72 2urasys

Empowering Computer Vision

USER GUIDE

Open eVision

3D Processing Tools

f I

4y &

elimimls
1= =)

R

p

VYYY grg
gem Rl s

o

© EURESYS s.a. 2021 - Document D133ET-Using 3D Processing Tools C++-Open eVision-2.16.1.1156 built

Open eVision User Guide & euresys

This documentation is provided with Open eVision 2.16.1 (doc build 1156).
WWW.euresys.com

https://www.euresys.com/

Open eVision User Guide & euresys

Contents

1. Dealing with Pixel Containersand Files ... 5
1.1. Pixel Container Definition 5
1.2, PiXel CoNtaiNer Ty PO o I
1.3. Supported Image File TYPeS 8
1.4. Pixel and File Types Compatibility 9
15, GO0 Ty PO 11

2. Manipulating Pixels Containersand Files ... 12
2.1. Pixel Container File Savel 12
2.2. Pixel Container File Load 14
2.3, MemoOry AllOCatioN ... 15
2.4. Image and Depth Map Buffer 16
2.5. Image Coordinate SYyStems 19
2.6. Image Drawing and OVerlay ... 20
2.7.3D Rendering of 2D IMaGESo 20
2.8. Vector Types and Main Properties 22
2.9. ROI Main Properties 26
2.10. Arbitrarily Shaped ROI (EReGION) 28
211 Flexible Masks 35
2.0, Profile 39

303D TO0IS oo 41
3.1, Easy3D - Using 3D TOOISEt ... 41

BasiC CONCEPES .. 41
Static Methods ... o 45
POINt CloUd 48
Mapping ALt DULES 48
Coordinates Transformations 48
Reducing a Point Cloud 49
Managing Planes 50

Al NN g 53
=] o 56
74 1= o P 57
Generating @ ZMapP 57
Creating a Point Cloud from a ZMap 59
Managing the Coordinates 60
B VW T 61
PhotOomMetriC STEreO ... o 68
Photometric Stereo and ProCeSSo i 68
Calibration 69
Computation and ResULES 71
Processing the Results with Open eVision Tools ... 74
Improving the ReSUILS 76
3.2. Easy3DLaserLine - Laser Line Extraction and Calibration ... 79
Laser Triangulation 79
The Laser Line 3D Acquisition Pipeline 80
Laser Line EXTraction 81
CalibratioN o 85
Object-Based Calibration Guidelines 87
3.3. Easy3DObject - Extracting 3D Objects ... 96
Purpose and WorkfloW ... 96
O eCt FoatUIS . 97
Extracting and Using ObjeCts 103
Use Case - INSpecting a PCB 107
3.4. Easy3DMatch - 3D Alignment and Comparison ..o 113

Open eVision User Guide @ euresys

Purpose and Work oW .. . 113

Al gNMENt (E3D Al gNer) . 115
Comparison (E3DCOMPAIEr) e 118
Alignment and Comparison (E3DMatcher) 122

4, L0 SN PP OIS oo 129
4L BaSiC TY PO o 130
Loading and SaVving IMages i 130
Interfacing Third-Party Images 130
Retrieving PiXel ValUes 131

RO PlaCemMENt 131

Vet Or Mana g M Nt 132
EXCePtioN Management . . .o 132

5. Application EXamples ... 133
5.1. Measuring a Remote Controller 133
5.2, nSpecting @ PCB 144
5.3. Measuring the Warpage of @a PCB 146

Open eVision User Guide @ euresys

1. Dealing with Pixel Containers and

Files

1.1. Pixel Container Definition

Images

Open eVision image objects contain image data that represents rectangular images.

Each image object has a data buffer, accessible via a pointer, where pixel values are stored
contiguously, row by row.

Image width = number of pixels per line

e
[o T

-

Pointer

number of lines

Image height

Visible image

Image main parameters

An Open eVision image object has a rectangular array of pixels characterized by EBaseR0I
parameters .

e Width is the number of columns (pixels) per row of the image.

* Height is the number of rows of the image. (Maximum width / height is 32,767 (215-1) in
Open eVision 32-bit, and 2,147,483,647 (231-1) in Open eVision 64-bit.)

e Sizeis the width and height.

The Plane parameter contains the number of color components. Gray-level images = 1. Color
images = 3.

Classes

Image and ROI classes derive from abstract class EBaseR0I and inherit all its properties.

ebaseroi-class.htm
ebaseroi-width.htm
ebaseroi-height.htm
ebaseroi-setsize.htm
ebaseroi-planesperpixel.htm
ebaseroi-class.htm

Open eVision User Guide @ euresys

EBaseROI
EROIBW1
ElmageBW1

EROI...

Elmage...

EROIC24A

EimageC24A

Depth maps

A depth map is a way to represent a 3D object using a 2D grayscale image where each pixel in
the image represents a 3D point.

s - z-r‘*_' "

The pixel coordinates are the representation of the X and Y coordinates of the point while the
grayscale value of the pixel is a representation of the Z coordinate of the point.

Point clouds

A point cloud (https://en.wikipedia.org/wiki/Point_cloud) is an unstructured set of 3D points
representing discrete positions on the surface of an object.

Open eVision User Guide @ euresys

3D point clouds are produced by various 3D scanning techniques, such as Laser Triangulation,
Time of Flight or Structured Lighting.

1.2. Pixel Container Types

Reference

Images

Several image types are supported according to their pixel types: black and white, gray levels,
color, etc.

Easy.GetBestMatchinglmageType returns the best matching image type for a given file on disk.

1-bit black and white images (8 pixels

BW1 are stored in 1 byte) FImageBlii-
8-bit grayscale images (each pixel is

BWS stored in 1 byte) FImageBlis
16-bit grayscale images (each pixel is

BW16 stored in 2 bytes) FImageBli-6
32-bit grayscale images (each pixel is

B stored in 4 bytes) FImagebii32
15-bit color images (each pixel is
stored in 2 bytes).

C15 Compatible with Microsoft® Windows EImageCs5
RGB15 color images and MultiCam
RGB15 format.

eimagetype-enum.htm
easy-getbestmatchingimagetype.htm
eimagebw1-class.htm
eimagebw8-class.htm
eimagebw16-class.htm
eimagebw32-class.htm
eimagec15-class.htm

Open eVision User Guide @ euresys

16-bit color images (each pixel is
stored in 2 bytes).
C16 Compatible with Microsoft® Windows EImageC+6
RGB16 color images and MultiCam
RGB16 format.

C24 images store 24-bit color images
(each pixel is stored in 3 bytes).
C24 Compatible with Microsoft® Windows EImageC24
RGB24 color images and MultiCam
RGB24 format.

C24A images store 32-bit color images
(each pixel is stored in 4 bytes).

C24A Compatible with Microsoft® Windows EImageC24A
RGB32 color images and MultiCam
RGB32 format.
Depth Maps

8 and 16-bit depth map values are stored in buffers compatible with the 2D Open eVision
images.

8-bit depth map (each pixel is stored in

EDepths 1 byte as an integer) EDepthMtaps
16-bit depth map (each pixel is stored
ElDEREnLE in 2 bytes as a fixed point) EDepthMap-6
32-bit depth map (each pixel is stored
EDepth32f in 4 bytes as a float) EDepthMap32f
Point Clouds
Point Cloud Set of points coordinates (stored as EPointCloud
float)
1.3. Supported Image File Types
Reference
BMP Uncompressed image data format (Windows Bitmap Format)
JPEG Lossy data compression standard issued by the Joint Photographic Expert
Group registered as ISO/IEC 10918-1. Compression irretrievably loses quality.
JFIF JPEG File Interchange Format

Data compression standard issued by the Joint Photographic Expert Group
JPEG-2000 registered as ISO/IEC 15444-1 and ISO/IEC 15444-2. Open eVision supports
only lossy compression format, file format and code stream variants.

eimagec16-class.htm
eimagec24-class.htm
eimagec24a-class.htm
edepthmap8-class.htm
edepthmap16-class.htm
edepthmap32f-class.htm
epointcloud-class.htm
eimagefiletype-enum.htm

Open eVision User Guide @ euresys

- code stream describes the image samples.
- file format includes meta-information such as image resolution and color
space.

PNG Lossless data compression method (Portable Network Graphics).

Euresys proprietary image file format obtained from the serialization of Open

Saellree eVision image objects.

Tag Image File Format is currently controlled by Adobe Systems and uses the
LibTIFF third-party library to process images written for 5.0 or 6.0 TIFF
specification.

TIFF File save operations are lossless and use CCITT 1D compression for 1-bit
binary pixel types and LZW compression for all others.
File load operations support all TIFF variants listed in the LibTIFF
specification.

1.4. Pixel and File Types Compatibility

Depth map to image conversion

For 8- and 16-bit depth maps, the method returns a compatible image object
(respectively and) that can be used with Open eVision’s 2D processing
features.

Pixel and file types compatibility

Pixel access

The recommended method to access pixels is to use SetImagePtr and GetImagePtr to embed the
image buffer access in your own code. See also Image Construction and Memory Allocation and
Retrieving Pixel Values.

Use of the following methods should be limited because of the overhead incurred by each
function call:

Direct access

EROIBWS: :GetPixel and SetPixel methods are implemented in all images and ROI classes to read
and write a pixel value at given coordinates. To scan all pixels of an image, you could run a
double loop on the X and Y coordinates and use or each iteration, but this is not
recommended.

ebaseroi-setimageptr.htm
ebaseroi-getimageptr.htm
eroibw8-getpixel.htm
eroibw8-setpixel.htm

Open eVision User Guide @ euresys

TIP

For performance reasons, these accessors should not be used when a
significant number of pixels needs to be processed. When that is the case,
retrieving the internal buffer pointer using and iterating on the
pointer is recommended.

Quick Access to BWS Pixels

In BW8 images, a call to EBW8PixelAccessor: :GetPixel or SetPixel will be faster than a direct
EROIBWS: :GetPixel or SetPixel.

Supported structures

e EBW.; EBWS, EBW32

o EC.5 (%), EC6 (*), EC24 (%)

e EC24A

e EDepth8, EDepths+6, EDepth32f,

(*) These formats support RGB15 (5-5-5 bit packing), RGB16 (5-6-5 bit packing) and RGB32 (RGB
+ alpha channel) but they must be converted to/from EC24 using EasyImage::Convert before any

processing.

Ve

NOTE

Transition with versions prior to eVision 6.5 should be seamless: image pixel
types were defined using typedef of integral types, pixel values were treated
as unsigned numbers and implicit conversion to/from previous types is
provided.

A

Pixel and File Type compatibility during Load or Save operations

BW1 Ok N/A N/A Ok Ok Ok

BWS ok ok ok Ok ok Ok
BW16 NJA NJA Ok Ok (O*‘f*) Ok
Ok
BW32 N/A N/A N/A NA e O
C15 ok Ok (**) Ok (**) Ok (**) Ok(**) Ok
16 ok Ok (**) Ok (**) Ok (**) Ok(**) Ok
24 Ok Ok Ok Ok ok (**) Ok
C24A Ok N/A N/A Ok NJ/A Ok
Depth8 Ok Ok Ok Ok Ok Ok

ebw8pixelaccessor-getpixel_.htm
ebw8pixelaccessor-setpixel.htm
eroibw8-getpixel.htm
eroibw8-setpixel.htm
ebw1-struct.htm
ebw8-struct.htm
ebw32-struct.htm
ec15-struct.htm
ec16-struct.htm
ec24-struct.htm
ec24a-struct.htm
edepth8-struct.htm
edepth16-struct.htm
edepth32f-struct.htm
easyimage-convert.htm

Open eVision User Guide @ euresys

Type | BMP | JPEG | JPEG2000 | PNG | TIFF | Serialized |
Ok

Depth16 N/A N/A ok ok ey Ok

Depth32f N/A N/A N/A N/A N/A Ok

N/A: Not supported. An exception occurs if you use the combination.

Ok: Image integrity is preserved with no data loss (apart from JPEG and JPEG2000, lossy
compression).

(**) C15 and C16 formats are automatically converted into C24 during the save operation.

(***) BW16 and BW32 are not supported by Baseline TIFF readers.

1.5. Color Types

EISH: Intensity, Saturation, Hue color system.

ELAB: CIE Lightness, a*, b* color system.

ELCH: Lightness, Chroma, Hue color system.

ELSH: Lightness, Saturation, Hue color system.

ELUV: CIE Lightness, u*, v* color system.

ERGB: NTSC/PAL/SMPTE Red, Green, Blue color system.
EVSH: Value, Saturation, Hue color system.

EXYZ: CIE XYZ color system.

EYIQ: CCIR Luma, Inphase, Quadrature color system.
EYSH: CCIR Luma, Saturation, Hue color system.

EYUV: CCIR Luma, U Chroma, V Chroma color system.

eish-struct.htm
elab-struct.htm
elch-struct.htm
elsh-struct.htm
eluv-struct.htm
ergb-struct.htm
evsh-struct.htm
exyz-struct.htm
eyiq-struct.htm
eysh-struct.htm
eyuv-struct.htm

Open eVision User Guide @ euresys

2. Manipulating Pixels Containers and

Files

2.1. Pixel Container File Save

Images and depth maps

The Save method of an image or the SaveImage method of a depth map or a ZMap saves the image
data of an image or of a depth map or a ZMap object into a file using two arguments:

o Path: path, file name and file name extension.

o Image File Type: if omitted, the file name extension is used.

Images bigger than 65,536 (either width or height) must be saved in Open eVision proprietary
format.

Save throws an exception when:
0 The requested image file format is incompatible with the image pixel types
o The Auto file type selection method and the file name extension is not supported

TIP
When saving a 16-bit depth map, the fixed point precision is lost and the
pixels are considered as 16-bit integers.

Image file type arguments

EImageFileType_Auto(*) Automatically determined by the filename extension. See below.

EImageFileType Euresys Open eVision Serialization.

EImageFileType_Bmp Windows bitmap - BMP

EImageFileType_Jpeg JPEG File Interchange Format - JFIF
EImageFileType_Jpeg2000 JPEG 2000 File format/Code Stream -JPEG2000
EImageFileType_Png Portable Network Graphics - PNG

EImageFileType _Tiff Tagged Image File Format - TIFF
(*) Default value.

ebaseroi-save.htm
edepthmap8-saveimage.htm
ebaseroi-save.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm

Open eVision User Guide & euresys

Assigned image file type if argument is InageFiletype Auto Or missing

File name extension(*) | Automatically assigned image file type

BMP Windows Bitmap Format

JPEG, JPG JPEG File Interchange Format - JFIF
JP2 JPEG 2000 file format

J2K, J2C JPEG 2000 Code Stream

PNG Portable Network Graphics

TIFF, TIF Tagged Image File Format

(*) Case-insensitive.

Saving JPEG and JPEG2000 lossy compressions

SaveJpeg and Savelpeg2k specify the compression quality when saving compressed images. They
have two arguments:
o Path: a string of characters including the path, filename, and file name extension.
o Compression quality of the image file, an integer value in range [0: 100].
Savelpeg saves image data using JPEG File Interchange Format - JFIF.
SaveJpeg2K saves image data using JPEG 2000 File format.

JPEG compression values

JPEG_DEFAULT_QUALITY (-1) Default quality (*)

100 Superb image quality, lowest compression factor
75 Good image quality ()

50 Normal image quality

25 Average image quality

10 Bad Image quality

(*) The default quality corresponds to the good image quality (75).

Representative JPEG 2000 compression quality values

-1 Default quality (*)

1 Highest image quality, lowest compression factor
16 Good Image Quality (*) (16:1 rate)

512 Lowest image quality, highest compression factor

(*) The default quality corresponds to the good image quality (16:1 rate).

ebaseroi-savejpeg.htm
ebaseroi-savejpeg2k.htm
ebaseroi-save.htm
ebaseroi-savejpeg2k.htm

Open eVision User Guide @ euresys

Saving point clouds

Use the following methods to save a point cloud in a specific format:

oo ooogo o

TIP

EPointCloud:
EPointCloud:
EPointCloud:
EPointCloud:
EPointCloud:
EPointCloud:

:Save: Open eVision proprietary file format.
:SaveCSV: CSV file.
:SaveOBJ: OBJ file.
:SavePCD: PCD file.
:SavePLY: PLY file.
:SaveXYZ: XYZ file.

The PCD format is supported in ASCII and binary modes.

2.2. Pixel Container File Load

Loading images and depth maps

e Use the Load method to load image data into an image object:
o It has one argument: the path: path, filename, and file name extension.
o File type is determined by the file format.
o The destination image is automatically resized according to the size of the image on disk.

e The Load method throws an exception when:
o File type identification fails
o File type is incompatible with pixel type of the image object

TIP

Serialized image files of Open eVision 1.1 and newer are incompatible with
serialized image files of previous Open eVision versions.

TIP

When loading a BW16 image (with integer values) in a depth map, the fixed
point precision set in the depth map (0 by default) is left unchanged and

used.

epointcloud-save.htm
epointcloud-savecsv.htm
epointcloud-saveobj.htm
epointcloud-savepcd.htm
epointcloud-saveply.htm
epointcloud-savexyz.htm
ebaseroi-load.htm
ebaseroi-load.htm

Open eVision User Guide @ euresys

Loading point clouds

Use the following methods to load a point cloud saved in a specific format:
EPointCloud: :Load: Open eVision proprietary file format.

EPointCloud: : LoadCSV: CSV file.

EPointCloud: : Load0BJ: OBJ file.

EPointCloud: : LoadPCD: PCD file.

EPointCloud: : LoadPLY: PLY file.

EPointCloud: : LoadXYZ: XYZ file.

oo ooogo o

TIP
- The PCD format is supported in ASCII and binary modes.
- The PLY is supported only in ASCII mode.

2.3. Memory Allocation

An image can be constructed with an internal or external memory allocation.

Internal memory allocation

The image object dynamically allocates and deallocates a buffer.
o Memory management is transparent.
o When the image size changes, reallocation occurs.
o When an image object is destroyed, the buffer is deallocated.

To declare an image with internal memory allocation:

a. Construct an image object, for instance EInageBiis, either with width and height arguments,
OR using the SetSize function.

b. Access a given pixel. There are several functions that do this. GetInagePtr returns a pointer
to the first byte of the pixel at the given coordinates.

External memory allocation

The user controls buffer allocation or links a third-party image in the memory buffer to an Open
eVision image.

o Image size and buffer address must be specified.

o When an image object is destroyed, the buffer is unaffected.

epointcloud-load.htm
epointcloud-loadcsv.htm
epointcloud-loadobj.htm
epointcloud-loadpcd.htm
epointcloud-loadply.htm
epointcloud-loadxyz.htm
eimagebw8-class.htm
ebaseroi-setsize.htm
ebaseroi-getimageptr.htm

Open eVision User Guide @ euresys

To declare an image with external memory allocation:
a. Declare an image object, for instance EInageBus.
b. Create a suitably sized and aligned buffer (see Image Buffer).

c. Assign the buffer to the image with SetImagePtr.

NOTE

If your buffer rows are not aligned on 4 bytes, you cannot use SetImagePtr. In
that case, use InitializeFromUnalignedBuffer instead.

Please note, however, that this allocates the memory internally and copies
the external buffer into the internal one instead of using the external one
directly.

2.4. Image and Depth Map Buffer

Image and depth map pixels are stored contiguously, from left to right and from top row to
bottom row, in Windows bitmap format (top-down DIB -device-independent bitmap-) into an
associated buffer.

The buffer address is a pointer to the start address of the buffer, which contains the top left
pixel of the image.

Image width = number of pixels per line

Pointer s

o B |

- |] |
3
2

=

L Sl = ol |3
5 | O 1g| |2
i ~ — 1 & =
2 | @ | |a
3 g | |2
® 5 | |2
@ &
o {h
= v
m
¥ Vigible image

L. A

= =
Image buffer pitch

Image buffer pitch

e Alignment must be a multiple of 4 bytes.

e Open eVision 1.2 onwards default pitch is 32 bytes for performance reasons (Open eVision
1.1.5 was 8 bytes).

eimagebw8-class.htm
ebaseroi-setimageptr.htm
ebaseroi-setimageptr.htm
eimagebw8-initializefromunalignedbuffer.htm

Open eVision User Guide @ euresys

Memory layout

e EImageBll-stores 8 pixels in one byte.
Example memory layout of the first 2 pixels of a BW1 image buffer:
Byte 0 Byte 1 ~+___Increasing address |

3

e EImageBW8 and EDepthMap8 store each pixel in one byte.

Bits

Example memory layout of the first pixels of a BW8 image buffer:
o

)
5 8

increasing address A

Bits

e EImageBli-6 stores each pixel in a 16-bit word (two bytes).

Example memory layout of the first pixels of a BW16 image buffer:

Pixel 0 Pixel 1

’ - - . - i, .
22 29
RN T]
o = N W increasing address

w

Bits

e EImageC.5 stores each pixel in 2 bytes. Each color component is coded with 5-bits.
The 16th bit is left unused.

eimagebw1-class.htm
eimagebw8-class.htm
edepthmap8-class.htm
eimagebw16-class.htm
eimagec15-class.htm

Open eVision User Guide @ euresys

Example memory layout of the first pixels of a C15 image buffer:

Pixel 0 Pixel 1

- . e,

-rmm-r
s &
[S o

r

o
&
=

' | =14g

Increasing address
|

L3

e EImageC.6 stores each pixel in 2 bytes. The first and third color components are coded with 5-
bits.

The second color component is coded with 6-bits.

Example memory layout of the first pixels of a C16 image buffer:

Pixel 0 Pixel 1

Increasing :?D'EI'J'EF.‘H*

Bits

EDepthMap.6 store each pixel in 2 bytes using a fixed point format.
EImageC24 stores each pixel in 3 bytes. Each color component is coded with 8-bits.

Example memory layout of the first pixels of a C24 image buffer:

Pixel 0 Pixel 1 .
. M S— - —F"""l—__‘_.—l"ﬁ"h-_"
m @ @ m @ M@
- e m a e N
m m m m w w
= — L L= on

Increasing address

r —— = s e e e e g

Bits

0
1
-
3
4
5
&
[

eimagec16-class.htm
edepthmap16-class.htm
eimagec24-class.htm

Open eVision User Guide @ euresys

e [EImageC24A stores each pixel in 4 bytes. Each color component is coded with 8-bits.
The alpha channel is also coded with 8-bits.

Example memory layout of the first pixels of a C24A image buffer:

Pixel 0 Pixel 1 ‘o

i, e

m

o s
5 & &
= == M

£ aifg
v aiig
EEE
| g aiig
L aifg

Increasing address =

Bits

L iy
FEUUELD Eydpy

e EDepthMap32f store each pixel in 4 bytes using a float format.

2.5. Image Coordinate Systems

The conventions below apply to all Open eVision functions and results.
o Pixel coordinates are usually given as integer numbers.
o Some results can use subpixel precision with real (floating point) numbers.
o Some exceptions apply and are documented per librarie.

Integer coordinates

e The origin (0,0) of the coordinate system is the upper left pixel of the image.
e The lower right pixel is (width-1, height-1).

0 1 2 width-1

0 ,——b)(
Y

height-1

Buffer/Pixel Coordinates (integer)

eimagec24a-class.htm
edepthmap32f-class.htm

Open eVision User Guide @ euresys

Real coordinates

e With floating point (x,y) coordinates, the origin is the upper left corner of the upper left pixel.
e The first pixel area ranges in [0,1[for X and Y axis.

e Coordinates greater or equal than the width or the height are outside the image.
= x=1. x=width
:;gg \F;.g / y:D.{;

=05 LA
y=0.5

x=0.0

\Fheig\hi

2.6. Image Drawing and Overlay

e Drawing uses Windows GDI (Graphics Device Interface) system calls.
o MFC (Microsoft Foundation Class) applications normally use event handler to draw,
where a pointer to a device context is available.
o Borland/CodeGear OWL or VCL use a event handler.

e The color palette in 256-color display mode gives optimal rendering.

e Gray-level images can be improved using LUTs (LookUp Tables) (using histogram stretching
techniques or pseudo-coloring).

e The zoom can be different horizontally and vertically.
e DrawFrameWithCurrentPen method draws a frame.

e Non-destructive overlaying drawing operations do not alter the image contents, such as

/

e Destructive overlaying drawing operations alter the image contents by drawing inside the
image such as Easy: :0penImageGraphicContext. Gray-level [color] images can only receive a gray-
level [color] overlay.

2.7. 3D Rendering of 2D Images

These images are viewed by rotating them around the X-axis, then the Y-axis.

ebaseroi-drawframewithcurrentpen.htm
easy-openimagegraphiccontext.htm

Open eVision User Guide @ euresys

Gray 3D rendering

Easy::Render3D prepares a 3-dimensional rendering where gray-level values are altitudes.
Magnification factors in the three directions (X = width, Y = height and Z = depth) can be given.
The rendered image appears as independent dots whose size can be adjusted to make the
surface more or less opaque.

3D rendering

Color histogram 3D rendering

Easy::RenderColorHistogram prepares a 3-dimensional rendering of a color image histogram.
The pixels are drawn in the RGB space (not XY-plane) to show clustering and dispersion of RGB

values.
This function can process pixels in other color systems (using EasyColor to convert), but the raw

RGB image is required to display the pixels in their usual colors.

Magnification factors in all three directions (X = red, Y = green and Z = blue) can be given.

Color histogram rendering

easy-render3d.htm
easy-rendercolorhistogram.htm

Open eVision User Guide @ euresys

2.8. Vector Types and Main Properties

A vector is a one-dimensional array of pixels (taken from an image profile or contour).

EVector is the base class for all vectors. It contains all non-type-specific methods, mainly for
counting elements and serialization.

| Value Index PRed Green Blue
0] 15 5 3

1 7 4 u]

2 5 g u]

3 el 5 u]

4 29 1 u]

5 55 & 9

& 120 15 9

7 139 24 17

- Index g 157 26 18
. a 161 17 =]

10 165 13 u]

200 206 11 170 14 1

Profile in a C24 image, RGB values plot along profile and RGB values array (EC24Vector)

A vector manages an array of elements. Memory allocation is transparent, so vectors can be
resized dynamically. Whenever a function uses a vector, the vector type, size and structure are
automatically adjusted to suit the function needs.

