out
the text.

Step 7: Detecting instances of the reference model with "don't care
areas"

1. In the PatternFinder Don't Care Areas tab, click Learn, and then click Find.

The instances matching the reference model are still highlighted, but the text is not found
anymore.

2. Click Results to compare the new matching scores.

They are slightly better.

Open eVision User Guide



134

5.4. EasyMatch

Learning a Pattern and Creating an EasyMatch Model File
"Pattern Learning" on page 161

Objective

Following this tutorial, you will learn how to use EasyMatch to learn a model from a reference
image, and save it as an EasyMatch model file.

You'll need first to load the reference image (step 1). Then, you'll learn it as the reference model
(step 2). And you'll save the model as an EasyMatch model file (step 3).

Reference image

Step 1: Load the reference image

1. From the main menu, click EasyMatch, then New Match Tool.

2. Keep the default variable name for the new matcher object, and click OK.

3. In the Learning tab, click the Open icon, and load the image file EasyMatch\FrameModel.tif.

4. Keep the default variable name for the new image object, and click OK.

Step 2: Learn the reference image

● In the Learning tab, click Learn to acquire the model pattern.

Step 3: Save the model file

1. In the Learning tab, click the Save As... button.

2. Type a file name for the new EasyMatch model file. Its extension will be .mch.

3. Click Save.

Matching a Pattern According to a Model File
"Pattern Matching and Retrieving Results" on page 162

Objective

Following this tutorial, you will learn how to use EasyMatch to load an EasyMatch model file,
and search for occurrences of the pattern in an image.

Open eVision User Guide



135

You'll need first to load the model file, and a source image where the model will be searched for
(steps 1-2). Then the pattern matching is fully automatic (step 3).

Occurrences of the model are automatically highlighted

Step 1: Load the model file

1. From the main menu, click EasyMatch, then New Match Tool.

2. Keep the default variable name for the new matcher object, and click OK.

3. In the Learning tab, click Load... to open the model file EasyMatch\Switch.MCH. The model
contains all necessary information about the pattern we are searching for.

Step 2: Load a source image

1. In the Matching tab, click the Open icon, and load the image file EasyMatch\Switch1.tif.

2. Keep the default variable name for the new image object, and click OK.

Step 3: Perform the pattern matching

1. The pattern matching is automatically performed on the source image, and the matching
occurrences are highlighted. Clicking Execute will insert the corresponding code into the
script windows.

2. Further information about each occurrence can be found by clicking Results.

3. Click in a row to see the corresponding occurrence highlighted in the image.

Learning a Pattern According to an ROI
"Pattern Learning" on page 161

Open eVision User Guide



136

Objective

Following this tutorial, you will learn how to use EasyMatch to learn a model from an ROI in a
source image, and to perform pattern matching on the same image.

You'll need first to load the source image, and define an ROI inside (steps 1-2). Then, you'll have
to learn the model, using this ROI (step 3). Finally, you'll perform pattern matching in the source
image (step 4), and will find additional occurrences of the model.

ROI that will be learned

Occurrences matching the model ROI

Step 1: Load the source image

1. From the main menu, click Image, then Open.

2. Load the image file EasyMatch\BOARD.JPG.

3. Keep the default variable name for the new image object, and click OK.

Step 2: Define an ROI

1. Right-click in the image, and select New ROI... from the contextual menu.

Open eVision User Guide



137

2. Keep the default variable name for the new ROI object, and click OK. A default ROI is placed
over the image (blue rectangle with handles).

The ROI management dialog box is opened.

3. Resize the ROI and move it around one of the blue capacitors at the lower left part of the
image.

Step 3: Learn a model from the ROI

1. From the main menu, click EasyMatch, then New Match Tool.

2. Keep the default variable name for the new matcher object, and click OK.

3. In the Learning tab of the matcher dialog box, select the ROI object from the Source Image
drop-down list, and click Learn to acquire the model pattern.

Step 4: Match the pattern

1. In the Matching tab, increase the Max Occurrences field to 2.

2. Select the image object from the Source Image drop-down list.

3. Click Execute. The occurrences of the learned model are highlighted in the source image.

4. Further information about each occurrence can be found by clicking Results.

5. Click in a row to see the corresponding occurrence highlighted in the image.

Improving the Score of Matching Instances by Using
"Don't Care Areas"
"Setting Search Parameters" on page 161

Objective

Following this tutorial, you will learn how to use EasyMatch to handle "don't care areas". "Don't
care areas" help to define in the image the meaningful features only, by masking the areas that
might change from image to image.

You'll need first to load a reference image and learn the reference model (steps 1-2). Then you'll
perform automatic pattern matching of instances of the reference model, without using "don't
care areas" (step 3). As the matching scores of the found instances are not high enough, you'll
define a "don't care area" on the reference model, and restart the detection. The matching
scores are much better (steps 4-5).

Reference model

Open eVision User Guide



138

Found instances and matching scores, without (left) and with (right) using "don't care
areas"

Step 1: Load the reference image

1. From the main menu, click EasyMatch, then New Match Tool.

2. Keep the default variable name for the new Matcher object, and click OK. The Matcher
management dialog box is opened.

3. In the Learning tab, click the Open icon, and load the image file EasyMatch\Die Pad Model 1.bmp.

4. Keep the default variable name for the new Image object, and click OK.

Step 2: Learn the reference model

● Click Learn to acquire the model pattern.

Step 3: Detect instances of the reference model without "don't care
areas"

1. In the Matching tab, click the Open icon, and load the image file EasyMatch\Die Pad 1.bmp.

2. Keep the default variable name for the new Image object, and click OK. An instance matching
the reference model is highlighted.

3. Increase the Max Occurrences field to 3. Enable the Sub-Pixel Interpolate check-box to
increase the matching precision.

Open eVision User Guide



139

4. Enter '-10.0' as the Minimum Angle (Deg). (Check that the angle is displayed in degrees. If
not, select the angles unit from View > Optionmenu.)

