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1. Dealing with Pixel Containers and
Files

1.1. Pixel Container Definition

Images

Open eVision image objects contain image data that represents rectangular images.

Each image object has a data buffer, accessible via a pointer, where pixel values are stored
contiguously, row by row.

Image main parameters

An Open eVision image object has a rectangular array of pixels characterized by EBaseROI
parameters .

l Width is the number of columns (pixels) per row of the image.
l Height is the number of rows of the image. (Maximum width / height is 32,767 (215-1) in
Open eVision 32-bit, and 2,147,483,647 (231-1) in Open eVision 64-bit.)

l Size is the width and height.

The Plane parameter contains the number of color components. Gray-level images = 1. Color
images = 3.

Classes

Image and ROI classes derive from abstract class EBaseROI and inherit all its properties.
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Depth maps

A depth map is a way to represent a 3D object using a 2D grayscale image where each pixel in
the image represents a 3D point.

The pixel coordinates are the representation of the X and Y coordinates of the point while the
grayscale value of the pixel is a representation of the Z coordinate of the point.

Point clouds

A point cloud (https://en.wikipedia.org/wiki/Point_cloud) is an unstructured set of 3D points
representing discrete positions on the surface of an object.
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3D point clouds are produced by various 3D scanning techniques, such as Laser Triangulation,
Time of Flight or Structured Lighting.

1.2. Pixel Container Types

Reference

Images

Several image types are supported according to their pixel types: black and white, gray levels,
color, etc.

Easy.GetBestMatchingImageType returns the best matching image type for a given file on disk.

BW1 1-bit black and white images (8 pixels
are stored in 1 byte) EImageBW1

BW8 8-bit grayscale images (each pixel is
stored in 1 byte) EImageBW8

BW16 16-bit grayscale images (each pixel is
stored in 2 bytes) EImageBW16

BW32 32-bit grayscale images (each pixel is
stored in 4 bytes) EImageBW32

C15

15-bit color images (each pixel is
stored in 2 bytes).
Compatible with Microsoft® Windows
RGB15 color images and MultiCam
RGB15 format.

EImageC15
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C16

16-bit color images (each pixel is
stored in 2 bytes).
Compatible with Microsoft® Windows
RGB16 color images and MultiCam
RGB16 format.

EImageC16

C24

C24 images store 24-bit color images
(each pixel is stored in 3 bytes).
Compatible with Microsoft® Windows
RGB24 color images and MultiCam
RGB24 format.

EImageC24

C24A

C24A images store 32-bit color images
(each pixel is stored in 4 bytes).
Compatible with Microsoft® Windows
RGB32 color images and MultiCam
RGB32 format.

EImageC24A

Depth Maps

8 and 16-bit depth map values are stored in buffers compatible with the 2D Open eVision
images.

EDepth8 8-bit depth map (each pixel is stored in
1 byte as an integer) EDepthMap8

EDepth16 16-bit depth map (each pixel is stored
in 2 bytes as a fixed point) EDepthMap16

EDepth32f 32-bit depth map (each pixel is stored
in 4 bytes as a float) EDepthMap32f

Point Clouds

Point Cloud Set of points coordinates (stored as
float) EPointCloud

1.3. Supported Image File Types

Reference

Type Description

BMP Uncompressed image data format (Windows Bitmap Format)

JPEG Lossy data compression standard issued by the Joint Photographic Expert
Group registered as ISO/IEC 10918-1. Compression irretrievably loses quality.

JFIF JPEG File Interchange Format

JPEG-2000
Data compression standard issued by the Joint Photographic Expert Group
registered as ISO/IEC 15444-1 and ISO/IEC 15444-2. Open eVision supports
only lossy compression format, file format and code stream variants.
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Type Description

- code stream describes the image samples.
- file format includes meta-information such as image resolution and color
space.

PNG Lossless data compression method (Portable Network Graphics).

Serialized Euresys proprietary image file format obtained from the serialization of Open
eVision image objects.

TIFF

Tag Image File Format is currently controlled by Adobe Systems and uses the
LibTIFF third-party library to process images written for 5.0 or 6.0 TIFF
specification.
File save operations are lossless and use CCITT 1D compression for 1-bit
binary pixel types and LZW compression for all others.
File load operations support all TIFF variants listed in the LibTIFF
specification.

1.4. Pixel and File Types Compatibility

Depth map to image conversion

For 8- and 16-bit depth maps, the AsImage()method returns a compatible image object
(respectively EImageBW8 and EImageBW16) that can be used with Open eVision’s 2D processing
features.

Pixel and file types compatibility

Pixel access

The recommended method to access pixels is to use SetImagePtr and GetImagePtr to embed the
image buffer access in your own code. See also Image Construction and Memory Allocation and
Retrieving Pixel Values.