The use of vectors is quite straightforward:

e To create a vector of the appropriate type:
o Use its constructor and preallocate elements if required.

e To fill a vector with values:
o Call the Evector: :Empty member to empty it.
o Call the EC24Vector: :AddElement member to add elements one by one.
o Use the indexing to access any element.

e To access a vector element, either for reading or writing:
0 Use the brackets operator EC24Vector: :operator[].

e To determine the current number of elements:
o Use the EVector: :NumElements member.

e To draw the vector:

o A pixel vector is a plot of the element values as a function of the element index, so its
graphical appearance depends on its type. You can draw a vector in a window. For
legibility, the drawing should appear on a neutral background.

o Drawing is done in the device context associated to the desired window. By default,
curves are drawn in blue and annotations in black. You can define:

, , , , and

o The EC24Vector has three curves drawn instead of one, each corresponding to a color

component. By default the red, blue and green pens are used.

i b

evector-class.htm
ec24vector-class.htm
evector-empty.htm
ec24vector-addelement.htm
ec24vector-operator_index.htm
evector-numelements.htm
ec24vector-class.htm

Open eVision User Guide & euresys

Vector types

e EBW8Vector: a sequence of gray-level pixel values, often extracted from an image profile
(used by EasyImage: :Lut, EasyImage: :SetupEqualize, EasyImage: : ImageToLineSegment,
EasyImage: :LineSegmentToImage, EasyImage: :ProfileDerivative...).

4 Value
215

e LTI
o oL UL LI

50

0 10 20 30 40 50 60 70 BO S5

Graphical representation of an EBW8Vector (see Draw method)

e EBW-6Vector: a sequence of gray-level pixel values, using an extended range (16 bits), mainly
for intermediate computations.

26513 peee
oo L LT
10000 W"'IJ L LW | "‘»\JH

Graphical representation of an EBW.6Vector

e EBW32Vector: a sequence of gray-level pixel values, using an extended range (32 bits), mainly
for intermediate computations
(used in EasyImage: :ProjectOnARow, EasyImage: :ProjectOnAColumn, ...).

4 Value

Index

0 100 200 300 400 500 60O 767

Graphical representation of an EBW32Vector

ebw8vector-class.htm
easyimage-lut.htm
easyimage-setupequalize.htm
easyimage-imagetolinesegment.htm
easyimage-linesegmenttoimage.htm
easyimage-profilederivative.htm
ebw8vector-class.htm
ebw8vector-draw.htm
ebw16vector-class.htm
ebw16vector-class.htm
ebw32vector-class.htm
easyimage-projectonarow.htm
easyimage-projectonacolumn.htm
ebw32vector-class.htm

Open eVision User Guide & euresys

e EC24Vector: a sequence of color pixel values, often extracted from an image profile
(used by EasyImage: :ImageTolLineSegment, EasyImage: :LineSegmentToImage,
EasyImage::ProfileDerivative, ...).

A vale
254
200 il A
s LA L |
111 (A
50 1UHJH “]
e L

a 20 40 60 B0 35

Graphical representation of an EC24Vector

e EBW8PathVector: a sequence of gray-level pixel values, extracted from an image profile or
contour, with corresponding pixel coordinates
(used by EasyImage: :ImageToPath, EasyImage: :PathToImage, ...).

Bt121KPJ50
069 9328

AABMAAAAR SRR

Graphical representation of an EBW8PathVector (see Draw method)

e EBW-6PathVector: a sequence of gray-level pixel values, extracted from an image profile or
contour, with corresponding pixel coordinates
(used by EasyImage: :ImageToPath, EasyImage: :PathToImage, ...).

Bt121KPJ50
069 9328

ASBAAAARASAS

Graphical representation of an EBW-6PathVector (see Draw method)

ec24vector-class.htm
easyimage-imagetolinesegment.htm
easyimage-linesegmenttoimage.htm
easyimage-profilederivative.htm
ec24vector-class.htm
ebw8pathvector-class.htm
easyimage-imagetopath.htm
easyimage-pathtoimage.htm
ebw8pathvector-class.htm
ebw8pathvector-draw.htm
ebw16pathvector-class.htm
easyimage-imagetopath.htm
easyimage-pathtoimage.htm
ebw16pathvector-class.htm
ebw16pathvector-draw.htm

Open eVision User Guide @ euresys

e EC24Pathvector: a sequence of color pixel values, extracted from an image profile or contour,
with corresponding pixel coordinates
(used by EasyImage::ImageToPath, EasyImage: :PathToImage, ...).

Graphical representation of an EC24PathVector (see Draw method)

e EBWHistogramVector: a sequence of frequency counts of pixels in a BW8 or BW16 image
(used by EasyImage::IsodataThreshold, EasyImage: :Histogram, EasyImage: :AnalyseHistogram,
EasyImage::SetupEqualize, ...).

4 Count
6187

. Value

0 50 100 150 200 250

Graphical representation of an EBWHistogramVector (see Draw method)

e EPathVector: a sequence of pixel coordinates. The corresponding pixels need not be
contiguous
(used by EasyImage::PathToImage and EasyImage: :Contour).

Graphical representation of an EPathVector (see Draw method)

e EPeakVector: peaks found in an image profile
(used by EasyImage::GetProfilePeaks).

e [EColorVector: a description of colors
(used by EasyColor: :ClassAverages and EasyColor::ClassVariances).

ec24pathvector-class.htm
easyimage-imagetopath.htm
easyimage-pathtoimage.htm
ec24pathvector-class.htm
ec24pathvector-draw.htm
ebwhistogramvector-class.htm
easyimage-isodatathreshold.htm
easyimage-histogram.htm
easyimage-analysehistogram.htm
easyimage-setupequalize.htm
ebwhistogramvector-class.htm
ebwhistogramvector-draw.htm
epathvector-class.htm
easyimage-pathtoimage.htm
easyimage-contour.htm
epathvector-class.htm
epathvector-draw.htm
epeakvector-class.htm
easyimage-getprofilepeaks.htm
ecolorvector-class.htm
easycolor-classaverages.htm
easycolor-classvariances.htm

Open eVision User Guide @ euresys

2.9. ROl Main Properties

ROIs are defined by a width, a height, and origin x and y coordinates.

The origins are specified with respect to the top left corner in the parent image or ROI.
The ROI must be wholly contained in its parent image.

The processing/analysis time of a BW1 ROI is faster if 0rgk and Width are multiples of 8.

Save and load

You can save or load an ROl as a separate image, to be used as if it was a full image. The ROIs
perform no memory allocation at all and never duplicate parts of their parent image, the
parent image provides them with access to its image data.

The image size of the new file must match the size of the ROI being loaded into it. The image
around the ROl remains unchanged.

ROI Classes

An Open eVision ROl inherits parameters from the abstract class EBaseR0I.

There are several ROI types, according to their pixel type. They have the same characteristics as
the corresponding image types.

EROIBWw-

EROIBWS

EROIBW.6

EROIBW32

EROICS

EROIC6

EROIC24

EROIC24A

Oooooooo o

Attachment

An ROI must be attached to a parent (image/ROI) with parameters that set the parent, position
and size, and these links are updated transparently, avoiding dangling pointers.
A normal image cannot be attached to another image or ROI.

Nesting

Set and Get functions change or query the width, height and position of the origin of an ROI,
with respect to its immediate or topmost parent image.

An image may accommodate an arbitrary number of ROIs, which can be nested in a hierarchical
way. Moving the ROl also moves the embedded ROIs accordingly. The image/ROI classes provide
several methods to traverse the hierarchy of ROIs associated with an image.

ebaseroi-width.htm
ebaseroi-height.htm
ebaseroi-orgx.htm
ebaseroi-orgy.htm
ebaseroi-orgx.htm
ebaseroi-width.htm
ebaseroi-save.htm
ebaseroi-load.htm
ebaseroi-class.htm
eroibw1-class.htm
eroibw8-class.htm
eroibw16-class.htm
eroibw32-class.htm
eroic15-class.htm
eroic16-class.htm
eroic24-class.htm
eroic24a-class.htm
ebaseroi-attach.htm

Open eVision User Guide @ euresys

Parent image
RO

Sub-ROI 1

Nested ROIs: Two sub-ROIs attached to an ROI, itself attached to the parent image

Cropping

CropToImage crops an ROl which is partially out of its image. The resized ROI never grows.
An exception is thrown if a function attempts to use an ROI that has limits that extend outside
of the parents.

[wore

(In Open eVision 1.0.1 and earlier, an ROl was silently resized or repositioned
when placed out of its image and sometimes grew. If ROI limits extended
outside parents, they were silently resized to remain within parent limits.)

Resizing and moving

ROIs can easily be resized and positioned by two functions and dragging handles:
e EBaseR0I::Drag adjusts the ROI coordinates while the cursor moves.

e [EBaseR0I::HitTest informs if the cursor is placed over a dragging handle.
o Once the handle is known, the cursor shape can be changed by an MFC event
handler. HitTest is unpredictable if called while dragging is in progress.
o HitTest can be used in an OnSetCursor MFC event handler to change the cursor shape, or
before a dragging operation like OnLButtonDown,
(or EvSetCursor and EvLButtonDown in Borland/CodeGear's OWL)
(or FormMouseMove and FormMouseDown in Borland/CodeGear's VCL).

ebaseroi-croptoimage.htm
ebaseroi-drag.htm
ebaseroi-hittest.htm

Open eVision User Guide @ euresys

2.10. Arbitrarily Shaped ROI (ERegion)

[See also: example: Inspecting Pads Using Regions / code snippets: ERegion

Regions or arbitrarily shaped ROI

You define and use regions of interest (ROI) to restrict the area processed with your vision tool
and to reduce and optimize the processing time.

In Open eVision:
o An ROI (EroIxxx class) designates a rectangular region of interest.
o Aregion (ERegion class) designates an arbitrarily shaped ROI. With regions, you can
determine precisely which part of the image, down to a single pixel, is used for your
processing.

Currently, only the following Open eVision methods support ERegions:

CLibrary | Method

EasyImage: :Threshold
EasyImage: :Copy
EasyImage: :ConvolKernel
EasyImage: :ConvolSymmetricKernel
EasyImage: :ConvollLowpass—
EasyImage::Convollowpass2
EasyImage: :ConvollLowpass3
EasyImage: :ConvolUniform
EasyImage: :ConvolGaussian
EasyImage: :ConvolHighpass—
EasyImage: :ConvolHighpass2
EasyImage: :ConvolGradientX
EasyImage: :ConvolGradientY
EasyImage: :ConvolGradient
EasyImage::ConvolSobelX
EasyImage: :ConvolSobelY
EasyImage: :ConvolSobel
EasyImage: :ConvolPrewittX
EasyImage::ConvolPrewitty
EasyImage: :ConvolPrewitt
EasyImage: :ConvolRoberts
EasyImage: :ConvollLaplacianX
EasyImage::ConvollLaplacianY
EasyImage: :ConvollLaplacian8
EasyImage: :DilateBox
EasyImage: :ErodeBox
EasyImage: :0penBox
Easylmage EasyImage::CloseBox
EasyImage: :WhiteTopHatBox
EasyImage: :BlackTopHatBox
EasyImage: :MorphoGradientBox
EasyImage: :ErodeDisk

../../../../../Content/05 Resources/03 2D Application Examples/Inspecting Pads Using Regions.htm
../../../../../Content/05 Resources/02 Code Snippets/01b ERegion/ERegion.htm
eregion-class.htm
eregion-class.htm
easyimage-threshold.htm
easyimage-copy.htm
easyimage-convolkernel.htm
easyimage-convolsymmetrickernel.htm
easyimage-convollowpass1.htm
easyimage-convollowpass2.htm
easyimage-convollowpass3.htm
easyimage-convoluniform.htm
easyimage-convolgaussian.htm
easyimage-convolhighpass1.htm
easyimage-convolhighpass2.htm
easyimage-convolgradientx.htm
easyimage-convolgradienty.htm
easyimage-convolgradient.htm
easyimage-convolsobelx.htm
easyimage-convolsobely.htm
easyimage-convolsobel.htm
easyimage-convolprewittx.htm
easyimage-convolprewitty.htm
easyimage-convolprewitt.htm
easyimage-convolroberts.htm
easyimage-convollaplacianx.htm
easyimage-convollaplaciany.htm
easyimage-convollaplacian8.htm
easyimage-dilatebox.htm
easyimage-erodebox.htm
easyimage-openbox.htm
easyimage-closebox.htm
easyimage-whitetophatbox.htm
easyimage-blacktophatbox.htm
easyimage-morphogradientbox.htm
easyimage-erodedisk.htm

Open eVision User Guide

& euresys

CLibrary | Method

Easy3D

EasyObject

EasyFind

EasyOCR2

EasyGauge

EasyMatch

EasyQRCode

EasyImage::DilateDisk
EasyImage::0penDisk
EasyImage::CloseDisk
EasyImage: :WhiteTopHatDisk
EasyImage: :BlackTopHatD1isk
EasyImage::MorphoGradientDisk
EasyImage: :Median
EasyImage::ScaleRotate
EasyImage::DoubleThreshold
EasyImage::Histogram
EasyImage: :Area
EasyImage::AreaDoubleThreshold
EasyImage::BinaryMoments
EasyImage::WeightedMoments
EasyImage: :GravityCenter
EasyImage: :PixelCount
EasyImage: :PixelMax
EasyImage::PixelMin

EasyImage: :PixelAverage
EasyImage::PixelStat
EasyImage::PixelVariance
EasyImage::PixelStdDev
EasyImage: :PixelCompare
EDepthMapToMeshConverter: :Convert
EDepthMapToPointCloudConverter: :Convert
EStatistics::ComputePixelStatistics
EStatistics::ComputeStatistics
E3DObjectExtractor::Extract
EZMapToPointCloudConverter: :Convert
EImageEncoder: :Encode
EPatternFinder::Find
EPatternFinder::Learn

EOCR2: :Read

EOCR2: :Detect

EPointGauge: :Measure
ELineGauge: :Measure
ERectangleGauge: :Measure
ECircleGauge: :Measure
EWedgeGauge: :Measure
EMatcher::LearnPattern
EMatcher: :Match
EQRCodeReader : : SetSearchField
EQRCodeReader : :Read

@ TIP

In the future Open eVision releases, the support of tregions will be gradually

extended to all operators.

easyimage-dilatedisk.htm
easyimage-opendisk.htm
easyimage-closedisk.htm
easyimage-whitetophatdisk.htm
easyimage-blacktophatdisk.htm
easyimage-morphogradientdisk.htm
easyimage-median.htm
easyimage-scalerotate.htm
easyimage-doublethreshold.htm
easyimage-histogram.htm
easyimage-area.htm
easyimage-areadoublethreshold.htm
easyimage-binarymoments.htm
easyimage-weightedmoments.htm
easyimage-gravitycenter.htm
easyimage-pixelcount.htm
easyimage-pixelmax.htm
easyimage-pixelmin.htm
easyimage-pixelaverage.htm
easyimage-pixelstat.htm
easyimage-pixelvariance.htm
easyimage-pixelstddev.htm
easyimage-pixelcompare.htm
edepthmaptomeshconverter-convert.htm
edepthmaptopointcloudconverter-convert.htm
estatistics-computepixelstatistics.htm
estatistics-computestatistics.htm
../../../../../Content/reference/e3dobjectextractor-extract.htm
../../../../../Content/reference/ezmaptopointcloudconverter-convert.htm
eimageencoder-encode.htm
epatternfinder-find.htm
../../../../../Content/reference/epatternfinder-learn.htm
../../../../../Content/reference/eocr2-read.htm
../../../../../Content/reference/eocr2-detect.htm
../../../../../Content/reference/epointgauge-measure.htm
../../../../../Content/reference/elinegauge-measure.htm
../../../../../Content/reference/erectanglegauge-measure.htm
../../../../../Content/reference/ecirclegauge-measure.htm
../../../../../Content/reference/ewedgegauge-measure.htm
../../../../../Content/reference/ematcher-learnpattern.htm
../../../../../Content/reference/ematcher-match.htm
eqrcodereader-searchfield.htm
eqrcodereader-read.htm

Open eVision User Guide @ euresys

Creating regions

Open eVision offers multiple ways to create regions, depending on the shape you need:

The ERegion is the base class for all regions and the most versatile. It encodes a region using a
Run-Length Encoded (RLE) representation.

o The RLE representation of a region is made of runs (horizontal, 1-pixel high slices).

o The runs are stored in the form of their ordinate, starting abscissa and length.

=
9,
—

Run-Length Encoding of a circle-shaped region

To create a region, either:
o Use one of the geometry-based region classes.
Use the result of another tool, such as EasyFind, EasyMatch or EasyObject.
Combine or modify other regions.
Use a mask image.
Directly provide the list of runs.

o o o o

Geometry-based regions

Geometry based regions are specialized classes of regions that are encompassed in simple
geometries. Open eVision currently provides classes based on a rectangle, a circle, an ellipse or
a polygon.

Use these classes to setup geometric regions and modify them with translation, rotation and
scaling. The transformation operators return new regions, leaving the source object unchanged.

e [ERectangleRegion
o The contour of an ERectangleRegion class is a rectangle.
o Define it using its center, width, height and angle.
o Alternatively, use an ERectangle instance, such as one returned by an ERectangleGauge
instance.

Rectangle region separating a bar code from the background

eregion-class.htm
erectangle-class.htm
erectangle-class.htm
erectangle-class.htm
erectanglegauge-class.htm

Open eVision User Guide @ euresys

e ECircleRegion
o The contour of an ECircleRegion class is a circle.
o Define it using its center and radius or 3 non-aligned points.
o Alternatively, use an ECircle instance, such as one returned by an ECircleGauge instance.

Circle region encompassing the useful part of an X-Ray image

e EETlipseRegion
o The contour of an EELlipseRegion class is an ellipse.
o Define it using its center, long and short radius and angle.

Ellipse region encompassing a waffle

e EPolygonRegion
o The contour of an EPolygonRegion class is a polygon.
o Itis constructed using the list of its vertices.

Polygon region encompassing a key

ecircleregion-class.htm
ecircleregion-class.htm
ecircle-class.htm
ecirclegauge-class.htm
eellipseregion-class.htm
eellipseregion-class.htm
epolygonregion-class.htm
epolygonregion-class.htm

Open eVision User Guide @ euresys

Using the result of other tools

The ERegion class provides a set of specialized constructors to create regions from the results of
another tool.

In a tool chain, these constructors restrict the processing of a tool to the area issued from the
previous tool.

Use Location \—I\ Craata Region Use Pracess on
Process ’_ Using Process Result Region

Open eVision provides constructors for the following tools:

O

O
O
|

EasyFind: EFoundPattern
EasyMatch: EMatchPosition
EasyGauge: ECircle and ERectangle
EasyObject: ECodedElement

TIP

When compatible, Open eVision also provides specialized constructors for
the geometry-based regions. For instance, ECircleRegion provides a
constructor using an ECircle.

Combining regions

Use the following operations to create a new region by combining existing regions:

e Union
0 The ERegion::Union(const ERegion&, const ERegion&) method returns the region that is the

addition of the two regions passed as arguments.

Union of 2 circles

e Intersection
o The ERegion: :Intersection(const ERegion&, const ERegion&) method returns the region that is

the intersection of the two regions passed as argument.

Intersection of 2 circles

eregion-class.htm
efoundpattern-class.htm
ematchposition-struct.htm
ecircle-class.htm
erectangle-class.htm
ecodedelement-class.htm
ecircleregion-class.htm
ecircle-class.htm
eregion-union.htm
eregion-intersection.htm

Open eVision User Guide @ euresys

e Subtraction
o The ERegion: :Subtraction(const ERegion&, const ERegion&) method returns the first region
passed as argument after removing the second one.

Subtraction of 2 circles

Morphological operations on regions

The initial arbitrary region used to illustrate the different morphological operations

e Grow
o The ERegion::Grow(int radius) method returns a region that is the dilation of the region by
a disk with a radius equals to the argument.

Grow of the arbitrary region

e Shrink
o The ERegion: :Shrink(int radius) method returns a region that is the erosion of the region
by a disk with a radius equals to the argument.

Shrink of the arbitrary region

eregion-subtraction.htm
eregion-grow.htm
eregion-shrink.htm

Open eVision User Guide @ euresys

e Contour
o The ERegion: :Contour (int thickness, bool centered = true) method returns a region that is
the contour of the region.

Contour of the arbitrary region

Free-hand drawing a region

e The ERegionFreeHandPainter class provides the methods that allow you to create a region by
hand, using the mouse or any other user input method.

e The sample, available both in C++ and C#, shows how to use this class to draw
a region on an image.

Using regions

The tools supporting regions provide methods that follow one of these conventions:

[o

The source, the region and the destination must be compatible. It means
that the region must at least partly fit in the source, and that source and
destination must have the same size.

Preparing the region
e Open eVision automatically prepares the regions when it applies them to an image, but this
preparation can take some time.

e If you do not want your first call to a method to take longer than the next ones, you can
prepare the region in advance by using the appropriate Prepare() method.

e To manually prepare the regions, adapt the internal RLE description to your images.

Drawing regions

The ERegion classes provide several methods to display the regions:

e ERegion::Draw() draws the region area, in a semi-transparent way, in the provided device
context.

e ERegion::DrawContour() draws the region contour in the provided device context.

eregion-contour.htm
eregionfreehandpainter-class.htm
eregion-prepare.htm
eregion-class.htm
eregion-draw.htm
eregion-drawcontour.htm

Open eVision User Guide @ euresys

e ERegion::ToImage() renders the region as a mask into the provided destination image.
= You can configure the foreground and the background colors.

o If you initialized your image with a width and a height, Open eVision renders the region
inside those bounds.

If not, Open eVision resizes the image to contain the whole region.
Use ToImage() to create masks for the Open eVision functions that support them.

ERegions and EROIs

e The older classes of Open eVision are compatible with the new regions.

e Some tools allow the usage of regions with source and/or destinations that are instead
of follow one of these conventions:
|
|
TIP

In that case, the coordinates used for the region are relative to the reduced
ROI space instead of the whole image space .

ERegion and 3D

e The new regions are compatible with the 2.5D representations of Easy3D (EDepthMap and
EZMap).

e You can also reduce the domain of processing when using these classes.

2.11. Flexible Masks

ROIs vs flexible masks

ROIs and masks restrict processing to part of an image:

o "ROI Main Properties" on page 26 apply to all Open eVision functions. Using Regions of
Interest accelerates processing by reducing the number of pixels. Open eVision supports
hierarchically nested rectangular ROlIs.

o Flexible Masks are recommended to process disconnected ROIs or non-rectangular
shapes. They are supported by some EasyObject and Easylmage library functions.

eregion-toimage.htm
eregion-toimage.htm
edepthmap-class.htm
ezmap-class.htm
EasyObject - Analyzing Blobs.htm
EasyImage - Pre-Processing Images.htm

Open eVision User Guide @ euresys

Flexible Masks

A flexible mask is a BW8 image with the same height and width as the source image. It contains
shapes of areas that must be processed and ignored areas (that will not be considered during
processing):
o All pixels of the flexible mask having a value of 0 define the ignored areas.
o All pixels of the flexible mask having any other value than 0 define the areas to be
processed.

Source image Associated mask Processed masked image

A flexible mask can be generated by any application that outputs BW8 images and by some
EasyObject and Easylmage functions.

Flexible Masks in Easylmage

Code Snippets

Source image (left) and mask variable (right)

Simple steps to use flexible masks in Easyimage

1. Call the functions from Easylmage that take an input mask as an argument. For
instance, one can evaluate the average value of the pixels in the white layer and after in the
black layer.

2. Display the results.

Resulting image

EasyObject - Analyzing Blobs.htm
EasyImage - Pre-Processing Images.htm
using-flexible-masks-easyimage.htm

Open eVision User Guide @ euresys

Easylmage Functions that support flexible masks

e ElmageEncoder::Encode has a flexible mask argument for BW1, BW8, BW16, and C24 source
images.

e AutoThreshold.

e Histogram (function HistogranThreshold has no overload with mask argument).
e RmsNoise, SignalNoiseRatio.

e Overlay (no overload with mask argument for BW8 source images).

e ProjectOnAColumn, ProjectOnARow (Vector projection).

e ImageTolineSegment, ImageToPath (Vector profile).

Flexible Masks in EasyObject

A flexible mask can be generated by any application that outputs BW8 images or uses the Open
eVision image processing functions.

EasyObject can use flexible masks to restrict blob analysis to complex or disconnected shaped
regions of the image.

If an object of interest has the same gray level as other regions of the image, you can define
"keep" and "ignore" areas using flexible masks and Encode functions.

A flexible mask is a BW8 image with the same height and width as the source image.
o A pixel value of 0 in the flexible mask masks the corresponding source image pixel so it
doesn't appear in the encoded image.
o Any other pixel value in the flexible mask causes the pixel to be encoded.

EasyObject functions that create flexible masks

Source |mage

1) ECodedimage2::RenderMask: from a layer of an encoded image

1. To encode and extract a flexible mask, first construct a coded image from the source image.

2. Choose a segmentation method (for the image above the default method
is suitable).

3. Select the layer(s) of the coded image that should be encoded (i.e. white and black layers
using minimum residue thresholding).

4. Make the mask image the desired size using

eimageencoder-encode.htm
easyimage-autothreshold.htm
easyimage-histogram.htm
easyimage-histogramthreshold.htm
easyimage-rmsnoise.htm
easyimage-signalnoiseratio.htm
easyimage-overlay.htm
easyimage-projectonacolumn.htm
easyimage-projectonarow.htm
easyimage-imagetolinesegment.htm
easyimage-imagetopath.htm
eimageencoder-encode.htm

Open eVision User Guide @ euresys

5. Exploit the flexible mask as an argument to ECodedImage2: :RenderMask.

BWS8 resulting image that can be used as a flexible mask

2) ECodedElement::RenderMask: from a blob or hole

1. Select the coded elements of interest.

2. Create a loop extracting a mask from selected coded elements of the coded image using
ECodedElement: :RenderMask.

3. Optionally, compute the feature value over each of these selected coded elements.

BWS8 resulting image that can be used as a flexible mask

3) EObjectSelection::RenderMask: from a selection of blobs

EObjectSelection: :RenderMask can, for example, discard small objects resulting from noise.

BWS8 resulting image that can be used as a flexible mask

ecodedimage2-rendermask.htm
ecodedelement-rendermask.htm
eobjectselection-rendermask.htm

Open eVision User Guide @ euresys

Example: Restrict the areas encoded by EasyObject

F. -
-
-
e -
- -
- -
=
- -
. -
A -
=
-

|1|||o|!|li

Find four circles (left) Flexible mask can isolate the central chip (right)

1. Declare a new ECodedImage2 object.

. Setup variables: first declare source image and flexible mask, then load them.

. Declare an EImageEncoder object and, if applicable, select the appropriate segmenter. Setup
the segmenter and choose the appropriate layer(s) to encode.

. Encode the source image. Encoding a layer with just the area in the flexible mask is then
pretty straightforward.