5. Enter '10.0' as the Maximum Angle (Deg).

6. Click Execute. The pattern locations are highlighted in the source image.

7. Click Results to see the matching score of each found instance. The last two scores are
rather bad. This is mainly due to the bright rectangle on the upper part of the reference
image we have learned. We can improve the scores by using a "don't care area" to mask this
bright area.

Step 4: Define the "don't care area"

1. In the Don't Care Areas tab, select the Rectangle radio button from the Blacken Inside group.

2. In the reference image, move your mouse pointer on the lower left corner of the bright
rectangle, left-click and drag the don't care area (rectangle with red stripes) to the upper
right corner of the bright rectangle to mask out this area.

3. In the Don't Care Areas tab, click Learn.

Step 5: Detect instances of the reference model with "don't care areas"

1. In the Matching tab, click Execute. The instances matching the reference model are still
highlighted.

2. Click Results to compare the new matching scores. They are much better.

Open eVision User Guide



140

6. Code Snippets

Open eVision User Guide



141

6.1. Basic Types

Loading and Saving Images
Functional Guide | Reference: Load, Save, SaveJpeg

////////////////////////////////////////////////////////////
// This code snippet shows how to load and save an image. //
////////////////////////////////////////////////////////////

// Images constructor
EImageBW8 srcImage;
EImageBW8 dstImage;

// Load an image file
srcImage.Load("mySourceImage.bmp");

// ...

// Save the destination image into a file
dstImage.Save("myDestImage.bmp");

// Save the destination image into a jpeg file
// The default compression quality is 75
dstImage.Save("myDestImage.jpg");

// Save the destination image into a jpeg file
// set the compression quality to 50
dstImage.SaveJpeg("myDestImage50.jpg", 50);

Interfacing Third-Party Images
Functional Guide | Reference: SetImagePtr

///////////////////////////////////////////////////////////////
// This code snippet shows how to link an Open eVision image //
// to an externally allocated buffer. //
///////////////////////////////////////////////////////////////

// Images constructor
EImageBW8 srcImage;

// Size of the third-party image
int sizeX;
int sizeY;

//Pointer to the third-party image buffer
EBW8* imgPtr;

// ...

// Link the Open eVision image to the third-party image
// Assuming the corresponding buffer is aligned on 4 bytes
srcImage.SetImagePtr(sizeX, sizeY, imgPtr);

Open eVision User Guide

ebaseroi-load.htm
ebaseroi-save.htm
ebaseroi-savejpeg.htm
ebaseroi-setimageptr.htm


142

Retrieving Pixel Values
Functional Guide | Reference: GetImagePtr

///////////////////////////////////////////////////////////////
// This code snippet shows the recommended method (fastest)  //
// to access the pixel values in a BW8 image                 //
///////////////////////////////////////////////////////////////

EImageBW8 img;

OEV_UINT8* pixelPtr;
OEV_UINT8* rowPtr;
OEV_UINT8  pixelValue;
OEV_UINT32 rowPitch;
int x, y;

rowPtr = reinterpret_cast <OEV_UINT8*>(img.GetImagePtr());
rowPitch = img.GetRowPitch();

for (y = 0; y < height; y++)
{
    pixelPtr = rowPtr;

for (x = 0; x < width; x++)
{

        pixelValue = *pixelPtr;

// Add your pixel computation code here

        *pixelPtr = pixelValue;
        pixelPtr++;
    }

    rowPtr += rowPitch;
}

ROI Placement
Functional Guide | Reference: Attach, SetPlacement

///////////////////////////////////////////////////////////////
// This code snippet shows how to attach an ROI to an image //
// and set its placement. //
///////////////////////////////////////////////////////////////

// Image constructor
EImageBW8 parentImage;

// ROI constructor
EROIBW8 myROI;

// ...

// Attach the ROI to the image
myROI.Attach(&parentImage);

//Set the ROI position
myROI.SetPlacement(50, 50, 200, 100);

Open eVision User Guide

ebaseroi-getimageptr.htm
ebaseroi-attach.htm
ebaseroi-setplacement.htm


143

Vector Management
Functional Guide | Reference: Empty, AddElement

///////////////////////////////////////////////////////////////
// This code snippet shows how to create a vector, fill it //
// and retrieve the value of a given element. //
///////////////////////////////////////////////////////////////

// EBW8Vector constructor
EBW8Vector ramp;

// Clear the vector
ramp.Empty();

// Fill the vector with increasing values
for(int i= 0; i < 128; i++)
{

ramp.AddElement((EBW8)i);
}

// Retrieve the 10th element value
EBW8 value= ramp[9];

Exception Management
Functional Guide | Reference: GetPixel, What

////////////////////////////////////////////
// This code snippet shows how to manage //
// Open eVision exceptions. //
////////////////////////////////////////////

try
{

// Image constructor
EImageC24 srcImage;

// ...

// Retrieve the pixel value at coordinates (56, 73)
EC24 value= srcImage.GetPixel(56, 730);

}

catch(Euresys::Open_eVision_1_1::EException exc)
{

// Retrieve the exception description
std::string error = exc.What();

}

Open eVision User Guide

evector-empty.htm
ebw8vector-addelement.htm
eroic24-getpixel.htm
eexception-what.htm


144

6.2. EasyObject

Constructing the Blobs

Image Encoder

Functional Guide | Reference: Encode, SetBlackLayerEncoded, SetWhiteLayerEncoded, SetMode,
SetAbsoluteThreshold, GetGrayscaleSingleThresholdSegmenter

//////////////////////////////////////////////////////////////
// This code snippet shows how to build blobs belonging to //
// the white layer according to the minimum residue method //
// and how to build blobs belonging to the black layer //
// according to an absolute threshold. //
//////////////////////////////////////////////////////////////

// Image constructor
EImageBW8 srcImage;

// Image encoder
EImageEncoder encoder;

// Coded image
ECodedImage2 codedImage;

// ...

