
Open eVision
Text and Code Reading Tools

USER GUIDE

© EURESYS s.a. 2021 - Document D130ET-Using Text and Code Reading Tools C++-Open eVision-
 built on

2

This documentation is provided with Open eVision 2.16.1 (doc build 1156).
www.euresys.com

Open eVision User Guide

https://www.euresys.com/

3

Contents
1. Dealing with Pixel Containers and Files 5

1.1. Pixel Container Definition 5
1.2. Pixel Container Types 7
1.3. Supported Image File Types 8
1.4. Pixel and File Types Compatibility 9
1.5. Color Types 11

2. Manipulating Pixels Containers and Files 12
2.1. Pixel Container File Save 12
2.2. Pixel Container File Load 14
2.3. Memory Allocation 15
2.4. Image and Depth Map Buffer 16
2.5. Image Coordinate Systems 19
2.6. Image Drawing and Overlay 20
2.7. 3D Rendering of 2D Images 20
2.8. Vector Types and Main Properties 22
2.9. ROI Main Properties 26
2.10. Arbitrarily Shaped ROI (ERegion) 28
2.11. Flexible Masks 35
2.12. Profile 39

PART I : TEXT AND CODE READING TOOLS 41
0.1. EasyBarCode - Reading Bar Codes 41

Reading Bar Codes 41
Reading Mail Bar Codes 45

0.2. EasyMatrixCode - Reading Matrix Codes 49
EasyMatrixCode vs EasyMatrixCode2 49
EasyMatrixCode 49

Specifications 49
Workflow 50
Reading a Matrix Code 51
Learning a Matrix Code 51
Computing the Print Quality 52
Using GS1 Data Matrix Codes 52

EasyMatrixCode2 53
Specifications 53
Workflow 55
Reading a Matrix Code 55
Learning a Matrix Code 56
Computing the Print Quality 56
Using GS1 Data Matrix Codes 57
Asynchronous Processing 58
Advanced Parameters 58

0.3. EasyQRCode - Reading QR Codes 59
Workflow 59
QR Codes Specifications 60
Reading QR Codes 64

0.4. EasyOCR - Reading Texts 68
Workflow 68
Learning Process 69
Segmenting 70
Recognition 71

0.5. EasyOCR2 - Reading Texts (Improved) 73
Workflow 73

Open eVision User Guide

4

Detection 75
Learning 79
Recognition 79

1. Using Open eVision Studio 81
1.1. Selecting your Programming Language 81
1.2. Navigating the Interface 82
1.3. Running Tools on Images 83

Step 1: Selecting a Tool 83
Step 2: Opening an Image 84
Step 3: Managing ROIs 85
Step 4: Configuring the Tool 87
Step 5: Running the Tool and Checking Execution Time 88
Step 6: Using the Generated Code 90

1.4. Pre-Processing and Saving Images 91
2. Tutorials 93

2.1. EasyBarCode 93
Reading Bar Codes Automatically 93

2.2. EasyMatrixCode 94
Reading Data Matrix Codes Automatically 94
Learning a Data Matrix Code and Creating an EasyMatrixCode Model File 95

2.3. EasyOCR 97
Learning Characters and Creating an EasyOCR Font 97
Recognizing Characters According to a Font 99

3. Code Snippets 101
3.1. Basic Types 102

Loading and Saving Images 102
Interfacing Third-Party Images 102
Retrieving Pixel Values 103
Importing Bitmap from the Resources 103
ROI Placement 104
Vector Management 104
Exception Management 104

3.2. EasyBarCode 106
Reading a Bar Code 106
Reading a Bar Code Following a Given Symbology 106
Reading a Bar Code of Known Location 107
Reading a Mail Bar Code 107

3.3. EasyMatrixCode 109
Automatic Reading 109
Reading with Prior Learning 109
Advanced Tuning of the Search Parameters 110
Retrieving Print Quality Grading 110

3.4. EasyQRCode 112
Automatic Reading of a QR Code 112
Retrieving Information of a QR Code 112
Tuning the Search Parameters 113

3.5. EasyOCR 114
Learning Characters 114
Recognizing Characters 114

3.6. EasyOCR2 115
Detecting Characters 115
Learning Characters 116
Reading Characters 117

Reading Using TrueType Fonts 117
Reading Using EOCR2 Character Database 117
Reading Using EOCR2 Model File 118

Open eVision User Guide

5

1. Dealing with Pixel Containers and
Files

1.1. Pixel Container Definition

Images

Open eVision image objects contain image data that represents rectangular images.

Each image object has a data buffer, accessible via a pointer, where pixel values are stored
contiguously, row by row.

Image main parameters

An Open eVision image object has a rectangular array of pixels characterized by EBaseROI
parameters .

l Width is the number of columns (pixels) per row of the image.
l Height is the number of rows of the image. (Maximum width / height is 32,767 (215-1) in

Open eVision 32-bit, and 2,147,483,647 (231-1) in Open eVision 64-bit.)
l Size is the width and height.

The Plane parameter contains the number of color components. Gray-level images = 1. Color
images = 3.

Classes

Image and ROI classes derive from abstract class EBaseROI and inherit all its properties.

Open eVision User Guide

ebaseroi-class.htm
ebaseroi-width.htm
ebaseroi-height.htm
ebaseroi-setsize.htm
ebaseroi-planesperpixel.htm
ebaseroi-class.htm

6

Depth maps

A depth map is a way to represent a 3D object using a 2D grayscale image where each pixel in
the image represents a 3D point.

The pixel coordinates are the representation of the X and Y coordinates of the point while the
grayscale value of the pixel is a representation of the Z coordinate of the point.

Point clouds

A point cloud (https://en.wikipedia.org/wiki/Point_cloud) is an unstructured set of 3D points
representing discrete positions on the surface of an object.

Open eVision User Guide

7

3D point clouds are produced by various 3D scanning techniques, such as Laser Triangulation,
Time of Flight or Structured Lighting.

1.2. Pixel Container Types

Reference

Images

Several image types are supported according to their pixel types: black and white, gray levels,
color, etc.

Easy.GetBestMatchingImageType returns the best matching image type for a given file on disk.

BW1 1-bit black and white images (8 pixels
are stored in 1 byte) EImageBW1

BW8 8-bit grayscale images (each pixel is
stored in 1 byte) EImageBW8

BW16 16-bit grayscale images (each pixel is
stored in 2 bytes) EImageBW16

BW32 32-bit grayscale images (each pixel is
stored in 4 bytes) EImageBW32

C15

15-bit color images (each pixel is
stored in 2 bytes).
Compatible with Microsoft® Windows
RGB15 color images and MultiCam
RGB15 format.

EImageC15

Open eVision User Guide

eimagetype-enum.htm
easy-getbestmatchingimagetype.htm
eimagebw1-class.htm
eimagebw8-class.htm
eimagebw16-class.htm
eimagebw32-class.htm
eimagec15-class.htm

8

C16

16-bit color images (each pixel is
stored in 2 bytes).
Compatible with Microsoft® Windows
RGB16 color images and MultiCam
RGB16 format.

EImageC16

C24

C24 images store 24-bit color images
(each pixel is stored in 3 bytes).
Compatible with Microsoft® Windows
RGB24 color images and MultiCam
RGB24 format.

EImageC24

C24A

C24A images store 32-bit color images
(each pixel is stored in 4 bytes).
Compatible with Microsoft® Windows
RGB32 color images and MultiCam
RGB32 format.

EImageC24A

Depth Maps

8 and 16-bit depth map values are stored in buffers compatible with the 2D Open eVision
images.

EDepth8 8-bit depth map (each pixel is stored in
1 byte as an integer) EDepthMap8

EDepth16 16-bit depth map (each pixel is stored
in 2 bytes as a fixed point) EDepthMap16

EDepth32f 32-bit depth map (each pixel is stored
in 4 bytes as a float) EDepthMap32f

Point Clouds

Point Cloud Set of points coordinates (stored as
float) EPointCloud

1.3. Supported Image File Types

Reference

Type Description

BMP Uncompressed image data format (Windows Bitmap Format)

JPEG Lossy data compression standard issued by the Joint Photographic Expert
Group registered as ISO/IEC 10918-1. Compression irretrievably loses quality.

JFIF JPEG File Interchange Format

JPEG-2000
Data compression standard issued by the Joint Photographic Expert Group
registered as ISO/IEC 15444-1 and ISO/IEC 15444-2. Open eVision supports
only lossy compression format, file format and code stream variants.

Open eVision User Guide

eimagec16-class.htm
eimagec24-class.htm
eimagec24a-class.htm
edepthmap8-class.htm
edepthmap16-class.htm
edepthmap32f-class.htm
epointcloud-class.htm
eimagefiletype-enum.htm

9

Type Description

- code stream describes the image samples.
- file format includes meta-information such as image resolution and color
space.

PNG Lossless data compression method (Portable Network Graphics).

Serialized Euresys proprietary image file format obtained from the serialization of Open
eVision image objects.

TIFF

Tag Image File Format is currently controlled by Adobe Systems and uses the
LibTIFF third-party library to process images written for 5.0 or 6.0 TIFF
specification.
File save operations are lossless and use CCITT 1D compression for 1-bit
binary pixel types and LZW compression for all others.
File load operations support all TIFF variants listed in the LibTIFF
specification.

1.4. Pixel and File Types Compatibility

Depth map to image conversion

For 8- and 16-bit depth maps, the AsImage() method returns a compatible image object
(respectively EImageBW8 and EImageBW16) that can be used with Open eVision’s 2D processing
features.

Pixel and file types compatibility

Pixel access

The recommended method to access pixels is to use SetImagePtr and GetImagePtr to embed the
image buffer access in your own code. See also Image Construction and Memory Allocation and
Retrieving Pixel Values.

Use of the following methods should be limited because of the overhead incurred by each
function call:

Direct access

EROIBW8::GetPixel and SetPixel methods are implemented in all images and ROI classes to read
and write a pixel value at given coordinates. To scan all pixels of an image, you could run a
double loop on the X and Y coordinates and use GetPixel or SetPixel each iteration, but this is not
recommended.

Open eVision User Guide

ebaseroi-setimageptr.htm
ebaseroi-getimageptr.htm
eroibw8-getpixel.htm
eroibw8-setpixel.htm

10

TIP
For performance reasons, these accessors should not be used when a
significant number of pixels needs to be processed. When that is the case,
retrieving the internal buffer pointer using GetBufferPtr() and iterating on the
pointer is recommended.

Quick Access to BW8 Pixels

In BW8 images, a call to EBW8PixelAccessor::GetPixel or SetPixel will be faster than a direct
EROIBW8::GetPixel or SetPixel.

Supported structures

l EBW1, EBW8, EBW32
l EC15 (*), EC16 (*), EC24 (*)
l EC24A
l EDepth8, EDepth16, EDepth32f,

(*) These formats support RGB15 (5-5-5 bit packing), RGB16 (5-6-5 bit packing) and RGB32 (RGB
+ alpha channel) but they must be converted to/from EC24 using EasyImage::Convert before any
processing.

NOTE
Transition with versions prior to eVision 6.5 should be seamless: image pixel
types were defined using typedef of integral types, pixel values were treated
as unsigned numbers and implicit conversion to/from previous types is
provided.

Pixel and File Type compatibility during Load or Save operations

Type BMP JPEG JPEG2000 PNG TIFF Serialized

BW1 Ok N/A N/A Ok Ok Ok

BW8 Ok Ok Ok Ok Ok Ok

BW16 N/A N/A Ok Ok Ok
(***) Ok

BW32 N/A N/A N/A N/A Ok
(***) Ok

C15 Ok Ok (**) Ok (**) Ok (**) Ok (**) Ok

C16 Ok Ok (**) Ok (**) Ok (**) Ok (**) Ok

C24 Ok Ok Ok Ok Ok (**) Ok

C24A Ok N/A N/A Ok N/A Ok

Depth8 Ok Ok Ok Ok Ok Ok

Open eVision User Guide

ebw8pixelaccessor-getpixel_.htm
ebw8pixelaccessor-setpixel.htm
eroibw8-getpixel.htm
eroibw8-setpixel.htm
ebw1-struct.htm
ebw8-struct.htm
ebw32-struct.htm
ec15-struct.htm
ec16-struct.htm
ec24-struct.htm
ec24a-struct.htm
edepth8-struct.htm
edepth16-struct.htm
edepth32f-struct.htm
easyimage-convert.htm

11

Type BMP JPEG JPEG2000 PNG TIFF Serialized

Depth16 N/A N/A Ok Ok Ok
(***) Ok

Depth32f N/A N/A N/A N/A N/A Ok

N/A: Not supported. An exception occurs if you use the combination.

Ok: Image integrity is preserved with no data loss (apart from JPEG and JPEG2000, lossy
compression).

(**) C15 and C16 formats are automatically converted into C24 during the save operation.

(***) BW16 and BW32 are not supported by Baseline TIFF readers.

1.5. Color Types

EISH: Intensity, Saturation, Hue color system.

ELAB: CIE Lightness, a*, b* color system.

ELCH: Lightness, Chroma, Hue color system.

ELSH: Lightness, Saturation, Hue color system.

ELUV: CIE Lightness, u*, v* color system.

ERGB: NTSC/PAL/SMPTE Red, Green, Blue color system.

EVSH: Value, Saturation, Hue color system.

EXYZ: CIE XYZ color system.

EYIQ: CCIR Luma, Inphase, Quadrature color system.

EYSH: CCIR Luma, Saturation, Hue color system.

EYUV: CCIR Luma, U Chroma, V Chroma color system.

Open eVision User Guide

eish-struct.htm
elab-struct.htm
elch-struct.htm
elsh-struct.htm
eluv-struct.htm
ergb-struct.htm
evsh-struct.htm
exyz-struct.htm
eyiq-struct.htm
eysh-struct.htm
eyuv-struct.htm

12

2. Manipulating Pixels Containers and
Files

2.1. Pixel Container File Save

Images and depth maps

The Save method of an image or the SaveImage method of a depth map or a ZMap saves the image
data of an image or of a depth map or a ZMap object into a file using two arguments:

□ Path: path, file name and file name extension.
□ Image File Type: if omitted, the file name extension is used.

Images bigger than 65,536 (either width or height) must be saved in Open eVision proprietary
format.

Save throws an exception when:
□ The requested image file format is incompatible with the image pixel types
□ The Auto file type selection method and the file name extension is not supported

TIP
When saving a 16-bit depth map, the fixed point precision is lost and the
pixels are considered as 16-bit integers.

Image file type arguments

Argument Image File Type

EImageFileType_Auto(*) Automatically determined by the filename extension. See below.

EImageFileType_Euresys Open eVision Serialization.

EImageFileType_Bmp Windows bitmap - BMP

EImageFileType_Jpeg JPEG File Interchange Format - JFIF

EImageFileType_Jpeg2000 JPEG 2000 File format/Code Stream -JPEG2000

EImageFileType_Png Portable Network Graphics - PNG

EImageFileType_Tiff Tagged Image File Format - TIFF
(*) Default value.

Open eVision User Guide

ebaseroi-save.htm
edepthmap8-saveimage.htm
ebaseroi-save.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm

13

Assigned image file type if argument is ImageFileType_Auto or missing

File name extension(*) Automatically assigned image file type

BMP Windows Bitmap Format

JPEG, JPG JPEG File Interchange Format - JFIF

JP2 JPEG 2000 file format

J2K, J2C JPEG 2000 Code Stream

PNG Portable Network Graphics

TIFF, TIF Tagged Image File Format
(*) Case-insensitive.

Saving JPEG and JPEG2000 lossy compressions

SaveJpeg and SaveJpeg2K specify the compression quality when saving compressed images. They
have two arguments:

□ Path: a string of characters including the path, filename, and file name extension.
□ Compression quality of the image file, an integer value in range [0: 100].

SaveJpeg saves image data using JPEG File Interchange Format – JFIF.
SaveJpeg2K saves image data using JPEG 2000 File format.

JPEG compression values

JPEG compression Description

JPEG_DEFAULT_QUALITY (-1) Default quality (*)

100 Superb image quality, lowest compression factor

75 Good image quality (*)

50 Normal image quality

25 Average image quality

10 Bad Image quality
(*) The default quality corresponds to the good image quality (75).

Representative JPEG 2000 compression quality values

JPEG 2000 compression Description

-1 Default quality (*)

1 Highest image quality, lowest compression factor

16 Good Image Quality (*) (16:1 rate)

512 Lowest image quality, highest compression factor
(*) The default quality corresponds to the good image quality (16:1 rate).

Open eVision User Guide

ebaseroi-savejpeg.htm
ebaseroi-savejpeg2k.htm
ebaseroi-save.htm
ebaseroi-savejpeg2k.htm

14

Saving point clouds

Use the following methods to save a point cloud in a specific format:
□ EPointCloud::Save: Open eVision proprietary file format.
□ EPointCloud::SaveCSV: CSV file.
□ EPointCloud::SaveOBJ: OBJ file.
□ EPointCloud::SavePCD: PCD file.
□ EPointCloud::SavePLY: PLY file.
□ EPointCloud::SaveXYZ: XYZ file.

TIP
The PCD format is supported in ASCII and binary modes.

2.2. Pixel Container File Load

Loading images and depth maps

● Use the Load method to load image data into an image object:
□ It has one argument: the path: path, filename, and file name extension.
□ File type is determined by the file format.
□ The destination image is automatically resized according to the size of the image on disk.

● The Load method throws an exception when:
□ File type identification fails
□ File type is incompatible with pixel type of the image object

TIP
Serialized image files of Open eVision 1.1 and newer are incompatible with
serialized image files of previous Open eVision versions.

TIP
When loading a BW16 image (with integer values) in a depth map, the fixed
point precision set in the depth map (0 by default) is left unchanged and
used.

Open eVision User Guide

epointcloud-save.htm
epointcloud-savecsv.htm
epointcloud-saveobj.htm
epointcloud-savepcd.htm
epointcloud-saveply.htm
epointcloud-savexyz.htm
ebaseroi-load.htm
ebaseroi-load.htm

15

Loading point clouds

Use the following methods to load a point cloud saved in a specific format:
□ EPointCloud::Load: Open eVision proprietary file format.
□ EPointCloud::LoadCSV: CSV file.
□ EPointCloud::LoadOBJ: OBJ file.
□ EPointCloud::LoadPCD: PCD file.
□ EPointCloud::LoadPLY: PLY file.
□ EPointCloud::LoadXYZ: XYZ file.

TIP
- The PCD format is supported in ASCII and binary modes.
- The PLY is supported only in ASCII mode.

2.3. Memory Allocation

An image can be constructed with an internal or external memory allocation.

Internal memory allocation

The image object dynamically allocates and deallocates a buffer.
□ Memory management is transparent.
□ When the image size changes, reallocation occurs.
□ When an image object is destroyed, the buffer is deallocated.

To declare an image with internal memory allocation:

a. Construct an image object, for instance EImageBW8, either with width and height arguments,
OR using the SetSize function.

b. Access a given pixel. There are several functions that do this. GetImagePtr returns a pointer
to the first byte of the pixel at the given coordinates.

External memory allocation

The user controls buffer allocation or links a third-party image in the memory buffer to an Open
eVision image.

□ Image size and buffer address must be specified.
□ When an image object is destroyed, the buffer is unaffected.

Open eVision User Guide

epointcloud-load.htm
epointcloud-loadcsv.htm
epointcloud-loadobj.htm
epointcloud-loadpcd.htm
epointcloud-loadply.htm
epointcloud-loadxyz.htm
eimagebw8-class.htm
ebaseroi-setsize.htm
ebaseroi-getimageptr.htm

16

To declare an image with external memory allocation:

a. Declare an image object, for instance EImageBW8.

b. Create a suitably sized and aligned buffer (see Image Buffer).

c. Assign the buffer to the image with SetImagePtr.

NOTE
If your buffer rows are not aligned on 4 bytes, you cannot use SetImagePtr. In
that case, use InitializeFromUnalignedBuffer instead.
Please note, however, that this allocates the memory internally and copies
the external buffer into the internal one instead of using the external one
directly.