We see that the circles are correctly segmented in the black layer with the grayscale single
threshold segmenter:

5. Select all objects of the coded image.
6. Select objects of interest by filtering out objects that are too small.

7. Display the blob feature by iterating over the selected objects to display the chosen feature.

2.12. Profile

Code Snippets

Profile Sampling

A profile is a series of pixel values sampled along a line/path/contour in an image.

e EasyImage::ImageTolineSegment copies the pixel values along a given line segment (arbitrarily

oriented and wholly contained within the image) to a vector. The vector length is adjusted
automatically. This function supports flexible masks.

A path is a series of pixel coordinates stored in a vector.

EasyImage::ImageToPath copies the corresponding pixel values to the vector. This function
supports flexible masks.

ecodedimage2-class.htm
eimageencoder-class.htm
egrayscalesinglethresholdsegmenter-class.htm
egrayscalesinglethresholdsegmenter-class.htm
profile-sampling.htm
easyimage-imagetolinesegment.htm
epathvector-class.htm
epath-struct.htm
easyimage-imagetopath.htm

Open eVision User Guide @ euresys

e A contour is a closed or not (connected) path, forming the boundary of an object.
EasyImage::Contour follows the contour of an object, and stores its constituent pixels values
inside a profile vector.

Profile Analysis

The profile can be processed to find peaks or transitions:

e Atransition corresponds to an object edge (black to white or white to black). It can be
detected by taking the first derivative of the signal (which transforms transitions (edges)
into peaks) and looking for peaks in it.

EasyImage: :ProfileDerivative computes the first derivative of a profile extracted from a gray-
level image.

The EBWS data type only handles unsigned values, so the derivative is shifted up by 128.
Values under [above] 128 correspond to negative [positive] derivative (decreasing
[increasing] slope).

e A peakisthe portion of the signal that is above [or below] a given threshold - the maximum
or minimum of the signal. This may correspond to the crossing of a white or black line or
thin feature. It is defined by its:

o Amplitude: difference between the threshold value and the max [or min] signal value.
o Area: surface between the signal curve and the horizontal line at the given threshold.

EasyImage::GetProfilePeaks detects max and min peaks in a gray-level profile. To eliminate false
peaks due to noise, two selection criteria are used. The result is stored in a peaks vector.

Profile Insertion Into an Image

EasyImage::LineSegmentToImage copies the pixel values from a vector or constant to the pixels of a
given line segment (arbitrarily oriented and wholly contained within the image).

EasyImage::PathToImage copies the pixel values from a vector or a constant to the pixels of a given
path.

easyimage-contour.htm
easyimage-profilederivative.htm
ebw8-struct.htm
epeak-struct.htm
epeak-amplitude.htm
epeak-area.htm
easyimage-getprofilepeaks.htm
epeakvector-class.htm
easyimage-linesegmenttoimage.htm
easyimage-pathtoimage.htm

Open eVision User Guide & euresys

3.3D Tools

3.1. Easy3D - Using 3D Toolset

Basic Concepts

Easy3D

Easy3D is a set of tools for solving computer vision problems using 3D acquisition and
processing. Easy3D supports laser line triangulation for fast and precise acquisition of depth
maps.

@ TIP

Depth maps are gray scale images where each pixel represents a
displacement in the third dimension. Because of the acquisition procedure,
they are usually not dimensionally correct. So, while Open eVision 2D image
operators are compatible with depth maps, you should not use them for
processes requiring precise measurements.

J

Easy3D provides a calibration tool to generate corrected, metric point clouds and meshes from
depth maps. Most 3D operators work on point clouds or meshes. The included export functions
to the standard PCD file format allows integration with other 3D tools.

Easy3D also allows the computation of ZMaps. A ZMap is the projection of a point cloud on a
given reference plane. Like depth maps, ZMaps are gray scale images, but are also
dimensionally correct. As such, they can be used with all Open eVision 2D functions.

All the Easy3D tools are placed in the Easy3D namespace.

Open eVision User Guide @ euresys

3D representation

Open eVision uses a right-handed cartesian 3D coordinate system. In this system, each 3D point
is represented by its 3 coordinates X, Y and Z.

A
Y Axis
7
/
| .
: X AX|s>
Z Axis

Open eVision provides different containers to store 3D objects :
Depth maps

Point clouds

Meshes

ZMaps

O o oo

Depth map

A depth map is a way to represent a 3D object using a 2D grayscale image where each pixel
(u, v) in the image contains a third coordinate as its gray value.

The grayscale values of a depth map do not necessarily represent a Z metric coordinate. In the
context of a laser triangulation setup, these values represent the displacement of the laser line
profile, which is not the physical height of the 3D surface.

Open eVision User Guide @ euresys

A depth map contains a gray scale image coded on 8, 16 or 32 bits per pixel.
o One specific gray value, called the undefined value, is reserved for the representation of
invalid pixels.
By default, this value is 0 for integer depth map types (EDepthMap8 and EDepthMap.5).
By default, this value is the lowest float value (-3.402823 e+38) for the 32 bits floating
point depth map types (EDepthMap32f).

The calibration process aims to convert the depth map representation to real, metric 3D
representations such as point clouds or meshes.

Point cloud

A point cloud is a set of 3D points (x, y and z coordinates) representing the scanned object in the
world metric space.

In addition to the calibration process included in Easy3D, point clouds can be produced using
various 3D acquisition techniques, like stereo reconstruction or time of flight cameras.

edepthmap8-class.htm
edepthmap16-class.htm
edepthmap32f-class.htm

Open eVision User Guide @ euresys

Mesh
A Mesh is a geometric representation of a 3D surface, a set of connected 3D points.
In an object, 3 points are connected to define a triangle.

TIP

This kind of 3D representation is also called a "triangle mesh".

,4&\»

S
,AVAVA&%““\ W N
lAﬂXé‘AVAAVve&&‘\\Q‘\\ =
%) 0 .

YA
AV}

=
=
—

A point cloud and the corresponding mesh (displayed with Open eVision)

An object contains a point cloud and the indexes of the vertices of all mesh triangles.

uses a metric space representation that can be generated from a depth map and that can
be used to produce a ZMap.

ZMap

ZMaps are another representation for 3D data.
o They are grayscale images like depth maps but represent metric and corrected 3D points.
o They are convenient representations for measurement and matching.
o They are compatible with most of the 2D processing functions.

ZMaps are generated by the orthogonal projection of a point cloud or a mesh onto an arbitrary
3D reference plane.

A depth map and the corresponding ZMap

Open eVision User Guide @ euresys

A ZMap contains an image in which each pixel value represents a positive distance from the
reference plane.

TIP
Use the method to obtain a reference to the contained image.

A ZMap also contains the following information:
o The transformation from the World coordinates to the ZMap coordinates.
o The size of a pixel, called the "resolution".

TIP
Like in a depth map, a specific pixel value is reserved to represent undefined
pixels. To get this pixel value, use the method

Static Methods

EFilters class

The EFilters class contains static methods used to apply filters to ZMaps or depth maps.

RemoveNoise

The RemoveNoise() method removes outliers from a depth map or a ZMap.
e It takes a depth map or a ZMap as input and generates a depth map or a ZMap respectively.
The undefined points are not taken into account.

e Itis based on a square moving kernel. The size of the kernel is (2 x halfKernelSize + 1) where
halfKernelSize is a parameter of the method.

e The threshold parameter is scaled with regard to the Z resolution of the filtered depth map or
ZMap.

e There are 3 variations of this filter, depending on the parameter:

0 ENoiseRemovallMethod_AbsoluteDifferenceFromMean removes a point when it deviates from the
average in the neighborhood, including itself. The threshold is an absolute difference.

0 ENoiseRemovalllethod RelativeDifferenceFroniean removes a point when it deviates from the
average in the neighborhood, including itself. The threshold is a multiple of the standard
deviation.

0 ENoiseRemovallethod_HighStandardDeviation removes a point when the standard deviation in
the neighborhood, including itself, is higher than a defined threshold.

efilters-class.htm
efilters-removenoise.htm
efilters-removenoise.htm
efilters-removenoise.htm
efilters-removenoise.htm
enoiseremovalmethod-enum.htm
enoiseremovalmethod-enum.htm
enoiseremovalmethod-enum.htm

Open eVision User Guide @ euresys

Example: Removing points showing a high standard deviation

RemoveNoise (HighStandardDeviation)
b 4

The code below removes pixels with a standard deviation higher than a defined threshold.

// Load the ZMap data
EZMapw6 zmap;
zmap.Load(...);

// Compute the filtered ZMap. The new ZMap is called filteredZmap

// The size of the kernel is 7x7, the threshold is 30.0

EZMap+6 filteredZmap;

filteredZmap.SetSize(zmap);

EFilters: :RemoveNoise(zmap, filteredZmap, ENoiseRemovalMethod HighStandardDeviation, 3, 30.0, 0.0);

EStatistics class

The EStatistics class contains static methods used to compute statistics on ZMaps or depth
maps.

ComputeAverageMap

The ComputeAverageMap() method computes the local average map.
e You can use this method as a low-pass filter.
e Undefined points are not taken into account.

e This method is based on a square moving kernel. The size of the kernel is (2 x halfkernelSize +
1) where halfKkernelSize is a parameter of the method.

estatistics-class.htm
estatistics-computeaveragemap.htm
estatistics-computeaveragemap.htm
estatistics-computeaveragemap.htm

Open eVision User Guide @ euresys

ComputeStandardDeviationMap

The ComputeStandardDeviationtap() method computes a map of the local standard deviation.

e You can use this method to visually determine the threshold value to use with the RemoveNoise
() method when using the ENoiseRemovallethod HighStandardDeviation setting.

NOTE
Be aware, however, that in the generated map, a pixel with the value 0 can
either be undefined or have a standard deviation equal to zero.

Example: Using a low pass filter on a ZMap, then removing points showing a deviation larger
than a defined threshold

ComputeAverageMap RemoveNoise (AbsoluteDifferenceFr Aean)

The code below first applies a low pass filter, then removes from the result the pixels showing a
deviation from the neighborhood larger than the defined threshold.

// Load the ZMap data
EZMapw6 zmap;
zmap.Load(...);

// Compute the filtered ZMap. The new ZMap is called averagedZMap
// The size of the kernel is 7x7, the threshold is 30.0

EZMap+6 averagedZMap;

averagedZMap.SetSize(zmap);

EStatistics::ComputeAverageMap(zmap, averagedZMap, 3, 0.2);

// Compute the filtered ZMap. From averagedZMap, compute filteredZMap
// The size of the kernel is 3wx3w, the threshold is 20.0

EZMapw6 filteredZMap;

filteredZMap.SetSize(zmap);

EFilters: :RemoveNoise(averagedZMap, filteredZMap, ENoiseRemovalMethod_AbsoluteDifferenceFromMean, +5, 20.0, 0.2);

estatistics-computestandarddeviationmap.htm
efilters-removenoise.htm
efilters-removenoise.htm
enoiseremovalmethod-enum.htm

Open eVision User Guide @ euresys

ComputePixelStatistics

The ComputePixelStatistics() method returns basic statistical information about pixel values:
Minimum

Maximum

Average

Standard deviation

Number of valid (not undefined) pixels).

o o oo o

Use an ERegion object to specify the region of the ZMap or depth map used to compute the
statistics.

ComputeStatistics

The ComputeStatistics() method returns the same information as the ComputePixelStatistics()
method, but scaled with respect to the Z resolution.

Use an ERegion object to specify the region of the ZMap or depth map used to compute the
statistics.

Point Cloud

Mapping Attributes

e In addition to the (x, y, z) coordinates, you can store other components in an EPointCloud such
as normals, colors, intensities, textures, indexes, confidences and other custom attributes.

e When you use additional components, a mapping exists between each 3D point and an
attribute and the different operations performed on the point cloud conserve this mapping.

e To add components to an EPointCloud, use the functions FillAttributeBuffer or
AddCustomAttributeBuffer.
= You can also save and load these attributes from point cloud files.
o Several file formats are supported, but we recommend the formats PCD and PLY for
handling additional components.

Coordinates Transformations

Geometric transformations

Transforms allow you to reposition the point cloud inside the 3D space.

Open eVision provides you with the following basic transformations:
o Rotation around the X, Y or Z axis
o Translation along the X, Y and/or Z axis
o Scaling, around the origin, and either isotropic (the same in all directions) or anisotropic
(different along the different axis)

It also provides you with projection transformations, both orthographic and perspective:

estatistics-computepixelstatistics.htm
eregion-eregion.htm
estatistics-computestatistics.htm
estatistics-computepixelstatistics.htm
eregion-eregion.htm
epointcloud-class.htm
epointcloud-class.htm
epointcloud-fillattributebuffer.htm
epointcloud-addcustomattributebuffer.htm
http://pointclouds.org/documentation/tutorials/pcd_file_format.html
http://paulbourke.net/dataformats/ply/

Open eVision User Guide @ euresys

o An orthographic projection transforms a volume of space in the shape of a rectangular
parallelepiped (and the points it contains) into the canonical view (a cubic space of size 2
and centered on the origin).

{1.=1:-1)

o A perspective projection transforms a volume of space in the shape of a frustum (basically
a truncated pyramid) into the canonical view. This projection allows you to simulate the
perspective effect given by an eye or a camera.

o Use the class E3DTransformiatrix to create the geometric transformations. The class
EAffineTransformer applies a transformation defined by a E3DTransformMatrix to a point
cloud.

Reducing a Point Cloud

Cropping

Cropping allows you to exclude points from the point cloud based on geometrical
considerations.

Open eVision provides the following cropping functions:
o ESimpleCropper: simple cropping on the X, Y and/or Z coordinates (aligned rectangle 3D
region)
0 ERectangularCropper: cropping the points outside (or inside) an oriented rectangular
parallelepiped
ESphericalCropper: cropping the points outside (or inside) a sphere.
EPlaneCropper: cropping the points depending on their position with respect to a plane

These classes produce a new point cloud with the selected points.

Decimation

e Open eVision offers 2 capabilities to decimate an EPointCloud:
0 ERandomDecimator decimates the cloud by copying a specified number of points, randomly
selected, to a new point cloud.
o EGridbecimator splits the space using a grid of given size; the new cloud is created by
averaging the points of every grid together, resulting in a regularly sampled cloud.

e To use ERandomDecimator, specify the number of points to keep as a parameter of the
constructor.

EPointCloud pc;
pc.LoadPCD("c:\\images\\data.pcd");

e3dtransformmatrix-class.htm
eaffinetransformer-class.htm
e3dtransformmatrix-class.htm
esimplecropper-class.htm
erectangularcropper-class.htm
esphericalcropper-class.htm
eplanecropper-class.htm
epointcloud-class.htm
erandomdecimator-class.htm
egriddecimator-class.htm
erandomdecimator-class.htm

Open eVision User Guide @ euresys

// Explicitly decimate the point cloud

ERandomDecimator decimator(5000);
EPointCloud pcDecimated;

decimator.Decimate(pc, pcDecimated);
pcDecimated.SavePCD("c:\\images\\decimatedData.pcd");

e To use EGridDecimator, specify the cell size, either as a E3DPoint or as a float if cell is cubic.

EPointCloud pc;
pc.LoadPCD("c:\\images\\data.pcd");

// Explicitly decimate the point cloud

EGridDecimator decimator(+0.f);
EPointCloud pcDecimated;

decimator.Decimate(pc, pcDecimated);
pcDecimated.SavePCD("c:\\images\\decimatedData.pcd");

Managing Planes

E3DPlane

A plane can be represented as an E3DPlane object.

This plane is characterized by:

o Its normal which is a vector of norm 1, perpendicular to the plane.

o Its signed distance from the origin, which is the smallest distance from the origin to the
plane. The signed distance is positive when the vector binding the origin to the closest
point on the plane has the same direction as the normal and is negative when it has the
opposite direction.

z
{n,. n, n.} = normal
- A
< g
_/x _.,f/ . s
Pt : Yy /d<0

-‘-_ / {signed distance}
i 4 {n, my, n} = nommal

Once a plane is defined, you can measure the signed distance between this plane and any point
in the space (using the method DistanceTo()):
o A positive distance means that the vector connecting the plane to the point has the same
direction as the normal.
o A negative distance means that the vector has the opposite direction.

egriddecimator-class.htm
e3dpoint-struct.htm
e3dplane-class.htm
e3dplane-distanceto.htm

Open eVision User Guide

)’ d >0 (signed dislance)
/ Pomi above e plane

/ - -_’_______..--'

:d<n(sgmd:;;=m)
Point below e plane

EPlaneFinder

auresys

You can search for a plane in a point cloud using the object EPlaneFinder object.

The main parameters of this object are:

o The maximum distance between the searched plane and a point that belongs to this

plane.

o The expected ratio between the numbers of inliers and the total number of points in the

point cloud.

- An inlier is a point that belongs to a plane (closer than this maximum distance).

- An outlier is a point that is not an inlier.

The picture below illustrates how points of the space are classified as inliers (in green) and

outliers (in red) according to their distance to the searched plane.

o

ouffier
! d > meadist
inlier

d= maxDist

e AEPlaneFinder object produces a E3DPlane object.

o The algorithm searches for a plane containing as many inliers as possible.
o This plane is the biggest plane if the samples are evenly distributed.

e The maximum distance between the plane and the inliers is a mandatory parameter.

o It should include the deviation due to the noise.
o It should also take the warpage into account.

eplanefinder-class.htm
eplanefinder-class.htm
e3dplane-class.htm

Open eVision User Guide @ euresys

e The parameter that specifies the ratio of inliers with respect to the total number of points
has a default value of 0.3. This means that we estimate that about 30% of the points belong
to the plane.

o This parameter is not as critical as the maximum distance.

o It affects the maximum time that the algorithm spends to search a plane and its
robustness.

e For more fine-grained control, you can specify the ratio of inliers as a range.
o The min of the range is the minimum ratio of inliers for a plane to be considered as valid.
o The algorithm stops searching for a plane when it finds one with the max of the range
inliers.
The bigger the min of the range and the smaller the max, the faster the algorithm is.
Specifyng the range as a single value x is equivalent to setting a range of [x/2, x].

e You can specify the expected normal vector to the searched plane.
o Specify also an angular tolerance with respect to this direction.
o The algorithm only searches for a plane that satisfies the condition.
o Set this condition may speed up the plane search.

Expeded normal

Anguiariolerance |

e You can specify 1 or 2 points contained in the searched plane.
o These points are not specified as inliers (points closer to the plane than its maximum
distance) but as points exactly contained in the main plane.
They may not be exactly in the final plane after the final fitting step detailed below.
The algorithm only searches for a plane that satisfies the condition.
Set this condition may speed up the plane search.

Once the main plane is found, a fit is done on all the inliers points and the result is returned (see
EPlaneFitter below).

Decimation

By default, the EPlaneFinder decimates the input point cloud to accelerate the search.
e The default decimator reduces the input point cloud to 10,000 points.

e You can disable this decimation.

e You can change the number of points the cloud is reduced to.

e You can decimate a point cloud explicitly.
o Use an ERandomDecimator object.
o Use the decimated point cloud as input for the EPlaneFinder.
o Disable the default decimator.

eplanefitter-class.htm
eplanefinder-class.htm
erandomdecimator-class.htm
eplanefinder-class.htm

Open eVision User Guide @ euresys

EPlaneFitter

The EPlaneFitter operator computes a fit on all the points of a point cloud and returns a E3DPlane
object. The “average” plane, that minimizes the orthogonal distance of the points to the plane,
is returned.

Aligning

EPrincipalAxisExtractor

The EPrincipalAxisExtractor computes the “principal axis” of an object from a point cloud
(EPointCloud) and returns a E3DTranfornMatrix containing a solid transformation that defines a new
orthogonal basis.

This new orthogonal basis has the following characteristics:
0 The center is the center of gravity of the point cloud.
o The axes are oriented along the “principal axis” of the object. This is the result of the
“PCA” calculation (principal axis analysis).
o The directions of the axes are selected so that the new basis is as close as possible of the
basis defined by the reference transformation.

The next figure illustrates the orientation of the principal axes of an object.

Principal axis

(0,0,1)
(0.1,0)

(1,0,0)

The principal axes extraction is done using the Extract() method that takes a EPointCloud as input
and returns an E3DTransfornMatrix. Optionally, you can pass 3 other output parameters by
reference to retrieve the value of the standard deviation along the 3 principal axes.

You can use the returned E3DTranforniatrix object to transform the 3D coordinates of a point. For
example, apply the transformation matrix to the origin (0, 0, 0) to return the center of gravity of
the object.

eplanefitter-class.htm
e3dplane-class.htm
eprincipalaxisextractor-class.htm
epointcloud-class.htm
e3dtransformmatrix-class.htm
eprincipalaxisextractor-extract.htm
epointcloud-class.htm
e3dtransformmatrix-class.htm
e3dtransformmatrix-class.htm

Open eVision User Guide @ euresys

Specification of a reference transformation

The reference transformation is an optional parameter of the EPrincipalAxisExtractor object. It
defines a reference basis used to select an orthogonal basis out of the principal axes. The
selected basis will be the closest to the reference basis.

TIP

If no reference transformation was supplied, the default reference basis is
((0,0,1),(0,1,0), (0,0, 1), that corresponds to the identity transformation.
On the figure below, the default reference basis determines the direction of
the axes ex, ey and ez.

ez

Selected basis

Reference base
(0,0,1) ex
{0,1,0)

(1,0,0)

EFeaturesAligner

A EFeaturesAligner object finds the best transformation that maps a list of points to another list
of points.

e The first list of points is called the "model". It is stored in the EFeaturesAligner object.

e The second list of points is called "measured points". It is passed as a parameter to the
Compute() method. If successful, the result of this method is a E3DTransformMatrix object.

e The 2 lists should form matching pairs. In other words, the first point of the first list matches
the first point of the second list, the second point of the first list matches the second point of
the second list, and so on---

With the Polarity parameter, you can define which transformation is returned. It can be either:

o The one that moves one point from the first list (the model) to the second list of points
(the measured points) if the polarity parameter is set to EALignmentPolarity_ModelToMeasured
(default).

o The one that moves a point from the second list (the measured points) to the first list (the
model) if the polarity parameter is set to EALignmentPolarity MeasuredToModel.

eprincipalaxisextractor-class.htm
efeaturesaligner-class.htm
efeaturesaligner-class.htm
efeaturesaligner-compute.htm
e3dtransformmatrix-class.htm
efeaturesaligner-polaritytransform.htm
ealignmentpolarity-enum.htm
ealignmentpolarity-enum.htm

Open eVision User Guide @ euresys

The figure below illustrates the computation of the alignment transformation. In this example a
model is aligned to an object using the coordinates of their corners.

model

Once the transformation is computed, use the method Get0OrthoBasis of the E3DTransformMatrix
object to get the basis (ex, ey, ez) and the center point t that defines the new basis.

You can also apply the computed transformation on any 3D point as illustrated in the code
below.

E3DTransformMatrix alignBase;
E3DPoint ex, ey, ez, t;

std: :vector<kE3DPoint> model3d;
std: :vector<kE3DPoint> points3d;

// add points to model3d and points3d

/] ...
AlignTool.SetModelPoints(model3d);
alignBase = alignTool.Compute(points3d);

// Get the orthogonal basis and store it in ex, ey, ez and t
alignBase.GetOrthoBasis(ex, ey, ez, t);

// Applying the transformation on point Pw, results in point Pvb
E3DPoint Pw= E3DPoint(...);
E3DPoint P+b = alignBase*Pw;

As you can see, the application of the transformation on a point is simply done by multiplying
the transformation matrix by the point (as done in the example above).

On the other hand, if you need to transform a point cloud or a list of points, it is more efficient
to use the ApplyTransform() method of an EAffineTransformer object.

e3dtransformmatrix-getorthobasis.htm
e3dtransformmatrix-class.htm
eaffinetransformer-applytransform.htm
eaffinetransformer-class.htm

Open eVision User Guide @ euresys

Mesh

A mesh is a geometric representation of a 3D surface. The surface is defined by a triangle mesh
connecting the 3D points. Like a point cloud, a mesh is expressed in the metric space.

Like a point cloud, you can generate a mesh from a depth map and use it to produce a ZMap.

Generation

An Elesh object is generated from a depth map using the EDepthiiapToMeshConverter class.

Like EDepthMapToPointCloudConverter, this class uses a calibration model to transform the depth
map pixels to 3D world positions. In addition, the depth map pixel connectivity is used to build
the triangle mesh. Adjacent pixels produce surface triangles.

Use SetCalibrationModel() to select a calibration model and the method Convert() to generate an
EMesh from an 8 bits or 16 bits depth map.

Access and usage

In an EMesh object the 3D world positions are stored as an EPointCloud (accessible through the
method GetPointCloud()). The triangle mesh is stored as an array of point indexes, where 3
consecutive indexes define a triangle. The method GetTriangleIndexes() provides a read-only
access to the triangle mesh.

You can use either the Open eVision proprietary format to save and load EVesh objects using the
Save() and Load() methods, or use the STL standard file format
(https://en.wikipedia.org/wiki/STL_(file_format)) using the SaveSTL() and LoadSTL() methods
which respectively write to and read from ASCII or binary STL files.

You can use an Elesh to produce a ZMap (see "Generating a ZMap" on page 57). Because an Elesh
represents a surface, the so generated ZMap can show better continuity and less undefined
pixels.

emesh-emesh.htm
edepthmaptomeshconverter-class.htm
edepthmaptopointcloudconverter-class.htm
edepthmaptomeshconverter-calibrationmodel.htm
edepthmaptomeshconverter-convert.htm
emesh-emesh.htm
emesh-emesh.htm
epointcloud-epointcloud.htm
emesh-pointcloud.htm
emesh-triangleindexes.htm
emesh-emesh.htm
emesh-save.htm
emesh-load.htm
emesh-savestl.htm
emesh-loadstl.htm
emesh-emesh.htm
emesh-emesh.htm

Open eVision User Guide @ euresys

/Map

Generating a ZMap

A ZMap is the projection of a point cloud or a mesh on a reference plane, with the distance
coded as grayscale values:

o They are grayscale images, compatible with all Open eVision 2D libraries.

o They are distortion free, with affine transformation from/to metric coordinate system.

A depth map (left) and the corresponding ZMap (right),
with default generation parameters and undefined pixel filling enabled

All Open eVision 2D processing are available on ZMaps: filtering, thresholding, blob extraction,
measuring with EasyGauge, model matching with EasyFind or EasyMatch---

The EPointCloudToZMapConverter class implements the conversion from a point cloud to a ZMap
(EMeshToZMapConverter converts a mesh to a ZMap). With all parameters at default value, the
Convert method automatically chooses the projection plane, the orientation, the map size and
the resolution.