// Build the blobs belonging to the white layer,
// the segmentation is based on the Minimum Residue method
encoder.Encode(srcImage, codedImage);

// Build the blobs belonging to the black layer,
// the segmentation is based on an absolute threshold (110)
Segmenters::EGrayscaleSingleThresholdSegmenter& segmenter= encoder.GetGrayscaleSingleThresholdSegmenter();
segmenter.SetBlackLayerEncoded(true);
segmenter.SetWhiteLayerEncoded(false);

segmenter.SetMode(EGrayscaleSingleThreshold_Absolute);
segmenter.SetAbsoluteThreshold(110);

encoder.Encode(srcImage, codedImage);

Image Segmenter

Functional Guide | Reference: SetSegmentationMethod,
GetGrayscaleDoubleThresholdSegmenter, SetHighThreshold, SetLowThreshold

//////////////////////////////////////////////////////////////
// This code snippet shows how to build blobs according to //
// a user-defined image segmenter. //
//////////////////////////////////////////////////////////////

// Image constructor
EImageBW8 srcImage;

// Image encoder

Open eVision User Guide

eimageencoder-encode.htm
eimagerangesegmenter-blacklayerencoded.htm
eimagerangesegmenter-whitelayerencoded.htm
egrayscalesinglethresholdsegmenter-mode.htm
egrayscalesinglethresholdsegmenter-absolutethreshold.htm
eimageencoder-grayscalesinglethresholdsegmenter.htm
eimageencoder-segmentationmethod.htm
eimageencoder-grayscaledoublethresholdsegmenter.htm
egrayscaledoublethresholdsegmenter-highthreshold.htm
egrayscaledoublethresholdsegmenter-lowthreshold.htm


145

EImageEncoder encoder;

// Coded image
ECodedImage2 codedImage;

// ...

// Set the segmentation method to GrayscaleDoubleThreshold
encoder.SetSegmentationMethod(ESegmentationMethod_GrayscaleDoubleThreshold);

// Retrieve the segmenter object
Segmenters::EGrayscaleDoubleThresholdSegmenter& segmenter= encoder.GetGrayscaleDoubleThresholdSegmenter();

// Set the high and low threshold values
segmenter.SetHighThreshold(150);
segmenter.SetLowThreshold(50);

// Specify the layers to be encoded (neutral layer only)
segmenter.SetBlackLayerEncoded(false);
segmenter.SetNeutralLayerEncoded(true);
segmenter.SetWhiteLayerEncoded(false);

// Encode the image
encoder.Encode(srcImage, codedImage);

Holes Extraction

Functional Guide | Reference: GetHoleCount, GetHole, GetObjCount, GetObj

///////////////////////////////////////////////////////////
// This code snippet shows how to retrieve blobs' holes. //
///////////////////////////////////////////////////////////

// Image constructor
EImageBW8 srcImage;

// Image encoder
EImageEncoder encoder;

// Coded image
ECodedImage2 codedImage;

// ...

// Encode the image
encoder.Encode(srcImage, codedImage);

// Retrieve holes for all the blobs
for (unsigned int blobIndex = 0; blobIndex < codedImage.GetObjCount(); blobIndex++)
{

EObject& blob = codedImage.GetObj(blobIndex);

// Browse the holes of the current object
for (unsigned int holeIndex = 0; holeIndex < blob.GetHoleCount(); holeIndex++)
{

// Retrieve a given hole
EHole& hole = blob.GetHole(holeIndex);

}
}

Open eVision User Guide

eobject-holecount.htm
eobject-gethole.htm
ecodedimage2-getobjcount.htm
ecodedimage2-getobj.htm


146

Continuous Mode

Functional Guide | Reference: SetContinuousModeEnabled, FlushContinuousMode

/////////////////////////////////////////////////
// This code snippet shows how to build blobs //
// in the continuous mode context. //
/////////////////////////////////////////////////

// Image constructor
EImageBW8 srcImage;

// Image encoder
EImageEncoder encoder;

// Coded image
ECodedImage2 codedImage;

// ...

// Enable the continuous mode
encoder.SetContinuousModeEnabled(true);

// Loop to acquire the different chunks
for (int count = 0; count < MAX_COUNT ; count++)
{

// Store the new chunk into srcImage
// ...

// Encode the current chunk
encoder.Encode(srcImage, codedImage);

}

// Flush the continuous mode
encoder.FlushContinuousMode(codedImage);

Computing Blobs Features
Functional Guide | Reference: GetGravityCenter, GetObj

//////////////////////////////////////////////////////////////
// This code snippet shows how to retrieve blobs' features. //
//////////////////////////////////////////////////////////////

// Image constructor
EImageBW8 srcImage;

// Image encoder
EImageEncoder encoder;

// Coded image
ECodedImage2 codedImage;

// ...

// Encode the source image
encoder.Encode(srcImage, codedImage);

for (unsigned int index = 0; index < codedImage.GetObjCount(); index++)
{

Open eVision User Guide

eimageencoder-continuousmodeenabled.htm
eimageencoder-flushcontinuousmode.htm
ecodedelement-gravitycenter.htm
ecodedimage2-getobj.htm


147

// Retrieve the selected blob gravity center
EObject& blob = codedImage.GetObj(index);
float centerX = blob.GetGravityCenter().GetX();
float centerY = blob.GetGravityCenter().GetY();

}

Selecting and Sorting Blobs
Functional Guide | Reference: AddObjects, ElementCount, RemoveUsingUnsignedIntegerFeature,
Sort

/////////////////////////////////////////////////////////
// This code snippet shows how to build blobs, select //
// some of them and sort the selected ones. //
/////////////////////////////////////////////////////////

// Image constructor
EImageBW8 srcImage;

// Image encoder
EImageEncoder encoder;

// Coded image
ECodedImage2 codedImage;

// ...