2.4. Image and Depth Map Buffer

Image and depth map pixels are stored contiguously, from left to right and from top row to
bottom row, in Windows bitmap format (top-down DIB -device-independent bitmap-) into an
associated buffer.

The buffer address is a pointer to the start address of the buffer, which contains the top left
pixel of the image.

Image buffer pitch

● Alignment must be a multiple of 4 bytes.

● Open eVision 1.2 onwards default pitch is 32 bytes for performance reasons (Open eVision
1.1.5 was 8 bytes).

Open eVision User Guide

eimagebw8-class.htm
ebaseroi-setimageptr.htm
ebaseroi-setimageptr.htm
eimagebw8-initializefromunalignedbuffer.htm

17

Memory layout

● EImageBW1 stores 8 pixels in one byte.

Example memory layout of the first 2 pixels of a BW1 image buffer:

● EImageBW8 and EDepthMap8 store each pixel in one byte.

Example memory layout of the first pixels of a BW8 image buffer:

● EImageBW16 stores each pixel in a 16-bit word (two bytes).

Example memory layout of the first pixels of a BW16 image buffer:

● EImageC15 stores each pixel in 2 bytes. Each color component is coded with 5-bits.
The 16th bit is left unused.

Open eVision User Guide

eimagebw1-class.htm
eimagebw8-class.htm
edepthmap8-class.htm
eimagebw16-class.htm
eimagec15-class.htm

18

Example memory layout of the first pixels of a C15 image buffer:

● EImageC16 stores each pixel in 2 bytes. The first and third color components are coded with 5-
bits.
The second color component is coded with 6-bits.

Example memory layout of the first pixels of a C16 image buffer:

● EDepthMap16 store each pixel in 2 bytes using a fixed point format.

● EImageC24 stores each pixel in 3 bytes. Each color component is coded with 8-bits.

Example memory layout of the first pixels of a C24 image buffer:

Open eVision User Guide

eimagec16-class.htm
edepthmap16-class.htm
eimagec24-class.htm

19

● EImageC24A stores each pixel in 4 bytes. Each color component is coded with 8-bits.
The alpha channel is also coded with 8-bits.

Example memory layout of the first pixels of a C24A image buffer:

● EDepthMap32f store each pixel in 4 bytes using a float format.

2.5. Image Coordinate Systems

The conventions below apply to all Open eVision functions and results.
□ Pixel coordinates are usually given as integer numbers.
□ Some results can use subpixel precision with real (floating point) numbers.
□ Some exceptions apply and are documented per librarie.

Integer coordinates

● The origin (0,0) of the coordinate system is the upper left pixel of the image.

● The lower right pixel is (width-1, height-1).

Open eVision User Guide

eimagec24a-class.htm
edepthmap32f-class.htm

20

Real coordinates

● With floating point (x,y) coordinates, the origin is the upper left corner of the upper left pixel.

● The first pixel area ranges in [0,1[for X and Y axis.

● Coordinates greater or equal than the width or the height are outside the image.

2.6. Image Drawing and Overlay

● Drawing uses Windows GDI (Graphics Device Interface) system calls.
□ MFC (Microsoft Foundation Class) applications normally use OnDraw event handler to draw,

where a pointer to a device context is available.
□ Borland/CodeGear OWL or VCL use a Paint event handler.

● The color palette in 256-color display mode gives optimal rendering.

● Gray-level images can be improved using LUTs (LookUp Tables) (using histogram stretching
techniques or pseudo-coloring).

● The zoom can be different horizontally and vertically.

● DrawFrameWithCurrentPen method draws a frame.

● Non-destructive overlaying drawing operations do not alter the image contents, such as
MoveTo/LineTo.

● Destructive overlaying drawing operations alter the image contents by drawing inside the
image such as Easy::OpenImageGraphicContext. Gray-level [color] images can only receive a gray-
level [color] overlay.

2.7. 3D Rendering of 2D Images

These images are viewed by rotating them around the X-axis, then the Y-axis.

Open eVision User Guide

ebaseroi-drawframewithcurrentpen.htm
easy-openimagegraphiccontext.htm

21

Gray 3D rendering

Easy::Render3D prepares a 3-dimensional rendering where gray-level values are altitudes.
Magnification factors in the three directions (X = width, Y = height and Z = depth) can be given.
The rendered image appears as independent dots whose size can be adjusted to make the
surface more or less opaque.

3D rendering

Color histogram 3D rendering

Easy::RenderColorHistogram prepares a 3-dimensional rendering of a color image histogram.
The pixels are drawn in the RGB space (not XY-plane) to show clustering and dispersion of RGB
values.
This function can process pixels in other color systems (using EasyColor to convert), but the raw
RGB image is required to display the pixels in their usual colors.

Magnification factors in all three directions (X = red, Y = green and Z = blue) can be given.

Color histogram rendering

Open eVision User Guide

easy-render3d.htm
easy-rendercolorhistogram.htm

22

2.8. Vector Types and Main Properties

A vector is a one-dimensional array of pixels (taken from an image profile or contour).

EVector is the base class for all vectors. It contains all non-type-specific methods, mainly for
counting elements and serialization.

Profile in a C24 image, RGB values plot along profile and RGB values array (EC24Vector)

A vector manages an array of elements. Memory allocation is transparent, so vectors can be
resized dynamically. Whenever a function uses a vector, the vector type, size and structure are
automatically adjusted to suit the function needs.

The use of vectors is quite straightforward:

● To create a vector of the appropriate type:
□ Use its constructor and preallocate elements if required.

● To fill a vector with values:
□ Call the EVector::Empty member to empty it.
□ Call the EC24Vector::AddElement member to add elements one by one.
□ Use the indexing to access any element.

● To access a vector element, either for reading or writing:
□ Use the brackets operator EC24Vector::operator[].

● To determine the current number of elements:
□ Use the EVector::NumElements member.

● To draw the vector:
□ A pixel vector is a plot of the element values as a function of the element index, so its

graphical appearance depends on its type. You can draw a vector in a window. For
legibility, the drawing should appear on a neutral background.

□ Drawing is done in the device context associated to the desired window. By default,
curves are drawn in blue and annotations in black. You can define: graphicContext, width,
height, originX, originY, color0, color1 and color2.

□ The EC24Vector has three curves drawn instead of one, each corresponding to a color
component. By default the red, blue and green pens are used.

Open eVision User Guide

evector-class.htm
ec24vector-class.htm
evector-empty.htm
ec24vector-addelement.htm
ec24vector-operator_index.htm
evector-numelements.htm
ec24vector-class.htm

23

Vector types

● EBW8Vector: a sequence of gray-level pixel values, often extracted from an image profile
(used by EasyImage::Lut, EasyImage::SetupEqualize, EasyImage::ImageToLineSegment,
EasyImage::LineSegmentToImage, EasyImage::ProfileDerivative...).

Graphical representation of an EBW8Vector (see Draw method)

● EBW16Vector: a sequence of gray-level pixel values, using an extended range (16 bits), mainly
for intermediate computations.

Graphical representation of an EBW16Vector

● EBW32Vector: a sequence of gray-level pixel values, using an extended range (32 bits), mainly
for intermediate computations
(used in EasyImage::ProjectOnARow, EasyImage::ProjectOnAColumn, ...).

Graphical representation of an EBW32Vector

Open eVision User Guide

ebw8vector-class.htm
easyimage-lut.htm
easyimage-setupequalize.htm
easyimage-imagetolinesegment.htm
easyimage-linesegmenttoimage.htm
easyimage-profilederivative.htm
ebw8vector-class.htm
ebw8vector-draw.htm
ebw16vector-class.htm
ebw16vector-class.htm
ebw32vector-class.htm
easyimage-projectonarow.htm
easyimage-projectonacolumn.htm
ebw32vector-class.htm

24

● EC24Vector: a sequence of color pixel values, often extracted from an image profile
(used by EasyImage::ImageToLineSegment, EasyImage::LineSegmentToImage,
EasyImage::ProfileDerivative, ...).

Graphical representation of an EC24Vector

● EBW8PathVector: a sequence of gray-level pixel values, extracted from an image profile or
contour, with corresponding pixel coordinates
(used by EasyImage::ImageToPath, EasyImage::PathToImage, ...).

Graphical representation of an EBW8PathVector (see Draw method)

● EBW16PathVector: a sequence of gray-level pixel values, extracted from an image profile or
contour, with corresponding pixel coordinates
(used by EasyImage::ImageToPath, EasyImage::PathToImage, ...).

Graphical representation of an EBW16PathVector (see Draw method)

Open eVision User Guide

ec24vector-class.htm
easyimage-imagetolinesegment.htm
easyimage-linesegmenttoimage.htm
easyimage-profilederivative.htm
ec24vector-class.htm
ebw8pathvector-class.htm
easyimage-imagetopath.htm
easyimage-pathtoimage.htm
ebw8pathvector-class.htm
ebw8pathvector-draw.htm
ebw16pathvector-class.htm
easyimage-imagetopath.htm
easyimage-pathtoimage.htm
ebw16pathvector-class.htm
ebw16pathvector-draw.htm

25

● EC24PathVector: a sequence of color pixel values, extracted from an image profile or contour,
with corresponding pixel coordinates
(used by EasyImage::ImageToPath, EasyImage::PathToImage, ...).

Graphical representation of an EC24PathVector (see Draw method)

● EBWHistogramVector: a sequence of frequency counts of pixels in a BW8 or BW16 image
(used by EasyImage::IsodataThreshold, EasyImage::Histogram, EasyImage::AnalyseHistogram,
EasyImage::SetupEqualize, ...).

Graphical representation of an EBWHistogramVector (see Draw method)

● EPathVector: a sequence of pixel coordinates. The corresponding pixels need not be
contiguous
(used by EasyImage::PathToImage and EasyImage::Contour).

Graphical representation of an EPathVector (see Draw method)

● EPeakVector: peaks found in an image profile
(used by EasyImage::GetProfilePeaks).

● EColorVector: a description of colors
(used by EasyColor::ClassAverages and EasyColor::ClassVariances).

Open eVision User Guide

ec24pathvector-class.htm
easyimage-imagetopath.htm
easyimage-pathtoimage.htm
ec24pathvector-class.htm
ec24pathvector-draw.htm
ebwhistogramvector-class.htm
easyimage-isodatathreshold.htm
easyimage-histogram.htm
easyimage-analysehistogram.htm
easyimage-setupequalize.htm
ebwhistogramvector-class.htm
ebwhistogramvector-draw.htm
epathvector-class.htm
easyimage-pathtoimage.htm
easyimage-contour.htm
epathvector-class.htm
epathvector-draw.htm
epeakvector-class.htm
easyimage-getprofilepeaks.htm
ecolorvector-class.htm
easycolor-classaverages.htm
easycolor-classvariances.htm

26

2.9. ROI Main Properties

ROIs are defined by a width, a height, and origin x and y coordinates.
The origins are specified with respect to the top left corner in the parent image or ROI.
The ROI must be wholly contained in its parent image.
The processing/analysis time of a BW1 ROI is faster if OrgX and Width are multiples of 8.

Save and load

You can save or load an ROI as a separate image, to be used as if it was a full image. The ROIs
perform no memory allocation at all and never duplicate parts of their parent image, the
parent image provides them with access to its image data.

The image size of the new file must match the size of the ROI being loaded into it. The image
around the ROI remains unchanged.

ROI Classes

An Open eVision ROI inherits parameters from the abstract class EBaseROI.

There are several ROI types, according to their pixel type. They have the same characteristics as
the corresponding image types.

□ EROIBW1
□ EROIBW8
□ EROIBW16
□ EROIBW32
□ EROIC15
□ EROIC16
□ EROIC24
□ EROIC24A

Attachment

An ROI must be attached to a parent (image/ROI) with parameters that set the parent, position
and size, and these links are updated transparently, avoiding dangling pointers.
A normal image cannot be attached to another image or ROI.

Nesting

Set and Get functions change or query the width, height and position of the origin of an ROI,
with respect to its immediate or topmost parent image.

An image may accommodate an arbitrary number of ROIs, which can be nested in a hierarchical
way. Moving the ROI also moves the embedded ROIs accordingly. The image/ROI classes provide
several methods to traverse the hierarchy of ROIs associated with an image.

Open eVision User Guide

ebaseroi-width.htm
ebaseroi-height.htm
ebaseroi-orgx.htm
ebaseroi-orgy.htm
ebaseroi-orgx.htm
ebaseroi-width.htm
ebaseroi-save.htm
ebaseroi-load.htm
ebaseroi-class.htm
eroibw1-class.htm
eroibw8-class.htm
eroibw16-class.htm
eroibw32-class.htm
eroic15-class.htm
eroic16-class.htm
eroic24-class.htm
eroic24a-class.htm
ebaseroi-attach.htm

27

Nested ROIs: Two sub-ROIs attached to an ROI, itself attached to the parent image

Cropping

CropToImage crops an ROI which is partially out of its image. The resized ROI never grows.
An exception is thrown if a function attempts to use an ROI that has limits that extend outside
of the parents.

NOTE
(In Open eVision 1.0.1 and earlier, an ROI was silently resized or repositioned
when placed out of its image and sometimes grew. If ROI limits extended
outside parents, they were silently resized to remain within parent limits.)

Resizing and moving

ROIs can easily be resized and positioned by two functions and dragging handles:

● EBaseROI::Drag adjusts the ROI coordinates while the cursor moves.

● EBaseROI::HitTest informs if the cursor is placed over a dragging handle.
□ Once the handle is known, the cursor shape can be changed by an OnSetCursor MFC event

handler. HitTest is unpredictable if called while dragging is in progress.
□ HitTest can be used in an OnSetCursor MFC event handler to change the cursor shape, or

before a dragging operation like OnLButtonDown,
(or EvSetCursor and EvLButtonDown in Borland/CodeGear's OWL)
(or FormMouseMove and FormMouseDown in Borland/CodeGear's VCL).

Open eVision User Guide

ebaseroi-croptoimage.htm
ebaseroi-drag.htm
ebaseroi-hittest.htm

28

2.10. Arbitrarily Shaped ROI (ERegion)

See also: example: Inspecting Pads Using Regions / code snippets: ERegion

Regions or arbitrarily shaped ROI

You define and use regions of interest (ROI) to restrict the area processed with your vision tool
and to reduce and optimize the processing time.

In Open eVision:
□ An ROI (EROIxxx class) designates a rectangular region of interest.
□ A region (ERegion class) designates an arbitrarily shaped ROI. With regions, you can

determine precisely which part of the image, down to a single pixel, is used for your
processing.

Currently, only the following Open eVision methods support ERegions:

Library Method
EasyImage::Threshold
EasyImage::Copy
EasyImage::ConvolKernel
EasyImage::ConvolSymmetricKernel
EasyImage::ConvolLowpass1
EasyImage::ConvolLowpass2
EasyImage::ConvolLowpass3
EasyImage::ConvolUniform
EasyImage::ConvolGaussian
EasyImage::ConvolHighpass1
EasyImage::ConvolHighpass2
EasyImage::ConvolGradientX
EasyImage::ConvolGradientY
EasyImage::ConvolGradient
EasyImage::ConvolSobelX
EasyImage::ConvolSobelY
EasyImage::ConvolSobel
EasyImage::ConvolPrewittX
EasyImage::ConvolPrewittY
EasyImage::ConvolPrewitt
EasyImage::ConvolRoberts
EasyImage::ConvolLaplacianX
EasyImage::ConvolLaplacianY
EasyImage::ConvolLaplacian8
EasyImage::DilateBox
EasyImage::ErodeBox
EasyImage::OpenBox

EasyImage EasyImage::CloseBox
EasyImage::WhiteTopHatBox
EasyImage::BlackTopHatBox
EasyImage::MorphoGradientBox
EasyImage::ErodeDisk

Open eVision User Guide

../../../../../Content/05 Resources/03 2D Application Examples/Inspecting Pads Using Regions.htm
../../../../../Content/05 Resources/02 Code Snippets/01b ERegion/ERegion.htm
eregion-class.htm
eregion-class.htm
easyimage-threshold.htm
easyimage-copy.htm
easyimage-convolkernel.htm
easyimage-convolsymmetrickernel.htm
easyimage-convollowpass1.htm
easyimage-convollowpass2.htm
easyimage-convollowpass3.htm
easyimage-convoluniform.htm
easyimage-convolgaussian.htm
easyimage-convolhighpass1.htm
easyimage-convolhighpass2.htm
easyimage-convolgradientx.htm
easyimage-convolgradienty.htm
easyimage-convolgradient.htm
easyimage-convolsobelx.htm
easyimage-convolsobely.htm
easyimage-convolsobel.htm
easyimage-convolprewittx.htm
easyimage-convolprewitty.htm
easyimage-convolprewitt.htm
easyimage-convolroberts.htm
easyimage-convollaplacianx.htm
easyimage-convollaplaciany.htm
easyimage-convollaplacian8.htm
easyimage-dilatebox.htm
easyimage-erodebox.htm
easyimage-openbox.htm
easyimage-closebox.htm
easyimage-whitetophatbox.htm
easyimage-blacktophatbox.htm
easyimage-morphogradientbox.htm
easyimage-erodedisk.htm

29

Library Method
EasyImage::DilateDisk
EasyImage::OpenDisk
EasyImage::CloseDisk
EasyImage::WhiteTopHatDisk
EasyImage::BlackTopHatDisk
EasyImage::MorphoGradientDisk
EasyImage::Median
EasyImage::ScaleRotate
EasyImage::DoubleThreshold
EasyImage::Histogram
EasyImage::Area
EasyImage::AreaDoubleThreshold
EasyImage::BinaryMoments
EasyImage::WeightedMoments
EasyImage::GravityCenter
EasyImage::PixelCount
EasyImage::PixelMax
EasyImage::PixelMin
EasyImage::PixelAverage
EasyImage::PixelStat
EasyImage::PixelVariance
EasyImage::PixelStdDev
EasyImage::PixelCompare

Easy3D

EDepthMapToMeshConverter::Convert
EDepthMapToPointCloudConverter::Convert
EStatistics::ComputePixelStatistics
EStatistics::ComputeStatistics
E3DObjectExtractor::Extract
EZMapToPointCloudConverter::Convert

EasyObject EImageEncoder::Encode

EasyFind
EPatternFinder::Find
EPatternFinder::Learn

EasyOCR2
EOCR2::Read
EOCR2::Detect

EasyGauge

EPointGauge::Measure
ELineGauge::Measure
ERectangleGauge::Measure
ECircleGauge::Measure
EWedgeGauge::Measure

EasyMatch
EMatcher::LearnPattern
EMatcher::Match

EasyQRCode
EQRCodeReader::SetSearchField
EQRCodeReader::Read

TIP
In the future Open eVision releases, the support of ERegions will be gradually
extended to all operators.

Open eVision User Guide

easyimage-dilatedisk.htm
easyimage-opendisk.htm
easyimage-closedisk.htm
easyimage-whitetophatdisk.htm
easyimage-blacktophatdisk.htm
easyimage-morphogradientdisk.htm
easyimage-median.htm
easyimage-scalerotate.htm
easyimage-doublethreshold.htm
easyimage-histogram.htm
easyimage-area.htm
easyimage-areadoublethreshold.htm
easyimage-binarymoments.htm
easyimage-weightedmoments.htm
easyimage-gravitycenter.htm
easyimage-pixelcount.htm
easyimage-pixelmax.htm
easyimage-pixelmin.htm
easyimage-pixelaverage.htm
easyimage-pixelstat.htm
easyimage-pixelvariance.htm
easyimage-pixelstddev.htm
easyimage-pixelcompare.htm
edepthmaptomeshconverter-convert.htm
edepthmaptopointcloudconverter-convert.htm
estatistics-computepixelstatistics.htm
estatistics-computestatistics.htm
../../../../../Content/reference/e3dobjectextractor-extract.htm
../../../../../Content/reference/ezmaptopointcloudconverter-convert.htm
eimageencoder-encode.htm
epatternfinder-find.htm
../../../../../Content/reference/epatternfinder-learn.htm
../../../../../Content/reference/eocr2-read.htm
../../../../../Content/reference/eocr2-detect.htm
../../../../../Content/reference/epointgauge-measure.htm
../../../../../Content/reference/elinegauge-measure.htm
../../../../../Content/reference/erectanglegauge-measure.htm
../../../../../Content/reference/ecirclegauge-measure.htm
../../../../../Content/reference/ewedgegauge-measure.htm
../../../../../Content/reference/ematcher-learnpattern.htm
../../../../../Content/reference/ematcher-match.htm
eqrcodereader-searchfield.htm
eqrcodereader-read.htm

30

Creating regions

Open eVision offers multiple ways to create regions, depending on the shape you need:

The ERegion is the base class for all regions and the most versatile. It encodes a region using a
Run-Length Encoded (RLE) representation.