Several methods are available to further control the conversion:

e SetReferencePlane defines a world space projection plane. The values of the ZMap pixels are
the distance of the point cloud to that reference plane.

By default, the reference plane crosses the origin and is perpendicular to the world Z axis.
The plane is defined as a E3DPlane object.

e SetOrientationVector sets a world space vector representing the expected direction of the X
(width) axis of the ZMap.

The orientation vector allows you to “rotate” the object around the normal of the reference
plane.

e SetOrigin specifies the world position that is on the ZMap lower left pixel (0, 0).
) defines the resolution (number of pixels in X and Y axis) of the generated ZMap.

e SetMapXYResolution adjusts the X and Y resolution of the ZMap pixels, in world space unit per
pixel (for example mm/pixel). This value is used to compute the ZMap size (width and
height), depending on the projected size of the point cloud on the reference plane.

epointcloudtozmapconverter-class.htm
emeshtozmapconverter-class.htm
epointcloudtozmapconverter-convert.htm
epointcloudtozmapconverter-referenceplane.htm
e3dplane-e3dplane.htm
epointcloudtozmapconverter-orientationvector.htm
epointcloudtozmapconverter-origin.htm
epointcloudtozmapconverter-setmapsize.htm
epointcloudtozmapconverter-setmapxyresolution.htm

Open eVision User Guide @ euresys

° sets the Z resolution, in world space unit per pixel unit (gray value). The Z
resolution is used to compute the transformation of the distance to the reference plan to the
integer 8, 16 or 32 bits pixel value.

e EnableFillMode and SetFilliode control the options used to fill the "hole" in the ZMap. A hole
exists when no 3D point is projected in the ZMap at a pixel position.

The methods , SetOrientationVector and SetOrigin are used to set up the
transformation between the world space and the ZMap space. This transformation is rigid
(distances are kept).

Alternatively, it is possible to directly set that transformation with the method
SetWorldTozMapTransform using a rigid matrix as parameter. In that case, the reference plane, the
orientation vector and the origin parameters are ignored.

Point cloud

Point cloud \

warld space

Crientation
vector

IMap
Image

cpace

Reference plane

IMap space

ZMap origin

The projection of a point cloud on a ZMap,
showing 3 coordinate systems: the world space, the ZMap space and the pixel space.

epointcloudtozmapconverter-mapzresolution.htm
epointcloudtozmapconverter-enablefillmode.htm
epointcloudtozmapconverter-setfillmode.htm
epointcloudtozmapconverter-referenceplane.htm
epointcloudtozmapconverter-orientationvector.htm
epointcloudtozmapconverter-origin.htm
epointcloudtozmapconverter-worldtozmaptransform.htm

Open eVision User Guide @ euresys

The Convert method performs the effective projection of a point cloud (EPointCloud) or a 3D object
(EMesh) to the 8, 16 or 32 bits ZMap.

When generating a ZMap from a point cloud, only individual points are projected on the ZMap.
Depending on the point cloud density and the ZMap resolution, some regions of the ZMap may
remain “undefined”. To get around this problem, adjust the resolution of the ZMap
(SetMapXYResolution method) to remove “holes” on the ZMap.

By default, the point cloud to ZMap converter performs a filling algorithm. This process tries to
replace undefined pixels with locally interpolated values.

Left: high resolution ZMap, the pixel scale exceeds the point cloud density
Center: the same generator parameters with the filling enabled
Right: a reduced ZMap scale/resolution, without filling

As a mesh defines a surface, its triangles are projected onto the ZMap plane. Thus, the
generated image shows better continuity and less undefined pixels. However, the generation of
a ZMap from an Elesh is slower than from an EPointCloud.

Creating a Point Cloud from a ZMap

To generate a point cloud from a ZMap, use the EZNMapToPointCloudConverter class.
The Convert()method takes:

e A ZMap source

e AEPointCloud destination.

e 2 optional parameters:
o An ERegion that defines the domain of the ZMap to convert.
By default, Open eVision uses all the defined pixels of the ZMap generate the point cloud.

o A parameter to select the world space (by default) or the ZMap space to store the
resulting positions in the point cloud.

epointcloudtozmapconverter-convert.htm
epointcloud-epointcloud.htm
emesh-emesh.htm
epointcloudtozmapconverter-setmapxyresolution.htm
emesh-emesh.htm
epointcloud-epointcloud.htm
ezmaptopointcloudconverter-class.htm
ezmaptopointcloudconverter-convert.htm
epointcloud-class.htm
eregion-class.htm

Open eVision User Guide @ euresys

Managing the Coordinates

Coordinate systems on a ZMap

A ZMap has multiple coordinate systems:

o The world space system is the original, metric space from which the ZMap has been
generated. Point clouds and meshes are expressed in the world coordinate system.

n The ZMap space is defined by a rigid transformation of the world space. The basis linked
to this transformation is attached to the lower left corner of the ZMap.

o The image space is the system attached to the image representation of the ZMap. Its
origin is the upper left corner of the ZMap and its unit length is one pixel along the X and
Y axis.

The transformations between:
o The image space and the ZMap space include a scale factor.
o The ZMap space and the world space are solid transformations.

il

Image coordinates (float)

Z map origin

;
1

1

1

1

; Image: (3.5, 8.5)

i / Z map: (3.5, 1.5)x0.050
1

1

1

1

1

1

1

V|
/
L7 i
A 1] +
I Resolution: 0,050
/' - {50um)

7/.'__ f

1

e

s Z map coordinates (float)

EZMap

The EZMap object exposes a set of methods to convert coordinates between world, ZMap and
image spaces:
ImageToZMap converts a 2D position in the image to ZMap coordinates.
ZMapToImage is the reciprocal operation and converts a ZMap position to an image position.
ZMapTolWorld is @ method to transform positions from the 3D ZMap space to the 3D world
space. The world space is the original point cloud or mesh space.
WorldToZMap is the reciprocal operation, converting from world space to ZMap.
ImageTollorld and WorldToImage combine the functions above to transform directly from
image space to world space (or the other way).

These methods only perform geometric transformations between the various coordinate
systems and do not access the actual ZMap gray scale values.

ezmap8-ezmap8.htm
ezmap8-imagetozmap.htm
ezmap8-zmaptoimage.htm
ezmap8-zmaptoworld.htm
ezmap8-worldtozmap.htm
ezmap8-imagetoworld.htm
ezmap8-worldtoimage.htm

Open eVision User Guide @ euresys

The functions that access the pixel values are:

0 GetWorldPositionFromPixelPosition() is @ method transforming the actual pixel value at
integer position (u, v) to the original world space. This method queries the ZMap internal
representation to get the pixel value w and transform the pixel space (u, v, w) coordinates
to a world space position.

0 GetPixelPositionFromiorldPosition() is a method to get a pixel value from a world position.
The world position is projected on the ZMap and the pixel value is returned. If the world
position is outside the ZMap domain, the method returns

3D Viewer

The class E3DViewer is an interactive 3D viewer for point clouds, ZMaps and meshes.
o It features multiple sources display, color ramps, 3D point picking and text label display.
o It is compatible with Windows and Linux and can be integrated to Win32, MFC and QT
frameworks.

Creating a 3D viewer

e The general constructor of a 3D viewer is:

e The way to use it depends on the Operating System and the User Interface API.

Windows only

e To create a 3D viewer stand-alone window:
o Use

e To create a 3D viewer as a part of another window in an MFC application:
o Use
o See the MsVc 3DViewer sample.

Windows and Linux

e To create a 3D viewer in a Qt application:
o Use
o You must instance the class inside a object.
o See the 3DViewer Qt sample.

ezmap8-getworldpositionfrompixelposition.htm
ezmap8-getpixelpositionfromworldposition.htm
e3dviewer-class.htm

Open eVision User Guide @ euresys

Managing the render sources

e Arender source is a displayed entity. It can be an EPointCloud, an EZMap or an EMesh. You can
display one or several render sources simultaneously in the 3D viewer.

A point cloud displayed in gray scale and a mesh in false colors in the 3D viewer

e To manage the list of render sources, use the methods:

o AddRenderSource to add another render source to the current list. The render source has a
name for further reference.

SetRenderSource to change the content of the render source.
RemoveRenderSource to remove a render source from the current list.

e The render sources API exposes several display attributes:
o Visibility (controlled by ShowRenderSource/ HideRenderSource)

o Color mode (SetRenderSourceColorMode): choose between constant color, color ramp or point
cloud color attributes.

Opacity (SetRenderSourceOpacity)

Point size (SetRenderSourcePointSize): applies to point clouds and ZMaps only.
Wire frame (SetRenderSourcellireFrane): applies to meshes only.

A point cloud displayed with constant color, color ramp or color attributes
(data courtesy of Zivid)

epointcloud-class.htm
ezmap8-class.htm
emesh-class.htm
e3dviewer-addrendersource.htm
e3dviewer-setrendersource.htm
e3dviewer-removerendersource.htm
e3dviewer-showrendersource.htm
e3dviewer-hiderendersource.htm
e3dviewer-setrendersourcecolormode.htm
e3dviewer-setrendersourceopacity.htm
e3dviewer-setrendersourcepointsize.htm
e3dviewer-setrendersourcewireframe.htm

Open eVision User Guide @ euresys

A mesh with wireframe and transparency, combined with a point cloud with color ramp

Using a color ramp

e When the color mode of a render source is ESourceColorMode_Ranp, the color of each point is
calculated from the position or the attribute of the point.

e Use SetColorRampMode to choose the color ramp:

o EColorRampMode_HueFromX/Y/Z computes the colors from respectively X/Y/Z point coordinates
(EColorRampMode_HueFromZ is the default color ramp mode).

0 EColorRampMode_RGBCube computes the colors by mixing X,Y,Z point coordinates.
EColorRampMode_HueFromIntensity computes the colors from the intensity attribute of the
point.

0 EColorRampMode_HueFromConfidence computes the colors from the confidence attribute of the
point.

0 EColorRamplode_HueFromDistance computes the colors from the distance attribute of the
point.

Color ramp modes Hue from X/Y/Z and RGB cube

e When a color ramp is defined, you can display a legend at the right side of the window
(default position). To control the color ramp legend aspect, use the methods
Show/HideColorRampLegend, SetColorRampGraduationColor and SetColorRampLocation.

esourcecolormode-enum.htm
ecolorrampmode-enum.htm
ecolorrampmode-enum.htm
ecolorrampmode-enum.htm
ecolorrampmode-enum.htm
ecolorrampmode-enum.htm
ecolorrampmode-enum.htm
e3dviewer-showcolorramplegend.htm
e3dviewer-hidecolorramplegend.htm
e3dviewer-colorrampgraduationcolor.htm
e3dviewer-setcolorramplocation.htm

Open eVision User Guide & euresys

e When the “Smart color ramp” is enabled with the method SetEnableSmartColorRamp, an outlier
filtering processing is applied to remove the noise and spread the colors on the main part of
the object. The outliers are then displayed with constant red or blue colors.

-';:‘:.Y

18.8

8.3

6.4

4.5

A color ramp EColorRampMode_HueFromZ with outlier removal process:
- The extreme points with Z coordinate between 8.3 and 18.8 are drawn in red
- The Z coordinate of 98% of the points are between -6.7 and 8.3

Interactive controls

On Windows, the interactive controls are built in the class E3DViewer.

e The following interactions are possible:

S ercaton | Contral |

Rotate the view left-click + mouse move
Translate the view right-click + mouse move
Change the view distance mouse wheel

Reset the view r

View along the positive / negative X axis x / shift+x

View along the positive / negative Y axis y / shift+y

View along the positive / negative Z axis z / shift+z

Show / hide the axis a

Enable / disable the wireframe mode w

Increase / decrease the point size plus sign (+) / minus sign (-)

e3dviewer-enablesmartcolorramp.htm
e3dviewer-class.htm

Open eVision User Guide @ euresys

e Use the following methods to implement custom view controls:

O

LockRotationInitialPosition, UpdateRotationPosition and LockRotationFinalPosition correspond
to the sequence click-drag-release to change the viewpoint by rotation.
LockTranslationInitialPosition, UpdateTranslationPosition and LockTranslationFinalPosition
correspond to the sequence click-drag-release to change the viewpoint by translation.
UpdateviewDistance changes the view distance, usually controlled by the mouse wheel.
ResetView restores the default viewpoint.

See the 0t 30viewer sample for a use case of this view control API.

e You can also directly configure the view position with the methods:

m}
[}
m}

SetViewTarget (by default, it is the center of the object).
SetViewAngle to choose the orientation of the view.
SetViewDistance to choose the distance to the view target.

View parameters

You can customize the 3D view and:

O 0O oo oo o

Change the field of view with SetField0fView.

Switch between the perspective and the orthographic view with SetProjectionType.
Enable or disable the display of the X, Y and Z axis with SetRenderAxis.

Switch the axis origin between the world origin and the object center with SetAxisOrigin.
Enable or disable the display of a grid with SetRenderGrid.

Activate an auto rotate animation with SetAutoRotate.

Use a decimation level (remove some points to speed up the rendering) with
SetRenderDecimationLevel.

No axis / world centered axis / bounding box axis / axis with grid

e3dviewer-lockrotationinitialposition.htm
e3dviewer-updaterotationposition.htm
e3dviewer-locktranslationfinalposition.htm
e3dviewer-locktranslationinitialposition.htm
e3dviewer-updatetranslationposition.htm
e3dviewer-locktranslationfinalposition.htm
e3dviewer-updateviewdistance.htm
e3dviewer-resetview.htm
e3dviewer-setviewtarget.htm
e3dviewer-setviewangle.htm
e3dviewer-viewdistance.htm
e3dviewer-fieldofview.htm
e3dviewer-projectiontype.htm
e3dviewer-renderaxis.htm
e3dviewer-axisorigin.htm
e3dviewer-rendergrid.htm
e3dviewer-setautorotate.htm
e3dviewer-renderdecimationlevel.htm

Open eVision User Guide @ euresys

Picking a 3D point

Picking a point means detecting the point closest to the given coordinates in a E3DViewer
window. You can then display the detected 3D point, with attributes, as a text label.

L

A

il
:,I l
et
!
et
g

b A

'.i{%{

ST
5

PITRTRG

Displayed coordinates and attributes of a picked point on the 3D view

e The distance threshold used to select a picked point is defined by SetPickingDistanceThreshold.
There is no picked point if the point cloud distance to the picked position is greater than this

threshold.
e On the Win32 interface framework, the built-in control for the picking is ctrl + left-click. You
can also control the picking with the methods: Pick3DPoint, GetLastPickedPoint and ResetPicking.

e To configure the display of the picking label, use SetPickingDisplay, SetPickinglLabelSize,
SetPickingLabelColor and SetPickingLabelFixed.

e3dviewer-class.htm
e3dviewer-pickingdistancethreshold.htm
e3dviewer-pick3dpoint.htm
e3dviewer-lastpickedpoint.htm
e3dviewer-resetpicking.htm
e3dviewer-pickingdisplay.htm
e3dviewer-pickinglabelsize.htm
e3dviewer-pickinglabelcolor.htm
e3dviewer-pickinglabelfixed.htm

Open eVision User Guide @ euresys

Text labels and 3D objects

e You can add custom text labels and 3D objects to the current view of the 3D viewer.

A screen label in the top left corner and a text label with 3D anchor

e To control the text label display, use:

O

o o oo

AddTextLabel to add a text label with or without a 3D anchor. AddTextLabel returns an ID
used for further reference.

EditTextLabel to change the position, color, size or text of a label.

GetTextLabel to get the attributes of a label.

RemoveTextLabel to remove a label.

ClearTextLabels to remove all labels.

e The class E3DViewer can also display E3DObject over a point cloud, a ZMap or a mesh. Use the
tools Easy3DObject and Easy3DMatch to create the E3D0bjects.

e Use the methods Register3DObjects and RemoveCurrent3D0Objects to manage the list of E3DObjects
that you want to display.

An E3DObject contains several features (center point, bounding box, base plane--). Use the
methods Show / HideFeatureFor3D0bject and Show / HideFeatureForAl13DObjects to select the
displayed features.

See the MSCV sample as an example for the display of E3D0bjects.

3D objects drawn with a point cloud displaying the bounding boxes and the top positions

e3dviewer-addtextlabel.htm
e3dviewer-addtextlabel.htm
e3dviewer-edittextlabel.htm
e3dviewer-gettextlabel.htm
e3dviewer-removetextlabel.htm
e3dviewer-cleartextlabels.htm
e3dviewer-class.htm
e3dobject-class.htm
e3dobject-class.htm
e3dviewer-register3dobjects.htm
e3dviewer-removecurrent3dobjects.htm
e3dobject-class.htm
e3dobject-class.htm
e3dviewer-showfeaturefor3dobject.htm
e3dviewer-hidefeaturefor3dobject.htm
e3dviewer-showfeatureforall3dobjects.htm
e3dviewer-hidefeatureforall3dobjects.htm
e3dobject-class.htm

Open eVision User Guide @ euresys

Photometric Stereo

Photometric Stereo and Process

Introduction

The Photometric Stereo is a technique used to estimate the normals at the surface of an object.

T:

Camera

K .
Source | \ l @

Photometric stereo setup
Source: https://www.researchgate.net/figure/Principle-of-photometric-stereo_fig7_222422584

e It takes at least 3 images of the same object taken under different known light directions.

Inputs: images with different light directions

e It produces an image containing the fraction of light reflected (called albedo) and the normal
of the surface at each pixel.

Outputs: albedos - normals

e The normals are processed to compute gradients and curvatures, allowing to easily see
bumps and holes.

Outputs: gradients X - gradients Y - gaussian curvatures - mean curvatures

Open eVision User Guide @ euresys

Process

You can use the object Easy3D: :PhotometricStereoImager in a 4-step process:

1. Calibrate the setup from a sphere or from predefined angles (once per setup).
2. Perform the photometric stereo computation on the object images.

3. Retrieve the results.
4

. Use and apply the Open eVision tools on the results.

Calibrate Retrieve

Images of
an object Normals,
in the same Gradients,
order than Albedos,
the Curvatures
calibration

Codes,
Characters,
Defects,
Patterns,
Measures

Images of a
sphere
Or
Vector of
angles

Photometric stereo process

Resources

e The example described here demonstrates how to perform photometric stereo with Open
eVision 3D libraries and tools.

e Asample application is also distributed with the source code. You can find it in ---\Sanple
Programs\MsVc samples\PhotometricStereo.

e This example and the sample application are based on the following resources:
o Open eVision 2.15
o Microsoft Visual Studio 2017

NOTE
The license for Easy3D is necessary to use the photometric stereo tools.

Calibration

e You can perform the calibration either:
0 By setting the calibration angles.
o By computing the calibration angles from images of a (hemi)sphere.

ephotometricstereoimager-class.htm

Open eVision User Guide @ euresys

Azimuth and elevation

e To define a light direction, two angles are necessary, the and the
e When facing the image, the X-axis points right, Y points top and Z points towards the camera.

e The angles are oriented trigonometrically around the Z-axis.
o Alight source on the right of the image has an azimuth of 0°.
o Alight source on the top of the image has an azimuth of 90°.

e The is the angle formed by the base plane and the light source.
o Alight source on the horizon has an elevation of 0°.
o Alight source on the camera has an elevation of 90°.

Code snippet

e The following code snippet shows how to perform the calibration from a (hemi)sphere.

EPhotometricStereoImager photometricStereo;

std: :vector<EImageBW8> calibrationImages;
// Load calibration images (Todo)

std: :vector<EROIBW8> calibrationROIs;
// Set the calibration ROIs (Todo)// Calibrate
float score = photometricStereo.CalibrateFromSphere(calibrationR0Is);

e If the sphere is not detected, the calibration fails and generates an EException (EError

).
In that case, you can pass the position of the circle to the method:

ECircle circle;
// Define circle (Todo)
photometricStereo.CalibrateFromSphere(calibrationR0Is, circle)

e The method returns a score that indicates the reliability of the calibration.

The higher the value, the better the calibration.

The score range is [0, 1].

The scores above 0.75 are considered as good.

The scores below 0.50 are considered as bad.

The scores in between are considered as acceptable.

The method never fails. A bad score does not mean that you will not get good results on
your images. It means that, if you do not, it is probably due to the calibration.

oo ooogo o

eexception-class.htm
eexception-error.htm
eerror-enum.htm
eerror-enum.htm

Open eVision User Guide @ euresys

e The score is composed of 2 factors:
o The lambertian (matte) of your sphere (the more lambertian the better).
o The plausibility of the detected light directions.

The following figure shows the scores for 2 examples.

2 images from different spheres:
left: a high reflection and a score of 0.70 - right: perfectly lambertian and a score of 0.96

e You can also directly set the calibration angles and retrieve them.
Use Easy::SetAngleUnit to define the angle unit.

Easy::SetAngleUnit(EAngleUnit_Degrees);
std: :vector<float> azimuths, elevations;
// Define the values of the angles (Todo)

photometricStereo.SetCalibrationAngles(azimuths, elevations);

Computation and Results

Computation

e Once the calibration is done, you can perform the photometric stereo computation on the
object images.

std: :vector<EImageBW8> objectImages;

// Load object images in the same order than the calibration images/angles (Todo)
std: :vector<EROIBW8> objectROIs;

// Set the object ROIs (Todo)

// Compute
photometricStereo.Compute(objectROIs);

easy-angleunit.htm

Open eVision User Guide @ euresys

e You can also use an ERegion.

ECircleRegion circle;
// Define the ERegion (Todo)

// Compute
photometricStereo.Compute(objectR0Is, circle);

e The computation time is proportional to the number of pixels in the image.

To reduce this time, you can:
o Set a smaller ROL.

o Use an ERegion.

o Use several threads.

The following table shows the computation time in different configurations (when
computing albedos, mean and gaussian curvatures with high contrast, see below).

Number of Image size Number of Computation
lights g threads time (s)
1

1.473

4 4096 X 3072 Q
4 0.596 /2.5 ')
1 0.092 /16
X
4 1024 X 768 . 0039 /2.35
Retrieving the results
e Use the method or of PhotometricStereoImager to retrieve your results.

// Retrieve the results
EImageC24 normals = photometricStereo.GetNormals();

EImageBW8 albedos = photometricStereo.GetAlbedos(Easy3D: :EPhotometricStereoContrast_HighContrast);

EImageBW8 gradientsX = photometricStereo.GetGradientsX();
EImageBW8 gradientsY = photometricStereo.GetGradientsY();

EImageBW8 gaussianCurvatures = photometricStereo.ComputeGaussianCurvatures(Easy3D: :EPhotometricStereoContrast_
HighContrast);

EImageBW8 meanCurvatures = photometricStereo.ComputeMeanCurvatures(Easy3D: :EPhotometricStereoContrast_
HighContrast);

e The EImageC24 represents the x,y,z normals of the surface at each pixel.
o A RGB pixel intensity of (0, 128, 255) corresponds to a x,y,z normal of (-1, 0, 1)

e The EImageBWs represents the fraction of light reflected at each pixel.
o Compared to the input image, the albedo is independent of the lighting direction and
intensity.
o The albedos are normalized to the full image range.

e The and the EImageBW8 represent the gradients of the surface along the X-
and Y-axis.
o The gradients are clipped to +/- 3.715 before being mapped to the full image range.

eregion-class.htm
eregion-class.htm
ephotometricstereoimager-class.htm
eimagec24-class.htm
eimagebw8-class.htm
eimagebw8-class.htm

Open eVision User Guide @ euresys

e The gaussianCurvatures and the meanCurvatures EImageBW8 represent the local curvature of the
surface at each pixel.
o The gaussian curvatures are important when the curvature of the object is big in 2
orthogonal directions.
The mean curvatures only need an important change in 1 direction.
You can think of the gaussian and the mean curvatures as a corner detector and an edge
detector.

The gaussian curvature highlights the corners and the mean curvature highlights the
edges

GetAlbedos, ComputeMeanCurvatures and ComputeGaussianCurvatures

Most of the computations are done in the method Compute, however:

1. The last computations required for mean and gaussian curvatures are only performed when
retrieving these maps to avoid computing them unnecessarily.
o This is why these methods are named Computexx instead of Getxxx.
o The results are cached to avoid computing them several times.

2. Albedos, mean and gaussian curvatures are intrinsically floating point images. To convert
them to EImageBus, you can choose between several arguments:

0 EPhotometricStereoContrast_HighContrast to ignore outliers and produce images with a high
contrast.

0 EPhotometricStereoContrast_FullRange to produce images where no data is ignored.
EPhotometricStereoContrast_FixedRange to produce images where the range is specified using
an additional argument. This is especially useful when processing several different
objects with a fixed threshold.

eimagebw8-class.htm
ephotometricstereoimager-compute.htm
eimagebw8-class.htm
ephotometricstereocontrast-enum.htm
ephotometricstereocontrast-enum.htm
ephotometricstereocontrast-enum.htm

Open eVision User Guide @ euresys

Processing the Results with Open eVision Tools

As the computation results are EInageBWi8, you can process them with the various tools of Open
eVision.

Here are some examples:

e Reading an embossed code with EasyBarCode2, EasyMatrixCode and EasyQRCode.

Mumber of found Data Matrix Codes: 1

"
5

-
i
-
-y
L
L
]

e
" e -Hl‘

"o
[
ol

[
.
-
M
-
-
-
-
-
-
.
-
L
-
-

o7

52

Mean curvatures of an engraved matrix code and EasyMatrixCode2 reading

e Reading an engraved text with EasyOCR2.

EasyOCR2 reading on the mean curvatures

e Finding patterns on embossed surfaces with EasyFind, EasyMatch and EasyObject.

EasyFind results on the gaussian curvatures to detect braille characters

eimagebw8-class.htm

Open eVision User Guide @ euresys

e Measuring shapes with EasyGauge.

Center coordinales, size and ske
enters: 398
Center'y: 213.95

entery: 213.9%5

Rectangle measurement with EasyGauge on the mean curvatures

e Finding defects in objects with EasySegment.

Gaussian curvatures of a blister pack with 3 holes
and EasySegment supervised potential results

Open eVision User Guide @ euresys

Improving the Results

Using a dark image to account for ambient lighting

The photometric stereo assumes that each image is lit from a single light source.

e This assumption is not valid if the setup is exposed to (non-negligible) ambient lighting.

e To handle this issue, the EPhotometricStereoImager provides an EImageBWs dark image to the
methods and Compute.
o This dark image is an image of the object under ambient light only (all setup lights are
off).

The dark image

The object image: raw (left) and after correction with the dark image (right)

Using flat images to correct non-uniform lighting

Photometric stereo assumes that each image is lit from an intensity uniform light source.

e This means that each pixel is lit by the same quantity of light.

e This assumption is not valid in physical setups using leds, where the part of the image
closest to the leds receives more light.

e To handle this issue, the EPhotometricStereoImager provides a method to register a flat image
used by the method Compute.
o This flat image is an image of a uniform background taken in the same lighting
configuration.