// Encode the source image
encoder.Encode(srcImage, codedImage);

// Create a blob selection
EObjectSelection selection;
selection.AddObjects(codedImage);

// Remove the Small blobs
selection.RemoveUsingUnsignedIntegerFeature(EFeature_Area, 100, ESingleThresholdMode_Less);

// Retrieve the number of remaining blobs
unsigned int numBlobs= selection.GetElementCount();

// Sort the remaining blobs based on their area
selection.Sort(EFeature_Area, ESortDirection_Ascending);

// Retrieve the selected blobs
for (unsigned int index = 0; index < numBlobs; index++)
{

float centerX= selection.GetElement(index).GetGravityCenterX();
float centerY= selection.GetElement(index).GetGravityCenterY();

}

Using Flexible Masks

Constructing Blobs

Functional Guide | Reference: Encode

////////////////////////////////////////////////////////
// This code snippet shows how to build blobs inside //

Open eVision User Guide

eobjectselection-addobjects.htm
eobjectselection-elementcount.htm
eobjectselection-removeusingintegerfeature.htm
eobjectselection-sort.htm
eimageencoder-encode.htm


148

// a region defined by a flexible mask. //
////////////////////////////////////////////////////////

// Images constructor
EImageBW8 srcImage;
EImageBW8 mask;

// Image encoder
EImageEncoder encoder;

// Coded image
ECodedImage2 codedImage;

// ...

// Encode the source image regions
// corresponding to the mask do care areas
encoder.Encode(srcImage, mask, codedImage);

Generating a Flexible Mask from an Encoded Image

Functional Guide | Reference: RenderMask

/////////////////////////////////////////////////////////
// This code snippet shows how to generate a flexible //
// mask from an encoded image. //
/////////////////////////////////////////////////////////

// Images constructor
EImageBW8 srcImage;
EImageBW8 mask;

// Image encoder
EImageEncoder encoder;

// Coded image
ECodedImage2 codedImage;

// ...

// Encode the source image
encoder.Encode(srcImage, codedImage);

// The source image and the mask must have the same size
mask.SetSize(&srcImage);

// Create the mask based on the white layer
// of the coded image
codedImage.RenderMask(mask, 1);

Generating a Flexible Mask from a Blob Selection

Functional Guide | Reference: RenderMask

/////////////////////////////////////////////////////////
// This code snippet shows how to generate a flexible //
// mask from a selection of blobs. //
/////////////////////////////////////////////////////////

// Images constructor

Open eVision User Guide

ecodedimage2-rendermask.htm
eobjectselection-rendermask.htm


149

EImageBW8 srcImage;
EImageBW8 mask;

// Image encoder
EImageEncoder encoder;

// Coded image
ECodedImage2 codedImage;

// ...

// Encode the source image
encoder.Encode(srcImage, codedImage);

// The source image and the mask must have the same size
mask.SetSize(&srcImage);

// Create a blob selection
EObjectSelection selection;
selection.AddObjects(codedImage);

// Remove the Small blobs
selection.RemoveUsingUnsignedIntegerFeature(EFeature_Area, 100, ESingleThresholdMode_Less);

// Create the mask based on the blob selection
selection.RenderMask(mask);

// Sort the remaining blobs based on their area
selection.Sort(EFeature_Area, ESortDirection_Descending);

// Create the mask corresponding to the largest blob
selection.GetElement(0).RenderMask(mask);

Using the Object Template Matcher
Functional Guide | Reference: EObjectTemplateMatcher

//////////////////////////////////////////////////////////////
// This code snippet shows how to use EObjectTemplateMatcher//
// for alignment and template matching //
//////////////////////////////////////////////////////////////

// Encode the template image
EImageEncoder encoder;
ECodedImage2 coded_img;

EImageBW8 template_img;
encoder.Encode(template_img, coded_img);

// Initialize EObjectTemplateMatcher
EObjectTemplateMatcher object_matcher;
object_matcher.SetEnableAlignment(true); // optional
object_matcher.SetMaximumDistance(60); // optional

// set the template
object_matcher.BuildTemplate(coded_img);

// Encode the test image
EImageBW8 test_img;
encoder.Encode(test_img, coded_img);

// Build a selection of test objects

Open eVision User Guide

../../../../../Content/reference/eobjecttemplatematcher-class.htm


150

EObjectSelection object_select;
object_select.AddObjects(coded_img);
object_select.RemoveUsingUnsignedIntegerFeature(EFeature_Area, 10, ESingleThresholdMode_Less); // optional
filter

// Perform the alignment and the matching
object_matcher.SortSelection(object_select);

// Display the number of matches
std::cout << object_matcher.GetNumberOfPairedObjects() << " paired objects" << std::endl;
// Retrieve the template indexes for each selection object
std::vector<int> template_indexes = object_matcher.GetTemplateIndexes();

Open eVision User Guide



151

6.3. EasyGauge

Point Location
Functional Guide | Reference: SetTransitionType, SetTransitionChoice, SetCenterXY,
SetTolerance, Measure, GetMeasuredPoint, GetX, GetY

//////////////////////////////////////////////////////////////////
// This code snippet shows how to create a point location tool, //
// adjust the transition parameters, set the nominal gauge //
// position, perform the measurement and retrieve the result. //
//////////////////////////////////////////////////////////////////

// Image constructor
EImageBW8 srcImage;

// EPointGauge constructor
EPointGauge pointGauge;

// Adjust the transition parameters
pointGauge.SetTransitionType(ETransitionType_Wb);
pointGauge.SetTransitionChoice(ETransitionChoice_Closest);

// Set the gauge nominal position
pointGauge.SetCenterXY(256.f, 256.f);

// Set the gauge length to 100 units and the angle to 45°
pointGauge.SetTolerances(100.f, 45.f);

// Measure
pointGauge.Measure(&srcImage);

// Get the measured point coordinates
float measuredX = pointGauge.GetMeasuredPoint().GetX();
float measuredY = pointGauge.GetMeasuredPoint().GetY();

// Save the point gauge measurement context
pointGauge.Save("myPointGauge.gge");

Line Fitting
Functional Guide | Reference: SetTransitionType, SetTransitionChoice, SetTransitionIndex,
SetLine, Measure, GetMeasuredLine, GetOrg, GetEnd