□ The RLE representation of a region is made of runs (horizontal, 1-pixel high slices).
□ The runs are stored in the form of their ordinate, starting abscissa and length.

Run-Length Encoding of a circle-shaped region

To create a region, either:
□ Use one of the geometry-based region classes.
□ Use the result of another tool, such as EasyFind, EasyMatch or EasyObject.
□ Combine or modify other regions.
□ Use a mask image.
□ Directly provide the list of runs.

Geometry-based regions

Geometry based regions are specialized classes of regions that are encompassed in simple
geometries. Open eVision currently provides classes based on a rectangle, a circle, an ellipse or
a polygon.

Use these classes to setup geometric regions and modify them with translation, rotation and
scaling. The transformation operators return new regions, leaving the source object unchanged.

● ERectangleRegion
□ The contour of an ERectangleRegion class is a rectangle.
□ Define it using its center, width, height and angle.
□ Alternatively, use an ERectangle instance, such as one returned by an ERectangleGauge

instance.

Rectangle region separating a bar code from the background

Open eVision User Guide

eregion-class.htm
erectangle-class.htm
erectangle-class.htm
erectangle-class.htm
erectanglegauge-class.htm

31

● ECircleRegion
□ The contour of an ECircleRegion class is a circle.
□ Define it using its center and radius or 3 non-aligned points.
□ Alternatively, use an ECircle instance, such as one returned by an ECircleGauge instance.

Circle region encompassing the useful part of an X-Ray image

● EEllipseRegion
□ The contour of an EEllipseRegion class is an ellipse.
□ Define it using its center, long and short radius and angle.

Ellipse region encompassing a waffle

● EPolygonRegion
□ The contour of an EPolygonRegion class is a polygon.
□ It is constructed using the list of its vertices.

Polygon region encompassing a key

Open eVision User Guide

ecircleregion-class.htm
ecircleregion-class.htm
ecircle-class.htm
ecirclegauge-class.htm
eellipseregion-class.htm
eellipseregion-class.htm
epolygonregion-class.htm
epolygonregion-class.htm

32

Using the result of other tools

The ERegion class provides a set of specialized constructors to create regions from the results of
another tool.

In a tool chain, these constructors restrict the processing of a tool to the area issued from the
previous tool.

Open eVision provides constructors for the following tools:
□ EasyFind: EFoundPattern
□ EasyMatch: EMatchPosition
□ EasyGauge: ECircle and ERectangle
□ EasyObject: ECodedElement

TIP
When compatible, Open eVision also provides specialized constructors for
the geometry-based regions. For instance, ECircleRegion provides a
constructor using an ECircle.

Combining regions

Use the following operations to create a new region by combining existing regions:

● Union
□ The ERegion::Union(const ERegion&, const ERegion&) method returns the region that is the

addition of the two regions passed as arguments.

Union of 2 circles

● Intersection
□ The ERegion::Intersection(const ERegion&, const ERegion&) method returns the region that is

the intersection of the two regions passed as argument.

Intersection of 2 circles

Open eVision User Guide

eregion-class.htm
efoundpattern-class.htm
ematchposition-struct.htm
ecircle-class.htm
erectangle-class.htm
ecodedelement-class.htm
ecircleregion-class.htm
ecircle-class.htm
eregion-union.htm
eregion-intersection.htm

33

● Subtraction
□ The ERegion::Subtraction(const ERegion&, const ERegion&) method returns the first region

passed as argument after removing the second one.

Subtraction of 2 circles

Morphological operations on regions

The initial arbitrary region used to illustrate the different morphological operations

● Grow
□ The ERegion::Grow(int radius) method returns a region that is the dilation of the region by

a disk with a radius equals to the argument.

Grow of the arbitrary region

● Shrink
□ The ERegion::Shrink(int radius) method returns a region that is the erosion of the region

by a disk with a radius equals to the argument.

Shrink of the arbitrary region

Open eVision User Guide

eregion-subtraction.htm
eregion-grow.htm
eregion-shrink.htm

34

● Contour
□ The ERegion::Contour(int thickness, bool centered = true) method returns a region that is

the contour of the region.

Contour of the arbitrary region

Free-hand drawing a region

● The ERegionFreeHandPainter class provides the methods that allow you to create a region by
hand, using the mouse or any other user input method.

● The RegionFreeHand sample, available both in C++ and C#, shows how to use this class to draw
a region on an image.

Using regions

The tools supporting regions provide methods that follow one of these conventions:
□ Method(const EImage& source, const ERegion& region)
□ Method(const EImage& source, const ERegion& region, EImage& destination)

NOTE
The source, the region and the destination must be compatible. It means
that the region must at least partly fit in the source, and that source and
destination must have the same size.

Preparing the region

● Open eVision automatically prepares the regions when it applies them to an image, but this
preparation can take some time.

● If you do not want your first call to a method to take longer than the next ones, you can
prepare the region in advance by using the appropriate Prepare() method.

● To manually prepare the regions, adapt the internal RLE description to your images.

Drawing regions

The ERegion classes provide several methods to display the regions:

● ERegion::Draw() draws the region area, in a semi-transparent way, in the provided device
context.

● ERegion::DrawContour() draws the region contour in the provided device context.

Open eVision User Guide

eregion-contour.htm
eregionfreehandpainter-class.htm
eregion-prepare.htm
eregion-class.htm
eregion-draw.htm
eregion-drawcontour.htm

35

● ERegion::ToImage() renders the region as a mask into the provided destination image.
□ You can configure the foreground and the background colors.
□ If you initialized your image with a width and a height, Open eVision renders the region

inside those bounds.
□ If not, Open eVision resizes the image to contain the whole region.
□ Use ToImage() to create masks for the Open eVision functions that support them.

ERegions and EROIs

● The older EROI classes of Open eVision are compatible with the new regions.

● Some tools allow the usage of regions with source and/or destinations that are ERoi instead
of EImage follow one of these conventions:
□ Method(const ERoi& source, const ERegion& region)
□ Method(const ERoi& source, const ERegion& region, ERoi& destination)

TIP
In that case, the coordinates used for the region are relative to the reduced
ROI space instead of the whole image space .

ERegion and 3D

● The new regions are compatible with the 2.5D representations of Easy3D (EDepthMap and
EZMap).

● You can also reduce the domain of processing when using these classes.

2.11. Flexible Masks

ROIs vs flexible masks

ROIs and masks restrict processing to part of an image:
□ "ROI Main Properties" on page 26 apply to all Open eVision functions. Using Regions of

Interest accelerates processing by reducing the number of pixels. Open eVision supports
hierarchically nested rectangular ROIs.

□ Flexible Masks are recommended to process disconnected ROIs or non-rectangular
shapes. They are supported by some EasyObject and EasyImage library functions.

Open eVision User Guide

eregion-toimage.htm
eregion-toimage.htm
edepthmap-class.htm
ezmap-class.htm
EasyObject - Analyzing Blobs.htm
EasyImage - Pre-Processing Images.htm

36

Flexible Masks

A flexible mask is a BW8 image with the same height and width as the source image. It contains
shapes of areas that must be processed and ignored areas (that will not be considered during
processing):

□ All pixels of the flexible mask having a value of 0 define the ignored areas.
□ All pixels of the flexible mask having any other value than 0 define the areas to be

processed.

Source image Associated mask Processed masked image

A flexible mask can be generated by any application that outputs BW8 images and by some
EasyObject and EasyImage functions.

Flexible Masks in EasyImage

Code Snippets

Source image (left) and mask variable (right)

Simple steps to use flexible masks in Easyimage

1. Call the functions from EasyImage that take an input mask as an argument. For
instance, one can evaluate the average value of the pixels in the white layer and after in the
black layer.

2. Display the results.

Resulting image

Open eVision User Guide

EasyObject - Analyzing Blobs.htm
EasyImage - Pre-Processing Images.htm
using-flexible-masks-easyimage.htm

37

EasyImage Functions that support flexible masks

● EImageEncoder::Encode has a flexible mask argument for BW1, BW8, BW16, and C24 source
images.

● AutoThreshold.

● Histogram (function HistogramThreshold has no overload with mask argument).

● RmsNoise, SignalNoiseRatio.

● Overlay (no overload with mask argument for BW8 source images).

● ProjectOnAColumn, ProjectOnARow (Vector projection).

● ImageToLineSegment, ImageToPath (Vector profile).

Flexible Masks in EasyObject

A flexible mask can be generated by any application that outputs BW8 images or uses the Open
eVision image processing functions.

EasyObject can use flexible masks to restrict blob analysis to complex or disconnected shaped
regions of the image.

If an object of interest has the same gray level as other regions of the image, you can define
"keep" and "ignore" areas using flexible masks and Encode functions.

A flexible mask is a BW8 image with the same height and width as the source image.
□ A pixel value of 0 in the flexible mask masks the corresponding source image pixel so it

doesn't appear in the encoded image.
□ Any other pixel value in the flexible mask causes the pixel to be encoded.

EasyObject functions that create flexible masks

Source image

1) ECodedImage2::RenderMask: from a layer of an encoded image

1. To encode and extract a flexible mask, first construct a coded image from the source image.

2. Choose a segmentation method (for the image above the default method
GrayscaleSingleThreshold is suitable).

3. Select the layer(s) of the coded image that should be encoded (i.e. white and black layers
using minimum residue thresholding).

4. Make the mask image the desired size using mask.SetSize(sourceImage.GetWidth(),
sourceImage.GetHeight()).

Open eVision User Guide

eimageencoder-encode.htm
easyimage-autothreshold.htm
easyimage-histogram.htm
easyimage-histogramthreshold.htm
easyimage-rmsnoise.htm
easyimage-signalnoiseratio.htm
easyimage-overlay.htm
easyimage-projectonacolumn.htm
easyimage-projectonarow.htm
easyimage-imagetolinesegment.htm
easyimage-imagetopath.htm
eimageencoder-encode.htm

38

5. Exploit the flexible mask as an argument to ECodedImage2::RenderMask.

BW8 resulting image that can be used as a flexible mask

2) ECodedElement::RenderMask: from a blob or hole

1. Select the coded elements of interest.

2. Create a loop extracting a mask from selected coded elements of the coded image using
ECodedElement::RenderMask.

3. Optionally, compute the feature value over each of these selected coded elements.

BW8 resulting image that can be used as a flexible mask

3) EObjectSelection::RenderMask: from a selection of blobs

EObjectSelection::RenderMask can, for example, discard small objects resulting from noise.

BW8 resulting image that can be used as a flexible mask

Open eVision User Guide

ecodedimage2-rendermask.htm
ecodedelement-rendermask.htm
eobjectselection-rendermask.htm

39

Example: Restrict the areas encoded by EasyObject

Find four circles (left) Flexible mask can isolate the central chip (right)

1. Declare a new ECodedImage2 object.

2. Setup variables: first declare source image and flexible mask, then load them.

3. Declare an EImageEncoder object and, if applicable, select the appropriate segmenter. Setup
the segmenter and choose the appropriate layer(s) to encode.

4. Encode the source image. Encoding a layer with just the area in the flexible mask is then
pretty straightforward.
We see that the circles are correctly segmented in the black layer with the grayscale single
threshold segmenter:

5. Select all objects of the coded image.

6. Select objects of interest by filtering out objects that are too small.

7. Display the blob feature by iterating over the selected objects to display the chosen feature.

2.12. Profile

Code Snippets

Profile Sampling

A profile is a series of pixel values sampled along a line/path/contour in an image.

● EasyImage::ImageToLineSegment copies the pixel values along a given line segment (arbitrarily
oriented and wholly contained within the image) to a vector. The vector length is adjusted
automatically. This function supports flexible masks.

● A path is a series of pixel coordinates stored in a vector.
EasyImage::ImageToPath copies the corresponding pixel values to the vector. This function
supports flexible masks.

Open eVision User Guide

ecodedimage2-class.htm
eimageencoder-class.htm
egrayscalesinglethresholdsegmenter-class.htm
egrayscalesinglethresholdsegmenter-class.htm
profile-sampling.htm
easyimage-imagetolinesegment.htm
epathvector-class.htm
epath-struct.htm
easyimage-imagetopath.htm

40

● A contour is a closed or not (connected) path, forming the boundary of an object.
EasyImage::Contour follows the contour of an object, and stores its constituent pixels values
inside a profile vector.

Profile Analysis

The profile can be processed to find peaks or transitions:

● A transition corresponds to an object edge (black to white or white to black). It can be
detected by taking the first derivative of the signal (which transforms transitions (edges)
into peaks) and looking for peaks in it.
EasyImage::ProfileDerivative computes the first derivative of a profile extracted from a gray-
level image.
The EBW8 data type only handles unsigned values, so the derivative is shifted up by 128.
Values under [above] 128 correspond to negative [positive] derivative (decreasing
[increasing] slope).

● A peak is the portion of the signal that is above [or below] a given threshold - the maximum
or minimum of the signal. This may correspond to the crossing of a white or black line or
thin feature. It is defined by its:
□ Amplitude: difference between the threshold value and the max [or min] signal value.
□ Area: surface between the signal curve and the horizontal line at the given threshold.

EasyImage::GetProfilePeaks detects max and min peaks in a gray-level profile. To eliminate false
peaks due to noise, two selection criteria are used. The result is stored in a peaks vector.

Profile Insertion Into an Image

EasyImage::LineSegmentToImage copies the pixel values from a vector or constant to the pixels of a
given line segment (arbitrarily oriented and wholly contained within the image).

EasyImage::PathToImage copies the pixel values from a vector or a constant to the pixels of a given
path.

Open eVision User Guide

easyimage-contour.htm
easyimage-profilederivative.htm
ebw8-struct.htm
epeak-struct.htm
epeak-amplitude.htm
epeak-area.htm
easyimage-getprofilepeaks.htm
epeakvector-class.htm
easyimage-linesegmenttoimage.htm
easyimage-pathtoimage.htm

PART I
TEXT AND CODE READING TOOLS

0.1. EasyBarCode - Reading Bar Codes

Reading Bar Codes
Reference | Code Snippets

Bar code (EAN 13 symbology)

EasyBarCode can locate and read bar codes automatically.
Location can be performed manually for prototyping or when automatic mode results are unsatisfactory.

easybarcode-library.htm
easybarcode-library.htm

Workflow

Bar code definition

A bar code is a 2D pattern of parallel bars and spaces of varying thickness that represents a character string. It is
arranged according to an encoding convention (symbology) that specifies the character set and encoding rules.

l The bar code may be black ink on white background or inversely white ink on black background.
l The bar code should be preceded and followed by a quiet zone of at least ten times the module width (smallest

bar or space thickness).
l Bars should be surrounded below and above by a quiet zone of a few pixels.
l Bars and spaces widths must be greater than or equal to 2 pixels.

symbologies

A symbology defines the way a bar code is encoded.

Symbologies can be enabled in StandardSymbologies or AdditionalSymbologies parameters.

The standard symbologies are enabled by default:

l Code 39
l Code 128
l Code 2/5 5 Interleaved
l Codabar
l EAN 13*
l EAN 128
l MSI
l UPC A*
l UPC E

NOTE
* EAN 13 and UPC A only differ by the layout of surrounding digits.

Additional symbologies that are supported:

l ADS Anker
l Binary code
l Code 11
l Code 13
l Code 32
l Code 39 Extended (a super-set of Code 39)
l Code 39 Reduced (a subset of Code 39)
l Code 93
l Code 93 Extended
l Code 412 SEMI
l Code 2/5 3 Bars Datalogic
l Code 2/5 3 Bars Matrix
l Code 2/5 5 Bars IATA
l Code 2/5 5 Bars Industry
l Code 2/5 5 Compressed
l Code 2/5 5 Inverted

ebarcode-standardsymbologies.htm
ebarcode-additionalsymbologies.htm

l Code BCD Matrix
l Code C.I.P
l Code STK
l EAN 8
l IBM Delta Distance A
l Plessey
l Telepen

Checksum

A checksum character enables the reader to check the barcode validity depending on the symbology:

l The checksum may be mandatory and must be checked by the reader.
l The checksum may be mandatory but may not need to be checked.
l The checksum and its verification may both be optional.

VerifyChecksum enables or disables (default) checksum verification.

Bar code structure (Code 39)

Read a bar code

The Automatic mode reading algorithm locates a bar code in the field of view and Reads it.
If several bar codes are present, only one is located, like a straightforward hand-held bar code reader.

Before reading, the decoding symbologies must be specified in the StandardSymbologies, or AdditionalSymbologies
properties.

Mono-symbology mode reads the bar code using the expected symbology type(s) and reports the encoded information (if
readable) or the reason for failure (if not readable). There is only one interpretation for the character string.

Decoded bar code

ebarcode-verifychecksum.htm
ebarcode-read.htm

Note: When the bar code contains \0x00 characters, the std::string::c_str method should not be used (since C-strings are
terminated by the \0x00 character). An iterator over the characters should be used instead of a C-string.

Advanced features

Locate and Read bar code manually

If automatic localization fails or for prototyping purposes, the user can provide the bar code position and reading area
to manually locate the code.

l Bar code position can be provided graphically by a bounding box around the bar code or by its parameters. If
several symbols appear in the image, they can be processed one after the other.

l The reading area of the bar code is the area that is read. It should be wider than the bar code bounding box
width, and less high than the bar code bounding box height. It may also be rotated relatively to the bar code
bounding box, to take into account slanting bars (Advanced mode!).

Bounding box — graphical appearance (manual location) Reading area — graphical appearance (manual location)

Read all interpretations (multi-symbology mode)

Use Detect to report the number of possible symbologies in the NumEnabledSymbologies property, and list the data contents
by decreasing likeliness.

Then call the Decode method in a loop, using GetDecodedSymbology to walk through the list of successful symbologies in
decreasing order of likelihood.

Reading Mail Bar Codes
Reference | Code Snippets

Mail bar code example

ebarcode-detect.htm
ebarcode-numenabledsymbologies.htm
ebarcode-decode.htm
ebarcode-getdecodedsymbology.htm
easybarcode-library.htm

Specifications

The Mail Bar code Reader:
□ Detects and decodes postal 4-state bar codes.
□ Supports multiple mail bar codes in an image.
□ Supports various symbologies.
□ Supports the 4 main bar code orientations, with a tolerance of 3°.
□ Detects bars that are at least 3 pixels wide.

Workflow

4-state bar codes

A 4-state bar code is a special kind of bar code where data is encoded on the height and position of the bars rather than
their width.

Each bar can have one of 4 possible states:
□ Short and centered
□ Medium and elevated
□ Medium and lowered
□ Full height

Mail bar code symbologies

The symbology of a mail bar code specifies how to decode the bar code and how to interpret its contents.

Every country uses its own flavor of mail bar code, or symbology. Some countries, like the US, even use multiple
symbologies.

As of now, the Open eVision Mail Bar code Reader supports the following symbologies:
□ US: PLANET, POSTNET and Intelligent Mail
□ Japan: Japan Post

Mail bar code orientation

The Open eVision Mail Bar code Reader is designed to be used in mail-handling machines. As such it is optimized to
handle the 4 main orientations you encounter in such machines:

□ No Rotation: The mail barcode is horizontal and read from left to right
□ Rotated 90° to the right: The mail barcode is vertical and read from top to bottom
□ Rotated 90° to the left: The mail barcode is vertical and read from bottom to top
□ Rotated 180°: The mail barcode is upside down, horizontal, and read from right to left.