Use of the following methods should be limited because of the overhead incurred by each
function call:

Direct access

EROIBW8::GetPixel and SetPixelmethods are implemented in all images and ROI classes to read
and write a pixel value at given coordinates. To scan all pixels of an image, you could run a
double loop on the X and Y coordinates and use GetPixel or SetPixel each iteration, but this is not
recommended.

Open eVision User Guide
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TIP
For performance reasons, these accessors should not be used when a
significant number of pixels needs to be processed. When that is the case,
retrieving the internal buffer pointer using GetBufferPtr() and iterating on the
pointer is recommended.

Quick Access to BW8 Pixels

In BW8 images, a call to EBW8PixelAccessor::GetPixel or SetPixel will be faster than a direct
EROIBW8::GetPixel or SetPixel.

Supported structures

l EBW1, EBW8, EBW32
l EC15 (*), EC16 (*), EC24 (*)
l EC24A
l EDepth8, EDepth16, EDepth32f,

(*) These formats support RGB15 (5-5-5 bit packing), RGB16 (5-6-5 bit packing) and RGB32 (RGB
+ alpha channel) but they must be converted to/from EC24 using EasyImage::Convert before any
processing.

NOTE
Transition with versions prior to eVision 6.5 should be seamless: image pixel
types were defined using typedef of integral types, pixel values were treated
as unsigned numbers and implicit conversion to/from previous types is
provided.

Pixel and File Type compatibility during Load or Save operations

Type BMP JPEG JPEG2000 PNG TIFF Serialized

BW1 Ok N/A N/A Ok Ok Ok

BW8 Ok Ok Ok Ok Ok Ok

BW16 N/A N/A Ok Ok Ok
(***) Ok

BW32 N/A N/A N/A N/A Ok
(***) Ok

C15 Ok Ok (**) Ok (**) Ok (**) Ok (**) Ok

C16 Ok Ok (**) Ok (**) Ok (**) Ok (**) Ok

C24 Ok Ok Ok Ok Ok (**) Ok

C24A Ok N/A N/A Ok N/A Ok

Depth8 Ok Ok Ok Ok Ok Ok
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Type BMP JPEG JPEG2000 PNG TIFF Serialized

Depth16 N/A N/A Ok Ok Ok
(***) Ok

Depth32f N/A N/A N/A N/A N/A Ok

N/A: Not supported. An exception occurs if you use the combination.

Ok: Image integrity is preserved with no data loss (apart from JPEG and JPEG2000, lossy
compression).

(**) C15 and C16 formats are automatically converted into C24 during the save operation.

(***) BW16 and BW32 are not supported by Baseline TIFF readers.

1.5. Color Types

EISH: Intensity, Saturation, Hue color system.

ELAB: CIE Lightness, a*, b* color system.

ELCH: Lightness, Chroma, Hue color system.

ELSH: Lightness, Saturation, Hue color system.

ELUV: CIE Lightness, u*, v* color system.

ERGB: NTSC/PAL/SMPTE Red, Green, Blue color system.

EVSH: Value, Saturation, Hue color system.

EXYZ: CIE XYZ color system.

EYIQ: CCIR Luma, Inphase, Quadrature color system.

EYSH: CCIR Luma, Saturation, Hue color system.

EYUV: CCIR Luma, U Chroma, V Chroma color system.
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2. Manipulating Pixels Containers and
Files

2.1. Pixel Container File Save

Images and depth maps

The Savemethod of an image or the SaveImagemethod of a depth map or a ZMap saves the image
data of an image or of a depth map or a ZMap object into a file using two arguments:

□ Path: path, file name and file name extension.
□ Image File Type: if omitted, the file name extension is used.

Images bigger than 65,536 (either width or height) must be saved in Open eVision proprietary
format.

Save throws an exception when:
□ The requested image file format is incompatible with the image pixel types
□ The Auto file type selection method and the file name extension is not supported

TIP
When saving a 16-bit depth map, the fixed point precision is lost and the
pixels are considered as 16-bit integers.

Image file type arguments

Argument Image File Type

EImageFileType_Auto(*) Automatically determined by the filename extension. See below.

EImageFileType_Euresys Open eVision Serialization.

EImageFileType_Bmp Windows bitmap - BMP

EImageFileType_Jpeg JPEG File Interchange Format - JFIF

EImageFileType_Jpeg2000 JPEG 2000 File format/Code Stream -JPEG2000

EImageFileType_Png Portable Network Graphics - PNG

EImageFileType_Tiff Tagged Image File Format - TIFF
(*) Default value.

Open eVision User Guide

ebaseroi-save.htm
edepthmap8-saveimage.htm
ebaseroi-save.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm
eimagefiletype-enum.htm


13

Assigned image file type if argument is ImageFileType_Auto or missing

File name extension(*) Automatically assigned image file type

BMP Windows Bitmap Format

JPEG, JPG JPEG File Interchange Format - JFIF

JP2 JPEG 2000 file format

J2K, J2C JPEG 2000 Code Stream

PNG Portable Network Graphics

TIFF, TIF Tagged Image File Format
(*) Case-insensitive.