////////////////////////////////////////////////////////////////////
// This code snippet shows how to create a line measurement tool, //
// adjust the transition parameters, set the nominal gauge //
// position, perform the measurement and retrieve the result. //
////////////////////////////////////////////////////////////////////

// Image constructor
EImageBW8 srcImage;

// ELineGauge constructor
ELineGauge lineGauge;

// Adjust the transition parameters

Open eVision User Guide

epointgauge-transitiontype.htm
epointgauge-transitionchoice.htm
epointgauge-setcenterxy.htm
epointgauge-tolerance.htm
epointgauge-measure.htm
epointgauge-getmeasuredpoint.htm
epoint-x.htm
epoint-y.htm
elinegauge-transitiontype.htm
elinegauge-transitionchoice.htm
elinegauge-transitionindex.htm
elinegauge-line.htm
elinegauge-measure.htm
elinegauge-measuredline.htm
eline-org.htm
eline-end.htm


152

lineGauge.SetTransitionType(ETransitionType_Bw);
lineGauge.SetTransitionChoice(ETransitionChoice_NthFromEnd);
lineGauge.SetTransitionIndex(2);

// Set the line fitting gauge position,
// length (50 units) and orientation (20°)
EPoint center(256.f, 256.f);
ELine line(center, 50.f, 20.f);
lineGauge.SetLine(line);

// Measure
lineGauge.Measure(&srcImage);

// Get the origin and end point coordinates of the fitted line
EPoint originPoint = lineGauge.GetMeasuredLine().GetOrg();
EPoint endPoint = lineGauge.GetMeasuredLine().GetEnd();

// Save the point gauge measurement context
lineGauge.Save("myLineGauge.gge");

Circle Fitting
Functional Guide | Reference: SetTransitionType, SetTransitionChoice, SetCircle, Measure,
GetMeasuredCircle, GetCenter, GetRadius

//////////////////////////////////////////////////////////////////////
// This code snippet shows how to create a circle measurement tool, //
// adjust the transition parameters, set the nominal gauge //
// position, perform the measurement and retrieve the result. //
//////////////////////////////////////////////////////////////////////

// Image constructor
EImageBW8 srcImage;

// ECircleGauge constructor
ECircleGauge circleGauge;

// Adjust the transition parameters
circleGauge.SetTransitionType(ETransitionType_Bw);
circleGauge.SetTransitionChoice(ETransitionChoice_LargestAmplitude);

// Set the Circle fitting gauge position, diameter (50 units),
// starting angle (10°), and amplitude (270°)
EPoint center(256.f, 256.f);
ECircle circle(center, 50.f, 10.f, 270.f);
circleGauge.SetCircle(circle);

// Measure
circleGauge.Measure(&srcImage);

// Get the center point coordinates and the radius of the fitted circle
float centerX = circleGauge.GetMeasuredCircle().GetCenter().GetX();
float centerY = circleGauge.GetMeasuredCircle().GetCenter().GetY();
float radius = circleGauge.GetMeasuredCircle().GetRadius();

// Save the point gauge measurement context
circleGauge.Save("myCircleGauge.gge");

Open eVision User Guide

ecirclegauge-transitiontype.htm
ecirclegauge-transitionchoice.htm
ecirclegauge-circle.htm
ecirclegauge-measure.htm
ecirclegauge-measuredcircle.htm
epoint-center.htm
ecircle-radius.htm


153

Rectangle Fitting
Functional Guide | Reference: SetTransitionType, SetTransitionChoice, SetRectangle, Measure,
GetMeasuredRectangle, GetSizeX, GetSizeY, GetAngle

/////////////////////////////////////////////////////////////////////////
// This code snippet shows how to create a rectangle measurement tool, //
// adjust the transition parameters, set the nominal gauge position, //
// perform the measurement and retrieve the result. //
/////////////////////////////////////////////////////////////////////////

// Image constructor
EImageBW8 srcImage;

// ERectangleGauge constructor
ERectangleGauge rectangleGauge;

// Adjust the transition parameters
rectangleGauge.SetTransitionType(ETransitionType_Bw);
rectangleGauge.SetTransitionChoice(ETransitionChoice_LargestAmplitude);

// Set the rectangle fitting gauge position,
// size (50x30 units) and orientation (15°)
EPoint center(256.f, 256.f);
ERectangle rectangle(center, 50.f, 30.f, 15.f);
rectangleGauge.SetRectangle(rectangle);

// Measure
rectangleGauge.Measure(&srcImage);

// Get the size and the rotation angle of the fitted rectangle
float sizeX = rectangleGauge.GetMeasuredRectangle().GetSizeX();
float sizeY = rectangleGauge.GetMeasuredRectangle().GetSizeY();
float angle = rectangleGauge.GetMeasuredRectangle().GetAngle();

// Save the point gauge measurement context
rectangleGauge.Save("myRectangleGauge.gge");

Wedge Fitting
Functional Guide | Reference: SetTransitionType, SetTransitionChoice, SetWedge, Measure,
GetMeasuredWedge, GetInnerRadius, GetOuterRadius

/////////////////////////////////////////////////////////////////////
// This code snippet shows how to create a wedge measurement tool, //
// adjust the transition parameters, set the nominal gauge //
// position, perform the measurement and retrieve the result. //
/////////////////////////////////////////////////////////////////////

// Image constructor
EImageBW8 srcImage;

// EWedgeGauge constructor
EWedgeGauge wedgeGauge;

// Adjust the transition parameters
wedgeGauge.SetTransitionType(ETransitionType_Bw);
wedgeGauge.SetTransitionChoice(ETransitionChoice_NthFromBegin);
wedgeGauge.SetTransitionIndex(0);