For each of these orientations, an additional rotation of -3 to 3 degrees is allowed.

Checksum

Some symbologies specify the presence of a checksum in the bar code data.

This checksum is an additional character computed from all others encoded characters. It enables the reader to check
the decoded character string coherence.

● The Mail Bar code Reader allows the user to verify or not the checksum for all enabled symbologies.

● By default, checksum is not controlled.

● To enable or disable checksum verification for all enabled symbologies, set the ValidateChecksum property.

Reading the mail bar codes in an image

To read all the mail barcodes in a given image:

1. Create an EMailBarcodeReader object.

2. Optionally, select the relevant symbologies using the ExpectedSymbologies property.

By default, Mail Bar code Reader will consider all supported symbologies.

3. Optionally, select the relevant orientations using the ExpectedOrientations property.

By default, Mail Bar code Reader will test all supported orientations.

4. Call Read on the source image or ROI.

Each mail bar code detected is returned as an EMailBarcode object.

5. Each EMailBarcode objects contains the following information:
□ The decoded string, using the Text property.
□ The decoded string, split up in semantic parts, using the ComponentStrings property.
□ The bar code orientation, using the Orientation property.

□ The bar code position, using the Position property.

US Intelligent Mail bar code with highlighted position and decoded information

Advanced parameters

The advanced parameters of the EMailBarcodeReader object are:

● EnableDottedBarcodes activates the support for dotted barcodes (barcodes whose bars are printed with dots).

By default, this property is set to false.

Dotted Mail Barcode

● EnableClutteredBarcodes activates the support for cluttered barcodes (barcodes in which some bars are connected).

By default, this property is set to true.

Cluttered Mail Barcode

● ValidateChecksum activates the validation of the bar codes checksums, if present.

By default, this property is set to false.

0.2. EasyMatrixCode - Reading Matrix Codes

EasyMatrixCode vs EasyMatrixCode2
Reference | Code Snippets

Starting with release 2.5, Open eVision introduces a new data matrix code reading class, named EasyMatrixCode2.

Compared to EasyMatrixCode, it offers the following benefits:
□ Ability to read multiple data matrix codes in an image.
□ Support for asynchronous processing.
□ Improved consistency of reading and grading results.
□ Improved consistency of processing time.
□ Improved handling of deformed data matrix codes.

EasyMatrixCode

Specifications

Reference | Code Snippets

ECC 200, 26x26 cells data matrix code (left) and finder pattern (right)

In a single read operation, EasyMatrixCode locates, unscrambles, decodes, reads and grades the quality of grayscale 2D
data matrix codes of any size, contrast, location and orientation (even viewed from the back on a transparent medium),
providing they meet the following specifications:

□ Minimum cell (= module) size: 3x3 pixels
□ Maximum stretching ratio (ratio between cell width and height): 2
□ Minimum quiet zone (blank zone around the matrix code) width: 3 pixels

easymatrixcode-library.htm
easymatrixcode-library.htm
easymatrixcode-library.htm
easymatrixcode-library.htm
easymatrixcode-library.htm

Data Matrix Code Definition

● A data matrix code is a two-dimensional rectangular array of black and white cells which conveys a string of
characters (digits, letters and special characters).
□ It is encoded to achieve maximum packing.
□ Each cell corresponds to a bit of information.
□ Additional redundant bits allow error correction for robust reading of degraded symbols.

● A data matrix code is located using the Finder pattern:
□ The bottom and left edges of a Data Matrix code contain only black cells.
□ The top and right edges have alternating cells.

● A data matrix code is characterized by:
□ Its logical size (number of cells).
□ Its encoding type: ECC 000 (odd symbol sizes, deprecated) or ECC 200 (even symbol sizes)..

NOTE
The data matrix code definition is provided by ISO/IEC and approved as standard ISO/IEC 16022.

Workflow

Reference | Code Snippets

ematrixcode-logicalsize.htm
easymatrixcode-library.htm

Reading a Matrix Code

Reference | Code Snippets

You can read the matrix code in an image automatically, using the Read method.

This method returns an EMatrixCode instance that contains the following information about the found data matrix code:
□ Its decoded string,
□ Its position in the image,
□ Its logical size,
□ Its encoding type,
□ Its grading results,
□ Methods to draw the data matrix code on the source image.

Learning a Matrix Code

Reference | Code Snippets

To search for specific features and speed up your processing, learn a Matrix code model.

Workflow

easymatrixcode-library.htm
ematrixcodereader-read.htm
ematrixcode-class.htm
easymatrixcode-library.htm

1. Load the image of the matrix code you want to learn.

2. Learn the model:
□ Use the Learn method with Contrast, Family, Flipping, Logical Size parameters.
□ If you need to learn several matrix codes, use LearnMore and pass additional sample images.
□ Call Learn to replace EMatrixCodeReader parameters (calling Learn several times does not accumulate results, while

LearnMore does).

3. Tune search parameters to be efficient and either:
□ Read only matrix codes that match a sample matrix code,
□ Or read only matrix codes that have the same properties (Contrast, Family, Flipping, Logical Size) as the learned one,
□ Or disregard a search parameter of the learned matrix code SetLearnMaskElement, for example to read only unflipped

matrix codes. Just remove the default parameters, then add new ones.

4. Ask EMatrixCodeReader to decode the supplied image.

5. Display the decoded string.

6. Save the state of the reader object using Save.

Restoring the state of an EMatrixCodeReader

To restore the state of an EMatrixCodeReader and use it to read a matrix code:

1. Load an image.

2. Restore the reader state from the given file using Load.

3. Read the image.

4. Display the decoded string.

Computing the Print Quality

Reference | Code Snippets

To compute the print quality indicators as defined by BC11, ISO 15415, ISO/IEC TR 29158 (formerly known as AIM DPM-1-
2006) and SEMI T10-0701 standards, retrieve the grades with the GetIso15415GradingParameters, GetIso29158GradingParameters
and GetSemiT10GradingParameters accessors of the EMatrixCode class.

NOTE
The print quality of the matrix codes is computed during the Read operation, only if the ComputeGrading
parameter is set to true.

Using GS1 Data Matrix Codes

Reference | Code Snippets

ematrixcodereader-learn.htm
ematrixcode-contrast.htm
ematrixcode-family.htm
ematrixcode-flipping.htm
ematrixcode-logicalsize.htm
ematrixcodereader-learnmore.htm
ematrixcodereader-learn.htm
ematrixcodereader-class.htm
ematrixcodereader-learn.htm
ematrixcodereader-learnmore.htm
esearchparamstype-class.htm
ematrixcode-contrast.htm
ematrixcode-family.htm
ematrixcode-flipping.htm
ematrixcode-logicalsize.htm
ematrixcodereader-setlearnmaskelement.htm
ematrixcodereader-class.htm
ematrixcode-decodedstring.htm
ematrixcodereader-save.htm
ematrixcodereader-class.htm
ematrixcode-load.htm
ematrixcodereader-load.htm
ematrixcodereader-read.htm
ematrixcode-decodedstring.htm
easymatrixcode-library.htm
ematrixcode-iso15415gradingparameters.htm
ematrixcode-iso29158gradingparameters.htm
ematrixcode-semit10gradingparameters.htm
ematrixcode-class.htm
ematrixcodereader-read.htm
ematrixcodereader-computegrading.htm
easymatrixcode-library.htm

EasyMatrixCode is able to find and decode GS1-compliant data matrix codes.

The GS1 standard adds semantic identifiers to the contents of a data matrix code. These identifiers are interpreted in an
easy and consistent way.

The structure of GS1-compliant content is as follows:

]d2[GS1]{Id1}{Value1}[GS1]{Id2}{Value2}…

where:
□ "]d2" is the string identifying a GS1-compliant stream,
□ [GS1] is the GS1 escape character (0x1d),
□ {Id} is an application identifier,
□ {Value} is the value associated with that identifier.

Example

The string:

]d2[GS1]11180112[GS1]15190101

is interpreted as follows:
□ It contains two GS1 parts: 11180112 and 15190101.
□ The first (11180112) is composed of the identifier 11 and the value 180112, meaning that the product has a

production date (the meaning of identifier 11) of January 12th, 2018.
□ The second (15190101) is composed of the identifier 15 and the value 190101, meaning that the product has a best

before date (the meaning of identifier 15) of January 1st, 2019.

TIP
For more information, see https://www.gs1.org/

EasyMatrixCode2

Specifications

Reference | Code Snippets

https://www.gs1.org/
easymatrixcode-library.htm

ECC 200, 26x26 cells data matrix code (left) and finder pattern (right)

In a single read operation, EasyMatrixCode2 locates, unscrambles, decodes, reads and grades the quality of grayscale 2D
data matrix codes of any size, contrast, location and orientation (even viewed from the back on a transparent medium),
providing they meet the following specifications:

□ Minimum cell (= module) size: 3x3 pixels
□ Minimum quiet zone (blank zone around the matrix code) width: 1 pixel

All the functionality of EasyMatrixCode2 is available for testing in Open eVision Studio, except for the StopProcess method
(for asynchronous processing).

NOTE
The relevant classes of the EasyMatrixCode2 library are stored in the name space “EasyMatrixCode2”.

Data Matrix Code Definition

● A data matrix code is a two-dimensional rectangular array of black and white cells which conveys a string of
characters (digits, letters and special characters).
□ It is encoded to achieve maximum packing.
□ Each cell corresponds to a bit of information.
□ Additional redundant bits allow error correction for robust reading of degraded symbols.

● A data matrix code is located using the Finder pattern:
□ The bottom and left edges of a Data Matrix code contain only black cells.
□ The top and right edges have alternating cells.

easymatrixcode-library.htm
easymatrixcode-library.htm
ematrixcode2reader-stopprocess.htm
easymatrixcode-library.htm

● A data matrix code is characterized by:
□ Its logical size (number of cells).
□ Its encoding type: ECC 000 (odd symbol sizes, deprecated) or ECC 200 (even symbol sizes)..

NOTE
The data matrix code definition is provided by ISO/IEC and approved as standard ISO/IEC 16022.

Workflow

Reference | Code Snippets

1. Load the image.

2. Read the data matrix codes in the image using EMatrixCodeReader.Read().

3. Loop on found data matrix codes.

4. Display the decoded text.

Reading a Matrix Code

Reference | Code Snippets | dedicated code snippet: Reading Matrix Codes from an Image

You can read the matrix code in an image automatically as follows:

a. Create an EMatrixCodeReader object.

b. Call the Read method to detect and decode the matrix codes in the image.

c. Call the GetReadResults accessor to retrieve the decoded EMatrixCode instances.

ematrixcode-logicalsize.htm
easymatrixcode-library.htm
ematrixcodereader-read.htm
easymatrixcode-library.htm
EasyMatrixCode2.htm
../../../../../Content/05 Resources/02 Code Snippets/13 EasyMatrixCode2/Reading Matrix Codes from an Image.htm
ematrixcode2reader-class.htm
ematrixcode2reader-read.htm
ematrixcode2reader-readresults.htm
ematrixcode2-class.htm

The EMatrixCode instances contain the following information for each found data matrix code:
□ Its decoded string,
□ Its position in the image,
□ Its logical size,
□ Its encoding type,
□ Its grading results,
□ Methods to draw the data matrix code on the source image.

Learning a Matrix Code

Reference | Code Snippets | dedicated code snippet: Reading with Prior Learning

To improve the processing times of the Read method, learn a matrix code model from representative images as follows:

1. Load the image of the matrix code you want to learn from.

2. Call the Learn method to learn from the image.

3. Repeat with additional images if necessary.

4. Save the EMatrixCodeReader state to the disk with the Save method.

The Learn method re-orders the internal processing structure used to detect and decode the matrix codes in such a way
that the learned codes are found faster.

TIP
The user-defined advanced parameters (MaxNumCodes, Timeout, ReadMode and ComputeGrading) are not
affected by the Learn method .

If the Learn method is not able to detect any code in the image, it throws an exception.

TIP
The internal processing structure is not affected in this situation.

Restoring the state of an EMatrixCodeReader

● To restore a previously saved EMatrixCodeReader state , call the Load method.

● To restore the default state of an EMatrixCodeReader instance, call the ResetLearning method.

Computing the Print Quality

Reference | Code Snippets | dedicated code snippet: Inspecting Print Quality Grades

ematrixcode2-class.htm
easymatrixcode-library.htm
EasyMatrixCode2.htm
../../../../../Content/05 Resources/02 Code Snippets/13 EasyMatrixCode2/Reading with Prior Learning.htm
ematrixcode2reader-read.htm
ematrixcode2reader-learn.htm
ematrixcode2reader-class.htm
ematrixcode2reader-save.htm
ematrixcode2reader-learn.htm
ematrixcode2reader-maxnumcodes.htm
ematrixcode2reader-timeout.htm
ematrixcode2reader-readmode.htm
ematrixcode2reader-computegrading.htm
ematrixcode2reader-learn.htm
ematrixcode2reader-learn.htm
ematrixcode2reader-class.htm
ematrixcode2reader-load.htm
ematrixcode2reader-class.htm
ematrixcode2reader-resetlearning.htm
easymatrixcode-library.htm
EasyMatrixCode2.htm
../../../../../Content/05 Resources/02 Code Snippets/13 EasyMatrixCode2/Inspecting Print Quality Grades.htm

To compute the print quality indicators as defined by BC11, ISO 15415, ISO/IEC TR 29158 (formerly known as AIM DPM-1-
2006) and SEMI T10-0701 standards, retrieve the grades with the GetIso15415GradingParameters, GetIso29158GradingParameters
and GetSemiT10GradingParameters accessors of the EMatrixCode class.

NOTE
The print quality of the matrix codes is computed during the Read operation, only if the ComputeGrading
parameter is set to true.

Using GS1 Data Matrix Codes

Reference | Code Snippets

EasyMatrixCode2 is able to find and decode GS1-compliant data matrix codes.

The GS1 standard adds semantic identifiers to the contents of a data matrix code. These identifiers are interpreted in an
easy and consistent way.

The structure of GS1-compliant content is as follows:

]d2[GS1]{Id1}{Value1}[GS1]{Id2}{Value2}…

where:
□ “]d2” is the string identifying a GS1-compliant stream,
□ [GS1] is the GS1 escape character (0x1d),
□ {Id} is an application identifier,
□ {Value} is the value associated with that identifier.

Example

The string:

]d2[GS1]11180112[GS1]15190101

is interpreted as follows:
□ It contains two GS1 parts: 11180112 and 15190101.
□ The first (11180112) is composed of the identifier 11 and the value 180112, meaning that the product has a

production date (the meaning of identifier 11) of January 12th, 2018.
□ The second (15190101) is composed of the identifier 15 and the value 190101, meaning that the product has a best

before date (the meaning of identifier 15) of January 1st, 2019.

TIP
For more information, see https://www.gs1.org/

ematrixcode2-iso15415gradingparameters.htm
ematrixcode2-iso29158gradingparameters.htm
ematrixcode2-semit10gradingparameters.htm
ematrixcode2-class.htm
ematrixcode2reader-read.htm
ematrixcode2reader-computegrading.htm
easymatrixcode-library.htm
https://www.gs1.org/

Asynchronous Processing

Reference | Code Snippets

EasyMatrixCode2 supports asynchronous processing. This means that you can launch multiple processing threads in
parallel, each reading the matrix codes in its own image.

From the main thread, to manually stop the Read method in any of these processing threads at any time, use the
StopProcess method.

When you manually stop the Read method:
□ The search for matrix codes stops immediately, whether it has found matrix codes in the image or not.
□ To retrieve all matrix codes found before the manual stop, use the GetReadResults accessor.

Advanced Parameters

Reference | Code Snippets

Tune the following parameters to optimize the performance of EasyMatrixCode2.

● The MaxNumCodes parameter:
□ Tells the EMatrixCode2Reader the number of codes that can be in the image.
□ Affects the computational time of the Read method.
□ Is set to 1 by default. This means that the EMatrixCodeReader only detects a single matrix code per image.
□ If set to 0, it tells the EMatrixCodeReader to find as many codes as possible in the image.

● The Timeout parameter:
□ Limits the amount of time that the Read and Learn methods may take to process a single image.
□ Is defined in microseconds.
□ Is set, by default, to a value that exceeds one hour.

● The ReadMode parameter affects the behavior of the Read method:
□ The setting EReadMode_Speed results in the shortest processing times and the Read method stops as soon as one of the

following is true:
- The method has found MaxNumCodes codes.
- The method reaches the Timeout time limit.
- The Read process is completely finished.

□ The setting EReadMode_Quality results in the best grading results and the Read method keeps trying to improve its
detection until one of the following is true:
- The method reaches the Timeout time limit.
- The Read process is completely finished.

● The ComputeGrading parameter:
□ Determines if the Read method computes the grading properties of the EMatrixCode object.
□ Is set to False by default.

easymatrixcode-library.htm
ematrixcode2reader-read.htm
ematrixcode2reader-stopprocess.htm
ematrixcode2reader-read.htm
ematrixcode2reader-readresults.htm
easymatrixcode-library.htm
ematrixcode2reader-maxnumcodes.htm
ematrixcode2reader-class.htm
ematrixcode2reader-read.htm
ematrixcode2reader-class.htm
ematrixcode2reader-class.htm
ematrixcode2reader-timeout.htm
ematrixcode2reader-read.htm
ematrixcode2reader-learn.htm
ematrixcode2reader-readmode.htm
ematrixcode2reader-read.htm
ematrixcode2reader-readmode.htm
ematrixcode2reader-read.htm
ematrixcode2reader-maxnumcodes.htm
ematrixcode2reader-timeout.htm
ematrixcode2reader-read.htm
ematrixcode2reader-readmode.htm
ematrixcode2reader-read.htm
ematrixcode2reader-timeout.htm
ematrixcode2reader-read.htm
ematrixcode2reader-computegrading.htm
ematrixcode2reader-read.htm
ematrixcode2-class.htm

After the tuning:
□ Use the Save method to store the state of the EMatrixCodeReader on the disk.
□ Use the Load method, at any time, to restore the saved state.

TIP
The Save and Load methods also store the effects of Learning.

0.3. EasyQRCode - Reading QR Codes

Workflow

EasyQRCode

EasyQRCode detects QR (Quick Response) codes in an image, decodes them, and returns their data.

Error detection and correction algorithms ensure that poorly-printed or distorted QR codes can still be read correctly.

ematrixcode2reader-save.htm
ematrixcode2reader-class.htm
ematrixcode2reader-load.htm
ematrixcode2reader-save.htm
ematrixcode2reader-load.htm
ematrixcode2reader-learn.htm
easyqrcode-library.htm

Workflow

QR Codes Specifications

QR code definition

A QR code is a square array of dark and light dots. One dot (or "module") represents one bit of information.

QR codes contain various types of data and can be different models, versions, and levels. They always contain a
message, metadata about alignment, size, format, and error correction bits. They comply with the international standard
ISO/IEC 18004 (1, 2 and 2005).

QR code structure

The QR code symbol consists of an encoding region, containing data and error correction codewords, and of function
patterns, containing symbol metadata and position data.

A QR code must be structured with the following elements:
□ Quiet zone: blank margin around the QR code
□ Finder patterns: recognizable zones identifying a QR code
□ Extension patterns: markers for the alignment of the QR code (model 1)
□ Alignment patterns: markers for the alignment of the QR code (models 2 and 2005)
□ Timing Patterns: data giving the module size (in pixels)
□ Format information: zones providing the QR code level
□ Version information: data giving the QR code size, for instance 25 x 25 modules (models 2 and 2005)

□ Data contents and error correction codewords: the primary information carried by the symbol, with additional
information for error correction

Variants of this structure exist, according to the model, format, or version of the QR code. For instance, model 1 QR codes
do not feature alignment patterns but extension patterns. Micro QR codes include only one finder pattern, and no
alignment pattern.