// calibrate imager or sets its angles (Todo)
std: :vector<EImageBW8> flatImages;
// Load flat images in the same order than the calibration images/angles (Todo)

std::vector<EROIBWS> flatROIs;

ephotometricstereoimager-class.htm
eimagebw8-class.htm
ephotometricstereoimager-compute.htm
ephotometricstereoimager-class.htm
ephotometricstereoimager-compute.htm

Open eVision User Guide @ euresys

// Set the flat images ROIs (Todo)

// Configure flat images, this could optionally be done with a dark image as well
photometricStereo.ConfigureNonUniformLightingCorrection(flatR0Is);

// Perform one or more computations, each will use the flat images (Todo)
photometricStereo.Compute(objectROIs);

// Optional: non uniform lighting correction could be disabled or (re-)enabled
// using SetEnableNonUniformLightingCorrection

e The following example illustrates the effect of a non-uniform lighting correction on the
object images.
o The proximity of the light source generates a lighting effect on the left of the image that is
visible on both the flat and the raw images.
o This effect is corrected on the last image, where the brightest pixels are those oriented
towards the surface.

The flat image

AN S0 ; [Py

The object image: raw (left) and after correction with the flat image (right)

Open eVision User Guide & euresys

e The following examples illustrate the effects of a non-uniform lighting correction on 2
albedos images.
o The corrected albedos show less burning on the extremities of the images.

The albedos images: raw (left) and after correction with the flat images (right)

e The following examples illustrate the effects of a non-uniform lighting correction on a
normals images.
o The normals fields is more uniform.

The normals image: raw (left) and after correction with the flat image (right)

Effect of the distance between lights and object

There is a tradeoff in the distance between the light and the object (that is the elevation angle).

e When the elevation angle is high, the lighting is more uniform. This means that:
o The “burning” effects visible on some images is less important.
o The shadows are also less of a problem.

e When the lighting source is close, the lighting directions are more diverse. This means that:
o The quantity of information used to build the photometric stereo is higher.

TIP
We recommend using elevation angles between 30 and 70°.
We achieve our best results around 40°.

Open eVision User Guide @ euresys

3.2. Easy3DLaserlLine - Laser Line Extraction and
Calibration

Laser Triangulation

In a laser-line triangulation system, a laser line is projected on the object to measure. A camera
is looking at the laser line from a different point of view. The line deformation observed by the
camera contains the shape information of the measured object.

Motion

direction B
— -
X
y

The scanning of the object consists in moving it under the laser line and recording multiple
images.

From the scanning you can reconstruct its 3D shape.

Occlusions

Using the laser triangulation method, the laser may be unable to reach some parts of the object
or the camera may be unable to view them. This is called occlusion.
o On the left illustration, the camera does not see the bottom of the hole, inducing camera

occlusion.
o On the right illustration, the laser does not reach the bottom of the hole, inducing laser
occlusion.
Camera Occlusion Laser Occlusion
TIP

You can limit or avoid occlusions by using advanced scanning methods, for
example by using two cameras or two lasers.

Open eVision User Guide & euresys

The Laser Line 3D Acquisition Pipeline

The 3D acquisition pipeline starts with the acquisition of a laser line profile and ends up with
the point cloud, mesh or ZMap.

The source material for 3D processing is the depth map, coming from a Coaxlink Quad 3D-LLE or
generated from a list of images.

3 types of depth map are available, one for each different pixel coding scheme (8, 16 or 32 bits).

Coaxlink
B E
Depth
map
Software fine [}
Images SRR -
A

EloserlineExtractor

Camera

The generation of a depth map, from a hardware or a software source

Some processing methods can use the depth map directly, but most measurement and
matching processes need metric, distortion-free representations. Calibration of the laser
triangulation setup is therefore required. Calibration is used to turn the depth map into a point
cloud or mesh expressed in a metric space that we call “world space”.

EObjectBasedCalibrationGenerator

Scan of the Comipute A ron
calibration {9 Depthmap. i calibration > ~Savel
d model
object model

EDepthMaps EObjectCalibrationModel
EDepthMapl6

The generation of an object based calibration model, from a scan of the reference object

A point cloud is a list of 3D points, expressed in a world space coordinate system. The point
cloud can be projected on a plane, producing a ZMap, which is a convenient and effective
representation for 2D processing with a metric scale.

EscaledCalbrationidode! . £30Plone
EExplicitGeometricCalibrationModel

EObjectBasedCalibrationMode! Plans

3 L o

Calibration fhder

——Load—®| ko]
PointCloudConverter

EDepthMapTo : i
Point 4
I e cloud v
pp
Depth 3 FY Projecton 2D
g colibration o A A
model [Py Map * processing
A@ |

EDepthMap8 EDepthMapTo ™, EZMapGenerator EZNiop8
EDepthMap16 3DObjectConverter EZMap16

EMesh

The workflow from the depth map to the ZMap

The following sections describe the classes and methods useful for a 3D workflow. The
"Measuring a Remote Controller" on page 133 goes through this processing pipeline.

Open eVision User Guide @ euresys

Laser Line Extraction

A Laser Line Extraction (LLE) algorithm is required to create a depth map from a sequence of
profiles of the object captured by the camera sensor.

The objective of an LLE algorithm is to measure the line position along a vertical profile in every
column of a sensor frame, within a user-defined region of interest (ROI).

For every step of the object position, the detection analyzes each column of a frame individually
and produces a row of output positions, stored as gray values.

The figure below illustrates a depth map generation.

Scanned object

—)

X

Profiles Depth map

The ELaserLineExtractor class provides the laser line extraction functionality in Open eVision. It
implements several algorithms to extract the laser line (see below for more details):
o Maximum detection returns the position of the pixel of maximum intensity. It’s the
fastest method but it doesn’t support sub-pixel precision.
o Peak detection approach detects local maxima. If several maxima are detected, the one
with the highest intensity is returned. The position is returned with sub-pixel precision.
o Center of gravity algorithm is suitable when the laser line is spread over several pixels.
The position is returned with sub-pixel precision.

TIP
You can also set a threshold to exclude pixels with low intensity.

elaserlineextractor-class.htm

Open eVision User Guide @ euresys

The line position returned by the laser line extraction algorithms is relative to the bottom of the
region of interest. So, values in the depth map range from 0 (bottom of the ROI) to the height of

the ROL.

Source image

Laser lines
" ””””””””” K ””””””””””””””” Region

of
,,, interest

—
\ X axis

—Depth map coordinate system

Y axis

Laser line extraction methods

Maximum detection

The maximum detection algorithm analyzes all the pixels in a ROI column to determine the one
with the maximum intensity. The figure below shows the laser line position on a given ROI
column.

148 Maximum

& intensity

Line Index Ling
position

Plxel Intensity

Maximum detection on a ROI profile

We also recommend to include in the processing chain:
o A low-pass filter to reduce the high frequency variations in the image.
o Athreshold to eliminate the background noise from the sensor.

Open eVision User Guide @ euresys

Peak detection

The peak detection algorithm relies on a discrete simplification of the first derivative function.
G 1) = flo 1) = f
% =f@+1) = flz-1)=f(a)

The f &) outputs the slope of a given f() along the z.

Pioed in temaity fiwe)
fi
\
!
1
)
\
"
&
]
&
o
)

irst dervative fix)

\

£

b Y
%

¥

Line index Line index

fG) and f &) plots

We compute the line position by detecting where f @) changes its signal based on the two-point
form line equation:

Y= = g (& — 1)

where @,) and @,, y,) are two points on the line with z,# =, we obtain the following
equation fory = 0:

T1Y2—T2Y1
Y2=%

r=

Open eVision User Guide @ euresys

Center of gravity

The center of gravity (CoG) method uses an algorithm that calculates the center of mass of an
image object. Also known as "centroid of plane figures", the CoG is obtained by the following

equations:

Yo X o Yay
X = S Y_Za

where X and Y are the coordinates of the CoG and a is the pixel intensity along the z and y
axes.

Threshold
level

Pixel intensity

Line index

position

Center of gravity on a ROI profile

Low-pass linear filter

Optionally, you can apply a low-pass linear filter in front of the line extraction in order to reduce
noise and high frequencies in the image.
The low-pass filter applies a convolution operator on a 1 x 3 sliding window. The 3 elements of

the convolution kernel (A, B and C) are configurable, accepting any positive integer. The figure
below illustrates the positioning of the convolution kernel elements within a given ROI.

Input ROI center pixel
A
8]
Cc
yT
—»

You can activate the low-pass filter for any of the laser line extraction methods with the method
ELaserLineExtractor::SetEnableSmoothing(true/false). Parameters A, B and C are set with
ELaserLineExtractor::SetSmoothingParameters(A, B, C).

elaserlineextractor-enablesmoothing.htm
elaserlineextractor-setsmoothingparameters.htm

Open eVision User Guide @ euresys

Calibration

The calibration is used to apply the transformation between a depth map and a point cloud or a
mesh.

There are 3 ways to set up this conversion:
o Apply a simple scale on the pixel coordinates of the depth map (EScaleCalibrationModel
class)
o Use the explicit geometric model (EExplicitGeometricCalibrationtodel class)
o Use the object-based calibration approach (E0bjectBasedCalibrationtodel class)

These models share the same base class ECalibrationtodel and exposes the method Apply(),
which is used to apply the conversion between a depth map pixel and a 3D point. It takes as
input the coordinates of one point in a depth map and it returns the coordinates of the
corresponding point in the 3D space.

The method is not aware of the possible mirroring of the corresponding depth map and
cannot make use of EDepthMap: :AxisSystenType (see below). If necessary (when the corresponding
depth map is vertically mirrored) the y coordinates should be flipped before calling the
method.
o The class EDepthMapToPointCloudConverter generates a point cloud from a depth map, using
one of the calibration models.
o The class EDepthMapTolleshConverter generates a mesh from a depth map, using one of the
calibration models.

By convention:
o The origin of the referential is the lower-left corner of the depth map.
o The center of the first pixel at the lower-left corneris at x = 0.5 and y = 0.5.
o The center of the pixel at the upper-right corner is at x = width - 0.5 and y = height - 0.5
where width is the width of the depth map and height is its height.

Mirrored depth maps

By default, Easy3D considers that the origin of the 3D axis of the depth map is the bottom left of
the internal image buffer, and the Y axis is pointing up. This means that the depth map image is
not seen as vertically mirrored compared to the real world image of the scanned object.

Nevertheless, depending on your acquisition setup this mirroring can happen (for example if the
direction of the scan is inverted).

If this is your case, you can set the EDepthMap: : SetAxisSystemType to EAxisSystem_UpperLeftCorner,
meaning that the origin of the 3D axis is on the upper left corner and the Y axis is pointing
down.

This value changes the behavior of the methods :
0 EObjectBasedCalibrationGenerator.Compute
o EDepthMapToPointCloudConverter.Convert
0o EDepthMapToMeshConverter.Convert

escalecalibrationmodel-class.htm
eexplicitgeometriccalibrationmodel-class.htm
eobjectbasedcalibrationmodel-class.htm
ecalibrationmodel-class.htm
ecalibrationmodel-apply.htm
ecalibrationmodel-apply.htm
edepthmap-axissystemtype.htm
edepthmaptopointcloudconverter-class.htm
edepthmaptomeshconverter-class.htm
edepthmap-axissystemtype.htm
eaxissystemtype-enum.htm
eobjectbasedcalibrationgenerator-compute.htm
edepthmaptopointcloudconverter-convert.htm
edepthmaptomeshconverter-convert.htm

Open eVision User Guide @ euresys

Scale calibration

The scale model (EScaleCalibrationtodel) only applies a simple factor on the X, Y and Z axis. These
factors are the only parameters of EScaleCalibrationtodel.

For depth maps coming from laser triangulation setup, this transformation does not produce
corrected, metric points. It’s main use is to display depth maps as 3D data with the E3DViewer
class.

Explicit geometric calibration

The explicit geometric model (EExplicitGeometricCalibrationtodel) defines a simple and ideal laser
triangulation setup. The explicit calibration makes some strong assumptions on the setup
geometry and can only be used when a minimum set of parameters are known:
o The angles of the camera and the laser plane, in the counter clockwise direction. The
camera angle must be positive.
The height of the camera above the scanned object.
The field of view of the camera defined by the sensor size (mm) and the optical focal
length (mm).
o The physical distance between two line scans of the depth map (depends on acquisition
rate and motion speed).

0 The size of the image and the ROI origin used in laser line extraction (between the top (0)
and the bottom (height) of the image).

TIP
Use the "Easy3D_Setup_Configuration.xlsx" spreadsheet to compute and
check your setup configuration and parameters.

!
L ,

= i

o |‘j\ Laser
o | | camera angle
i}

c angle

m

L

Explicit calibration setup with camera angle, laser angle and camera height

escalecalibrationmodel-class.htm
escalecalibrationmodel-class.htm
e3dviewer-class.htm
eexplicitgeometriccalibrationmodel-class.htm
Easy3D_Setup_Configuration.xlsx

Open eVision User Guide @ euresys

The setup of an explicit geometric calibration uses the constructor of the
EExplicitGeometricCalibrationModel class.

Camera source images 2.50 Depth map 30 Point cloud

Object-based calibration

Object-based calibration gives real world, metric, coordinates from an arbitrary laser
triangulation setup. From the scan of a reference object, the calibration process tries to
calculate all the parameters required for the transformation to the world space (position and
attributes of the camera, position of the laser plane, relative motion of the object, optical
distortion---).

For more details, please refer to the "Object-Based Calibration Guidelines" on page 87 section.

Object-Based Calibration Guidelines

Easy3D calibration is a powerful process that uses a single scan of a calibration object to
calibrate a laser triangulation setup.

1. The calibration process generates a calibration model.

2. Easy3D uses this calibration model to transform the laser profile scans (or depth maps) into
metric, distortion free point clouds.

e The calibration model includes all the geometric parameters required for this
transformation:
o The relative position of the laser and the camera.
o The projection and the distortion model of the camera.
o The relative motion of the object.

This document explains all the steps involved in the calibration process, from the design of the
calibration object to the Open eVision API.

eexplicitgeometriccalibrationmodel-class.htm

Open eVision User Guide & euresys

The calibration object

The general principle of Easy3D calibration is to match a scan of a known calibration object to
its true geometric dimensions.

The double pyramid

TIP
In Open eVision 2.7 the “double truncated pyramid” calibration object is
recommended over the "double pyramid" model.

The dimensions of the “double pyramid” calibration object along the X-, Y- and Z-axes are
named A, B and C respectively.

The "double pyramid" calibration model

Open eVision User Guide @ euresys

The truncated double pyramid

e The dimensions of the “double truncated pyramid” calibration object the X-, Y- and Z-axes
are named A, B and C respectively.

e The design of the double truncated pyramid must follow the ratios given in the illustration
below.

i
.
'
e ,,-""ﬁ-
~ S —
Cog B I e - £l . ___//-‘:.-ff‘-\""\x_:\ h“‘x
o - {‘ b B i
-’ff-q’ G -
|] - o -
A N TR W
“ e S N P
L s e T
1 N |,/{’;f”
— = HH__H;W;”____.-"H__
"‘xﬁ_‘ X P
— - hy

The "double truncated pyramid" calibration model (recommended)

e For example, the provided CAD files of the calibration object use A=4 cm, B =6 cm and
C =1 cm. The Calibration Object Size, required for the calibration process, are the values A, B
and C.

6
4
: i g
| e — | I
| S p "1
\
I -
/(‘5-0" | /é val il
I B 1| 4 [t A 4 |
|
8 | 11

The "double truncated pyramid" calibration model withA=4,B=6and C=1

Open eVision User Guide @ euresys

Building a calibration object

Overall dimensions

e Manufacture a calibration object that fits the working area of the project.

e For example, if the project targets the inspection of a PCB (a printed circuit board as
illustrated), design your calibration object with:

a. The dimension A or B (it does not matter) similar to the width of the PCB.

b. The height (C) of only several millimeters.

TIP
This is not a strict requirement, if the scanned object is slightly larger or
smaller than the calibration object, the calibration process is still valid.

A PCB scanning setup with the associated calibration object
The calibration object dimensions (A, B and C) match the width and the height of the PCB

TIP

There is no constraint on the orientation of the calibration object during the
scan:

- The X-axis can be aligned with the motion direction or with the laser line.

- After the calibration process, the origin and axes of the 3D calibrated point
cloud follow the conventions of the reference design.

A calibrated point cloud with the origin and the axis of the coordinates system
The 3D origin is located at the external corner of the higher pyramid

Open eVision User Guide @ euresys

Precision and tolerance

The relevant dimensions of the calibration object are the width, the length and the height of the
pyramids (called A, B and C in the illustrations).
o The relative dimensions to A, B and C (B/2, A/4--+) are important and you must execute
them with the same precision.
o The dimensional tolerances are related to the overall expected precision.
If you want to achieve measurements on the point cloud with a precision of 0.01 mm, the
manufacturing of the calibration object must have the same precision.
o These tolerances only apply to the pyramids geometry, the calibration process does not
use the dimensions of the support.
o The planar surfaces must be flat between 2 parallel planes separated by the target
tolerance, as illustrated.

Talerance

A

N

o
B

'y

§

The tolerance of the pyramids sides is defined as the smallest distance between two
parallel planes that contain the entire surface

Material and surface finishing

TIP
The goal is to obtain the laser profile as thinnest as possible over the whole
object surface with the largest reflected energy.

The build material and the surface finishing are also important and must have:
o A good reflectance, with diffuse reflection (no specular reflections).
o No transmission and limited diffusion inside the material.

TIP
You can obtain a good surface finishing using aluminum material and
blasting. Blasting gives the surfaces a satin gray finish.

2 aluminum machined calibration objects with a micro-abrasive blasting surface
treatment

Open eVision User Guide @ euresys

3D CAD models

The calibration object models are available in various 3D CAD format like STEP, OBJ and STL.
Download these files from the Open eVision download area in the Additional Resources section
(www.euresys.com/Support).

Download the calibration object models

Scanning the calibration object

e The scan of the calibration object produces a depth map.

e To ensure a correct detection of the calibration object and a precise calibration model, you
must fulfill the following criteria:

o All faces of the calibration object must be visible on the depth map (this affects the
orientation of both the camera and the laser).

No other object can be higher than the calibration object in the depth map.
The depth map must have at least 200 x 200 pixels.
The calibration object must cover at least 50% of the defined pixels of the depth map.

e Examples of bad scans:

Missing pixels on the side faces

Not enough lines

https://www.euresys.com/Support/Software,-drivers-and-documentation?Series=f97da39d-3c25-404c-aee7-73de1d1867fc

Open eVision User Guide @ euresys

The calibration object is too small on the depth map

Calibration with Easy3D Studio

Easy3D Studio is a free application that helps you to set up a laser triangulation scanner. You
can easily set the acquisition parameters of the Coaxlink Quad 3D LLE frame grabber and
perform the calibration.

The DepthMap panel

This panel displays:
o The scanned image.
o The acquisition parameters on the right side.

Open eVision User Guide @ euresys

The PointCloud panel

This panel displays:

The depth map of the scanned image.

The object-based calibration parameters on the right side.

The Calibrate button computes the calibration model using the last scanned depth map.
When the calibration model is ready, the depth map is transformed into a point cloud.
You can export the calibration model for later use.

o o oo o

Required parameters

The calibration based on a calibration object requires several parameters:

Set the Object Type as DoublePyramid or TruncatedDoublePyramid.
o The DoublePyramid object type is deprecated and not recommended.

Set the Object Size to represent the real size of the calibration object.

o If your calibration object has a base of 20 mm by 30 mm and a height of 5 mm, set these
values in the Object Size A/B/C parameters.

o The point cloud after the calibration uses coordinates in millimeters.

Set the parameter Precision Vs Speed Trade Off to define the time spent on the calibration
process.
o The 3 possible values are Fast, Balanced and Precise.

Set the parameter Passes count to define the number of iterations used to refine the
calibration model.

o Use 1 for the fastest processing.

o Use up to 3 for slower but potentially better calibration model.

Open eVision User Guide @ euresys

Using the calibration with Open eVision

e The class EObjectBasedCalibrationiodel is the container for the object based calibration model.

e The class EObjectBasedCalibrationGenerator performs the computation of such a model using an
EDepthMap8/16/32f as input.

The following code snippet illustrates the calculation of a calibration model:

// Initialize a depth map from an image of a double truncated pyramid

EDepthMaps6 depth_map;
depth_map.LoadImage("ctxw calibration object.png"); // from Easy3D sample images
depth_map.SetZResolution(—f / (»<<5)); // w5 fixed point pixel format
// Initialize the calibration generator
EObjectBasedCalibrationGenerator calib_generator;
calib_generator.SetCalibrationObjectType(EObjectBasedCalibrationType_TruncatedDoublePyramid, 40.f, 60.f, +0.f);
// Type and size of the calibration object

// Compute the calibration modelEObjectBasedCalibrationModel calib_model;
calib_model = calib_generator.Compute(depth_map);
float error = calib_model.GetCalibrationError();

// Save the calibration model
calib_model.Save("calib.model");.

The following code snippet illustrates the use of a saved calibration model:

// Load the calibration model
EObjectBasedCalibrationModel calib_model;
calib_model.Load("calib.model");

// Load a depth map (captured in the same context)EDepthMap»6 depth_map;
depth_map. LoadImage("ctx.shapes.png");
depth_map.SetZResolution(—f / (»<<5));

// Initialize a converter, use the loaded modelEDepthMapToPointCloudConverter converter;
converter.SetCalibrationModel(calib_model);

// Convert the depth map to a metric point cloud and save itEPointCloud point_cloud;
converter.Convert(depth_map, point_cloud);
point_cloud.SavePCD("point_cloud.pcd");.

To experiment and learn about the Easy3D calibration, a C++ sample called is
provided with the source code in the Open eVision distribution.

eobjectbasedcalibrationmodel-class.htm
eobjectbasedcalibrationgenerator-class.htm
edepthmap8-class.htm
edepthmap16-class.htm
edepthmap32f-class.htm

Open eVision User Guide

auresys

3.3. Easy3DObject - Extracting 3D Objects

Purpose and Workflow

Introduction

e The Easy3D0Object tool extracts objects and their features from a ZMap.
o The E3DObjectExtractor class uses a set of criteria to select the objects to extract.
© The extracted objects are instances of the ED30bject class.

e Open eVision provides a demo application with C++ source code and 2 C++ / C# samples:

This demo application exposes most of the features of the Easy3DObject tool.

3D0bjectExtraction

File Help
30 extracton parameters
Length From: [5
width From: 5
Localheght From: [1.2
Reference height From: | 1.2
Crientation (9 From: | 50
Ty From: [0
Apectratc From: [0
aea From: |25

Volume From: [30

Regonofeterests | OO

Suggest vakes
158 objects extracted in 3170 ms

Extracted objects
Index Length wadth
o & 5
1 6 5
2 7 s
3 8 6
7 7
H s &
6 & 7
7 7 s
& 13 z
9 18 6
bt 12 i
1 14 a
12 15 10
13 £ 1
14 14 1
It 21 w
1 2 u
17 il b
8 2 1

18 z]

Extract

Logaiti A

14551
55878
12567
174
11281
33274
3.7
218
1407
3.8623
32411
40052
36269,

- x

Dves Dishontox [showAvgroston [showlocaiTopPos. [)ShowReferenceToppos, [JShowERegion [Jstonscale (] show Undefined

0 Vew 4] shows Box [lson CoectPlane [JshowBasePiane. [IShow AvgPositon []Show Local Top Pos.) show Reference Top Pos.

Library workflow

U S

Load or build a ZMap (from an image or a point cloud).
Construct an E3D0bjectExtractor instance.

Set the selection criteria of the E3D0bjectExtractor instance.
Extract the 3D objects, with or without an ERegion.

Get and process the extracted objects list.

e3dobjectextractor-class.htm
e3dobject-class.htm
e3dobjectextractor-class.htm
e3dobjectextractor-class.htm
eregion-class.htm

Open eVision User Guide @ euresys

Load or build a ZMap

A ZMap is a grayscale image with a metric coordinate system. It is sometimes referred to as a
“height map”.
You can create a ZMap from an 8- or a 16-bit image or generate it from a point cloud.

n Before using an image as a ZMap, set the resolution.

TIP
The resolution is the metric size of a pixel (for example in mm / pixel) and

the height difference between 2 consecutive grayscale levels.

o From a point cloud, use the EPointCloudTozMapConverter class to generate a ZMap. Choose
the target ZMap resolution according to the point cloud sampling.
o Depending on the 3D scan precision, you can use a ZMap with 8- or 16-bit per pixel.

TIP
A 16-bit processing is more accurate but slower than an 8-bit processing.

Object Features

Units

Both the E3D0bjectExtractor parameters and the E3D0bject features are expressed in metric units.
o For example: if the resolution of the input EZMap is expressed in mm / pixel, the length
parameter is expressed in mm.
o Use the Resolution accessors of the EZlap to query and change its resolution.

Angles are expressed in the unit defined by Easy.AngleUnit.

TIP
In this documentation, we use the default setting and all angles are

expressed in degrees.

epointcloudtozmapconverter-class.htm
e3dobjectextractor-class.htm
e3dobject-class.htm
ezmap-class.htm
ezmap-setresolution.htm
ezmap-class.htm
easy-angleunit.htm

Open eVision User Guide @ euresys

Object plane and base plane

The E3D0bjectExtractor fits a plane to the pixels of each E3D0Object output:
o Use E3D0bject.Plane to access this plane.

The E3DObjectExtractor also tries to fit a plane to the pixels surrounding an E3D0bject
o This plane is called the base plane.
o Itis an estimation of the local background around the object.
o If there are too many undefined pixels in this area, the base plane is equal to the
reference plane of the input Eziap.

Bounding box

The bounding box is the minimal enclosing rectangle for all the object positions.
It is oriented in the XY plane of the ZMap space (rotation around the Z axis of the ZMap).
Its rotation is used as the orientation of the object (see E3D0bject.GetOrientation).
Its X and Y sizes are the object length and width (see E3D0bject.GetlLength and
E3DObject.GetWidth).
o Its Z size is always in the Z axis of the ZMap direction.

e3dobjectextractor-class.htm
e3dobject-class.htm
e3dobject-plane.htm
e3dobjectextractor-class.htm
e3dobject-class.htm
ezmap-class.htm
e3dobject-orientation.htm
e3dobject-length.htm
e3dobject-width.htm

Open eVision User Guide @ euresys

Length and width

The length of an object is the largest dimension on the XY plane in the ZMap space. It is the
same as the size of the major axis of the bounding box.