// Set the wedge fitting gauge position, diameter (50 units),

Open eVision User Guide

erectanglegauge-transitiontype.htm
erectanglegauge-transitionchoice.htm
erectangleshape-rectangle.htm
erectanglegauge-measure.htm
erectanglegauge-measuredrectangle.htm
erectangleshape-sizex.htm
erectangleshape-sizey.htm
erectangleshape-angle.htm
ewedgegauge-transitiontype.htm
ewedgegauge-transitionchoice.htm
ewedgegauge-wedge.htm
ewedgegauge-measure.htm
ewedgegauge-measuredwedge.htm
ewedgeshape-innerradius.htm
ewedgeshape-outerradius.htm


154

// breadth (-25 units), starting angle (0°) and amplitude (270°)
EPoint center(256.f, 256.f);
EWedge wedge(center, 50.f, -25.f, 0.f, 270.f);
wedgeGauge.SetWedge(wedge);

// Measure
wedgeGauge.Measure(&srcImage);

// Get the inner and outer radius of the fitted wedge
float innerRadius = wedgeGauge.GetMeasuredWedge().GetInnerRadius();
float outerRadius = wedgeGauge.GetMeasuredWedge().GetOuterRadius();

// Save the point gauge measurement context
wedgeGauge.Save("myWedgeGauge.gge");

Gauge Grouping

Gauge Hierarchy

Functional Guide | Reference: Attach, SetName, Save

//////////////////////////////////////////////////////////////
// This code snippet shows how to create a gauge hierarchy //
// and save it into a file. //
//////////////////////////////////////////////////////////////

// EWorldShape constructor
EWorldShape worldShape;

// Gauges constructor
ERectangleGauge rectangleGauge;
ECircleGauge circleGauge1, circleGauge2;

// ...

// Attach the rectangle gauge to the EWorldShape
rectangleGauge.Attach(&worldShape);

// Attach the circle gauges to the rectangle gauge
circleGauge1.Attach(&rectangleGauge);
circleGauge2.Attach(&rectangleGauge);

// Set the first circle gauge name
circleGauge1.SetName("myCircleGauge1");

// ...

// Save worldShape together with its daughters
worldShape.Save("myWorldShape.gge", true);

Complex Measurement

Functional Guide | Reference: Load, GetNumDaughters, Process, GetDaughter, GetShapeNamed

////////////////////////////////////////////////////////////
// This code snippet shows how to trigger the measurement //
// of a whole gauge hierarchy and retrieve the results. //
////////////////////////////////////////////////////////////

Open eVision User Guide

eshape-attach.htm
eshape-name.htm
eshape-save.htm
eshape-load.htm
eshape-numdaughters.htm
../../../reference/eshape-process.htm
eshape-getdaughter.htm
eshape-getshapenamed.htm


155

// Image constructor
EImageBW8 srcImage;

// EWorldShape constructor
EWorldShape worldShape;

// Load the EWorldShape together with its daughters
worldShape.Load("myWorldShape.gge", true);

// Retrieve the number of worldShape's daughters
int numDaughters= worldShape.GetNumDaughters();

// ...

// Trigger the measurement of all the
// gauges attached to the EWorldShape
worldShape.Process(&srcImage, true);

// Retrieve the measurement result of
// the first daughter (a rectangle gauge)
ERectangleGauge* rectangleGauge= (ERectangleGauge*)worldShape.GetDaughter(0);
float sizeX= rectangleGauge->GetMeasuredRectangle().GetSizeX();

// Retrieve the measurement result of a
// daughter gauge called "myCircleGauge1"
ECircleGauge* circleGauge= (ECircleGauge*)worldShape.GetShapeNamed("myCircleGauge1");
EPoint center= circleGauge->GetMeasuredCircle().GetCenter();

Calibration using EWorldShape
Functional Guide | Reference

Calibration by Guesswork

Functional Guide | Reference: SetSensor, GetXResolution, GetYResolution

//////////////////////////////////////////////////////////
// This code snippet shows how to perform a calibration //
// by guesswork. //
//////////////////////////////////////////////////////////

// Image constructor
EImageBW8 srcImage;

// EWorldShape constructor
EWorldShape worldShape;

// ...

// Compute the calibration coefficients
// Field of view: 32x24 mm
worldShape.SetSensor(srcImage.GetWidth(), srcImage.GetHeight(), 32.f, 24.f);

// Retrieve the spatial resolution
float resolutionX= worldShape.GetXResolution();
float resolutionY= worldShape.GetYResolution();

Open eVision User Guide

eworldshape-class.htm
eworldshape-setsensor.htm
eworldshape-xresolution.htm
eworldshape-yresolution.htm


156

Landmark-Based Calibration

Functional Guide | Reference: EmptyLandmarks, AddLandmark, Calibrate

/////////////////////////////////////////////////////////////
// This code snippet shows how to perform a landmark-based //
// calibration. //
/////////////////////////////////////////////////////////////

// EWorldShape constructor
EWorldShape worldShape;

// ...

// Reset the calibration context
worldShape.EmptyLandmarks();

// Loop on the landmarks
for(int index= 0; index < numLandmarks; index++)
{

// Get the I-th landmark as a pair of EPoint(x, y)
EPoint sensorPoint, worldPoint;

// Retrieve and store the relevant data into worldPoint and sensorPoint
// ...

// Add the I-th pair
worldShape.AddLandmark(sensorPoint, worldPoint);

}

// Perform the calibration
worldShape.Calibrate(ECalibrationMode_Skewed);

Dot Grid-Based Calibration

Functional Guide | Reference: EmptyLandmarks, AddPoint, RebuildGrid, AutoCalibrate

/////////////////////////////////////////////////////////////
// This code snippet shows how to perform a dot grid-based //
// calibration. //
/////////////////////////////////////////////////////////////

// EWorldShape constructor
EWorldShape worldShape;

// ...

// Reset the calibration context
worldShape.EmptyLandmarks();

// Loop on the dots
for(int index= 0; index < numDots; index++)
{

// Get the I-th dot as an EPoint(x, y)
EPoint dotPoint;

// Retrieve and store the relevant data into dotPoint
// ...