Saving JPEG and JPEG2000 lossy compressions

SaveJpeg and SaveJpeg2K specify the compression quality when saving compressed images. They
have two arguments:

□ Path: a string of characters including the path, filename, and file name extension.
□ Compression quality of the image file, an integer value in range [0: 100].

SaveJpeg saves image data using JPEG File Interchange Format – JFIF.
SaveJpeg2K saves image data using JPEG 2000 File format.

JPEG compression values

JPEG compression Description

JPEG_DEFAULT_QUALITY (-1) Default quality (*)

100 Superb image quality, lowest compression factor

75 Good image quality (*)

50 Normal image quality

25 Average image quality

10 Bad Image quality
(*) The default quality corresponds to the good image quality (75).

Representative JPEG 2000 compression quality values

JPEG 2000 compression Description

-1 Default quality (*)

1 Highest image quality, lowest compression factor

16 Good Image Quality (*) (16:1 rate)

512 Lowest image quality, highest compression factor
(*) The default quality corresponds to the good image quality (16:1 rate).
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Saving point clouds

Use the following methods to save a point cloud in a specific format:
□ EPointCloud::Save: Open eVision proprietary file format.
□ EPointCloud::SaveCSV: CSV file.
□ EPointCloud::SaveOBJ: OBJ file.
□ EPointCloud::SavePCD: PCD file.
□ EPointCloud::SavePLY: PLY file.
□ EPointCloud::SaveXYZ: XYZ file.

TIP
The PCD format is supported in ASCII and binary modes.

2.2. Pixel Container File Load

Loading images and depth maps

● Use the Loadmethod to load image data into an image object:
□ It has one argument: the path: path, filename, and file name extension.
□ File type is determined by the file format.
□ The destination image is automatically resized according to the size of the image on disk.

● The Loadmethod throws an exception when:
□ File type identification fails
□ File type is incompatible with pixel type of the image object

TIP
Serialized image files of Open eVision 1.1 and newer are incompatible with
serialized image files of previous Open eVision versions.

TIP
When loading a BW16 image (with integer values) in a depth map, the fixed
point precision set in the depth map (0 by default) is left unchanged and
used.
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Loading point clouds

Use the following methods to load a point cloud saved in a specific format:
□ EPointCloud::Load: Open eVision proprietary file format.
□ EPointCloud::LoadCSV: CSV file.
□ EPointCloud::LoadOBJ: OBJ file.
□ EPointCloud::LoadPCD: PCD file.
□ EPointCloud::LoadPLY: PLY file.
□ EPointCloud::LoadXYZ: XYZ file.

TIP
- The PCD format is supported in ASCII and binary modes.
- The PLY is supported only in ASCII mode.

2.3. Memory Allocation

An image can be constructed with an internal or external memory allocation.

Internal memory allocation

The image object dynamically allocates and deallocates a buffer.
□ Memory management is transparent.
□ When the image size changes, reallocation occurs.
□ When an image object is destroyed, the buffer is deallocated.

To declare an image with internal memory allocation:

a. Construct an image object, for instance EImageBW8, either with width and height arguments,
OR using the SetSize function.

b. Access a given pixel. There are several functions that do this. GetImagePtr returns a pointer
to the first byte of the pixel at the given coordinates.

External memory allocation

The user controls buffer allocation or links a third-party image in the memory buffer to an Open
eVision image.

□ Image size and buffer address must be specified.
□ When an image object is destroyed, the buffer is unaffected.
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To declare an image with external memory allocation:

a. Declare an image object, for instance EImageBW8.

b. Create a suitably sized and aligned buffer (see Image Buffer).

c. Assign the buffer to the image with SetImagePtr.

NOTE
If your buffer rows are not aligned on 4 bytes, you cannot use SetImagePtr. In
that case, use InitializeFromUnalignedBuffer instead.
Please note, however, that this allocates the memory internally and copies
the external buffer into the internal one instead of using the external one
directly.

2.4. Image and Depth Map Buffer

Image and depth map pixels are stored contiguously, from left to right and from top row to
bottom row, in Windows bitmap format (top-down DIB -device-independent bitmap-) into an
associated buffer.

The buffer address is a pointer to the start address of the buffer, which contains the top left
pixel of the image.

Image buffer pitch

● Alignment must be a multiple of 4 bytes.

● Open eVision 1.2 onwards default pitch is 32 bytes for performance reasons (Open eVision
1.1.5 was 8 bytes).
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Memory layout

● EImageBW1 stores 8 pixels in one byte.