The width of an object is the smallest dimension on the XY plane in the ZMap space. It is the
same as the size of the minor axis of the bounding box.

Use the E3D0bjectExtractor.LengthRange and the E3D0ObjectExtractor.WidthRange accessors to set the
ranges of allowed values for the length and the width.

Local and reference top positions and heights

The local top position of an object is the position (3D coordinates) of the point in the E3D0bject
that is the furthest from the base plane.

The local height of an object is the distance between the local top position and the base plane.

The reference top position of an object is the position (3D coordinates) of the point in the
E3DObject that is the furthest from the reference plane.

The reference height of an object is the distance between the reference top position and the
reference plane.

EZMap Origin Reference plane
If there are too many undefined pixels in the object surroundings:
o The base plane is equal to the reference plane of the input EzZMap.
o The local top position is equal to the reference top position.
o The local height is equal to the reference height.

Use the E3DObjectExtractor.LocalHeightRange and the E3DObjectExtractor.ReferenceHeightRange
accessors to set the ranges of allowed values for the local and the reference height.

e3dobjectextractor-lengthrange.htm
e3dobjectextractor-widthrange.htm
e3dobject-class.htm
e3dobject-class.htm
ezmap-class.htm
e3dobjectextractor-localheightrange.htm
e3dobjectextractor-referenceheightrange.htm

Open eVision User Guide @ euresys

Average position

The average position is the arithmetic mean of the 3D positions of the object, also known as the
barycenter.

In the illustration below:

The average position is displayed in blue.

The top position is displayed in red.

On the left object, the average and the top positions are at the same place.
On the center object the average position is “inside” the object.

O

o o o

Aspect ratio

The aspect ratio is the width (the smallest dimension on the XY plane) divided by the length (the
largest dimension).

o It lies between 0 and 1.
o The smaller the ratio, the more elongated the object is.
o A square has an aspect ratio of 1.

Use the E3D0bjectExtractor.AspectRatioRange accessor to set the range of allowed values for the
aspect ratio.

e3dobjectextractor-aspectratiorange.htm

auresys

Open eVision User Guide

Orientation angle
The orientation angle is the angle between the X axis of the Ezlap and the longest axis (the

length) of the object.
o The angle is measured in the clockwise direction.
o The value must lie between -90° and +90°.

Use the E3D0bjectExtractor.OrientationRange accessor to set the range of allowed values for the

orientation angle.

Local and reference tilt angles

The local tilt angle is the angle between the base plane and the object plane.
o Avalue of 0 means that the object top surface is parallel to its base.
o The value must lie between 0° and +90°.

The reference tilt angle is the angle between the object plane and ZMap XY plane.
o Avalue of 0 means that the object top surface is parallel to its base.

o The value must lie between 0° and +90°.
Use the E3D0bjectExtractor.LocalTiltRange and the E3DObjectExtractor.ReferenceTiltRange accessors

to set the range of allowed values for the tilt angles.

Local Tilt Reference Tilt
5 :
/
g e] 7 axis
/ |
‘.\1_‘1_ //‘-\ -‘\‘_‘\ //\ \,\
t e i —~— o
= = o =~ lapy
Lx—p “‘L‘ [—-X-I‘ “‘L
T Zmap Origin TR

ezmap-class.htm
e3dobjectextractor-orientationrange.htm
e3dobjectextractor-localtiltrange.htm
e3dobjectextractor-referencetiltrange.htm

Open eVision User Guide @ euresys

Area

The object area is the area of the top surface of the object projected on the reference plane of
the EzMap.

o Itis equal to [the number of pixels in the object] X [the x-resolution of the Eziap] X [the
y-resolution of the EzMap].

Use the E3D0bjectExtractor.AreaRange accessor to set the range of allowed values for the area.

Volume

The object volume is the volume that lies between the top surface and the base plane of the
object.

Use the E3D0bjectExtractor.VolumeRange accessor to set the range of allowed values for the volume.

7771 1138
‘ Volume

ezmap-class.htm
ezmap-class.htm
ezmap-class.htm
e3dobjectextractor-class.htm
e3dobjectextractor-volumerange.htm

Open eVision User Guide @ euresys

Extracting and Using Objects

Extracting the objects

Use the E3D0bjectExtractor.Extract method to perform the objects extraction.

You can limit the extraction to an ERegion, for example to ignore parts of the ZMap that are not
interesting and/or to speed up the extraction process.

The processing speed of the extraction depends directly on:
o The number of pixels in the ZMap or in the ERegion.
o The number of segmented objects.

TIP
Adjust the extraction ranges to reduce the number of objects and speed up

the extraction process.

Overlapped objects

By default, the extraction does not produce objects that overlap on the ZMap. You must enable
the SetOverlappedObject option to extract “stacked” objects.

The area ratio and the height difference parameters control how overlapped objects are
extracted:

e The area ratio is configured by SetOverlappedAreaRatio. The area of the bottom object divided
by the area of the top object must be larger or equal than that ratio.

e3dobjectextractor-extract.htm
eregion-class.htm
e3dobjectextractor-overlappedobject.htm
e3dobjectextractor-overlappedarearatio.htm

Open eVision User Guide @ euresys

Overlapped extraction is enabled, with =4,
The top object is too large to be extracted, the ratio of the areas is lower than 4.

e The height difference is configured by SetOverlappedHeightDifference. This represent the
minimum height difference between the top and the bottom object

Overlapped extraction is enabled, with = 2.
The height of the top object (red) from the bottom object (green) is too small, the object
is not extracted.

e3dobjectextractor-overlappedheightdifference.htm

Open eVision User Guide @ euresys

Overlapped extraction is enabled, with = 2.
The height of the top object from the bottom object is larger than 2, the object is
extracted.

Controlling the object detection

Two optional parameters affect the detection of the object:

e SetExtractionSensitivity controls the sensitivity of the extraction.

o A higher value increases the ability to detect objects that are mixed with their
surrounding, because their grey values are close to the background or because the
transition (the gradient) between the object and the background is smooth.

o This parameter value ranges from 0 to 1 (the default value is 0.6).

L0 0[] 8]

106.2 1213 136.4 1515 15. 458 60. 6.0 911

Extraction sensitivity: 0.5 (left) and 0.8 (right)

e SetContourReinforce affects the extraction of the objects.
o As the extraction can fail when objects are close or touch each other, this parameter
enables a filter to enhance the frontiers between objects and enable the extraction of
such objects.

o The filter can affect the measurements.

Contour reinforcement: OFF (left) and ON (right)

e3dobjectextractor-extractionsensitivity.htm
e3dobjectextractor-contourreinforce.htm

Open eVision User Guide @ euresys

Using the objects

The E3DObjectExtractor.Extract method populates a list of E3D0bject fulfilling your set criteria.
o Each E3D0bject is a collection of descriptive features of the associated 3D points in the
EZMap, such as its oriented bounding box, its local height and its volume.
o Call the associated E3D0bject method to access a feature.
o The E3D0bject list is sorted from the smallest area to the largest area.

The code snippet below provides an example for extracting features from the E3D0bject list.

// get the extracted objects and loop over them
std: :vector<Easy3D: :E3DObject> objects = extractor.GetObjects();
int nObjects = objects.size();
for (int index = 0; index < nObjects; ++index)
{
// inspect bounding box dimensions
E3DPoint bbCenter = objects[index].GetBoundingBox().GetCenter();
float bbHeight = objects[index].GetBoundingBox().GetXSize();
float bbLength = objects[index].GetBoundingBox().GetYSize();

// inspect object plane and base plane
Easy3D::E3DPlane opjPlane = objects[index].GetPlane();
Easy3D::E3DPlane basePlane = objects[index].GetBasePlane();

// inspect the ERegion that exactly contains the object
ERegion objRegion = objects[index].GetRegion();

Visualizing the objects

To visualize some of these features in 2D or 3D:
o Use the E3D0bject.Draw method.
o Or submit a list of E3D0bject to an E3DViewer.

TIP
In an E3DViewer, use the ERenderStyle structure to choose your rendering style.

The following code snippets illustrate how to draw some object features:
o Ina 2D graphic context: Drawing a 2D Feature from the List of E3DObjects

e3dobjectextractor-extract.htm
e3dobject-class.htm
e3dobject-class.htm
ezmap-class.htm
e3dobject-class.htm
e3dobject-class.htm
e3dobject-class.htm
e3dobject-draw.htm
e3dobject-class.htm
e3dviewer-class.htm
e3dviewer-class.htm
erenderstyle-struct.htm
../../../../../Content/05 Resources/02 Code Snippets/15 Easy3DObject/Drawing a 2D Feature from the List of E3DObjects.htm

Open eVision User Guide @ euresys

o Ina 3D viewer: Drawing 3D Features from a List of E3DObjects

Use Case - Inspecting a PCB

The purpose of this use case is to test if all the components are present and correctly placed on
the PCB.

TIP
This example uses the sample image
and the illustrations are based on the Easy3DObject demo application.

1. Load the PCB image.

Open X

4[]« Images » EasydD » Easy3DObject

=
® v

Organize > Newfolder SR

e |

ExtractionTest pn PCB.png Remote png
g

File name: | PCB.png ~

2. Set the resolution.
o The provided PCB sample is an 8-bit gray scale image.
o Use a Z resolution of 0.3 metric unit per gray scale level for a realistic proportion.

Choose ZMap resolution %
XResouton: [1 | unit/pixel
¥ Resolution: D urit f pixel
ZResu\uﬂun urit flevel
vzp cepth: [8 -] bits pixel

3. Keep the suggested parameters for a first extraction.
o The suggested parameters are set from the ZMap width, height and resolution.

../../../../../Content/05 Resources/02 Code Snippets/15 Easy3DObject/Drawing 3D Features from a List of E3DObjects.htm

Open eVision User Guide

4. Click on the Extract button to perform the extraction.

When the extraction is done:

o The object list is filled.

o Click on a column title to sort the object list.
o The various measures are displayed.
O

The 2D View and the 3D View show the extracted object bounding boxes.

@ euresys

3DObjectExtraction
File Help

30 extraction parameters

20 View

ShowBox []Show AvgPositon ~ []5how Local Top Pos. []Show Reference TopPos. []Show ERegion

Length From: | 5 To: | 907.5
Width From: | 5 Tot| 907.5
Local heioht ~ From: [1.2 Toi[76.8

Reference height From: | 1.2 To:| 76.5

Orientaton (4 From: [20 | To:[30

Tit (%) From: [0 | Te: /qu—\
Aspectratio Fromi[0 | Toi[1]
Area From:[25 | To:[23556 |
Volume Fom: (30| To:[6.32991e 4]

Regonofinterest: | None ~|

Suggest values (] _exract)

205 objects extracted in 4436 ms

Extracted objects 30 View [“Ishow Box [Ishow Object Plane [Ishow Base Plane] show Avg Position

Index Length width LocalH ~

& i
8 &

[shon Scale

[Ishow Local Top Pos.

= X

[show Undefined

[show Reference Top Fos

5. Use a polygon region of interest to restrict the searched area.

o You can limit the extraction to a region defined as a rectangle, a polygon or an ellipse in

the demo application.
o Use the Open eVision API, to define and use any ERegion.

3DObjectExtraction
File Help

30 extraction parameters D view ShowBox []show AvgFesiton []show Local TopFos. (] Show Reference TopPos. []show ERegion

Length From: | 5 To:| 907.5
Width From: | 5 To:| 907.5
Local heicht ~ From: [1.2 To:[75.8

Reference height From: [1.2 To: [76.8

From: |90 Toi 90
From: [0 Toi[30
From: [0

rea From:[35 | To:[a

Orientation (%)

Tit (%)

Aspectratio

Fom [0 | Tos [mrsemied]
seponctmerser: ()~

volume

Suggest values Extract
158 objects extracted in 3170 ms
Extracted objects 0 View [1show Box [show ObjectPlane []ShowBasePlane []Show AvgPosition] Show Local Top Pos.
Index Length Width LocalH A
il 6 5 6.9467
1 & 5 8.5
2 7 5 256585
3 s s 23108
4 7 7 w7
5 s [27585
s 8 7 w7
7 17 5 14551
s 13 7 5.587%
E] 19 6 12,567
0 12 1 7.4
1 4 El 3.1261
12 15 o 33274
13 5 8 27
14 14 219
15 21 0 3.4976
1 2 11 38623
17 23 0 37411
13 2 bt 40052
19 2 1 36269, | [LU
< >

[show Scale

[Ishow Reference Tap Pos.

- X

[Jshow Undefined

eregion-class.htm

Open eVision User Guide @ euresys

6. Press again the Extract button to generate a new list of objects. Now, only the objects
located inside the region are extracted.

7. The 2D View and 3D View automatically focus on the object selected in the list. You can also
select an object by clicking on a bounding box in the 2D View.

3DObjectExtraction
File Help

- X

3D extraction parameters D View

[shaw Avg Position ~[]show Local Top Pos.

Shaw Box [lshon Scale [show Undefined
Length Fom (s | tes[sns | - P —
Width Fom:[5 | Te:[s075 |
loalheight From: [12 | To:[768
Reference heicht From: [12 | To:[768 |
Orientaton () From: [-90 | Toz[90

Tt Fomi [0 |Te:[s0 |
Aspectratio Fom:[0 | Tor[1

[Jshow Reference TopFos. ~ []shon ERegion

area From: [25 To: [823556 |
Voiume From: [30 To: [5.32991e 4|
Region ofnterest: | Polygen ~|

Suggest values Extract

158 abjects extracted in 3170 ms

Extracted objects 30 View []how Box [lshow ObjectPlane [JShow BasePlane []Show 4gPosion [Show Local Top Pos. [show Reference Top Pos.
Index Length Width olH A
0 s 5 6.9467
1 3 5 28.5
2 7 5 2.6585
s s [23i0d
.3 7 7 1.7
5 s s 27585
8 8 7
7 17 5 14.5
s 13 7 5.5878
9 19 8 12.567
1 2 1 7.4
11 14 9 3.1261
1 15) 33274
13 25 8 3.7
14 14 14 213
15 21 1 3,497
16 22 11 3.8623
17 23 0 37411
18 22 1 40052
19 23 10 3.6269 ,,
< >

Open eVision User Guide @ euresys

8. Use the size ranges to discard the smaller components.

To add or remove objects:
o Change the extraction parameters, like the length and width ranges.
o In theillustration below, objects smaller than 10x10 metric unit are not extracted.

NOTE

After changing a parameter, press the Extract button to perform a new
extraction.

3DObjectExtraction

- 13
File Help
3D extraction parameters 2D View ShowBox []Show AvgPositon []5how Local Top Pos. []Show Reference TopPos. []5how ERegion []5how Seale [] Show Undefined
Length From g To:[9075 | — - - ———
Width Fromfw0) | To:[s075 |
Local height ~~ From: | Toi[768 |
Reference heicht From: [12 | To:[768 |

Orentaton (4 From: |50 To:
TitE) From: [0 To:
Aspectrato From: [0 Toi

Area From: | 25 To:
Volume From: [30 To: [6.32491e4|

Region of interest: [Polygon ~|

Suggest values

144 objects extracted in 3199 ms

Extractad objects D View [AshowBox [JshowObjectPlane [JShowSasePlane [Jshow AvgPositon [|showLocalTopPos, [Show Refirence Top Pos
Index Length Width LocalH "
0 12 1 17.4
2 15 0 3.3279
2 4 14 219
3 2n 0 34978
4 2 1 38623
5 2 0 3741
s 2 1 40052
7 2 10 3.6269
8 246862 113992 10712
g 24 0 3855
0 24158 10.546 36874
1 2 1 43279
12 23 1 36291
13 23 1 3.8707
14 2 2 34641
15 23 1 +.2083
1 24 0 39072
17 24 1 36617
8 301484 127655 351
19 2 1 5.5951
< >

Open eVision User Guide

@ euresys

9. Check or uncheck the boxes at the top of the views to toggle the display of most of the
object features, either in the 2D View or the 3D View.

O

In the illustration below, the object list is sorted by local height.

o The first object is selected and displayed in both views.

File Help

Length
Width

Local height

Orientation (%)
Tit (%)

Aspect ratio
Area

Valume

Reference height

Region of interest:

3DObjectExtraction

2D extraction parameters

From:
Fom: [0 | To
Fom:[12 | To
Fom 12]
From: (90| To:
Fomi [0 |Te:[s0 |
Fom: [0 | To:

From: 25| o[

From: 30 To: | 6,32491e 4|

[Polygon |

Suggest values Extract
144 objects extracted in 3193 ms
Extracted objects
Index Length Width LocalH A
139 426,616 214032 69.105
62 Ed 35 6919
105 El 35 18.892
136 160 157 54,052
3% 3 20 3.4583
o7 £ 30 8.6388
25 33 16 9.6967
88 66 37 19,021
132 15371 91545 34402
50 0 25 10.330
111 6 59 19,014
141 311 158 54,447
£ 24 35 19,496
94 & k] 18,710
134 154 105 34,594
53 a2 2 10,495
122 104 86 11,359
7 57.1863 418068 10.768
6 63,274 304709 11164
v
< >

2D view

Show Box [Show Awvg Position [[Ishow Reference TopPos. []Show ERegion [_]Show Scale

i

[Jshow Local Top Pos. [show Undefined

Show Box [lshow Obiect Plane Show Reference Top Pos.

Show Local Top Pos.

10.Adjust the extraction parameters to accept or reject objects based on the results.

File Help

Length
Width

Local height

Orientation (9
Tit (9

Aspect ratio
Area

Volume

Reference height

Regon of nterest:

3DObjectExtraction

30 extraction parameters

From: | 10 To:[207.5
From: [10 To: [907.5
From: [1.2 To:

From: [0 To: 50
From: [0 Toi 1]

From: | 25 To: | 82

From: | 30 To: Eizﬁlei‘

[Polygon]

Suggest values Extract

144 objects extracted in 3199 ms

Extracted abjects

Width
27383
16.8775
12,4474
23.9655
214032
153
157
158,322
105.956
105.1
115,359
12,7655
105
91,5443
80,1099
57

35
133.015
14
124637

<

Local Height Ref, Height Orient ©

7.5 %5 8.4
7.5 7.5 8.2
7.5 7.5 898
694161 7.5 836
69,1051 7.5 9.6
544473 621003 0.0
540525 59.1 0.0
538423 59.3983 4.4
372423 459002 863
%83 452979 893
3%.759 458994 836
3.1 3.1 5.2
345992 396 -50.0
344025 398 8.7
26732 :8 23
2.81 37.5 0.0
27337 333 20
22557 324 10
218 85 0.0
06828 282014 896

D View ShowBox []Show AvgPosition []5how Local Top Pos. [] Show Reference Top Pos

i

[lshow ERegion [Z]show Scale [Show Undefined

0 View [“]show Box []show Object Plane [Ishow Base Plane [show Avg Position [Ishow Local Top Pos. [show Reference Top Fos

Open eVision User Guide

auresys

11.0pen the Help menu and click on Generate code snippet to generate the C++ code
corresponding to the current configuration.

The generated code illustrates how you can:

o Load a ZMap.
Define a region.

O 0O o

3DObjectExtraction
File Help
e Generate code snippet...

Ler

About
Wic

Open eVision documentation...

T

Local height From: :
Reference height From: :

_______ L S e T

2D View

Set the configuration parameters of the extraction.
Start the extraction process.
Iterate through the resulting objects list.

Code snippet

the 30 object extractar]
3D0bjectExtractor extractor;
thR.

Open eVision User Guide @ euresys

3.4. Easy3DMatch - 3D Alignment and Comparison

Purpose and Workflow

Purpose

Easy3DMatch allows you to:

e Align a scanned object with another scan or with a reference mesh.
© The Easy3DMatch tool features alignment functions to find the exact pose (position and
orientation) of acquired 3D objects using a reference model.
= You can specify this model as a reference point cloud or as a 3D mesh from CAD software.

CAD model — sample point cloud — model and sample aligned
(3D models courtesy of Direct Dimensions)

e Compare an aligned scan with a reference model or mesh:
a. Compute the local distances between 3D scans and a golden sample or a reference mesh.

b. Detect anomalies such as misplaced features, geometric distortions, gaps and bumps.

Reference — sample
(3D CAD models courtesy of Direct Dimensions)

Open eVision User Guide @ euresys

Result of the comparison

Workflow

1.

Load a reference as:
o A mesh (define its viewpoints)
o A point cloud (with one viewpoint)

o AZMap
2. Load a sample, either as:
o A point cloud (with one viewpoint)
o AZMap
3. Perform alignment and/or matching:
o Optionally, align the sample and get its E3DAlignment with respect to the reference
(E3DALigner).
Optionally, compare the sample to the reference by defining ROIs as 3DBox (E3DComparer).
Align the sample and compare it directly to the reference by defining ROIs as an ERegion
(E3DMatcher).
4. Use the transformation from sample to model to locate the sample and/or process the
detected E3DAnomalies.
Resources

The example described here demonstrates how to use Easy3DMatch with Open eVision 3D
tools.

You can also find a sample application, with its source code, in
. Most of the illustrations are screenshots from this sample.

The example and the sample application are based on the following resources:
o Open eVision 2.16
o Microsoft Visual Studio 2017

You need the Easy3DMatch license to use it.

e3dalignment-class.htm
e3daligner-class.htm
e3dbox-class.htm
e3dcomparer-class.htm
eregion-class.htm
e3dmatcher-class.htm
e3danomaly-class.htm

Open eVision User Guide @ euresys

Alignment (E3DAligner)

Base case

Use the class E3DAligner to load a reference and a sample and to find the transformation from
the sample to the reference.

1. The first step is to set the reference using the method

o In addition to the mesh or the cloud, this method also takes one or several or
azimuth and elevation angles (see "Calibration" on page 69 for a definition of the azimuth
and the elevation).

o The angles are used to compute the plane and are just an easier way to specify it.

2. The goal of the plane is to specify the face(s) of the object that can be visible on the sample.
o You must do this only once for the reference and once for the sample(s), assuming they
are all taken with the same scanner.

Here is an illustration of the process:

View of the CAD

1 Dt Efmggunny

Add Povianghs Accepr Canesl

Bottom face, corresponding to the plane of the normal (0, 0, -1) and equation z =15
or an azimuth of 0° and an elevation of -90°

e3daligner-class.htm

Open eVision User Guide @ euresys

Top face of the object, corresponding to the plane of the normal (0, 0, 1) and equation z =
-15
or an azimuth of 0° and an elevation of 90°.

3. Call the method Align with a point cloud or a zmap and get an object E3DAlignment that
contains:
o The pose, an E3DTransformMatrix mapping the sample to the reference.
o The error, indicating the quality of the matching.
o The index of the reference pose that was matched. This is useful when several poses are
defined (in the example above, there are 2 poses defined).

Defining a reprojection plane to improve the results

Ideally, the sample (and the point cloud or the ZMap used as reference) should be aligned on
the viewpoint. This is however not always true, for example when the scanner does not lay on
top of the object. In these cases, the user may specify the plane on which the object lays, either
by giving an E3DPlane or a flat scan on which only the plane is visible.

In both cases, the plane normal must have the correct orientation (pointing upwards or
downwards), that is if the plane is above the normal (z object > z plane), the z coordinate of the
normal should be positive. This is specified either directly in the E3DPlane or by a boolean
argument when giving a flat scan.

Code samples

Base sample

HITTTT01170017170117111111111111111111111117
// This code snippet shows how to compute the //

// alignment between a sample and a cad reference.//

1111111000700 11011100000011111117177

// load the reference mesh and define the pose

Easy3D: :E3DAligner aligner;

Easy3D: :EMesh cad;

cad.Load(“--”);

float azimuthReference = 0.f, elevationReference = 90.f;
aligner.SetReference(cad, azimuthReference, elevationReference);

// load the sample

e3daligner-align.htm
e3dalignment-class.htm
e3dtransformmatrix-class.htm
e3dplane-class.htm
e3dplane-class.htm

Open eVision User Guide @ euresys

Easy3D: :EPointCloud sample;
sample.Load(“---”);
float azimuthSample = 0.f, elevationSample = 90.f;

// perform alignment
Easy3D::E3DAlignment alignment = aligner.Align(sample, azimuthSample, elevationSample);

Use a reprojection plane

00111 171000011111710070111111111177117
// This code snippet shows how to set the //
// reprojection plane when performing alignment. //

I 1111171111111

// load the reference mesh and define the pose
Easy3D::E3DAligner aligner;

Easy3D: :EMesh cad;

cad.Load(“---”);

Easy3D::E3DPlane refPlane(Easy3D::E3DPoint(0, 0, »), 0);
aligner.SetReference(cad, refPlane);

// define the reprojection plane

bool userKnowsPlaneAZEl = false; // depending on the user

if (userKnowsPlaneEquation)

{
Easy3D::E3DPlane reprojectionPlane(Easy3D::E3DPoint(0, 0, -»), -+5);
aligner.SetScanReprojectionPlane(reprojectionPlane);

}

else

{
Easy3D::EPointCloud cloud;
cloud.Load(“---”);
bool objectAbovePlane = true; // is the object above the plane on the cloud
aligner.SetFlatScan(cloud, objectAbovePlane);

}

// load the sample

Easy3D: :EPointCloud sample;

sample.Load(“-”);

float azimuthSample = 0.f, elevationSample = 90.f;

// perform alignment
Easy3D::E3DAlignment alignment = aligner.Align(sample, azimuthSample, elevationSample);

Use to align a sample on the reference

[T TTT17717710711711111711177
// This code snippet shows how to apply the //
// transformation of the E3DAlignment to the //
// sample to overlap it on the reference

/1
1111111111117

// perform alignment (see previous examples)
Easy3D::E3DAlignment alignment;
EPointCloud sample;

// align sample on reference
Easy3D: :EPointCloud alignedSample;
Easy3D: :EAffineTransformer::ApplyMatrix(alignment.GetPose(), sample, alignedSample);

Open eVision User Guide @ euresys

Computation Time

The following table shows the computation time on a representative object. The first step of an

alignment is to decimate the given (a very large cloud may explain important
computation times).

1 811 ms

2 618 ms

4 570 ms

Comparison (E3DComparer)

Base case

Use the class E3DComparer to load a reference and an already aligned sample (for example by
using E3DAligner) and to find the distance map between both as well as anomalies.

e To use the E3DComparer:
o Use the method SetReference to specify the reference with either an EVesh or an EPointCloud.
Set the options of the comparison (ROIs and thresholds).
Call the method Compare with the sample EPointCloud.
Use ComputesAnomalies to retrieve the list of E3DAnomaly.
Use GetComparisonPointCloud to retrieve the EPointCloud containing the distances.

o o oo

e An E3DAnomaly represents a specific area in which the discrepancies between the sample and
the reference are important. They are represented by:

An EPointCloud containing all the points of the anomaly and their distance to the sample.