// Add the I-th dot

Open eVision User Guide

eworldshape-emptylandmarks.htm
eworldshape-addlandmark.htm
eworldshape-calibrate.htm
eworldshape-emptylandmarks.htm
eworldshape-addpoint.htm
eworldshape-rebuildgrid.htm
eworldshape-autocalibrate.htm


157

worldShape.AddPoint(dotPoint);
}

// Reconstruct the grid topology
// pitch X and Y = 5 units
worldShape.RebuildGrid(5, 5);

// Perform the calibration
// the calibration modes are computed automatically
worldShape.AutoCalibrate(true);

Coordinates Transform

Functional Guide | Reference: SensorToWorld, WorldToSensor

/////////////////////////////////////////////////////////////
// This code snippet shows how to convert coordinates from //
// the Sensor space to the World space and conversely. //
/////////////////////////////////////////////////////////////

// EWorldShape constructor
EWorldShape worldShape;

// EPoint constructor
EPoint sensor;
EPoint world;

// ...

// Perform the calibration
worldShape.Calibrate(ECalibrationMode_Scaled | ECalibrationMode_Skewed);

// Retrieve the world coordinates of a point, knowing its sensor coordinates
world= worldShape.SensorToWorld(sensor);

// Retrieve the sensor coordinates of a point, knowing its world coordinates
sensor= worldShape.WorldToSensor(world);

Image Unwarping

Functional Guide | Reference: SetupUnwarp, Unwarp

//////////////////////////////////////////////////////////
// This code snippet shows how to unwarp an image based //
// of the computed calibration coefficients. //
//////////////////////////////////////////////////////////

// Images constructor
EImageBW8 srcImage;
EImageBW8 dstImage;

// EWorldShape constructor
EWorldShape worldShape;

// Lookup table constructor
EUnwarpingLut lut;

// ...

// Perform the calibration

Open eVision User Guide

eworldshape-sensortoworld.htm
eworldshape-worldtosensor.htm
eworldshape-setupunwarp.htm
eworldshape-unwarp.htm


158

worldShape.Calibrate(ECalibrationMode_Tilted | ECalibrationMode_Radial);

// Setup the lookup table for unwarping
worldShape.SetupUnwarp(&lut, &srcImage, true);

// Perform the image unwarping
worldShape.Unwarp(&lut, &srcImage, &dstImage, true);

Open eVision User Guide



159

6.4. EasyFind

Pattern Learning
Functional Guide | Reference: Learn

/////////////////////////////////////////////////////
// This code snippet shows how to learn a pattern //
// defined by a region of interest (ROI). //
/////////////////////////////////////////////////////

// Image constructor
EImageBW8 srcImage;

// ROI constructor
EROIBW8 pattern;

// EPatternFinder constructor
EPatternFinder finder;

// ...

// Attach the ROI to the source image
// and set its position
pattern.Attach(&srcImage);
pattern.SetPlacement(214, 52, 200, 200);

// Learn the pattern
finder.Learn(&pattern);

Setting Search Parameters
Functional Guide | Reference: SetMaxInstances, SetAngleTolerance, SetMinScore, Save

//////////////////////////////////////////////////////////
// This code snippet shows how to tune pattern finding //
// search parameters and save them into a file. //
//////////////////////////////////////////////////////////

// Image constructor
EImageBW8 pattern;

// EPatternFinder constructor
EPatternFinder finder;

// ...

// Learn the pattern
finder.Learn(&pattern);

// Set the maximum number of occurrences
finder.SetMaxInstances(5);

// Set the rotation tolerances
finder.SetAngleTolerance(20.f);

// Set the minimum score
finder.SetMinScore(0.70f);

Open eVision User Guide

epatternfinder-learn.htm
epatternfinder-maxinstances.htm
epatternfinder-angletolerance.htm
epatternfinder-minscore.htm
eshape-save.htm


160

// Save the finding context into a model file
finder.Save("myModel.fnd");

Pattern Finding and Retrieving Results
Functional Guide | Reference: Load, Find, GetScore, GetCenter

/////////////////////////////////////////////////////
// This code snippet shows how to perform pattern //
// finding operations and retrieve the results. //
/////////////////////////////////////////////////////

// Image constructor
EImageBW8 srcImage;

// EPatternFinder constructor
EPatternFinder finder;

// EFoundPattern constructor
std::vector<EFoundPattern> foundPattern;

// ...

// Load a model file
finder.Load("myModel.fnd");

// Perform the pattern finding
foundPattern= finder.Find(&srcImage);

// Retrieve the number of instances
int numInstances= (int)foundPattern.size();

// Retrieve the score and the
// position of the first instance
float score= foundPattern[0].GetScore();
float centerX= foundPattern[0].GetCenter().GetX();
float centerY= foundPattern[0].GetCenter().GetY();

Open eVision User Guide

eshape-load.htm
epatternfinder-find.htm
efoundpattern-score.htm
efoundpattern-center.htm


161

6.5. EasyMatch

Pattern Learning
Functional Guide | Reference: LearnPattern

/////////////////////////////////////////////////////
// This code snippet shows how to learn a pattern //
// defined by a region of interest (ROI). //
/////////////////////////////////////////////////////

// Image constructor
EImageBW8 srcImage;

// ROI constructor
EROIBW8 pattern;

// EMatcher constructor
EMatcher matcher;

// ...

// Attach the ROI to the source image
// and set its position
pattern.Attach(&srcImage);
pattern.SetPlacement(214, 52, 200, 200);

// Learn the pattern
matcher.LearnPattern(&pattern);

Setting Search Parameters
Functional Guide | Reference: SetMaxPositions, SetMinAngle, SetMaxAngle, SetMinScore,
SetInterpolate, Save

//////////////////////////////////////////////////////////
// This code snippet shows how to tune pattern matching //
// search parameters and save them into a file. //
//////////////////////////////////////////////////////////

// Image constructor
EImageBW8 pattern;

// EMatcher constructor
EMatcher matcher;

// ...