Structure of a model 1 QR code symbol

Structure of a QR code 2005 symbol

Structure of a Micro QR code symbol

QR code subtypes

A QR code can be one of the following subtypes:
□ Basic: the default subtype.
□ ECI (Extended Channel Interpretation): the ECI subtype provides a consistent method to embed interpretation

information of data in the QR code. The ECI protocol is defined in the AIM Inc. International Technical
Specification. (ECI is not available for Micro QR code symbols.)

□ GS1: the data contained in the QR code are formatted in accordance with the GS1 General Specification.
□ AIM: the data contained in the QR code are formatted in accordance with a specific industry application previously

agreed with AIM Inc. The application indicator value is embedded in the QR code data.

Data types

The QR code data can be any mix of these types:
□ Numeric data (0-9)
□ Alphanumeric data (0-9, A-Z, /,$, %...)
□ Byte data (possibly ECI-encoded)
□ Kanji characters

Byte data interpretation

In a QR code, the byte data can represent any information. Their interpretation depends on the subtype of the QR code:

● Basic subtype:
□ If some byte data are present in the QR code, you need to know how to interpret them.
□ Use the EByteInterpretationMode enum to select the corresponding byte interpretation mode (see the retrieving

decoded data section in "Reading QR Codes" on page 64 for more details).

● ECI-encoded byte data:
□ The ECI subtype provides an ECI table indicator.
□ This indicator defines the character set to use to interpret the byte data.
□ EasyQRCode currently supports the UTF8 conversion table (ECI table indicator 26).

Models (Standards)
□ Model 1: original QR code international standard, with versions ranging from 1 to 14.

Note that the "version" of a QR code is the symbol size (in number of modules). It does not relate to the version of
the standard, which is called the "model".

□ Model 2: improvement of model 1. It provides versions from 1 to 40. It defines alignment patterns to improve
reading of distorted QR codes, or QR codes printed on curved surfaces.

□ Model 2005: improvement of model 2, including white-on-black QR codes, and mirror symbol orientation.
□ Micro QR codes: smaller QR codes, from version M1 to version M4. They have been introduced to save printing

space.

ebyteinterpretationmode-enum.htm

Versions (Symbol Size)
□ QR codes: from version 1 (21 x 21 modules) to version 40 (177 x 177 modules), with an increment of

+4 x +4 modules (version 2: 25 x 25 modules, version 3: 29 x 29 modules, ..., version 39: 173 x 173 modules).
□ Micro QR codes: version M1 (11 x 11 modules), version M2 (13 x 13 modules), version M3 (15 x 15 modules), version

M4 (17 x 17 modules).

Examples of QR codes
From left to right:

Micro QR code, version M3, 15 x 15 modules,
Model 2 QR code, version 4, 33 x 33 modules, 67-114 characters,

Model 2 QR code, version 40, 177 x 177 modules, 1852-4296 characters

Levels (Error Correction)

QR codes contain error correction data. The standard offers the following levels of error correction:
□ L: (low) about 7% of codewords can be restored
□ M: (medium) 15%
□ Q: (quality) 25%
□ H: (high) 30% (not available for Micro QR codes)

For Micro QR code symbols, the available error correction levels depend on the version:
□ M1 has only error detection
□ M2 and M3 support L and M levels
□ M4 supports L, M and Q levels

QR code geometry

When the QR code reader finds an array of dots that could match a QR code, it returns the "geometry" of this QR code
candidate.

A QR code geometry is a set of points:
□ It contains the coordinates of the corners of the QR code quadrangle (bottom left, top left, top right, bottom right).
□ It contains the coordinates of the finder pattern centers (bottom left, top left, top right).
□ For a Micro QR code symbol, the coordinates for a single finder pattern center (link) are returned.

EasyQRCode uses a float coordinate system and the origin (0.0, 0.0) is the top left corner of the top left pixel of the
image.

QR code geometry

Read a QR code

Reading a QR code returns information about every QR codes found in the given search field (see "Reading QR Codes" on
page 64).

Reading QR Codes

Read a QR code

1. Set a search field on an EROIBW8 image.

2. If needed, tune the parameters to restrict the number of operations to process.

3. The QR code reader scans the image and searches for 3 finder patterns that could match a QR code, with the
following requirements:
□ Minimum quiet zone (blank zone around the QR code) width: 3 pixels.
□ Minimum module size: 3 x 3 pixels.

eqrcode-geometry.htm
equadrangle-corners.htm
equadrangle-class.htm
eqrcodegeometry-finderpatterncenters.htm
eqrcodegeometry-finderpatterncenters.htm
eqrcode-class.htm
eqrcodereader-searchfield.htm
eroibw8-class.htm

□ Minimum isotropy: 0.5.
□ Maximum corner deformation: 15° (corner angles can range from 75° to 105°).

4. The QR code reader uses the gravity center of the QR code geometries to sort the QR code candidates in line then
columns order starting from the top left corner of the image.

5. The QR code reader decodes the QR candidates and returns the QR code: model, version, level, geometry and the decoded
data as described below.

6. The reader can report the amount of unused error correction.
□ Close to 1, very few errors were corrected when decoding the data. The decoding is highly reliable, and the QR

code is of good quality.
□ Close to 0, many errors were corrected when decoding the data. The decoding is reliable, but the QR code quality

is poor.
□ -1, error correction failed. Decoding was not performed.

Tune the search parameters

● Scan precision: You can change the scan precision to scan the search field with:
□ A fine precision (recommended for small QR codes)
□ A coarse precision (recommended for medium to large QR codes)

● Minimum score: The QR code reader searches for this QR code finder pattern:

□ A perfect match returns a pattern finder score of 1.
□ Less accurate matches return lower scores.
□ The minimum score allowed by default is 0.65 - you can tune this.

● Minimum isotropy: The isotropy of a QR code represents its rectangular deformation.
□ Perfectly square QR codes have an isotropy of 1 (short side divided by long side, whether the rectangle is vertical

or horizontal).
□ EasyQRCode can detect rectangle QR codes with an isotropy down to 0.5.
□ The default minimum isotropy is 0.8, it can be tuned from 0 to 1.

Square and rectangular QR codes (isotropy = 1, 0.5, and 0.5 from left to right)

● Model and Version: By default, the QR code reader searches for QR codes of model 1 and 2, and all versions.

equadrangle-gravitycenter.htm
eqrcodegeometry-class.htm
eqrcode-class.htm
eqrcode-model.htm
eqrcode-version.htm
eqrcode-level.htm
eqrcode-geometry.htm
eqrcodedecodedstreampart-decodeddata.htm
eqrcodedecodedstreampart-decodeddata.htm
eqrcode-unusederrorcorrection.htm
eqrcodereader-scanprecision.htm
eqrcodereader-minimumscore.htm
eqrcodereader-minimumisotropy.htm
eqrcodereader-minimumisotropy.htm
eqrcode-model.htm
eqrcode-version.htm

□ You can shorten the process by specifying the QR code model(s) and a range of versions (from 1 (minimum) to 40
(maximum)) to search for.

□ By default, the QR code reader does not search for Micro QR code symbols.

Retrieve the decoded data

Retrieving methods

To retrieve the decoded data, you can (in growing complexity order):

1. Use the GetDecodedString method of an EQRCode object.
□ This method returns an UTF-8 formatted string that contains the concatenated data of the QR code.
□ It can take an EByteInterpretationMode as argument.

2. Use the GetDecodedString method of the EQRCodeDecodedStreamPart objects.
□ This method is called on a part and returns an UTF-8 formatted string that contains the data of this part.
□ It can take an EByteInterpretationMode as argument.
□ Concatenate the decoded string of each part.

3. Use the GetDecodedData method of the EQRCodeDecodedStreamPart objects.
□ This method is called on a part and returns a vector of bytes that contains the data of this part.
□ Interpret the data according to the coding mode of the QR code and the encoding of each part.
□ Concatenate the interpreted data of each part.

Interpreting the encoded data

The QR code data can be encoded in either alphanumeric, numeric or byte modes. If a QR code contains bytes, the
interpretation mode of these bytes can be embedded in the QR code through the ECI protocol or you must specify or
know it.

Use the dedicated EByteInterpretationMode for this purpose:

● EByteInterpretationMode_Hexadecimal
□ Converts all bytes to their hexadecimal values (2 characters per byte).
□ The escape character 0xEFBFBD surrounds the converted byte parts.
□ This mode overrides the ECI table indicator if it is present.

● EByteInterpretationMode_UTF8
□ Converts all bytes to UTF-8 if possible.
□ The GetDecodedString method throws an EException if the data are not UTF-8 compatible.

● EByteInterpretationMode_Auto
□ Converts all bytes in the best possible way following the ECI protocol.

eqrcodereader-searchedmodels.htm
eqrcodereader-minimumversion.htm
eqrcodereader-maximumversion.htm
eqrcode-getdecodedstring.htm
eqrcode-class.htm
ebyteinterpretationmode-enum.htm
eqrcode-getdecodedstring.htm
eqrcodedecodedstreampart-eqrcodedecodedstreampart.htm
ebyteinterpretationmode-enum.htm
eqrcodedecodedstreampart-decodeddata.htm
eqrcodedecodedstreampart-eqrcodedecodedstreampart.htm
eqrcodedecodedstream-codingmode.htm
eqrcodedecodedstreampart-encoding.htm
ebyteinterpretationmode-enum.htm
ebyteinterpretationmode-enum.htm
ebyteinterpretationmode-enum.htm
eqrcode-decodedstream.htm
eexception-class.htm
ebyteinterpretationmode-enum.htm

The decoded string returns the concatenated data of the QR code in UTF-8 format:
□ If bytes are present in the QR code data without ECI, specify the byte interpretation mode when you call the

GetDecodedString method.
□ If bytes are present in the QR code data with ECI encoding, use the corresponding byte interpretation table

(currently, only table ECI 26: UTF-8 is available).
□ The hexadecimal byte interpretation mode does not throw an exception and returns all bytes parts present in the data

in their hexadecimal form (2 characters per byte) surrounded by the 0xEFBFBD escape character.
□ See the code snippet "Retrieving Information of a QR Code" on page 112.

The decoded stream class consists of:
□ A coding mode (basic, ECI, FNC1/GS1 or FNC1/AIM).
□ An application indicator (if the coding mode is FNC1/AIM, otherwise 0).

The decoded data:
□ Is accessible from each part of the decoded stream.
□ Is interpreted according to its encoding (numeric, alphanumeric, byte or Kanji) and the ECI table indicator (if the

coding mode is ECI, otherwise -1).
□ Can be the raw bit stream (the bit data after unmasking and error correction, but before decoding as a vector of

bytes).
□ Can be the corresponding decoded string (specify a byte interpretation mode if the encoding is byte without ECI

coding mode or if the ECI table is not supported).
□ See also the code snippet Retrieving the Decoded Data (Advanced).

Computing the print quality

● The print quality indicators as defined by ISO 15415 and ISO/IEC TR 29158 (formerly known as AIM DPM-1-2006) are
computed during the Read operation, but only if EQRCodeReader::ComputeGrading is set to TRUE.
□ The print quality is not yet supported for Micro QR code models.

● Use the EQRCode::GetIso15415GradingParameters and EQRCode::GetIso29158GradingParameters methods to retrieve the grades.

● Using the grading:
□ For more accurate results, it requires modules to be at least 10 pixels in width.
□ It requires a 1-module quiet zone for grading.
□ It evaluates the Fixed Pattern Damage with a 4-module quiet zone around the finder patterns. If this condition is not

met, the Fixed Pattern Parameter Grade is returned as -1. This result affects the overall symbol grade.
□ The Version Additional Parameter is returned as -1 when it is not applicable. In this case, this result is ignored in the

overall symbol grade.
□ The implementation follows closely the standard but the grades also depend on the decoding algorithm. So the

results may slightly differ according to the Open eVision version.

● The print quality computation is not yet available for Micro QR codes.

Multithreading

The Read method supports multithreading.

● Multithreading splits the load between the detection methods (such as AdaptiveThreshold and Gradient) and decodes
multiple candidates in parallel. This is useful when there are several codes in the image.

eqrcodedecodedstreampart-getdecodedstring.htm
ebyteinterpretationmode-enum.htm
eqrcode-decodedstream.htm
ebyteinterpretationmode-enum.htm
eqrcodedecodedstream-class.htm
eqrcodedecodedstreampart-decodeddata.htm
eqrcodedecodedstreampart-ecitableindicator.htm
eqrcodedecodedstreampart-getdecodedstring.htm
ebyteinterpretationmode-enum.htm
../../../../../Content/05 Resources/02 Code Snippets/14 EasyQRCode/Retrieving the Decoded Data (Advanced).htm
eqrcodereader-computegrading.htm
eqrcode-iso15415gradingparameters.htm
eqrcode-iso29158gradingparameters.htm
eqrcodereader-read.htm
eqrdetectionmethod-enum.htm
eqrdetectionmethod-enum.htm

0.4. EasyOCR - Reading Texts

Workflow
Reference | Code Snippets

EasyOCR

EasyOCR optical character recognition library reads short texts (such as serial numbers, part numbers and dates).

It uses font files (pre-defined OCR-A, OCR-B and Semi standard fonts, or other learned fonts) with a template matching
algorithm that can recognize even badly printed, broken or connected characters of any size.

There are 4 steps to recognizing characters:

1. Raw image 2. Object segmentation 3. Character isolation 4. Character recognition

easyocr-library.htm
eocr-class.htm

Workflow

Learning Process
You can learn characters to create a font file if required.
Characters are presented one by one to EasyOCR which analyzes them and builds a database of characters called a font.
Each character has a numeric code (usually its ASCII code) and belongs to a character class (which may be used in the
recognition process).

Font files are created as follows:

1. NewFont clears the current font.

2. LearnPattern or LearnPatterns adds the patterns from the source image to the font.
Patterns are ordered by their index value, as assigned by the FindAllChars process.
The patterns in a font are stored as a small array of pixels, by default 5 pixels wide and 9 pixels high. This size can be
changed before learning, using parameters PatternWidthand PatternHeight.

3. RemovePattern removes unwanted patterns (optional).

eocrclass-enum.htm
eocr-newfont.htm
eocr-learnpattern.htm
eocr-learnpatterns.htm
eocr-findallchars.htm
eocr-patternwidth.htm
eocr-patternheight.htm
eocr-removepattern.htm

4. Save writes the contents of the font to a disk file with parameter values: NoiseArea, MaxCharWidth, MaxCharHeight,
MinCharWidth, MinCharHeight, CharSpacing, TextColor.

Segmenting

Segmenting

1. EasyOCR analyses the blobs to locate the characters and their bounding box, using one of two segmentation modes:
□ keep objects mode: one blob corresponds to one character.
□ repaste objects mode: the blobs are grouped into characters of a nominal size. This is useful when characters are

broken or made up of several parts. When a blob is too large to be considered a single character, it can be split
automatically using CutLargeChars.

Character segmentation by blob grouping

2. Filters remove very large and very small unwanted features.

3. EasyOCR processes the character image to normalize the size into a bounding box, extracts relevant features, and
stores them in the font file. The patterns in a font are stored as arrays of pixels defined by PatternWidth and
PatternHeight (by default 5 pixels wide and 9 pixels high).

Segmentation parameters

Segmentation parameters must be the same during learning and recognition. Good segmentation improves recognition.

● The Threshold parameter helps separate the text from the background.
A too high value thickens black characters on white background and may cause merging, a too small value makes
parts disappear.
If the lighting conditions are very variable, automatic thresholding is a good choice.

Too high threshold value (left), Threshold adjustment (middle), Too low threshold value (right)

● NoiseArea: Blob areas smaller than this value are discarded. Make sure small character features are preserved (i.e., the
dot over an "i" letter).

eocr-save.htm
eocr-noisearea.htm
eocr-maxcharwidth.htm
eocr-maxcharheight.htm
eocr-mincharwidth.htm
eocr-mincharheight.htm
eocr-charspacing.htm
eocr-textcolor.htm
eocr-segmentationmode.htm
eocr-cutlargechars.htm
eocr-patternwidth.htm
eocr-patternheight.htm
eocr-threshold.htm
eocr-noisearea.htm

● MaxCharWidth, MaxCharHeight: Maximum character size. If a blob does not fit in a rectangle with these dimensions, it is
discarded or split into several parts using vertical cutting lines. If several blobs fit in a rectangle with these
dimensions, they are grouped together.

● MinCharWidth, MinCharHeight: Minimum character size. If a blob or a group of blobs fits in a rectangle with these
dimensions, it is discarded.

● CharSpacing: The width of the smallest gap between adjacent letters. If it is larger than MaxCharWidth it has no effect.
If the gap between two characters is wider than this, they are treated as different characters. This stops thin
characters being incorrectly grouped together.

● RemoveBorder: Blobs near image/ROI edges cannot normally be exploited for character recognition. By default, they are
discarded.

Recognition

Recognition

The characters are compared to a set of patterns, called a font. A character is recognized by finding the best match
between a character and a pattern in the font. After the character has been located, it is normalized in size (stretched to
fit in a predefined rectangle) for matching. The normalized character is compared to each normalized template in the
font database and the best matches are returned.

1. Load: reads a pre-recorded font from a disk file.

2. BuildObjects: The image is segmented into objects or blobs (connected components) which help find the characters.
This step can be bypassed if the exact position of the characters is known. If the character isolation process is
bypassed, you must specify the known locations of the characters: AddChar and EmptyChars.

3. FindAllChars: selects the objects considered as characters and sorts them from top to bottom then left to right.

4. ReadText: performs the matching and filters characters if the marking structure is fixed or a character set filter was
provided.
Character recognition: The characters are compared to a set of patterns, called a font.
The best match is stretched to fit in a predefined rectangle and compared to each normalized template in the font
database.
A Character set filter can improve recognition reliability and run time by restricting the range of characters to be
compared. For instance, if a marking always consists of two uppercase letters followed by five digits, the last of which
is always even, it is possible to assign each character a class (maximum 32 classes) then set the character filter to
allow the following classes at recognition time: two uppercase, four even or odd digits, one even digit.

Steps 2 to 4 can be repeated at will to process other images or ROIs. The Recognize method can be used as well.

Additional information, such as the geometric position of the detected characters, can be obtained using: CharGetOrgX,
CharGetOrgY, CharGetWidth, CharGetHeight, ...

CompareAspectRatio makes character and font comparison sensitive to the difference between narrow and wide characters.
It improves recognition when characters look like each other after size normalization.

eocr-maxcharwidth.htm
eocr-maxcharheight.htm
eocr-mincharwidth.htm
eocr-mincharheight.htm
eocr-charspacing.htm
eocr-maxcharwidth.htm
eocr-removeborder.htm
eocr-load.htm
eocr-buildobjects.htm
eocr-addchar.htm
eocr-emptychars.htm
eocr-findallchars.htm
eocr-readtext.htm
eocr-recognize.htm
eocr-chargetorgx.htm
eocr-chargetorgy.htm
eocr-chargetwidth.htm
eocr-chargetheight.htm
eocr-compareaspectratio.htm

Recognition parameters

● MaxCharWidth, MaxCharHeight: if a blob does not fit within a rectangle with these dimensions, it is not considered as a
possible character (too large) and is discarded. Furthermore, if several blobs fit in a rectangle with these dimensions,
they are grouped together, forming a single character. The outer rectangle size should be chosen such that it can
contain the largest character from the font, enlarged by a small safety margin.

● MinCharWidth, MinCharHeight: if a blob or a group of blobs does fit in a rectangle with these dimensions, it is not
considered as a possible character (too small) and is discarded. The inner rectangle size should be chosen such that it
is contained in the smallest character from the font, shrunk by a small safety margin.

● RemoveNarrowOrFlat: Small characters are discarded if they are narrow or flat. By default they are discarded when they
are both narrow and flat.