The area of the anomaly.

Its center of gravity.

A bounding box around the anomaly.

O

o o o

Note that the E3DAnomaly represents points on the reference (except on NoExtralaterial regions
and when the distance mode is set to EComparisonDistanceMode_Advanced for E3DMatcher).

e Use GetComparisonPointCloud to retrieve an EPointCloud containing distance and/or colors that
represent the distance to the sample or the reference for each of these points.

and

e The class E3DComparer can perform the comparison on only a subset of the object. This has
two benefits: it is faster and it allows to ignore false-positives when detecting anomalies.
o Use SetROI with a vector of E3DBox to define the zones on which to perform a comparison.
o Use SetDontCare to specify areas that are excluded from the comparison.
o A point belonging to SetR0I and SetDontCare boxes is not compared. By default, all points
are compared.

e3dcomparer-class.htm
e3daligner-class.htm
e3dcomparer-class.htm
e3dcomparer-reference.htm
emesh-class.htm
epointcloud-class.htm
e3dcomparer-compare.htm
epointcloud-class.htm
e3dcomparer-computesanomalies.htm
e3danomaly-class.htm
e3dcomparer-getcomparisonpointcloud.htm
epointcloud-class.htm
e3danomaly-class.htm
epointcloud-class.htm
e3danomaly-class.htm
e3dcomparer-noextramaterial.htm
ecomparisondistancemode-enum.htm
e3dmatcher-class.htm
e3dcomparer-getcomparisonpointcloud.htm
epointcloud-class.htm
e3dcomparer-class.htm
e3dcomparer-roi.htm
e3dbox-class.htm
e3dcomparer-dontcare.htm
e3dcomparer-roi.htm
e3dcomparer-dontcare.htm

Open eVision User Guide @ euresys

e The class E3DComparer checks, for each point of the reference (in the ROI), the distance to its

nearest neighbor in the sample.

o This avoids false positives, where we would use points of the sample that are not part of
the object (the plane on which the object lays for example).

o This allows to detect missing points on the sample.

o A drawback of this approach is that extra material, that is points that should not be in the
sample (for example, a hole that is filled) are not detected. You can solve this problem by
specifying a list of E3DBox containing the areas that should not contain extra material.

e Ananomaly is a sufficiently large contiguous area of points whose distance to the scan is
above a threshold.
o To specify the two thresholds (distance and area), use the method SetAnomalyThresholds.
o By default, these two thresholds are set relatively to the model size.
o Aa a more advanced anomaly detection method, use SetAnomalyHysteresis.

Object surface
_ CAD surface

amplitude

¥ sketched in 2D but the real computations are made in 3D

Illustration of the thresholds

e You can use the method SetAnomalyHysteresis that is a more specific anomaly detection
method.
o With this method, a cluster of points should have a large enough subset of its points with
an even larger distance to the sample to be an anomaly.
o This may be useful if you do not want to consider as an anomaly the points with a
medium distance unless they are close to points with a high distance.

| Defect area—
| I T N S —— .
¥ E Object surface

— —— CAD surface

Fiitered out by hysteresis

* sketched in 2D but the real computations are made in 3D

Illustration of the hysteresis thresholds

e3dcomparer-class.htm
e3dbox-class.htm
e3dcomparer-setanomalythresholds.htm
e3dcomparer-setanomalyhysteresis.htm
e3dcomparer-setanomalyhysteresis.htm

Open eVision User Guide @ euresys

e By default, the clouds are automatically decimated in such a way that the decimation error
does not impact the anomalies detection.
o This has the benefit of speeding up processing.
o If the resolution of your point clouds is small with respect to your distance threshold,
calling could improve the speed as it will avoid useless
decimation.

e By default, the sample clouds are automatically cropped around the reference to avoid
computing distance for points that are not on the object (for example, the plane on which
the object lays).

Prepare the reference

e If not called explicitly, the first call to automatically computes the internal data
structures.

Code samples

Minimal code

1111171111711

// This code snippet shows how to compare a sample //
// with a golden scan reference.

/1
111117 11111111111777

// load the reference golden scan and set reference
Easy3D: :E3DComparer comparer;

Easy3D: :EPointCloud cloud;

cloud.Load(“---");

comparer.SetReference(cloud);

// set thresholds
float distanceThresh = .2f, areaThresh = . f;
comparer.SetAnomalyThresholds(distanceThresh, areaThresh);

// prepare data structures (optional)
comparer.PrepareReference();

// load the sample and perform comparison
Easy3D: :EPointCloud sample;
sample.Load(“-”);
comparer.Compare(sample);

// compute anomalies
std: :vector<Easy3D: :E3DAnomaly> anomalies = comparer.ComputesAnomalies();

// TODO: if (anomalies.size() != Ou): an anomaly was detected: inspect the sample manually? throw it away?
// get cloud to inspect it manually

Easy3D: :EPointCloud visualisationCloud;
comparer.GetComparisonPointCloud(visualisationCloud);

e3dcomparer-enableautomaticdecimation.htm

Open eVision User Guide @ euresys

Advanced code

0T 1100770111111000011111111171117
// This code snippet shows how to set the options //

// when comparing two elements with E3DComparer. //

I 1111711171111

// load the reference golden scan and set reference
Easy3D: :E3DComparer comparer;

Easy3D: :EPointCloud cloud;

cloud.Load(“---");

comparer.SetReference(cloud);

// set thresholds

float distanceThresh = .2f, areaThresh = . f;

float hystDistanceThresh = +.5f, hystAreaThresh = .5f;

comparer.SetAnomalyThresholds(distanceThresh, areaThresh);

comparer.SetAnomalyHysteresis(hystDistanceThresh, hystAreaThresh); // defined relatively to base thresholds

// set ROIs

std: :vector<Easy3D: :E3DBox> rois = { Easy3D::E3DBox(+5, +5, +5) };

comparer.SetROI(rois);

std: :vector<Easy3D: :E3DBox> dontCare = { Easy3D::E3DBox(5, 5, 5) };

comparer.SetDontCare(dontCare);

std: :vector<Easy3D: :E3DBox> noExtraMaterial = { Easy3D::E3DBox(Easy3D::E3DPoint(+0, +5, 20), 0, 0, 0, 5, 5, 5) };
comparer.SetNoExtraMaterial(noExtraMaterial);

// prepare data structures (optional)
comparer.PrepareReference();

// load the sample and perform comparison
Easy3D: :EPointCloud sample;
sample.Load(“---”);
comparer.Compare(sample);

// compute anomalies
std: :vector<Easy3D: :E3DAnomaly> anomalies = comparer.ComputesAnomalies();

// TODO: +if (anomalies.size() != Ou): an anomaly was detected: inspect the sample manually? throw it away?
// get cloud to inspect it manually

Easy3D: :EPointCloud visualisationCloud;
comparer.GetComparisonPointCloud(visualisationCloud);

Computation time

The following table shows the computation time on a representative object. The first step of a
comparison is to decimate the given (a very large cloud may explain important
computation times).

If you are using a mesh as reference without a specific ROI, the mesh contains many points that
have no correspondence in the scan (hidden faces), this can increase processing time a

hundred-fold.
Number of threads | Computation times

1 686 ms
2 484 ms
4 395 ms

Open eVision User Guide @ euresys

Alignment and Comparison (E3DMatcher)

Base Case

Use the class E3DMatcher to load a reference and a sample and to align and compare them at the
same time.

E3DMatcher inherits from E3DALigner (see "Alignment (E3DAligner)" on page 115)and implements an
API close to the one of E3DComparer (see "Comparison (E3DComparer)" on page 118)with some
extra capabilities due to the usage of the reference points of view used in E3DAligner.

To use the E3DMatcher:

1. The first step is to set the reference using the method .

o In addition to the mesh or the cloud, this method also takes one or several E3DPlane or
azimuth and elevation angles (see "Calibration" on page 69 for a definition of the azimuth
and the elevation).

o The angles are used to compute the plane and are just an easier way to specify it.

2. Set the options of the comparison (ROIs, thresholds, mode...) and optionally a reference
plane.

3. Callthe method with the sample point cloud and its reference plane.
o This returns an E3DMatch object containing the anomalies and the E3DAlignment (E3DMatch
inherits from E3DALignment)

4. Optionally, use GetComparisonPointCloud to retrieve an EPointCloud that contains the distances.
e You can perform all these steps interactively in the sample.

e The main difference between E3DVatcher and is that the ROIs are defined using
ERegion on the EZMap corresponding to the projection of the reference on the given E3DPlane.

This also allows for more advanced comparisons (see ComparisonDistancellode and
SetEnableMissingPointAsAnomaly).

Use SetComparisonDistancelode to select one of the methods available in the class E3DMatcher to
compute the distances:

0 e EcomparisonDistanceMode Fast: the fastest method but less precise on the edges.

o e EcomparisonDistanceMode_Normal: the default method.

0« EcomparisonDistanceMode_Advanced: the slowest method that penalizes more bumps.

e The class E3DMatcher can perform the comparison on only a subset of the object. This has two
benefits: it is faster and it allows to ignore false-positives when detecting anomalies.
n Use SetAllComparisonROI with one on several Eregion to define the zones on which to
perform a comparison.
© These Eregion should be interpreted as a masking part of the object on a projected view.
Use RetrieveReferencePoses to retrieve the corresponding view.

e3dmatcher-class.htm
e3dmatcher-class.htm
e3daligner-class.htm
e3dcomparer-class.htm
e3daligner-class.htm
e3dmatcher-class.htm
e3dplane-class.htm
e3dmatch-class.htm
e3dalignment-class.htm
e3dmatch-class.htm
e3dalignment-class.htm
e3dcomparer-getcomparisonpointcloud.htm
epointcloud-class.htm
e3dmatcher-class.htm
eregion-class.htm
ezmap8-class.htm
e3dplane-class.htm
e3dmatcher-comparisondistancemode.htm
e3dmatcher-enablemissingpointasanomaly.htm
e3dmatcher-comparisondistancemode.htm
e3dmatcher-class.htm
ecomparisondistancemode-enum.htm
ecomparisondistancemode-enum.htm
ecomparisondistancemode-enum.htm
e3dmatcher-class.htm
e3dmatcher-allcomparisonroi.htm
eregion-class.htm
eregion-class.htm
e3daligner-retrievereferenceposes.htm

Open eVision User Guide @ euresys

0.8
0.3
0.2
X .70.262962 o
|y -72.891571
1Z:5.761961
HRG8:255.0,0 0.1
|Dist:0.285185
o, | 0.1
0.0
0.0
0.0
-0.0

Only the areas on the ROl are compared

Illustration of setting ROI on a projection of the reference

e The class E3DMatcher checks, for each point of the reference (in the ROI), the distance to its

nearest neighbor in the sample.

o This avoids false positives, where we would use points of the sample that are not part of
the object (the plane on which the object lays for example).

o This allows to detect missing points on the sample.

o A drawback of this approach is that extra material, that is points that should not be in the
sample (for example, a hole that is filled) are not detected. You can solve this problem by
specifying a list of E3DBox containing the areas that should not contain extra material.

e3dmatcher-class.htm
e3dbox-class.htm

Open eVision User Guide @ euresys

i 8 Define ERmgon £

| b Beciangle Aocept Cancel

We do not want the holes to be filled

9.7
0.6
0.5
-0.5
0.4
=3
| o
a2
0.1

0.0

A filled hole is reported as an anomaly

e By default, the points missing on the scan are considered as defaults.

O

In some case this may lead to false positives (a shadow on the sample is not necessarily a
default, just the absence of information).

In other cases these points should be taken into account (for example, a deep hole in the
object can result in the absence of points instead of the presence of misplaced points).
Use the method SetEnablellissingPointAsAnomaly to select one of these behaviors.

e3dmatcher-enablemissingpointasanomaly.htm

Open eVision User Guide @ euresys

=8

False anomalies due to shadows in the sample

e An anomaly is a sufficiently large contiguous area of points whose distance to the scan is
above a threshold.
o To specify the two thresholds (distance and area), use the method SetAnomalyThresholds.
o By default, these two thresholds are set relatively to the model size.
o Aa a more advanced anomaly detection method, use SetAnomalyHysteresis.

L e = Object surface
— - - i 3
+ s I e E s CAD surface
° Ares w G
5 W at
Har | | [}
:__-. mreshold

Amplitude

= ¥ sketched in 2D but the real computations are made in 3D

Illustration of the thresholds

e3dmatcher-setanomalythresholds.htm
e3dmatcher-setanomalyhysteresis.htm

Open eVision User Guide @ euresys

e You can use the method SetAnomalyHysteresis that is a more specific anomaly detection
method.

o With this method, a cluster of points should have a large enough subset of its points with
an even larger distance to the sample to be an anomaly.

o This may be useful if you do not want to consider as an anomaly the points with a
medium distance unless they are close to points with a high distance.

, b DT AR R Sl R e
L o =S Object surface

CAD surface

Fittered out by hysteresis

* sketched in 2D but the real computations are made in 3D

:‘"l'l|':I||||.1{,-_-.

old

=

=
L 2

Illustration of the hysteresis thresholds

e By default, the clouds are automatically decimated in such a way that the decimation error
does not impact the anomalies detection.

o This has the benefit of speeding up processing.

o If the resolution of your point clouds is small with respect to your distance threshold,

calling SetEnableAutomaticDecimation(false) could improve the speed as it will avoid useless
decimation.

e By default, the sample clouds are automatically cropped around the reference to avoid

computing distance for points that are not on the object (for example, the plane on which
the object lays).

Prepare the reference

e If not called explicitly, the first call to automatically computes the internal data
structures.

Code samples

Minimal sample

HI0011110117110111111111111111111111111111111117
// This code snippet shows how to match a sample //

// with a golden scan reference. //

T

// load the reference golden scan and set reference
Easy3D: :E3DMatcher matcher;

e3dmatcher-setanomalyhysteresis.htm
e3dmatcher-enableautomaticdecimation.htm

Open eVision User Guide @ euresys

Easy3D: :EPointCloud reference;

float azimuthReference = 0.f, elevationReference = 90.f;
reference.Load(“:--”);

matcher.SetReference(reference, azimuthReference, elevationReference);

// set thresholds
float distanceThresh = .2f, areaThresh = . f;
matcher . SetAnomalyThresholds(distanceThresh, areaThresh);

// prepare data structures (optional)
matcher .PrepareReference();

// load the sample and perform comparison

Easy3D: :EPointCloud sample;

float azimuthSample = 0.f, elevationSample = -90.f;

sample.Load(“-”);

Easy3D::E3DMatch match = matcher.Match(sample, azimuthSample, elevationSample);
std: :vector<Easy3D: :E3DAnomaly> anomalies = match.GetAnomalies();

// TODO: if (anomalies.size() != Ou): an anomaly was detected: inspect the sample manually? throw it away?

// get cloud to inspect it manually
Easy3D: :EPointCloud visualisationCloud;
matcher . GetComparisonPointCloud(visualisationCloud);

Advanced sample

T 1170717171717117117111111111117
// This code snippet shows how to set the options //
// when matching two elements with E3DMatcher. //

e

// load the reference golden scan and set reference

Easy3D: :E3DMatcher matcher;

Easy3D::EPointCloud reference;

float azimuthReference = 0.f, elevationReference = 90.f;
reference.Load(“:--”);

matcher.SetReference(reference, azimuthReference, elevationReference);

// use advanced comparison mode
matcher.SetComparisonDistanceMode (EComparisonDistanceMode_Advanced);

// ignore shadows
matcher.SetEnableMissingPointAsAnomaly(false);

// set thresholds

float distanceThresh = .2f, areaThresh = . f;

float hystDistanceThresh = ».5f, hystAreaThresh = .5f;

matcher.SetAnomalyThresholds(distanceThresh, areaThresh);

matcher.SetAnomalyHysteresis(hystDistanceThresh, hystAreaThresh); // defined relatively to base thresholds

// retrieve reference poses (reference must have been set)
std: :vector<kasy3D::EZMap8> referencePoseProjections;
matcher.RetrieveReferencePosesProjections(referencePoseProjections);

// set ROI on the left half of the object

ERectangleRegion roiRegion(0.f, 0.f, float(referencePoseProjections[0].GetWidth()) / 2.f, float
(referencePoseProjections[0].GetHeight()));

matcher . SetComparisonROI(&roiRegion);

// set No Extra material on the whole object

ERectangleRegion noExtraMatRegion(0.f, 0.f, float(referencePoseProjections[0].GetWidth()) / 2.f, float
(referencePoseProjections[0].GetHeight()));

matcher . SetComparisonNoExtraMaterial(&noExtraMatRegion);

Open eVision User Guide @ euresys

// prepare data structures (optional)
matcher .PrepareReference();

// load the sample and perform comparison

Easy3D: :EPointCloud sample;

float azimuthSample = 0.f, elevationSample = -90.f;

sample.Load(“-”);

Easy3D::E3DMatch match = matcher.Match(sample, azimuthSample, elevationSample);
std: :vector<Easy3D: :E3DAnomaly> anomalies = match.GetAnomalies();

// TODO: if (anomalies.size() != Ou):an anomaly was detected: inspect the sample manually? throw it away?
// get cloud to inspect it manually

Easy3D: :EPointCloud visualisationCloud;
matcher . GetComparisonPointCloud(visualisationCloud);

Computation time

The following table shows the computation time on a representative object. The first step of an

alignment is to decimate the given (a very large cloud may explain important
computation times).

1 1335 ms

2 1180 ms

4 1165 ms

Open eVision User Guide @ euresys

4. Code Snippets

Open eVision User Guide

4.1. Basic Types

Loading and Saving Images

Functional Guide | Reference: Load, Save, Savelpeg
TTT0001711111000007111111100010111111111101711111117

// This code snippet shows how to load and save an image. //

1107111111 100007711111111107771111117

// Images constructor
EImageBW8 srcImage;
EImageBW8 dstImage;

// Load an image file
srcImage.Load("mySourceImage.bmp™);

/...

// Save the destination image into a file
dstImage.Save("myDestImage.bmp");

// Save the destination image into a jpeg file
// The default compression quality is 75
dstImage.Save("myDestImage.jpg");

// Save the destination image into a jpeg file
// set the compression quality to 50
dstImage.SaveJpeg("myDestImage50.jpg", 50);

Interfacing Third-Party Images

Functional Guide | Reference: SetimagePtr

00117101071 10110017111111111117111111111117
// This code snippet shows how to link an Open eVision image //
// to an externally allocated buffer. //

s

// Images constructor
EImageBW8 srcImage;

// Size of the third-party image
int sizeX;
int sizeY;

//Pointer to the third-party image buffer
EBW8* imgPtr;

/] ...
// Link the Open eVision image to the third-party image

// Assuming the corresponding buffer is aligned on 4 bytes
srcImage.SetImagePtr(sizeX, sizeY, imgPtr);

auresys

ebaseroi-load.htm
ebaseroi-save.htm
ebaseroi-savejpeg.htm
ebaseroi-setimageptr.htm

Open eVision User Guide

Retrieving Pixel Values

Functional Guide | Reference: GetimagePtr

[11701771710117171117171117101111171111171111111111111111111111
// This code snippet shows the recommended method (fastest) //
// to access the pixel values in a BW8 image //

s
EImageBW8 img;

OEV_UINT8™ pixelPtr;
OEV_UINT8* rowPtr;
OEV_UINT8 pixelValue;
OEV_UINT32 rowPitch;
int x, y;

rowPtr = reinterpret_cast <OEV_UINT8*>(img.GetImagePtr());
rowPitch = img.GetRowPitch();

for (y = 0; y < height; y++)

{
pixelPtr = rowPtr;
for (x = 0; x < width; x++)
{
pixelValue = *pixelPtr;
// Add your pixel computation code here
*pixelPtr = pixelValue;
pixelPtr++;
}
rowPtr += rowPitch;
}

ROI Placement

Functional Guide | Reference: Attach, SetPlacement

T T117100700111117100000111111100101111111111777
// This code snippet shows how to attach an ROI to an image //
// and set its placement. //

s

// Image constructor
EImageBW8 parentImage;

// ROI constructor
EROIBW8 myROI;

/] ..

// Attach the ROI to the image
myROI.Attach(&parentImage);

//Set the ROI position
myROI.SetPlacement(50, 50, 200, +00);

auresys

ebaseroi-getimageptr.htm
ebaseroi-attach.htm
ebaseroi-setplacement.htm

Open eVision User Guide

Vector Management

Functional Guide | Reference: Empty, AddElement
[1111111117111

// This code snippet shows how to create a vector, fill it //
// and retrieve the value of a given element. //

s

// EBW8Vector constructor
EBW8Vector ramp;

// Clear the vector
ramp.Empty();

// Fill the vector with increasing values
for(int i= 0; 1 < +28; i++)
{

}

ramp.AddElement ((EBW8)1);

// Retrieve the »0th element value
EBW8 value= ramp[9];

Exception Management

Functional Guide | Reference: GetPixel, What

[T 1111111111777

// This code snippet shows how to manage //
// Open eVision exceptions. //

[T 1111111171777

try
{
// Image constructor
EImageC24 srcImage;
/] ...
// Retrieve the pixel value at coordinates (56, 73)
EC24 value= srcImage.GetPixel(56, 730);
}

catch(Euresys: :Open_eVision_w: :EException exc)
{
// Retrieve the exception description
std::string error = exc.What();

auresys

evector-empty.htm
ebw8vector-addelement.htm
eroic24-getpixel.htm
eexception-what.htm

Open eVision User Guide @ euresys

5. Application Examples

5.1. Measuring a Remote Controller

This topic presents a complete 3D processing workflow, featuring a TV remote controller as
sample object.

Introduction

The remote controller after 3D processing and projection on a 2D image

The proposed process is the sequence of the following operations:

One time calibration process:

1. Load a depth map representing the calibration object.
2. Perform the calibration model computation.
3. Store the calibration model.

For each object:

1. Load the object depth map.

Open eVision User Guide @ euresys

2. Apply the calibration model to get the world point cloud.
3. (Optional) Save the point cloud to a PCD file.

4. Search for a reference plane by either:
o Choosing 3 points on the remote depth map to be used to compute a plane.
o Using the 3DPlaneFitter function.

Choose 2 points to define an orientation.
Build a ZMap using the reference plane and the orientation vector.
(Optional) Save the ZMap as an image.

Query the ZMap to get world space measurement.

A

Process the ZMap with 2D image function.

TIP
For easier reading, the code snippets in this example do not show exception
catching and error checking.

Calibration

The calibration process is mandatory to find the exact transformation from the depth map to
the real world, metric, coordinate system.

Open eVision features an object based calibration process: the scan of a reference object of
known geometry is used in the calibration calculation.

TIP
The recommended calibration object is the double truncated pyramid.

CAD model of the double pyramid and calibration object scanned

Using a Euresys Coaxlink 3D LLE frame grabber, the captured image is directly a depth map.
Depth maps are 8 bits or 16 bits grayscale images with the pixel values representing the height
of the laser profile.

Open eVision User Guide @ euresys

A depth map (gray scale image) of a double pyramid, used as the calibration object

The code snippet below shows how to load the depth map representing the double pyramid
object, using it to compute a calibration model and save the result for later use.

// Load the depthmap used for the calibration process

EDepthMaps6 calibration_depthmap;

calibration_depthmap.Load("calibration.tiff");

// Set the Z resolution from the number of bits for the fractional part, depends on the depth map acquisition
calibration_depthmap.SetZResolution(—f / (+<<5));

// Declare the object based calibration generator
EObjectBasedCalibrationGenerator calibrator;

// set the real world scale of the scanned object
calibrator.SetCalibrationObjectType(EObjectBasedCalibrationType_DoublePyramid);
calibrator.SetCalibrationObjectScale(+0.f);

// Declare an object based calibration model
EObjectBasedCalibrationModel calibration_model;

// Perform the calibration process (can take some time, like +0 seconds)
calibration_model = calibrator.Compute(calibration_depthmap);

// Check the calibration result
if(calibration_model.IsInitialized())
{
printf("Calibration succeeded with score: %g\n", calibration_model.GetCalibrationError());
// Save the model for later use
ESerializer* serializer = ESerializer::CreateFileWriter("calibration.model");
calibration_model.Save(serializer);
delete serializer;
}
else
{
printf("Calibration failed\n");
}

Processing the object in 3D

This section exposes the 3D workflow, from the source depth map to metric measurement.

Acquiring and calculating the 3D point cloud

The calibration model previously calculated is used to transform the depth map data to real
world 3D point cloud.

Open eVision User Guide

A depth map of the TV remote controller

auresys

(the object is distorted and scaled while black pixels represent undefined regions, that is
parts of the object that were not seen by the camera or lit by the laser)

The code snippet below:

1. Loads a calibration model.

2. Transforms the depth map to a 3D point cloud.
3. Saves the point cloud to a PCD file.

// Read an abstract calibration model from file

ECalibrationModel* calibration_model;

ESerializer* serializer = ESerializer::CreateFileReader("calibration.model");
// must be desallocated later

calibration_model = ECalibrationModel::Create(serializer);

delete serializer;

// Declare a depth map to point cloud converter
EDepthMapToPointCloudConverter dm2pc;

// attach a calibration model to the converter

dm2pc.SetCalibrationModel(*calibration_model);

// Generate the point cloud
EPointCloud point_cloud;
dm2pc.Convert(object_depthmap, point_cloud);

printf("Point cloud size : %d\n", point_cloud.GetNumPoints());

// Save to point cloud to a PCD file
point_cloud.SavePCD("point_cloud.pcd");

TIP

The PCD file is a simple 3D point container, used by the PCL framework
(www.pointclouds.org). Such file can be loaded in the PCL viewer of other
tools like Cloud Compare (www.cloudcompare.org).

http://www.pointclouds.org/
http://www.cloudcompare.org/

Open eVision User Guide @ euresys

As shown on the screen shots below, data in point cloud are in world coordinate system,
expressed in the calibration object units. Distances and angles are correct and then metric
measures are possible. However, processing on point clouds can be difficult and costly and then
the ZMap representation is an alternative allowing 2D processing on metric world space.