// Learn the pattern
matcher.LearnPattern(&pattern);

// Set the maximum number of occurrences
matcher.SetMaxPositions(5);

// Set the rotation tolerances
matcher.SetMinAngle(-20.f);
matcher.SetMaxScale(20.f);

// Enable sub-pixel accuracy

Open eVision User Guide

pattern-matching-image-processing.htm
ematcher-learnpattern.htm
ematcher-maxpositions.htm
ematcher-minangle.htm
ematcher-maxangle.htm
ematcher-minscore.htm
ematcher-interpolate.htm
ematcher-save.htm


162

matcher.SetInterpolate(true);

// Set the minimum score
matcher.SetMinScore(0.70f);

// Save the matching context into a model file
matcher.Save("myModel.mch");

Pattern Matching and Retrieving Results
Functional Guide | Reference: Load, Match, GetNumPositions, GetPosition

/////////////////////////////////////////////////////
// This code snippet shows how to perform pattern //
// matching operations and retrieve the results. //
/////////////////////////////////////////////////////

// Image constructor
EImageBW8 srcImage;

// EMatcher constructor
EMatcher matcher;

// ...

// Load a model file
matcher.Load("myModel.mch");

// Perform the matching
matcher.Match(&srcImage);

// Retrieve the number of occurrences
int numOccurrences= matcher.GetNumPositions();

// Retrieve the first occurrence
EMatchPosition myOccurrence= matcher.GetPosition(0);

// Retrieve its score and position
float score= myOccurrence.Score;
float centerX= myOccurrence.CenterX;
float centerY= myOccurrence.CenterY;

Open eVision User Guide

pattern-matching-image-processing.htm
ematcher-load.htm
ematcher-match.htm
ematcher-numpositions.htm
ematcher-getposition.htm

	1. Dealing with Pixel Containers and Files
	1.1. Pixel Container Definition
	1.2. Pixel Container Types
	1.3. Supported Image File Types
	1.4. Pixel and File Types Compatibility
	1.5. Color Types

	2. Manipulating Pixels Containers and Files
	2.1. Pixel Container File Save
	2.2. Pixel Container File Load
	2.3. Memory Allocation
	2.4. Image and Depth Map Buffer
	2.5. Image Coordinate Systems
	2.6. Image Drawing and Overlay
	2.7. 3D Rendering of 2D Images
	2.8. Vector Types and Main Properties
	2.9. ROI Main Properties
	2.10. Arbitrarily Shaped ROI (ERegion)
	2.11. Flexible Masks
	2.12. Profile

	3. Matching and Measurement Tools
	3.1. EasyObject - Analyzing Blobs
	Image Segmenters
	Image Encoder
	Holes Construction
	Normal vs. Continuous Mode
	Selecting and Sorting Blobs
	Object Template Matcher
	Advanced Features
	Computable Features
	Draw Coded Elements
	Flexible Masks in EasyObject


	3.2. EasyGauge - Measuring down to Sub-Pixel
	Workflow
	Gauge Definitions
	Find Transition Points Using Peak Analysis
	Find Shapes Using Geometric Models
	Gauge Manipulation: Draw, Drag, Plot, Group
	Calibration and Transformation
	Calibration Using EWorldShape
	Advanced Features
	Unwarp an Image

	3.3. EasyFind - Matching Geometric Patterns
	Workflow
	Learning Process
	Finding Process
	Advanced Features

	3.4. EasyMatch - Matching Area Patterns
	Workflow
	Learning Process
	Matching Process
	Advanced Features

	3.5. EChecker2 - Validating Golden Templates
	EChecker2
	Creating a Model
	Inspecting an Image


	4. Using Open eVision Studio
	4.1. Selecting your Programming Language
	4.2. Navigating the Interface
	4.3. Running Tools on Images
	Step 1: Selecting a Tool
	Step 2: Opening an Image
	Step 3: Managing ROIs
	Step 4: Configuring the Tool
	Step 5: Running the Tool and Checking Execution Time
	Step 6: Using the Generated Code

	4.4. Pre-Processing and Saving Images

	5. Tutorials
	5.1. EasyObject
	Removing Non-Significant Objects After Image Segmentation
	Detecting Differences Between Images Using Min-Max References
	Detecting Printing Errors Using a Flexible Mask

	5.2. EasyGauge
	Measuring the Rotation Angle of an Object
	Measuring the Diameter of a Circle
	Measuring a Distorted Rectangle
	Locating Points Regarding to a Coordinate System
	Unwarping a Distorted Image

	5.3. EasyFind
	Detecting Highly-Degraded Occurrences of a Reference Model in Multiple Files
	Improving the Score of Found Instances by Using Don't Care Areas

	5.4. EasyMatch
	Learning a Pattern and Creating an EasyMatch Model File
	Matching a Pattern According to a Model File
	Learning a Pattern According to an ROI
	Improving the Score of Matching Instances by Using Don't Care Areas


	6. Code Snippets
	6.1. Basic Types
	Loading and Saving Images
	Interfacing Third-Party Images
	Retrieving Pixel Values
	ROI Placement
	Vector Management
	Exception Management

	6.2. EasyObject
	Constructing the Blobs
	Image Encoder
	Image Segmenter
	Holes Extraction
	Continuous Mode

	Computing Blobs Features
	Selecting and Sorting Blobs
	Using Flexible Masks
	Constructing Blobs
	Generating a Flexible Mask from an Encoded Image
	Generating a Flexible Mask from a Blob Selection

	Using the Object Template Matcher

	6.3. EasyGauge
	Point Location
	Line Fitting
	Circle Fitting
	Rectangle Fitting
	Wedge Fitting
	Gauge Grouping
	Gauge Hierarchy
	Complex Measurement

	Calibration using EWorldShape
	Calibration by Guesswork
	Landmark-Based Calibration
	Dot Grid-Based Calibration
	Coordinates Transform
	Image Unwarping


	6.4. EasyFind
	Pattern Learning
	Setting Search Parameters
	Pattern Finding and Retrieving Results

	6.5. EasyMatch
	Pattern Learning
	Setting Search Parameters
	Pattern Matching and Retrieving Results