● CharSpacing: if two blobs are separated by a vertical gap wider than this value, they are considered to belong to
different characters. This feature is useful to avoid the grouping of thin characters that would fit in the outer
rectangle. Its value should be set to the width of the smallest gap between adjacent letters. If it is set to a large value
(larger than MaxCharWidth), it has no effect.

● CutLargeChars: when a blob or grouping of blobs is larger than MaxCharWidth, it is discarded. When enabled, the blob is
split into as many parts as necessary to fit and the amount of white space to be inserted between the split blobs is set
by RelativeSpacing. This is an attempt to separate touching characters.

● RelativeSpacing: when the CutLargeChars mode is enabled, setting this value allows specifying the amount of white space
that should be inserted between the split parts of the blobs.

Invalid recognition settings

Advanced tuning

These recognition parameters can be tuned to optimize recognition:

CompareAspectRatio: when this setting is on, EasyOCR is less tolerant of size and takes into account the measured aspect
ratio. Using this mode improves the recognition when characters look similar after size normalization as it enforces the
difference between narrow and wide characters.

Filtering the characters (in the ReadText method), can be used if the marking structure is fixed.

When objects are larger than the MaxCharWidth property, they can be split into as many parts as needed, using vertical
cutting lines.

ESegmentationMode, character isolation mode defines how characters are isolated:
□ Keep objects mode: a character is a blob; no attempt is made to group blobs, thus damaged characters cannot be

handled and small features such as accents and dots may be discarded by the minimum character size criterion.

eocr-maxcharwidth.htm
eocr-maxcharheight.htm
eocr-mincharwidth.htm
eocr-mincharheight.htm
eocr-removenarroworflat.htm
eocr-charspacing.htm
eocr-maxcharwidth.htm
eocr-cutlargechars.htm
eocr-maxcharwidth.htm
eocr-relativespacing.htm
eocr-relativespacing.htm
eocr-cutlargechars.htm
eocr-compareaspectratio.htm
eocr-readtext.htm
eocr-maxcharwidth.htm
esegmentationmode-enum.htm
esegmentationmode-enum.htm

□ Repaste objects mode: blobs are grouped to form distinct characters if they fit in the maximum character size
and are not separated by a vertical gap, thus preserving accents and dots.

0.5. EasyOCR2 - Reading Texts (Improved)

Workflow
Reference | Code Snippets

EasyOCR2

EasyOCR2 is an optical recognition library designed to read short texts such as serial numbers, expiry dates or lot codes
printed on labels or on parts.

It can use an innovative segmentation method to detect blobs in the image, and then places textboxes over the detected
blobs following a user-defined topology (number of lines, words and characters in the text). These methods support text
rotation up to 360 degrees, can handle non-uniform illumination, textured backgrounds, as well as dot-printed or
fragmented characters.

A character type (letter / digit / symbol) can be specified for each character in the text, improving recognition rate and
speed.

You can perform the recognition in two different ways:
□ Use a pre-trained classifier powered by Deep Learning technologies.
□ Or use a character database built from sample images or from a TrueType font (.ttf) file.

Text recognition with EasyOCR2 follows four phases:

Input image (left) and image segmentation (right)

Fitting textboxes (left) and recognition (right)

easyocr2-library.htm

EasyOCR2 vs EasyOCR

EasyOCR2will give better results than EasyOCRwhen dealing with:
□ Unknown text rotation
□ Dotted or fragmented characters
□ Non-uniform illumination or textured backgrounds
□ Complex text topologies

● When TrueType font files that match the text to be read are available, EasyOCR2 allows the user to use those font
files directly for recognition, while EasyOCR does not.

● EasyOCR2 can perform recognition without any preliminary training using the provided pre-trained classifiers.

Workflow

Detection

Detection

EasyOCR2 finds characters in an image as follows:

1. EasyOCR2 segments the image, finding blobs that represent (parts of) the characters.

2. Blobs that are too large or too small to be considered as parts of a character are filtered out.

3. EasyOCR2 fits character boxes to the detected blobs according to a given topology and detectionMethod.
□ The topology describes the structure of the text in the image, defining the number of lines, the number of words

per line and the number of characters per word.
□ If the topology is not required, EasyOCR2 fits boxes to the blobs as best as it can.

4. EasyOCR2 extracts the pixels inside each character box from the image.

The resulting character-images can be used to learn or recognize the characters.

A workflow detecting text in an image could be as follows:

a. Set the required detection parameters.

b. Alternatively, call Load to read a pre-made model (.o2m) file containing detection parameters from disk.

c. Call Detect to extract the text from the image.

The method Detect will return an EOCR2Text structure that contains a textbox and a bitmap image for each character,
hierarchically stored in EOCR2Line -> EOCR2Word -> EOCR2Char structures.

See example in code snippet: "Detecting Characters" on page 115

An example of a fixed-width font, processed with the detectionMethod ‘EOCR2DetectionMethod_FixedWidth’

An example of a proportional font, processed with the detectionMethod ‘EOCR2DetectionMethod_Proportional’

eocr2-topology.htm
eocr2-detectionmethod.htm
eocr2-load.htm
eocr2-detect.htm
eocr2-detect.htm
eocr2text-eocr2text.htm
eocr2line-eocr2line.htm
eocr2word-eocr2word.htm
eocr2char-eocr2char.htm
eocr2-detectionmethod.htm
eocr2detectionmethod-enum.htm
eocr2-detectionmethod.htm
eocr2detectionmethod-enum.htm

The text angle estimate for this image is slightly off when NumDetectionPasses=1

The text angle estimate is better when NumDetectionPasses=2

For this dotted text, setting CharsMaxFragmentation to 0.1 leads to incomplete segmentation results

Setting CharsMaxFragmentation to 0.01 gives better segmentation results

Detection parameters

Required parameters

● The parameter EnableTopology indicates if the parameter Topology is required. In simple cases, the topology may not be
necessary.

● The parameter Topology tells the box-fitting method how to structure the textboxes it fits to the detected blobs. Using
a modified version of Regex expressions, the topology determines the number of lines in the text, the number of
words per line and the number of characters per word. The section Recognition Parameters contains an extensive
explanation of the syntax for the Topology.

eocr2-numdetectionpasses.htm
eocr2-numdetectionpasses.htm
eocr2-charsmaxfragmentation.htm
eocr2-charsmaxfragmentation.htm
eocr2-enabledtopology.htm
eocr2-topology.htm
eocr2-topology.htm

● The parameter CharsWidthRange tells the segmentation and detection methods how wide the characters in the image
can be.

● The parameter CharsHeight tells the segmentation and detection methods how high the characters in the image can
be.

● The parameter TextPolarity tells the segmentation method whether it should look for light characters on a dark
background or vice versa.

Advanced parameters for segmentation (optional):

● The parameter SegmentationMethod selects the algorithm used for segmentation.
□ The setting EOCR2SegmentationMethod_Global is faster and suited for clear background.
□ The setting EOCR2SegmentationMethod_Local (default) is more complex and suited for non uniform background.

● The CharsMaxFragmentation parameter tells the segmentation algorithm how small blobs can be to be considered (part
of) a character. The minimum allowed area of a blob is given by:

minArea = CharsMaxFragmentation * CharsHeight *min(CharsWidthRange)

□ This parameter should be set between 0 and 1, the default setting is 0.1.

Advanced parameters for local segmentation (optional):

● The MaxVariation parameter determines how stable a blob in the image should be in order to be considered a potential
character.
□ A region with clearly defined edges is generally considered stable while a blurry region is not. A high setting allows

detection of blobs that are more unstable, a low setting allows only very stable blobs.
□ This parameter should be set between 0 and 1, the default setting is 0.25.

● The DetectionDelta parameter determines the range of grayscale values used to determine the stability of a blob.
□ A low setting will make the algorithm more sensitive to noise; a high setting will make the algorithm insensitive to

blobs with low contrast to the background.
□ This parameter should be set between 1 and 127, the default setting is 12.

Advanced parameters for global segmentation (optional):

● The parameter EnableSecondPassGlobalSegmentation performs the segmentation twice during the first pass to have more
accurate results when the text background is not just plain.

Advanced parameters for detection (optional)

● If the topology is required, the parameter DetectionMethod selects the algorithm used for fitting.
□ The setting EOCR2DetectionMethod_FixedWidth (default) is optimized for texts with fixed width fonts (including dotted

text).
□ The setting EOCR2DetectionMethod_Proportional is optimized for texts with proportional fonts.

eocr2-charswidthrange.htm
eocr2-charsheight.htm
eocr2-textpolarity.htm
eocr2-segmentationmethod.htm
eocr2segmentationmethod-enum.htm
eocr2segmentationmethod-enum.htm
eocr2-charsmaxfragmentation.htm
eocr2-charsmaxfragmentation.htm
eocr2-charsheight.htm
eocr2-charswidthrange.htm
eocr2-maxvariation.htm
eocr2-detectiondelta.htm
eocr2-enablesecondpassglobalsegmentation.htm
eocr2-detectionmethod.htm
eocr2detectionmethod-enum.htm
eocr2detectionmethod-enum.htm

● The TextAngleRange parameter tells the box-fitting method how the text in the image is oriented. It will test the
following range of rotation angles:

min(TextAngleRange)≤ angle ≤max(TextAngleRange)

where angles are defined with respect to the horizontal. The unit for the angles (degrees/radians/revolutions/grades)
can be set using easy::SetAngleUnit().
□ The default setting for this parameter is [-20, 20] degrees.

● The parameter NumDetectionPasses determines how many passes are made to fit textboxes to the detected blobs. The
initial pass will fit textboxes to all detected blobs. Subsequent passes will select only those blobs that are covered by
the textboxes from the previous pass and fit textboxes to that subset of blobs, potentially resulting in a more optimal
fit.
□ This parameter should be set to either 1 or 2, the default setting is 1.

Advanced parameters, specific for the setting EOCR2DetectionMethod_FixedWidth

● The RelativeSpacesWidthRange parameter tells the box-fitting method how wide the spaces between words may be. It will
test the following range of spaces:

min(SpacesWidthRange) * charWidth ≤ space ≤max(SpacesWidthRange) * charWidth

□ The lower bound of this parameter is also used when the topology is not required.

● The parameter CharsWidthBias biases the optimization toward wider or narrower character boxes.

● The parameter CharsSpacingBias biases the optimization toward smaller or larger spacing between characters boxes.

Advanced parameters, specific for the setting EOCR2DetectionMethod_Proportional:

● The parameter EnableCutLargeCharacter tells if the detection should try to split too wide segmented blobs into different
characters.
□ This parameter is also used when the topology is not required.

Advanced parameters, specific when the topology is not required:

● The parameter EnableOffSizeCharacter tells if the detection should allow or not the detection of characters whose size
(width and height) is out of the size parameters if they are in the vicinity of characters in valid size range.

Additional remarks

● When the setting EOCR2DetectionMethod_FixedWidth is selected, all character boxes will have the same width and they do
not necessarily have to fit tightly around the characters.

● When the setting EOCR2DetectionMethod_Proportional is selected, the character boxes will fit tightly around the characters,
if any character falls outside the range of allowed character widths, the detection will fail.

eocr2-textanglerange.htm
eocr2-textanglerange.htm
eocr2-textanglerange.htm
easy-angleunit.htm
eocr2-numdetectionpasses.htm
eocr2detectionmethod-enum.htm
eocr2-relativespaceswidthrange.htm
eocr2-charswidthrange.htm
eocr2-charswidthrange.htm
eocr2-charswidthbias.htm
eocr2-charsspacingbias.htm
eocr2-enablecutlargecharacter.htm
eocr2-enableoffsizecharacter.htm
eocr2detectionmethod-enum.htm
eocr2detectionmethod-enum.htm

Learning
In order to recognize characters, EasyOCR2 can use a database of known reference characters. You can generate this
character database from images and/or from TrueType system fonts.

A workflow to build a character database could be as follows:

1. Set the required detection parameters or call Load to read the model (.o2m) file from disk.

2. Optionally, call ClearCharacterDatabase to clear the current character database.

3. Call Detect to extract the text from the image.

4. Call SetText in the extracted text structure to set the correct value for each character.

5. Call Learn to add the detected characters and their correct value to the current character database.

6. Call SaveCharacterDatabase to save the current character database to disk.

7. Alternatively, call Save to save the model file to disk, including the detection parameters and the created character
database.

See example in code snippet: "Learning Characters" on page 116

Recognition

Recognition

EasyOCR2 recognizes characters using a pre-trained classifier or a classifier that is trained on the character database. For
each input character, the classifier will calculate a score for all candidate outputs, the candidate with the highest score
will be returned as the recognition result. Through the Topology parameter, prior information about each character can be
passed to the classifier, reducing the number of candidates and improving the recognition rate.

The production workflow for recognizing text from images could be as follows:
□ Call Load to read the model (.o2m) file from disk. The model file contains all detection parameters, as well as the

topology and the reference character database.
□ Load or acquire the image.
□ Call Read to detect and recognize the characters.
□ Alternatively, call Detect to extract the text from the image, followed by Recognize to recognize the extracted text.

This allows the user to modify elements of the detected text before recognition if so desired.

The methods Read and Recognize will return a string with the recognition results. To access more in-depth information
about the results, one may call ReadText. This returns an EOCR2Text structure that contains the coordinates and sizes of
each textbox as well as a bitmap image and a list of recognition scores for each character.

See example in code snippet: "Reading Using EOCR2 Model File" on page 118

eocr2-load.htm
eocr2-clearcharacterdatabase.htm
eocr2-detect.htm
eocr2text-class.htm
eocr2-learn.htm
eocr2-savecharacterdatabase.htm
eocr2-save.htm
eocr2-topology.htm
eocr2-load.htm
eocr2-read.htm
eocr2-detect.htm
eocr2-recognize.htm
eocr2-read.htm
eocr2-recognize.htm
eocr2-readtext.htm
eocr2text-eocr2text.htm

Recognition parameters

The Classifier parameter specifies the classifier used by EOCR2 for recognition. By default, its value is EOCR2Classifier_
DatabaseClassifier and it means that it uses the current Character Database. Other values represent pre-trained classifiers
for different context.

The Topology parameter specifies the structure of the text (number of lines/words/characters) as well as the type of
characters in the text. The recognition method will limit the number of candidates for each character based on the given
topology.

It uses modified regular expression wildcards:
□ “.” (dot) represents any character (not including a space).
□ “L” represents an alphabetic character.

 - “Lu” represents an uppercase alphabetic character.
 - “Ll” represents a lowercase alphabetic character.

□ “N” represents a digit.
□ “P” represents the punctuation characters: ! “ # % & ‘ () * , - . / : ; < > ? @ [\] _ { | } ~
□ “S” represents the symbols: $ + - < = > | ~
□ “\n” represents a line break.
□ “ ” (space) represents a space between two words.

Combinations can be made, for example: [LN] represents an alphanumeric character. To specify multiple characters,
simply add {n} at the end for n characters. If the amount of characters is uncertain, specify {n,m} for a minimum of n
characters and a maximum of m characters.

The topology “[LuN]{3,5}PN{4} \n .{5} LL” represents a text comprised of 2 lines:
□ The first line has 1 word composed of 3 to 5 uppercase alphanumeric characters, followed by a punctuation

character and 4 digits.
□ The second line has 2 words. The first word comprises 5 wildcard characters, the second word has 2 letters (upper-

or lowercase).

The topology “L{3}P N{6} \n L{3}P NNPN{4}” represents a text with 2 lines:
□ The first line has 2 words. The first word has 3 uppercase letters followed by a punctuation mark, the second word

has 6 digits.
□ The second line also has two words. The first word has 3 uppercase letters followed by a punctuation mark. The

second word has 2 digits, followed by a punctuation mark and 4 additional digits.

The topology “.{10} \n .{7} \n .{5} .{5} \n .{5} .{7}” represents a text with 4 lines:
□ The first line contains a single word of 10 (ASCII) characters
□ The second line contains a single word of 7 characters
□ The third line contains two words, each of 5 characters.
□ The fourth line contains two words of 5 and 7 characters respectively.

eocr2-classifier.htm
eocr2-class.htm
eocr2classifier-enum.htm
eocr2classifier-enum.htm
eocr2-topology.htm

1. Using Open eVision Studio

1.1. Selecting your Programming Language

When you start Open eVision Studio for the first time, the following welcome screen is displayed:

1. Select your programming language.

TIP
Your selection is saved and your programming language will be automatically selected next time you
start Open eVision Studio.

NOTE
When you change your programming language, any script present in the scripting window is
automatically deleted and the window content is reset.

2. Click on one of the Load buttons to already load one or several images for later processing.

3. Check the Do not show at startup box to hide this welcome screen next time you start Open eVision Studio.

TIP
To access this welcome screen at any time, and change this setting, go to the Help > Welcome Screen
menu.

1.2. Navigating the Interface

Open eVision Studio graphical user interface (GUI) is organized as follows:

1. The main menu bar gives you access to the functions and tools of all libraries.

TIP
Open eVision Studio does not require any license and allows you to test all libraries. Of course, if you
copy code from Open eVision Studio in your own application but you do not have the required
license, you will receive a "missing license" error at run-time.

2. The main toolbar gives you quick access to main Open eVision objects such as images, shapes, gauges, bar codes,
matrix codes...

3. The script window displays the code, in the programming language you selected, corresponding to the actions you
perform in Open eVision Studio. You can save or copy this code in your own application at any time.

4. The image windows display the open images that you can process using the libraries and tools.

5. The tool windows enable you to easily configure all the available tools. The corresponding settings are automatically
added in the script window for easy reuse.

TIP
Most tool windows are floating and you can easily move them outside the Open eVision Studio main
window to make better use of your screen size.

6. The execution time bar displays the precise time taken for the execution of the selected functions (measured in
milliseconds or microseconds) on your computer. This accurate measurement helps you to evaluate the performance
of your application.

7. The color toolbar displays current information such as the X and Y coordinates of the cursor on an image and the
corresponding pixel value.

8. The status bar displays general information about the application such as the active image file path...

1.3. Running Tools on Images

Step 1: Selecting a Tool
When you use Open eVision Studio, the first step is to select the library and the tool you want to use on your image.

To do so:

1. In the main menu bar, click on the library you want to use.

2. Click on the tool you want to use.

TIP
All libraries (except EasyImage, EasyColor and EasyGauge) expose only one tool named New Xxx Tool.
Some of these libraries also expose additional functions.

3. In the dialog box, enter a Variable name for the variable that is automatically created and that will contain the result
of the processing.

Example of variable creation dialog box for EasyQRCode

4. Click OK.

The selected tool dialog box opens.

Example of variable creation dialog box for EasyQRCode

The next step is "Step 2: Opening an Image" on page 84.

Step 2: Opening an Image
Once you have selected your library and your tool, you need to open an image to apply this tool.

In the Source Image area of the selected tool dialog box:

1. Open an image:

□ Click on the Open an Image button and select one or several (using SHIFT and CTRL) images on your computer.
□ Or select one of the images (or one of the ROIs, if any) already open in the drop-down list.

NOTE
You can select only images with an appropriate file format (JPG, PNG, TIFF or BMP) and in 8- and/or
24-bit depending on the library.

2. If you selected several images, activate one with the Load Previous or Load Next buttons.

The tool is automatically applied on any loaded image and, at this stage, the result is displayed based on the tool default
settings.

The next step is "Step 3: Managing ROIs" on page 85.

Step 3: Managing ROIs
In some cases, most often to decrease the processing time or to single-out the object you want to read, you do not want
to process the whole image but only one or several well defined rectangular parts of this image, or ROIs (Regions Of
Interest).

TIP
In Open eVision, ROIs are attached to an image and exist only as long as the parent image is available.

Creating a ROI

1. Open the image:
□ If the image is already open, activate the corresponding image window.
□ If the image is not open yet, go to the main menu: Image > Open... to open one.

2. To create an ROI, go to the main menu: Image > ROI Management....

The ROI Management window is displayed as illustrated below.

3. Select the image in the tree.

4. Click on the New button.

5. In the dialog box, enter a Variable name for the new ROI.

The ROI is represented as a color rectangle on your image as illustrated below.