@ CloudCompare v23.beta [64-bit] - [3D View 1] - O X
@ File Edit Tools Display Plugins 30 Views Help - ax
N = P W= R : i i : [. - : ’ SF 1%
2 Q@B X o2 1@ & TN E SOR 4 - o + — kd m 7N 2
» DB Tree B [6L filter] EveDome Lighting (disable: normals and increase: points size for a better resultl) o
¥ |7 &3 remote.pcd (C: Users/chaudye/Pictur |
& | Blur (shader)
. ¥ [& remote
11 [& TLs/GBL m
i #i
4~ &
=
[o
+ <
Q L 5
[TT | Propertes) =
i -
@ |Pmperty State/Value A N
& ! 534
Name remote o
(@ | |visible b
Show name (in3D) [A
i)} X: 6133 :
~ | |Boxdimensions v:211.00 Lo
i z:125121 @
X: 385806
B |Box center ¥: 103378 &
7200842
@ | Object ID: 4 - Children: 1
s | |Current Display 30 View 1
Points 2,551,374
Global shift (0:00;0.00:0.00)
Global scale 1.000000
Point size Defauilt
Matrix Axis/Angle Export
Aods [0.000000 ; 0.000000 ; 1.000000
v
< >

B PCD viewer — a x

G Wps) chaudye\ Pictures \ RemoteCtrl remote.ped

Open eVision User Guide @ euresys

The resulting point cloud in the PCL viewer; the color ramp shows that the main body
plane of the remote is not aligned with an axis

Searching for a reference plane

To perform measurements and processing, it is usually mandatory to transform the data to a
reference frame. For the remote controller, we want to level to the main plane supporting the
keys and orient the points along the remote edge.

If the depth map has been previously registered (by a consistent acquisition process or by the
detection of fiducial markers), it may be possible to build the reference plane from 3 chosen
points (points to be known as part of the reference plane).

// Use 3 known points to build the reference plane

E3DPoint pw—(600.5, 450.5, object_depthmap.GetZValue(600, 450));
E3DPoint p2(+700.5, 470.5, object_depthmap.GetZValue(-700, 470));
E3DPoint p3(840.5, 2300.5, object_depthmap.GetZValue(840, 2300));

// convert these points from depth map space to world space, using the calibration model
E3DPoint ww, w2, w3;

ww— = calibration_model.Apply(p-);

w2 = calibration_model.Apply(p2);

w3 = calibration_model.Apply(p3);

// build the world plane using 3 points
E3DPlane reference_plane(ww, w2, w3);

The original object depth map and the position of 3 points used for the reference plane
calculation

Another option, if the depth map is not registered, is to use the class. This
function tries to find the main plane from a point cloud using a probabilistic approach. It finds a
subset of the point cloud that lies on a plane, given a user defined threshold tolerance.

The distance tolerance is a parameter of and must be adapted depending on the
scale, noise and curvature of the plane in the point cloud.

// Use a E3DPlaneFinder with a distance tolerance of 0.~ (world space coordinate)
float distance_tolerance=0..f;

EPlaneFinder plane_finder(distance_tolerance);

E3DPlane reference_plane=plane_finder.Find(point_cloud);

Open eVision User Guide @ euresys

The principal plane (in green) extracted from the point cloud by class

Building the ZMap

The ZMap is a gray scale 2D image, representing the projection of the 3D points to a reference
plane. The value of the pixels of the ZMap is the distance of the 3D point to the reference plane,
coded in a fixed point representation.

The ZMap also supports the “undefined pixel” specific value, when no point is projected on a
pixel and there is no valid value at that position.

As shown below, the point cloud to ZMap conversion can be made using default values for all
parameters: resolution and scale of the ZMap, reference plane, orientation, origin will all be
chosen automatically.

// Create the converter
EPointCloudToZMapConverter pc2zmap;

// Create a +6 bits ZMap and fill it with point cloud points
EZMapw6 zmap;
pc2zmap.Convert(point_cloud, zmap);

// Save the ZMap as a PNG image
zmap. SaveImage("zmap.png");

Open eVision User Guide @ euresys

The generated depth map with default parameters

The body of the remote is not leveled and the object is not aligned. Nevertheless, comparing to
the depth map, the ZMap is a calibrated representation of the object. Metric distances can be
evaluated on the ZMap.

The current implementation of the ZMap converter simply projects 3D points on the ZMap
image. Thus, depending on the point density and projection parameters, undefined pixels and
region may appear in the ZMap.

The ZMap converter automatically perform a filling algorithm on undefined pixels. Disable it
with the

! i
| .
t M —
f ‘ = L % i i l..
and
To avoid undefined pixels, choose a target scale for the ZMap. The method changes

the target X and Y resolution (in metric unit per pixel).

With the default configuration, the ZMap generator uses a horizontal reference plane. Use the
method to “level” the object and use the main body as the reference plane.
specifies the direction of the X (width) axis of the ZMap. The orientation
vector allow to “rotate” the object around the reference plane normal.

Open eVision User Guide @ euresys

// level the object by defining a reference plane
pc2zmap.SetReferencePlane(reference_plane);

// align to the world Y axis
pc2zmap.SetOrientationVector (E3DPoint(-0.0750-, 0.9964, -0.0376+));

// choose a resolution of 0.2mm per pixel
pc2zmap . SetMapXYResolution(0.2f);

// generate the ZMap
pc2zmap.Convert(point_cloud, zmap);

] |

The ZMap with a reference plane previously calculated, an orientation to align the object
and a reduced resolution

Use queries on ZMap to retrieve metric coordinates (for example, to measure the size and/or the

height of a feature). Useful functions are and
float h—= zmap.GetZValue(638, +28); // get “height” at position Pw
float h2 = zmap.GetZValue (595, +28); // get “height” at position P2

E3DPoint p3 = zmap.GetWorldPositionFromPixelPosition(437, 98); // get world position at p3
E3DPoint p4 = zmap.GetWorldPositionFromPixelPosition(437, 288); // get world position at p4
float d = p3.DistanceTo(p4); // world distance between p3 and p4

e hl(1.15601) and h2 (1.83618) are distance above the ZMap reference plane. These are values
in millimeters, the difference evaluates the “curvature” of the key.

e P1(58.843,84.7838, 32.1084) and P2 (20.9479,81.9271, 32.0041) are positions in the original
3D world space.

e The distance d (38.0028) represents the width of the remote keyboard in millimeters.

Open eVision User Guide @ euresys

The reference plane can be shifted (translated) to remove the remote controller body and keep
only the keys in the ZMap. An 8 bits ZMap must be used to be compatible the other Open
eVision 2D libraries.

// shift the plane by wmm in the normal direction

float d = reference_plane.GetSignedDistanceFromOrigin();
reference_plane.SetSignedDistanceFromOrigin(d + ».f);
pc2zmap.SetReferencePlane(reference_plane);

// choose the scale for the Z axis (2mm for 256 grey scale values)
pc2zmap.SetMapZResolution(2.f / 256);

// convert the point cloud to a 8 bits ZMap

EZMap8 zmap8;

pc2zmap.Convert(point_cloud, zmap8);

ZMap with shifted reference plane: only the keys remain visible while other pixels are set
to 0 (undefined value)

TIP
This image can be used in 2D libraries like Easylmage, EasyObject or
EasyGauge.

Processing the ZMap

On a ZMap, the gray value of a pixel is the distance (height) above the reference plane.
Threshold, filters, morphology and other image operators can be used directly.

Here is an example of a region segmentation using EasyObject:

// segment the objects of the ZMap (default is Minimum Residue segmentation method)
ECodedImage2 coded_image;

EImageEncoder image_encoder;

image_encoder.Encode(zmap8.AsEImage(), coded_image);

// filter the object by area

EObjectSelection object_selection;

object_selection.AddObjects(coded_image);
object_selection.RemoveUsingUnsignedIntegerFeature(EFeature_Area, +00, ESingleThresholdMode_Less);

Open eVision User Guide

@ euresys

The extracted objects with EasyObject on the ZMap image

The ZMap includes a

object that you can use for EasyGauge measurement. The

class represents the scale between the image space and the world space.

// get the world shape from the ZMap

const EWorldShape& world_shape = zmap8.GetWorldShape();

// setup a point gauge using that world shape

EPointGauge pointGauge;
pointGauge.Attach(&world_shape);

// set gauge center point and tolerances in world space (mm)
// +28mm and 25mm from the upper left corner

pointGauge.SetCenterXY(+-28.f, 25.f);
pointGauge.SetTolerances(v5.f, 0.f);

// +5mm, half gauge size

// perform the measurement on the ZMap
pointGauge.Measure (&zmap8.AsEImage());

// get the 2 points and calculate the length of the key, values are in millimeters
EPoint p— = pointGauge.GetMeasuredPoint(0);
EPoint p2 = pointGauge.GetMeasuredPoint(.);

float length = p—.Distance(p2);

// return 2. 6-9mm

Coordinates
Dot Grid Calibration

Calibration Coefficients
Gauges

Source Image

—

3]
EBW8image1 v

| =B EWordShape1
il EPointGauge1

Model File

Distortion
Landmarics Calibration

7 EPointGauge (EPointGaugel)

[Ma Caliration
Camera Mode!
Sealed

[] &nisotropic:

[Skewed

[Tied '

Unwarping
Postion -
Center X \ _12“|
Tolerance _j|
fge [0|

Interactivity

Dragable [Labeled
Rotatable Active
Resizable

[Radisl

[inwverse

Empirical Model

[Bilinear

[Quadratic

Draw

[werld Grid

EA b Plot Diraws
[Profile

[Detivative [&ctual

Load Sawe As

[Include Diaughters

|
[Current Shape

Process

Posttion ' Measurement Results (2)

y [3

Handles
(@ Standard
() Edaes

HNornimal Transition

Type

Open eVision User Guide @ euresys

A point gauge on a ZMap in Open eVision Studio: the parameters are the same as the code

snippet above

5.2. Inspecting a PCB

With Easy3D, it is possible to use depth maps for PCB inspection. This section presents a simple
detection of missing or misplaced components on a PCB. The processing is done entirely with
2D images but use depth maps as inputs.

The workflow is as follow:

1.

Perform a 3D acquisition or create the depth map with software laser line extraction

(class). Retrieve the grayscale image corresponding to the depth map
(method).
Align the image using fiducial markers (class).

Search for the PCB plane and subtract it from the aligned image, only the components and
the connectors remain (--+) function).

Compare the processed image to a golden sample to detect missing or misplaced
components () or).

The source depth map of a PCB, outputs of CoaxLink Quad 3D-LLE

The same depth map displayed as a 3D point cloud with false colors

Open eVision User Guide @ euresys

Align the image using fiducial markers (2 holes)

Open eVision User Guide @ euresys

The comparison of the image (left) with the golden sample (right, processed with the
same workflow) shows the missing component (in red)

5.3. Measuring the Warpage of a PCB

Source code and images

This application example is provided as a C++ sample program, named
o The source code is located in
o The sample images are located in

NOTE
To run this program, you need the Easy3D and EasyGauge licenses.

Display output of the 3D PCB Warpage application example

NOTE
The calibration process is not described in this document. We assume that a
calibration has been done and that the metric unit used is the mm.

Open eVision User Guide @ euresys

Application objective

This application demonstrates how to measure the warpage of a PCB.

TIP

In this application, we define the warpage as the difference between the
highest and the lowest surface points when the PCB regression plane is
oriented horizontally. In other words, we fit a plane through the PCB points
and take the perpendicular distance between the highest point above and
the lowest point below this regression plane.

~rnafe
\.N.-‘II' peE

ane
- Regre%ﬁon plan
Highest point |

-t noint
LD-_NQ‘_-,t P o

>

The main steps of the process are:

1.
2.

Making an initial ZMap using a first estimation of an average PCB plane.

Filtering the data by:
o Removing the points that show a large height deviation with respect to their neighbors.
o Applying a smooth filter on the remaining points.

For the generation of the final ZMap, the application will fit a regression plane through the
remaining / filtered data.

On the ZMap, detecting the corners of the PCB for the alignment (optional).
Producing the final ZMap that the application will use to compute the warpage of the PCB.

TIP

The (optional) alignment on the PCB edges ensures that the resulting ZMap
is always the same, independently of the orientation of the PCB during the
measurement.

TIP
Moreover, on the final ZMap, the horizon is parallel with the PCB regression
plane. This is necessary to have a well-defined warpage value.

Open eVision User Guide @ euresys

Generating the initial ZMap

1. Using a calibration model (in the code) and a depth map (« »), the application
produces a point cloud (« pc_ »).

TIP
Alternatively, you can load directly a point cloud from a file.

2. In this point cloud, the application localizes the PCB plane by searching for the largest plane,
using a plane finder object of the type . As we want to handle a curved PCB, a
large tolerance (+/- 1mm) is used by the plane finder object.

This step produces a reference plane called of the type
3. The application crops any data point that is farther from the reference plane than 1 mm.

4. It uses » to generate the first ZMap (called). Actually, the
reference plane used for the ZMap generation is 10 mm below so that all pixel
values of the ZMap are positive. This is illustrated on the figure below.

z
A
7
nE_l'ln”"“
_ X
>
The code to produce the ZMap is shown below.

// Apply calibration to the depth map, a metric 3D point cloud is generated
E3DDepthMapToPointCloudConverter converter;

Open eVision User Guide @ euresys

converter.SetCalibrationModel(model_);
converter.Convert(dm_, pc_);

// Search for the PCB plane

float maximumDistanceToPlane = ».0f; // 0 mm

E3DPlaneFinder finder(maximumDistanceToPlane); // tolerance for plane search = ».0 mm
E3DPlane refPlane_—= finder.Find(pc_); // finds the largest plane in the point cloud

// Crop any point distant from PCB plane

E3DPlaneCropper cropperPCB(refPlane_»); // 'refPlane_' = ref. plane for the cropper
EPointCloud pcPlaneOnly; // only keep points close to the ref. plane
cropperPCB.Crop(pc_, pcPlaneOnly, EPlaneCropperType_KeepClose, maximumDistanceToPlane);

// IMap projection of PCB plane, using reference plane and fixed resolution

float zMapPixelSize = 0.050f; // ZMap horizontal resolution: « pixel = 50pm = 0.050 mm
float zMapVerticalResolution = 0.00-f; // ZMap vertical resol.: ~ gray value = vum (= 0.00+ mm)
float zMapOffset = +0.0f; // +0 mm

E3DZMapGenerator zmapGenerator;

EZMap+6 zmapBeforeAlignment;

zmapGenerator.SetScale(zMapPixelSize); // horizontal resolution = 50um/pixel
zmapGenerator.SetZScale(zMapVerticalResolution); // vertical resolution = »— um/GV
zmapGenerator.SetReferencePlane(refPlane_» - zMapOffset); // ~Omm below refPlane_»
zmapGenerator.SetOrientationVectorMode (EZMapOrientationVectorMode_XAxis);
zmapGenerator.SetExtension(—f); // add a ~mm 3D extension, create a horder around the ZMap
zmapGenerator.Convert(pcPlaneOnly, zmapBeforeAlignment);

int zmapWidth = zmapBeforeAlignment.GetWidth();

int zmapHeight = zmapBeforeAlignment.GetHeight();

The following image shows this first ZMap with a 16-bit per pixel resolution.

ZMap

Open eVision User Guide @ euresys

In this image:

o Background pixels have the value "0" (black). This value is reserved for “undefined pixels
(nothing detected). Pixels having a value different from zero are “valid pixels”.

o The horizontal resolution is set to 50 um/pixel and the vertical resolution is set to 1 um
for one gray value.

Because the reference plane of the ZMap is 10 mm below the PCB, the average gray value
in the image is 10000 (10000 gray values = 10000 pum).

o The size of this ZMap is not specified; it is automatically computed from the size of the
bounding box, enlarged by 1 mm so that there is a black border around the PCB. This
enlargement is specified by the method of the ZMap generator. The black
border around the PCB helps for the detection of the edges.

»

Reducing and filtering the noise

On the ZMap, the application should ignore the following points during the computation of the
warpage:

o Isolated noisy points on the background.

o Noisy points inside the holes or on the pads.

The application removes points and applies a low-pass filter on the remaining points to detect
only the slow / global PCB deformations. This filtering is done in 2 steps.

Filter 1: removing the outliers

1. The filter defines a kernel window that is moved over every pixel of the ZMap.

2. For each pixel of the ZMap image, the kernel window is centered on this pixel and the filter
condition determines if the center pixel is either kept or removed.

The filter condition used here is ; it compares
the value of the pixel in the center with the average of all valid pixels in the kernel window.

This is illustrated on the figure below.

5 undeched pixels Center pixel
\, is compared with

\ r
! - L e |

/ >~ average of all valid
(1 | . 1 |

- o

halfKernelSize

Open eVision User Guide @ euresys

The application evaluates the condition to keep or remove the center pixel as follow :
o If a window has less than 25% of defined pixels (see in the code) or
if the center pixel is already undefined, this center pixel is marked as undefined.
o The application computes the height deviation of the center point with respect to all the
valid points in the kernel window and, if the resulting height deviation exceeds 30 um
(see in the code), the application removes the pixel in the center of the
kernel window (it actually replaces it by 0, meaning « undefined pixel »).

Filter 2: applying an averaging filter

1. In a second step, the application applies an averaging filter (low-pass) in order to remove the
random noise.

2. The filter also defines a kernel window that is moved over every pixel.

3. If there are enough valid pixels within the window (at least 25% in this case) and if the center
pixel is valid, this center pixel is replaced by the average of all pixels within the kernel
window.

Filtering code

The code used for the filtering of the ZMap data is:

// Process the ZMap to remove noise and small scale structures

// Filters parameters

int halfKernelSizeFilter = 25; // kernel size = 2 x halfKernelSizeFilter + » pixel = 5~
float thresholdFilter = 0.030f; // threshold = maximum deviation from mean

float ratioValidPixelsFilter = 0.25f; // requires at least 25% of valid points in the kernel

// Ppply noise removal filter

EZMap+6 zmapBeforeAlignmentFilterw; // output of the filter

zmapBeforeAlignmentFilter.. SetSize(zmapBeforeAlignment);

Easy3D: :RemoveNoise(zmapBeforeAlignment, zmapBeforeAlignmentFilter.,
E3DNoiseRemovalMethod_AbsoluteDifferenceFromMean,
halfKernelSizeFilter, thresholdFilter, ratioValidPixelsFilter, false);

// Apply low-pass filter

EZMap+6 zmapBeforeAlignmentFilter2; // output of the second filter

zmapBeforeAlignmentFilter2.SetSize(zmapBeforeAlignment);

Easy3D: : ComputeAverageMap (zmapBeforeAlignmentFilter., zmapBeforeAlignmentFilter2,
halfKernelSizeFilter, ratioValidPixelsFilter);

Open eVision User Guide @ euresys

The different steps of the filtering are illustrated below:

Filterl Filter2

Unfiltered ZMap Filterl: remove outliers Filter2: averaging filter

The 2 steps of the ZMap filtering

Aligning the ZMap on the PCB edges (optional)

This optional step consists in finding the orientation of the PCB (detection of a rectangle).

TIP
We could skip this step for the computation of the warpage but aligning on
the edges makes the comparison of different ZMaps with each other easier.

To generate a ZMap aligned on the PCB edges:

1. The application converts the ZMap to an 8-bit image. This is necessary to use the 2D tool set
of Open eVision.

2. Using EasyGauge, it detects the edges of the PCB by fitting a rectangle on the ZMap image.

The application uses the transitions between the undefined (0) and the valid (non-zero) pixels to
detect the position of the edges of the rectangle.

Open eVision User Guide @ euresys

The use of a rectangular gauge on the ZMap image is illustrated below:

rectangleDimTolerance

The corresponding code is:

// From the ZMap create an 8-bit image for alignment

EImageBW8 imageBeforeAlignment8(zmapWidth, zmapHeight);

// conversion »6-bits to 8-bits

EasyImage: :Convert(&zmapBeforeAlignmentFilter2.AsEImage(), &imageBeforeAlignment8);

// Search for the PCB "rectangle" in 8-bits image

float rectangleDimTolerance = 500.f; // 500 pixels tolerance on the rectangle's dimension
ERectangleGauge ERectangleGaugew;

ERectangle measuredRectangle;

ERectangleGauge~. SetTolerance(rectangleDimTolerance);

ERectangleGaugew. SetSize((float) (zmapWidth), (float)(zmapHeight));

ERectangleGaugew SetThreshold(20);

ERectangleGaugew. SetCenterXY((float) (zmapWidth / 2.0), (float)(zmapHeight / 2.0));
ERectangleGauge~. SetTransitionChoice(ETransitionChoice_NthFromBegin);

ERectangleGaugew SetTransitionIndex(0); // take the first transition ...

ERectangleGaugew SetTransitionType(ETransitionType Bw); // ... from black to white
ERectangleGauges. SetNumFilteringPasses(+0);

ERectangleGaugew. SetFilteringThreshold(5.0f); // threshold = 5 x the mean deviation
ERectangleGaugew. Measure (&imageBeforeAlignment8);

measuredRectangle = ERectangleGaugew.GetMeasuredRectangle();

float rectangleSizeX = ceil(measuredRectangle.GetSizeX()); // will be the width of the final ZMap
float rectangleSizeY = ceil(measuredRectangle.GetSizeY()); // will be the height of the final ZMap

// Store the 3D coordinates of the aligned rectangle corners

EPoint corner_2D[4];

E3DPoint corner_3D[4];

measuredRectangle.GetCorners(corner_2D[0], corner_2D[+], corner_2D[2], corner_2D[3]);
for (int i = 0; i<4; i++)

E3DPoint cornerPtZMap;

Open eVision User Guide @ euresys

cornerPtZMap = E3DPoint(corner_2D[i].GetX(), // X pixel position
corner_2D[1i].GetY(), // Y pixel position
zMap0ffset / zMapVerticalResolution); // = +0000 (height of the ZMap reference plane)
zmapBeforeAlignmentFilter2.PixelToWorld(cornerPtZMap, corner_3D[i]);
}

Creating the filtered point cloud

1. In order to create a new ZMap with a well-defined reference plane (parallel with the
regression plane through the filtered points), the application generates a point cloud from
the smoothed ZMap.

In the code below, the filtered point cloud is named

// From the filtered ZMap, generate a new 3D point cloud

// Use that point cloud to estimate a better reference plane

EPointCloud filteredPc;

zmapBeforeAlignmentFilter2.ToPointCloud(filteredPc);

E3DPlaneFitter planeFitter;

E3DPlane refPlane_2 = planeFitter.Fit(filteredPc); // find the best fit plane

2. The application fits a plane (the final regression plane called) through the filtered
data points.
3. This new reference plane, that is very close to , is the new « horizontal » reference

for the generation of the final ZMap on which the warpage is computed.

This plane is much less sensitive to the noise and outliers found in the original data.

Computing the warpage of the PCB

1. The application creates the final ZMap using the filtered point cloud.

The position of this new ZMap is based on:

o The plane minus 10 mm as the reference plane.

o The 3D position of the corners to determine the reference (lower-left) corner and the new
horizontal orientation (X axis). Using the corner positions, we specify the origin and the
orientation vector for the generation of the new ZMap, assuming that the two planes are
very close to each other.

The code that generates this aligned ZMap is:

// Generate the new ZMap with the filtered data

EZMapw6 zmap_;

zmapGenerator.SetOrigin(corner_3D[2]);

zmapGenerator.SetReferencePlane(refPlane_2 - zMapOffset); // refPlane_2 - »Omm

E3DPoint horizDirection(corner_3D[+].X - corner_3D[0].X,
corner_3D[+].Y - corner_3D[0].Y,
corner_3D[+].Z - corner_3D[0].Z);

zmapGenerator.SetOrientationVector(horizDirection);

zmapGenerator.SetResolution((int)rectangleSizeX, (int)rectangleSizeY);

zmapGenerator.SetExtension(0.f); // no border

zmapGenerator.Convert(filteredPc, zmap_);

Open eVision User Guide @ euresys

2. To compute the warpage of the PCB, the application only needs the maximum and the
minimum height from the aligned ZMap.

It retrieves these values with the static method in the class
The corresponding code is:

// Calculate warpage in metric unit

UINT32 validCount;

float minValue, maxValue, averageValue;

Easy3D: :ComputeStatistics(zmap_, validCount, minValue, maxValue, averageValue);
float warpage = maxValue - minValue;

e The sample application displays the PCB in 3D and applies a color map.
e The 3D viewer applies a scale factor of 10 on Z axis to emphasize the warpage.

Sample 3D renderings of the resulting depth maps (showing the warpage) and their
corresponding warpage measurement are illustrated below:

o e e W T e)

- . ™

Warpage = 0.145 mm

Warpage = 0.407 mm

Open eVision User Guide @ euresys

Warpage = 0.620 mm

	1. Dealing with Pixel Containers and Files
	1.1. Pixel Container Definition
	1.2. Pixel Container Types
	1.3. Supported Image File Types
	1.4. Pixel and File Types Compatibility
	1.5. Color Types

	2. Manipulating Pixels Containers and Files
	2.1. Pixel Container File Save
	2.2. Pixel Container File Load
	2.3. Memory Allocation
	2.4. Image and Depth Map Buffer
	2.5. Image Coordinate Systems
	2.6. Image Drawing and Overlay
	2.7. 3D Rendering of 2D Images
	2.8. Vector Types and Main Properties
	2.9. ROI Main Properties
	2.10. Arbitrarily Shaped ROI (ERegion)
	2.11. Flexible Masks
	2.12. Profile

	3. 3D Tools
	3.1. Easy3D - Using 3D Toolset
	Basic Concepts
	Static Methods
	Point Cloud
	Mapping Attributes
	Coordinates Transformations
	Reducing a Point Cloud
	Managing Planes
	Aligning

	Mesh
	ZMap
	Generating a ZMap
	Creating a Point Cloud from a ZMap
	Managing the Coordinates

	3D Viewer
	Photometric Stereo
	Photometric Stereo and Process
	Calibration
	Computation and Results
	Processing the Results with Open eVision Tools
	Improving the Results

	3.2. Easy3DLaserLine - Laser Line Extraction and Calibration
	Laser Triangulation
	The Laser Line 3D Acquisition Pipeline
	Laser Line Extraction
	Calibration
	Object-Based Calibration Guidelines

	3.3. Easy3DObject - Extracting 3D Objects
	Purpose and Workflow
	Object Features
	Extracting and Using Objects
	Use Case - Inspecting a PCB

	3.4. Easy3DMatch - 3D Alignment and Comparison
	Purpose and Workflow
	Alignment (E3DAligner)
	Comparison (E3DComparer)
	Alignment and Comparison (E3DMatcher)

	4. Code Snippets
	4.1. Basic Types
	Loading and Saving Images
	Interfacing Third-Party Images
	Retrieving Pixel Values
	ROI Placement
	Vector Management
	Exception Management

	5. Application Examples
	5.1. Measuring a Remote Controller
	5.2. Inspecting a PCB
	5.3. Measuring the Warpage of a PCB