6. Drag the ROI corner and side handles to move it to the required position.

7. Click on the Close button to close the ROI Management window .

The next step is "Step 4: Configuring the Tool" on page 87.

Managing ROIs

You can add, change and remove ROIs.

TIP
An image can have several ROIs. Each ROI can be attached directly to the image (meaning that its
position is relative to the image) or to another ROI (meaning that its position is relative to this
'parent' ROI).

1. To manage ROIs, go to the main menu: Image > ROI Management....

The ROI Management window is displayed with the ROI relation tree as illustrated below.

If the Draw Rois box is checked, all ROIs are displayed on the image with a different color.

2. Select an ROI in the ROI relation tree.

3. Drag the ROI corner and side handles to change the position and size of the selected ROI (as well as the position of all
ROIs attached to it if any).

4. Click on the New button to add a new ROI attached to the selected ROI.

TIP
Select the image at the top of the ROI relation tree to attach the ROI directly to the image.

5. Click on the Remove button to delete the selected ROI (and all ROIs attached to it if any).

6. Click on the Close button to close the ROI Management window.

Step 4: Configuring the Tool
Once your image, including its ROIs if you created some, is ready, you need to configure your tool.

In the tool window:

1. Open the various tabs.

TIP
When you create a new tool, all parameters are set with their default value.

Example of the parameter tab of an EasyQRCode tool

2. In each tab, set the value of the parameters as desired.

Please refer to the "Functional Guide" and to the "Reference Manual" for detailed information about the parameters,
their function and their default value.

For specific actions such as learning or using gauges, please refer to the "Functional Guide".

3. Run the tool and analyze the results as described in the next step "Step 5: Running the Tool and Checking Execution
Time" on page 88.

Step 5: Running the Tool and Checking Execution Time
Once your tool parameters are set, run your tool and, if desired, check the execution time on your computer.

In the tool window:

1. Click on the Read, Detect, Results or Execute button (depending on the library function), to run the tool on the
selected image.

2. Check the results on the image and in the Results field or area as illustrated below.

Example of results after reading a QRCode

3. If you do not have the expected results:
□ Try to change your parameters (start with default values then change one parameter at a time).
□ If your image is not good enough, try to enhance it as described in .

4. Check the execution time in the execution time bar at the bottom left of the main Open eVision Studio window.

The execution time

TIP
The execution time is the actual time that the processing took as measured on your computer. It
depends your computer processor, memory, operating system... and, of course, on the processor load
at the time of execution. Thus this execution time slightly varies from execution to execution.

5. To get a more representative execution time, click on the Read, Detect, Results or Execute button several times and
calculate the mean execution time.

6. If your application requires that you reduce the execution time, try:
□ To change the tool parameters,
□ To add one or several ROIs on your image,
□ To enhance your image.

The next step is "Step 6: Using the Generated Code" on page 90.

Step 6: Using the Generated Code
By default, Open eVision Studio translates all the operations you perform in the interface into code in the language you
selected as illustrated below.

Once your tool results suit you, you can save or copy this generated code to use it in your own application.

Copy and paste the code in your application

In the script window:

1. Select the code section you want to copy.

2. Right click on this code and click Copy in the menu.

3. Go to your development environment tool and paste the code in place.

Save the code

1. Go to the Script menu.

2. Click on Save Script As....

3. Enter a file name and path to save the code as a text file.

Manage the generated code

In the Script menu, you can:
□ Select the programming language (please note that if you change the language, the script window content is

automatically deleted).
□ Activate or deactivate the Script Code Generation. Deactivate this option if you want to perform some operations

without saving them as code.

1.4. Pre-Processing and Saving Images

When should you pre-process your images?

Of course, the best situation is to set up your image acquisition system to have good and easy to process images so the
Open eVision tools run smoothly and efficiently.

If this is not possible or easy to achieve, you can pre-process your images or your ROIs to enhance and prepare them for
the Open eVision tool you want to run.

Using the various available functions, you can adjust the gain and offset of your image, apply a convolution, threshold,
scale, rotate and white balance your image, enhance contours... using EasyImage and EasyColor functions.

Pre-processing images

The difference between pre-processing an image and running tools is that the pre-processing generates a new image
while the tools mainly extract and retrieve information from the image without changing it.

To pre-process an image or an ROI:

1. In the main menu bar, click on the library you want to use (EasyImage or EasyColor).

2. Click on the function you want to use.

Most function dialog boxes are similar to the one illustrated below with 2 image selection areas and a parameter setting
area.

Example of a pre-processing dialog box (Threshold with EasyImage)

3. If there are multiple versions for your selected function, open the corresponding tab.

4. In the Source Image area, open the source image (as described in "Step 2: Opening an Image" on page 84).

5. In the Destination Image area, open or create a new destination image.

6. Set your parameters.

7. Click on the Execute button.

The pre-processed image is available in the destination image as illustrated below.

Source and destinations images (Threshold with EasyImage)

8. If you want to use the destination image outside of Open eVision Studio, save it as described below.

Saving an image

1. Click on the image you want to save to makes its window active.

2. To open the save menu either:
□ Right-click in the image
□ Or open the main menu > Image

3. Click on Save as....

4. Select the file format (JPEG, JPEG2000, PNG, TIFF or Bitmap).

5. Enter a name and select a path.

6. Click on the Save button.

2. Tutorials

2.1. EasyBarCode

Reading Bar Codes Automatically
"Reading a Bar Code" on page 106

Objective

Following this tutorial, you will learn how to perform automatic reading of multiple bar codes.

You'll need first to load multiple source images (step 1). The reading is then automatically performed on each image
(step 2).

Each bar code is automatically detected and decoded

Step 1: Load the source images

1. From the main menu, click EasyBarCode, then New BarCode Tool.

2. Keep the default variable name, and click OK.

3. In the AutoRead tab, click the Open icon of the Source Image area, and load the image files EasyBarCode\Barcode 01.tif to
Barcode 10.tif. Use the shift key to select multiple files.

4. Keep the default variable name, and click OK. The last image appears.

Step 2: Read the bar codes automatically

1. The bar code is automatically detected and decoded. The graphic result appears on the image, while the data content
and the corresponding symbology are displayed in the Decoded Symbology area. It is not necessary to click Read once
a new image appears. However, clicking Read will insert the corresponding code into the script window.

2. In the Results tab, find more information about the bar code. As a bar code might have a meaning under different
symbologies, all possible contents are listed by decreasing likeliness.

3. In the AutoRead tab, click the Load Next and Load Previous icons to browse through images 01 to 06.

The image files appear, and each bar code is automatically detected and decoded. The bar code properties are updated.

4. To decode the remaining bar codes, we have to enable the additional symbologies.

5. In the Symbologies tab, click the Toggle All button of the Additional area.

6. In the AutoRead tab, click the Load Next and Load Previous icons and browse the remaining images.

2.2. EasyMatrixCode

Reading Data Matrix Codes Automatically
"Automatic Reading" on page 109

Objective

Following this tutorial, you will learn how to use EasyMatrixCode to detect and decode automatically Data Matrix codes
in multiple files.

You'll need first to load multiple source images (step 1). The reading is then automatically performed on each image
(step 2). You can also grade the printing quality of each matrix code (step 3).

Each Data Matrix code is automatically detected and decoded

Step 1: Load the source images

1. From the main menu, click EasyMatrixCode, then New MatrixCode Tool.

2. Keep the default variable name for the new matrix code reader, and click OK.

3. In the Read tab, click the Open icon of the Source Image area, and load the image files EasyMatrixCode\AutoRead\AutoRead
01.tif to AutoRead 04.tif. Use the shift key to select multiple files.

4. Keep the default variable name for the new image, and click OK. The last image appears.

Step 2: Read the Data Matrix codes automatically

1. The Data Matrix code is automatically detected and decoded. The matrix code reference corner is highlighted with a
bold cross mark. It is not necessary to click Read once a new image appears. However, clicking Read will insert the
corresponding code into the script window.

2. In the Results area, find more information about the matrix code, such as the decoded string.

3. In the Read tab, click the Load Next and Load Previous icons. The image files appear, and each Data Matrix code is
automatically detected and decoded. The matrix code properties are updated. If no Data Matrix code could been
located in the image, an error message is displayed in the Message field.

Step 3: Grade Data Matrix code printing quality

1. In the Print Quality tab, select the Compute Grading check-box.

2. Click Apply.

For each printing quality parameter, the corresponding value and its grade equivalent appear. An A grade means a good
quality, while an F grade indicates a poor one.

Learning a Data Matrix Code and Creating an EasyMatrixCode Model File
"Reading with Prior Learning" on page 109

Objective

Following this tutorial, you will learn how to use EasyMatrixCode to learn a Data Matrix code, and save it as an
EasyMatrixCode model file.

You'll need first to load a source image (step 1), and learn the matrix code (step 2). Then you'll save the learned matrix
code as a new model file (step 3). You can also add new learned matrix codes to an existing model if needed (step 4).

The Data Matrix code has been learned

Step 1: Load the source image

1. From the main menu, click EasyMatrixCode, then New MatrixCode Tool.

2. Keep the default variable name for the new matrix code reader object, and click OK.

3. In the Learn tab, click the Open icon of the Source Image area, and load the image file EasyMatrixCode\Label\Label 4.tif.

4. Keep the default variable name for the new image object, and click OK.

Step 2: Learn the Data Matrix code

● In the Learn tab, click Learn.

The Data Matrix code is detected and decoded without error.

The graphical result appears on the image.

The properties of the learned matrix code are updated in the dialog box.

Step 3: Save the model file

1. In the Learn tab, click the Save As... button.

2. Type a file name for the new EasyMatrixCode model file. Its extension will be .mx2.

3. Click Save.

Step 4: Learning more Data Matrix codes

1. In the Read tab, click the Open icon of the source image area, and load the image file EasyMatrixCode\PCB Code\PCB Code
3.jpg.

2. Keep the default variable name for the new image object, and click OK.

3. An error message is displayed in the Message area of the Read tab. The matrix code can not be read, since the reader
uses the model from the "Label 4" image. You need to learn the "PCB Code 3" matrix code, and add it to the model.

4. In the Learn tab, click Learn More. The Data Matrix code is detected and decoded without error. The graphical result
appears on the image. The properties of the learned matrix code are updated in the dialog box.

5. Using Learn More rather than Learn involves that the "Label 4" model is not replaced by the "PCB Code 3" model, but
both are now included in the same model. In the Read tab, the "PCB Code 3" matrix code is correctly read. Select the
"Label 4" image in the drop-down list of the source image area. The "Label 4" matrix code is still read without error,
which means that both learned matrix codes have been kept.

6. Finally, save the model again (refer to step 3). The new matrix code has been added.

2.3. EasyOCR

Learning Characters and Creating an EasyOCR Font
"Learning Characters" on page 114

Objective

Following this tutorial, you will learn how to use EasyOCR to learn new characters and save them in an EasyOCR font.

You'll need first to load a source image (step 1). Then you'll set the segmentation parameters to isolate each character
(step 2). Each character will have to be learnt (step 3), and finally you'll save all the learnt characters as a font file (step
4). You can also add new characters to an existing font if needed (step 5).

Source image

The image is segmented so that all the characters are detected

All the characters have been learn

Step 1: Load the source image

1. From the main menu, click EasyOCR, then New OCR Tool.

2. Keep the default variable name for the new OCR object, and click OK.

3. In the Source Image tab, click the Open icon of the Source Image area, and load the image file
EasyOCR\FlatCable\FlatCable1.tif.

4. Keep the default variable name for the new image object, and click OK.

Step 2: Set segmentation parameters

1. Select the Segmentation Parameters tab, and move the red frame in the image above a character.

2. Tune each property to get a green bounding box around each character:
□ threshold value = 113
□ characters color = Black on White
□ min width = 36
□ min height = 31
□ spacing = 4
□ max width = 98
□ max height = 72
□ noise area = 9

Step 3: Learn new characters

1. Select the Learn tab, and click the character E in the image. You are then prompted to identify the character along
with its class. Enter E in the character field, and select the 'EOcrClass_Uppercase' class. Click OK. Whenever a character
has been added to the current font, its bounding box turns yellow.

2. Click the character 1 in the image. Enter 1 in the character field, and select the 'EOcrClass_Digit' class. Click OK.

3. Proceed with remaining characters.

Step 4: Save the EasyOCR font

● In the Font File tab, click the Save As... button. Type a file name for the new EasyOCR font file. Its extension will be
.ocr. Finally, click Save.

Step 5: Add characters to an existing font

1. In the Source Image tab, click the Open icon of the Source Image area, and load the image file
EasyOCR\FlatCable\FlatCable2.tif.

2. Keep the default variable name for the new image object, and click OK.

3. In the Recognition tab, click Execute. Characters 2 and 8 are read correctly, but A, W and G are not (low confidence
score). They don't belong to the font.

4. Select the Learn tab, and learn the characters A, W, and G (refer to step 3).

5. Then save the font again (refer to step 4). The new characters have been added.

Recognizing Characters According to a Font
"Recognizing Characters According to a Font" on page 99

Objective

Following this tutorial, you will learn how to use EasyOCR to recognize characters, regarding to a specific font.

You'll need first to load a source image (step 1), and an EasyOCR font file (step 2). Then you'll perform the characters
recognition (step 3).

Characters matching the font are automatically detected

Results after explicit recognition

Step 1: Load the source image

1. From the main menu, click EasyOCR, then New OCR Tool.

2. Keep the default variable name for the new OCR object, and click OK.

3. In the Source Image tab, click the Open icon of the Source Image area, and load the image file
EasyOCR\FlatCable\FlatCable1.tif.

4. Keep the default variable name for the new image object, and click OK.

Step 2: Load the font file

● In the Font File tab, click Load, and select the font file EasyOCR\FlatCable\FlatCable.ocr. In the image, the detected
characters are highlighted in green.

Step 3: Recognize the characters

● In the Recognition tab, click Execute to trigger the recognition of the detected characters. The recognized characters
appear in the Recognition results area. Further information about each character can be found in the table.

3. Code Snippets

102

3.1. Basic Types

Loading and Saving Images
Functional Guide | Reference: Load, Save, SaveJpeg

//
// This code snippet shows how to load and save an image. //
//

// Images constructor
EImageBW8 srcImage;
EImageBW8 dstImage;

// Load an image file
srcImage.Load("mySourceImage.bmp");

// ...

// Save the destination image into a file
dstImage.Save("myDestImage.bmp");

// Save the destination image into a jpeg file
// The default compression quality is 75
dstImage.Save("myDestImage.jpg");

// Save the destination image into a jpeg file
// set the compression quality to 50
dstImage.SaveJpeg("myDestImage50.jpg", 50);

Interfacing Third-Party Images
Functional Guide | Reference: SetImagePtr

///
// This code snippet shows how to link an Open eVision image //
// to an externally allocated buffer. //
///

// Images constructor
EImageBW8 srcImage;

// Size of the third-party image
int sizeX;
int sizeY;

//Pointer to the third-party image buffer
EBW8* imgPtr;

// ...

// Link the Open eVision image to the third-party image
// Assuming the corresponding buffer is aligned on 4 bytes
srcImage.SetImagePtr(sizeX, sizeY, imgPtr);

Open eVision User Guide PART I Text and Code Reading Tools

ebaseroi-load.htm
ebaseroi-save.htm
ebaseroi-savejpeg.htm
ebaseroi-setimageptr.htm

103

Retrieving Pixel Values
Functional Guide | Reference: GetImagePtr

///
// This code snippet shows the recommended method (fastest) //
// to access the pixel values in a BW8 image //
///

EImageBW8 img;

OEV_UINT8* pixelPtr;
OEV_UINT8* rowPtr;
OEV_UINT8 pixelValue;
OEV_UINT32 rowPitch;
int x, y;

rowPtr = reinterpret_cast <OEV_UINT8*>(img.GetImagePtr());
rowPitch = img.GetRowPitch();

for (y = 0; y < height; y++)
{
 pixelPtr = rowPtr;

for (x = 0; x < width; x++)
{

 pixelValue = *pixelPtr;

// Add your pixel computation code here

 *pixelPtr = pixelValue;
 pixelPtr++;
 }

 rowPtr += rowPitch;
}

Importing Bitmap from the Resources
Functional Guide | Reference: SetImagePtr

///
// This code snippet shows how to import a bitmap from //
// the resources. //
///

// Get the bitmap
HBITMAP hbitmap = (HBITMAP)LoadImage(GetModuleHandle(NULL), MAKEINTRESOURCE(IDB_BITMAP1), IMAGE_BITMAP, 0, 0, LR_
CREATEDIBSECTION);
BITMAP bitmap;
GetObject(hbitmap, sizeof(bitmap), (LPVOID)&bitmap);

int width = bitmap.bmWidth;
int height = bitmap.bmHeight;
UINT8* buffer = reinterpret_cast<UINT8*>(bitmap.bmBits);

EImageC24 image(width, height);

for (int y = 0; y < height; ++y)
{

Open eVision User Guide PART I Text and Code Reading Tools

ebaseroi-getimageptr.htm
ebaseroi-setimageptr.htm

104

// Copy the entire row
memcpy(image.GetImagePtr(0, height - 1 - y), buffer, 3 * width);
buffer += 3 * width;

}

ROI Placement
Functional Guide | Reference: Attach, SetPlacement

///
// This code snippet shows how to attach an ROI to an image //
// and set its placement. //
///

// Image constructor
EImageBW8 parentImage;

// ROI constructor
EROIBW8 myROI;

// ...

// Attach the ROI to the image
myROI.Attach(&parentImage);

//Set the ROI position
myROI.SetPlacement(50, 50, 200, 100);

Vector Management
Functional Guide | Reference: Empty, AddElement

///
// This code snippet shows how to create a vector, fill it //
// and retrieve the value of a given element. //
///

// EBW8Vector constructor
EBW8Vector ramp;

// Clear the vector
ramp.Empty();

// Fill the vector with increasing values
for(int i= 0; i < 128; i++)
{

ramp.AddElement((EBW8)i);
}

// Retrieve the 10th element value
EBW8 value= ramp[9];

Exception Management
Functional Guide | Reference: GetPixel, What

//
// This code snippet shows how to manage //

Open eVision User Guide PART I Text and Code Reading Tools

ebaseroi-attach.htm
ebaseroi-setplacement.htm
evector-empty.htm
ebw8vector-addelement.htm
eroic24-getpixel.htm
eexception-what.htm

105

// Open eVision exceptions. //
//

try
{

// Image constructor
EImageC24 srcImage;

// ...

// Retrieve the pixel value at coordinates (56, 73)
EC24 value= srcImage.GetPixel(56, 730);

}

catch(Euresys::Open_eVision_1_1::EException exc)
{

// Retrieve the exception description
std::string error = exc.What();

}

Open eVision User Guide PART I Text and Code Reading Tools

106

3.2. EasyBarCode

Reading a Bar Code
Functional Guide | Reference: Read

///
// This code snippet shows how to read a bar code //
///

// Image constructor
EImageBW8 srcImage;

// Bar code reader constructor
EBarCode reader;

// String for the decoded bar code
std::string result;

// ...

// Read the source image
result = reader.Read(&srcImage);

Reading a Bar Code Following a Given Symbology
Functional Guide | Reference: SetAdditionalSymbologies, SetVerifyChecksum, Detect, Decode,
GetNumDecodedSymbologies

///
// This code snippet shows how to enable a given symbology, //
// enable the checksum verification, perform the bar code //
// detection and retrieve the decoded string. //
///

// Image constructor
EImageBW8 srcImage;

// Bar code reader constructor
EBarCode reader;

// String for the decoded bar code
std::string result;

// ...

// Disable all standard symbologies
reader.SetStandardSymbologies(0);

// Enable the Code32 symbology only
reader.SetAdditionalSymbologies(ESymbologies_Code32);

// Enable checksum verification
reader.SetVerifyChecksum(true);

// Detect all possible meanings of the bar code
reader.Detect(&srcImage);

// Retrieve the number of symbologies for

Open eVision User Guide PART I Text and Code Reading Tools

ebarcode-read.htm
ebarcode-additionalsymbologies.htm
ebarcode-verifychecksum.htm
ebarcode-detect.htm
ebarcode-decode.htm
ebarcode-numdecodedsymbologies.htm

107

// which the decoding process was successful
int numDecoded = reader.GetNumDecodedSymbologies();

if(numDecoded > 0)
{

// Decode the bar code according to the Code32 symbology
result = reader.Decode(ESymbologies_Code32);

}

Reading a Bar Code of Known Location
Functional Guide | Reference: SetKnownLocation, SetCenterXY, SetReadingSize

//
// This code snippet shows how to specify the bar code //
// position and perform the bar code reading. //
//

// Image constructor
EImageBW8 srcImage;

// Bar code reader constructor
EBarCode reader;

// String for the decoded bar code
std::string result;

// ...

// Disable automatic bar code detection
reader.SetKnownLocation(TRUE);

// Set the bar code position
reader.SetCenterXY(450.0f, 400.0f);
reader.SetSize(250.0f, 110.0f);
reader.SetReadingSize(1.15f, 0.5f);

// Read the bar code at the specified location
result = reader.Read(&srcImage);

Reading a Mail Bar Code
Functional Guide | Reference: Read

//
// This code snippet shows how to read Mail Barcodes //
// and retrieve the decoded data. //
//
// Image constructor
EImageBW8 srcImage;
// Mail barcode reader constructor
EMailBarcodeReader reader;

// Select expected symbologies and orientations (optional)
reader.SetExpectedSymbologies(...);
reader.SetExpectedOrientations(...);
// ...
// Read
std::vector<EMailBarcode> codes = reader.Read(srcImage);
// Retrieve the data included in found mail barcodes
for (unsigned int index= 0; index < codes.size(); index++)

Open eVision User Guide PART I Text and Code Reading Tools

ebarcode-knownlocation.htm
erectangleshape-setcenterxy.htm
ebarcode-setreadingsize.htm
emailbarcodereader-read.htm

108

{
std::string text = codes[index].GetText();
std::vector<EStringPair> components = codes[index]. GetComponentStrings();

}

Open eVision User Guide PART I Text and Code Reading Tools

109

3.3. EasyMatrixCode

Automatic Reading
Functional Guide | Reference: Read, GetDecodedString

///
// This code snippet shows how to read a data matrix code //
// and retrieve the decoded string. //
///

// Image constructor
EImageBW8 srcImage;

// Matrix code reader constructor
EMatrixCodeReader reader;

// Matrix code constructor
EMatrixCode mxCode;

// String for the decoded information
std::string result;

// ...

// Read the source image
mxCode = reader.Read(srcImage);

// Retrieve the decoded string
result = mxCode.GetDecodedString();

Reading with Prior Learning
Functional Guide | Reference: SetLearnMaskElement, Learn, Read, GetDecodedString

//
// This code snippet shows how to learn a given data matrix //
// code type (except its flipping status), perform the //
// reading and retrieve the decoded string. //
//

// Images constructor
EImageBW8 model;
EImageBW8 srcImage;

// Matrix code reader constructor
EMatrixCodeReader reader;

// Matrix code constructor
EMatrixCode mxCode;

// String for the decoded information
std::string result;

// ...

// Tell the reader not to take the flipping into account when learning
reader.SetLearnMaskElement(ELearnParam_Flipping, false);

Open eVision User Guide PART I Text and Code Reading Tools

ematrixcodereader-read.htm
ematrixcode-decodedstring.htm
ematrixcodereader-setlearnmaskelement.htm
ematrixcodereader-learn.htm
ematrixcodereader-read.htm
ematrixcode-decodedstring.htm

110

// Learn the model
reader.Learn(model);

// Read the source image
mxCode = reader.Read(srcImage);

// Retrieve the decoded string
result = mxCode.GetDecodedString();

Advanced Tuning of the Search Parameters
Functional Guide | Reference: GetSearchParams, ClearLogicalSize, AddLogicalSize, ClearFamily,
AddFamily, Read, GetDecodedString

//
// This code snippet shows how to explicitly specify the data //
// matrix code logical size and family, perform the reading //
// and retrieve the decoded string. //
//

// Image constructor
EImageBW8 srcImage;

// Matrix code reader constructor
EMatrixCodeReader reader;

// Matrix code constructor
EMatrixCode mxCode;

// String for the decoded information
std::string result;

// ...

// Remove the default logical sizes
reader.GetSearchParams().ClearLogicalSize();

// Add the 15x15 and 17x17 logical sizes
reader.GetSearchParams().AddLogicalSize(ELogicalSize__15x15);
reader.GetSearchParams().AddLogicalSize(ELogicalSize__17x17);

// Remove the default families
reader.GetSearchParams().ClearFamily();

// Add the ECC050 family
reader.GetSearchParams().AddFamily(EFamily_ECC050);

// Read the source image
mxCode = reader.Read(srcImage);

// Retrieve the decoded string
result = mxCode.GetDecodedString();

Retrieving Print Quality Grading
Functional Guide | Reference: SetComputeGrading, GetAxialNonUniformityGrade,
GetContrastGrade, GetPrintGrowthGrade, GetUnusedErrorCorrectionGrade

Open eVision User Guide PART I Text and Code Reading Tools

ematrixcodereader-searchparams.htm
esearchparamstype-clearlogicalsize.htm
esearchparamstype-addlogicalsize.htm
esearchparamstype-clearfamily.htm
esearchparamstype-addfamily.htm
ematrixcodereader-read.htm
ematrixcode-decodedstring.htm
ematrixcodereader-computegrading.htm
ematrixcode-axialnonuniformitygrade.htm
ematrixcode-contrastgrade.htm
ematrixcode-printgrowthgrade.htm
ematrixcode-unusederrorcorrectiongrade.htm

111

//
// This code snippet shows how to read a data matrix code //
// and retrieve its print quality grading. //
//

// Image constructor
EImageBW8 srcImage;

// Matrix code reader constructor
EMatrixCodeReader reader;

// Matrix code constructor
EMatrixCode mxCode;

// ...

// Enable grading computation
reader.SetComputeGrading(TRUE);

// Read the source image
mxCode = reader.Read(srcImage);

// Retrieve the print quality grading
int axialNonUniformityGrade= mxCode.GetAxialNonUniformityGrade();
int contrastGrade= mxCode.GetContrastGrade();
int printGrowthGrade= mxCode.GetPrintGrowthGrade();
int unusedErrorCorrectionGrade= mxCode.GetUnusedErrorCorrectionGrade();

Open eVision User Guide PART I Text and Code Reading Tools

112

3.4. EasyQRCode

Automatic Reading of a QR Code
Functional Guide | Reference: Read, EQRCodeDecodedStream Class

//
// This code snippet shows how to read a QR code //
// and retrieve the decoded data. //
//

// Image constructor
EImageBW8 srcImage;

// QR code reader constructor
EQRCodeReader reader;

// ...

// Set the source image
reader.SetSearchField(srcImage);

// Read
std::vector<EQRCode> qrCodes = reader.Read();

Retrieving Information of a QR Code
Functional Guide | Reference: Read, EQRCode Class

//
// This code snippet shows how to read a QR code //
// and retrieve the associated information. //
//

// Image constructor
EImageBW8 srcImage;

// QR code reader constructor
EQRCodeReader reader;

// ...

// Set the source image
reader.SetSearchField(srcImage);
// Read
std::vector<EQRCode> qrCodes = reader.Read();

// Retrieve version, model and position information
// of the first QR code found, if one was found
if (qrCodes.size() > 0)
{

int version = qrCodes[0].GetVersion();
EQRCodeModel model = qrCodes[0].GetModel();
EQRCodeGeometry geometry = qrCodes[0].GetGeometry();

}

Open eVision User Guide PART I Text and Code Reading Tools

eqrcodereader-read.htm
eqrcodedecodedstream-class.htm
eqrcodereader-read.htm
eqrcode-class.htm

113

Tuning the Search Parameters
Functional Guide | Reference: Read, GetDecodedString

//
// This code snippet shows how to read a QR code //
// and retrieve the decoded data after setting a //
// number of search parameters. //
//

// Image constructor
EImageBW8 srcImage;

// QR code reader constructor
EQRCodeReader reader;

// ...

// Set the source image
reader.SetSearchField(srcImage);

// Set the search parameters
reader.SetMaximumVersion(7);
reader.SetMinimumIsotropy(0.9f);

// Set the searched models
std::vector<EQRCodeModel> models;
models.push_back(EQRCodeModel_Model2);
reader.SetSearchedModels(models);

// Read
std::vector<EQRCode> qrCodes = reader.Read();

// Retrieve the decoded string in best guess mode of the first QR code found
string decodedString = qrCodes[0].GetDecodedString(EByteInterpretationMode_Auto);

Open eVision User Guide PART I Text and Code Reading Tools

ematrixcodereader-read.htm
ematrixcode-decodedstring.htm

114

3.5. EasyOCR

Learning Characters
Functional Guide | Reference: NewFont, SetTextColor, SetMinCharWidth, SetMaxCharWidth,
SetMinCharHeight, SetMaxCharHeight, SetNoiseArea, LearnPatterns, BuildObjects, FindAllChars,
Save

//
// This code snippet shows how to learn characters //
// based on an image featuring a known text and //
// save the corresponding font file. //
//

// Image constructor
EImageBW8 srcImage;

// EOCR constructor
EOCR ocr;

// Text to be learned (all digits)
// Assuming the image contains this text
const std::string text= "0123456789";

// ...

// Create a new fon
ocr.NewFont(8, 11);

// Adjust the segmentation parameters
ocr.SetTextColor(EOCRColor_BlackOnWhite);
ocr.SetMinCharWidth(15);
ocr.SetMinCharWidth(50);
ocr.SetMinCharHeight(15);
ocr.SetMinCharHeight(75);
ocr.SetNoiseArea(15);

// Segment the characters
ocr.BuildObjects(&srcImage);
ocr.FindAllChars(&srcImage);

// Learn the characters
ocr.LearnPatterns(&srcImage, text, EOCRClass_Digit);

// Save the font into a file
ocr.Save("myFont.ocr");

Recognizing Characters
Functional Guide | Reference: Load, Recognize

///
// This code snippet shows how to load a font file, //
// perform a default character recognition operation //
// and perform a character recognition operation //
// using a class filter. //
///

Open eVision User Guide PART I Text and Code Reading Tools

eocr-newfont.htm
eocr-textcolor.htm
eocr-mincharwidth.htm
eocr-maxcharwidth.htm
eocr-mincharheight.htm
eocr-maxcharheight.htm
eocr-noisearea.htm
eocr-learnpatterns.htm
eocr-buildobjects.htm
eocr-findallchars.htm
eocr-save.htm
eocr-load.htm
eocr-recognize.htm

115

// Image constructor
EImageBW8 srcImage;

// EOCR constructor
EOCR ocr;

// Load the font file
ocr.Load("myFont.ocr");

// ...

// Recognize the characters
std::string text= ocr.Recognize(&srcImage, 10, EOCRClass_AllClasses);

// Alternatively
// Define the character filter (2 letters and 3 digits)
std::vector<UINT32> charFilter;
charFilter.push_back(EOCRClass_UpperCase);
charFilter.push_back(EOCRClass_UpperCase);
charFilter.push_back(EOCRClass_Digit);
charFilter.push_back(EOCRClass_Digit);
charFilter.push_back(EOCRClass_Digit);

// Recognize the characters with class filtering
text= ocr.Recognize(&srcImage, 10, charFilter);

3.6. EasyOCR2

Detecting Characters
//
// This code snippet shows how to detect characters //
// in an image, using a few parameters and a topology //
//
// Load an Image
EImageBW8 image;
image.Load("image.tif");
// Attach a ROI to the image
EROIBW8 roi;
roi.Attach(&image, 50, 224, 340, 96);
// Create an EOCR2 instance
EOCR2 ocr2;
// Set the expected character sizes
ocr2.SetCharsWidthRange(EIntegerRange(25,25));
ocr2.SetCharsHeight(37);
// Set the text polarity, in this case WhiteOnBlack
ocr2.SetTextPolarity(EasyOCR2TextPolarity_WhiteOnBlack);
// Set the topology
ocr2.SetTopology(".{10}\n.{3} .{4}");
// Detect the text in the image. The output Text structure contains:
// - an individual textbox for each character
// - an individual bitmap image for each character
// - a threshold value to binarize the bitmap image for each character
// All structured in a hierarchy with Lines –> Words -> Characters
EOCR2Text text = ocr2.Detect(roi);

Open eVision User Guide PART I Text and Code Reading Tools

116

The image used in this code snippet

Learning Characters
//
// This code snippet shows how to learn characters //
// based on an image featuring a known text and //
// save the corresponding character database //
//
// Load an Image
EImageBW8 image;
image.Load("image.tif");
// Attach a ROI to the image
EROIBW8 roi;
roi.Attach(&image, 50, 224, 340, 96);

// Create an EOCR2 instance
EOCR2 ocr2;

// Set the required parameters
ocr2.SetCharsWidthRange(EIntegerRange(25,25));
ocr2.SetCharsHeight(37);
ocr2.SetTextPolarity(EasyOCR2TextPolarity_WhiteOnBlack);
ocr2.SetTopology(".{10}\n.{3} .{4}");

// Learn from the reference image:
// 1) Detect the text in the image
EOCR2Text text = ocr2.Detect(roi);
// 2) Set the true values of the text
text.SetText("Bt121KPJ80\n786 9512");
// 3) Add the characters to the character database
ocr2.Learn(text);

// Save the character database
ocr2.SaveCharacterDatabase("myDB.o2d");

// Alternatively, save the model file.
// This will store the character database and the parameter settings
ocr2.Save("myModel.o2m");

Open eVision User Guide PART I Text and Code Reading Tools

117

The image used in this code snippet

Reading Characters

Reading Using TrueType Fonts

//
// This code snippet shows how to //
// - create a character database from TrueType fonts //
// - read the text in an image //
//

// Load an image
EImageBW8 image;
image.Load("image.tif");

// Attach an ROI
EROIBW8 roi;
roi.Attach(&image, 50, 224, 340, 96);

// Create an EOCR2 instance
EOCR2 ocr2;

// Set the required parameters
ocr2.SetCharsWidthRange(EIntegerRange(25,25));
ocr2.SetCharsHeight(37);
ocr2.SetTopology("[LN]{10}\nN{3} N{4}");
ocr2.SetTextPolarity(EasyOCR2TextPolarity_WhiteOnBlack);

// Add TrueType character to the character database
ocr2.AddCharactersToDatabase("C:\\Windows\\Fonts\\calibrib.ttf");
ocr2.AddCharactersToDatabase("C:\\Windows\\Fonts\\yugothb.ttc");

// Read text from the image
std::string result = ocr2.Read(roi);

The image used in this code snippet

Reading Using EOCR2 Character Database

//
// This code snippet shows how to //
// - load a pre-made character database //
// - read the text in an image //

Open eVision User Guide PART I Text and Code Reading Tools

118

//

// Load an image
EImageBW8 image;
image.Load("image.tif");

// Attach an ROI
EROIBW8 roi;
roi.Attach(&image, 50, 224, 340, 96);

// Create an EOCR2 instance
EOCR2 ocr2;

// Set the required parameters
ocr2.SetCharsWidthRange(EIntegerRange(25,25));
ocr2.SetCharsHeight(37);
ocr2.SetTopology("[LN]{10}\nN{3} N{4}");
ocr2.SetTextPolarity(EasyOCR2TextPolarity_WhiteOnBlack);

// Add a pre-made character database to the EOCR2 instance
ocr2.AddCharactersToDatabase("myDB.o2d");

// Read text from the image
std::string result = ocr2.Read(roi);

Reading Using EOCR2 Model File

//
// This code snippet shows how to //
// - load a pre-made model file //
// - read the text in an image //
//

// Load an image
EImageBW8 image;
image.Load("image.tif");

// Attach an ROI
EROIBW8 roi;
roi.Attach(&image, 50, 224, 340, 96);

// Create an EOCR2 instance
EOCR2 ocr2;

// Load a pre-made model file, this will:
// - (re)set all parameters
// - add the character database in the model file to the EOCR2 instance
ocr2.Load("myModel.o2m");

// Read text from the image
std::string result = ocr2.Read(roi);

Open eVision User Guide PART I Text and Code Reading Tools

	1. Dealing with Pixel Containers and Files
	1.1. Pixel Container Definition
	1.2. Pixel Container Types
	1.3. Supported Image File Types
	1.4. Pixel and File Types Compatibility
	1.5. Color Types

	2. Manipulating Pixels Containers and Files
	2.1. Pixel Container File Save
	2.2. Pixel Container File Load
	2.3. Memory Allocation
	2.4. Image and Depth Map Buffer
	2.5. Image Coordinate Systems
	2.6. Image Drawing and Overlay
	2.7. 3D Rendering of 2D Images
	2.8. Vector Types and Main Properties
	2.9. ROI Main Properties
	2.10. Arbitrarily Shaped ROI (ERegion)
	2.11. Flexible Masks
	2.12. Profile

	PART I : Text and Code Reading Tools
	0.1. EasyBarCode - Reading Bar Codes
	Reading Bar Codes
	Reading Mail Bar Codes

	0.2. EasyMatrixCode - Reading Matrix Codes
	EasyMatrixCode vs EasyMatrixCode2
	EasyMatrixCode
	Specifications
	Workflow
	Reading a Matrix Code
	Learning a Matrix Code
	Computing the Print Quality
	Using GS1 Data Matrix Codes

	EasyMatrixCode2
	Specifications
	Workflow
	Reading a Matrix Code
	Learning a Matrix Code
	Computing the Print Quality
	Using GS1 Data Matrix Codes
	Asynchronous Processing
	Advanced Parameters

	0.3. EasyQRCode - Reading QR Codes
	Workflow
	QR Codes Specifications
	Reading QR Codes

	0.4. EasyOCR - Reading Texts
	Workflow
	Learning Process
	Segmenting
	Recognition

	0.5. EasyOCR2 - Reading Texts (Improved)
	Workflow
	Detection
	Learning
	Recognition

	1. Using Open eVision Studio
	1.1. Selecting your Programming Language
	1.2. Navigating the Interface
	1.3. Running Tools on Images
	Step 1: Selecting a Tool
	Step 2: Opening an Image
	Step 3: Managing ROIs
	Step 4: Configuring the Tool
	Step 5: Running the Tool and Checking Execution Time
	Step 6: Using the Generated Code

	1.4. Pre-Processing and Saving Images

	2. Tutorials
	2.1. EasyBarCode
	Reading Bar Codes Automatically

	2.2. EasyMatrixCode
	Reading Data Matrix Codes Automatically
	Learning a Data Matrix Code and Creating an EasyMatrixCode Model File

	2.3. EasyOCR
	Learning Characters and Creating an EasyOCR Font
	Recognizing Characters According to a Font

	3. Code Snippets
	3.1. Basic Types
	Loading and Saving Images
	Interfacing Third-Party Images
	Retrieving Pixel Values
	Importing Bitmap from the Resources
	ROI Placement
	Vector Management
	Exception Management

	3.2. EasyBarCode
	Reading a Bar Code
	Reading a Bar Code Following a Given Symbology
	Reading a Bar Code of Known Location
	Reading a Mail Bar Code

	3.3. EasyMatrixCode
	Automatic Reading
	Reading with Prior Learning
	Advanced Tuning of the Search Parameters
	Retrieving Print Quality Grading

	3.4. EasyQRCode
	Automatic Reading of a QR Code
	Retrieving Information of a QR Code
	Tuning the Search Parameters

	3.5. EasyOCR
	Learning Characters
	Recognizing Characters

	3.6. EasyOCR2
	Detecting Characters
	Learning Characters
	Reading Characters
	Reading Using TrueType Fonts
	Reading Using EOCR2 Character Database
	Reading Using EOCR2 Model File