Example memory layout of the first 2 pixels of a BW1 image buffer:

● EImageBW8 and EDepthMap8 store each pixel in one byte.

Example memory layout of the first pixels of a BW8 image buffer:

● EImageBW16 stores each pixel in a 16-bit word (two bytes).

Example memory layout of the first pixels of a BW16 image buffer:

● EImageC15 stores each pixel in 2 bytes. Each color component is coded with 5-bits.
The 16th bit is left unused.

Open eVision User Guide

eimagebw1-class.htm
eimagebw8-class.htm
edepthmap8-class.htm
eimagebw16-class.htm
eimagec15-class.htm


18

Example memory layout of the first pixels of a C15 image buffer:

● EImageC16 stores each pixel in 2 bytes. The first and third color components are coded with 5-
bits.
The second color component is coded with 6-bits.

Example memory layout of the first pixels of a C16 image buffer:

● EDepthMap16 store each pixel in 2 bytes using a fixed point format.

● EImageC24 stores each pixel in 3 bytes. Each color component is coded with 8-bits.

Example memory layout of the first pixels of a C24 image buffer:

Open eVision User Guide
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● EImageC24A stores each pixel in 4 bytes. Each color component is coded with 8-bits.
The alpha channel is also coded with 8-bits.

Example memory layout of the first pixels of a C24A image buffer:

● EDepthMap32f store each pixel in 4 bytes using a float format.

2.5. Image Coordinate Systems

The conventions below apply to all Open eVision functions and results.
□ Pixel coordinates are usually given as integer numbers.
□ Some results can use subpixel precision with real (floating point) numbers.
□ Some exceptions apply and are documented per librarie.

Integer coordinates

● The origin (0,0) of the coordinate system is the upper left pixel of the image.

● The lower right pixel is (width-1, height-1).
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Real coordinates

● With floating point (x,y) coordinates, the origin is the upper left corner of the upper left pixel.

● The first pixel area ranges in [0,1[ for X and Y axis.

● Coordinates greater or equal than the width or the height are outside the image.

2.6. Image Drawing and Overlay

● Drawing uses Windows GDI (Graphics Device Interface) system calls.
□ MFC (Microsoft Foundation Class) applications normally use OnDraw event handler to draw,

where a pointer to a device context is available.
□ Borland/CodeGear OWL or VCL use a Paint event handler.

● The color palette in 256-color display mode gives optimal rendering.

● Gray-level images can be improved using LUTs (LookUp Tables) (using histogram stretching
techniques or pseudo-coloring).

● The zoom can be different horizontally and vertically.

● DrawFrameWithCurrentPenmethod draws a frame.

● Non-destructive overlaying drawing operations do not alter the image contents, such as
MoveTo/LineTo. 

● Destructive overlaying drawing operations alter the image contents by drawing inside the
image such as Easy::OpenImageGraphicContext. Gray-level [color] images can only receive a gray-
level [color] overlay.

2.7. 3D Rendering of 2D Images

These images are viewed by rotating them around the X-axis, then the Y-axis.
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Gray 3D rendering

Easy::Render3D prepares a 3-dimensional rendering where gray-level values are altitudes.
Magnification factors in the three directions (X = width, Y = height and Z = depth) can be given.
The rendered image appears as independent dots whose size can be adjusted to make the
surface more or less opaque.

3D rendering

Color histogram 3D rendering

Easy::RenderColorHistogram prepares a 3-dimensional rendering of a color image histogram.
The pixels are drawn in the RGB space (not XY-plane) to show clustering and dispersion of RGB
values.
This function can process pixels in other color systems (using EasyColor to convert), but the raw
RGB image is required to display the pixels in their usual colors.

Magnification factors in all three directions (X = red, Y = green and Z = blue) can be given.

Color histogram rendering

Open eVision User Guide
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2.8. Vector Types and Main Properties

A vector is a one-dimensional array of pixels (taken from an image profile or contour).

EVector is the base class for all vectors. It contains all non-type-specific methods, mainly for
counting elements and serialization.

Profile in a C24 image, RGB values plot along profile and RGB values array (EC24Vector)

A vector manages an array of elements. Memory allocation is transparent, so vectors can be
resized dynamically. Whenever a function uses a vector, the vector type, size and structure are
automatically adjusted to suit the function needs.

The use of vectors is quite straightforward:

● To create a vector of the appropriate type:
□ Use its constructor and preallocate elements if required.

● To fill a vector with values:
□ Call the EVector::Emptymember to empty it.
□ Call the EC24Vector::AddElementmember to add elements one by one.
□ Use the indexing to access any element.

● To access a vector element, either for reading or writing:
□ Use the brackets operator EC24Vector::operator[].

● To determine the current number of elements:
□ Use the EVector::NumElementsmember.

● To draw the vector:
□ A pixel vector is a plot of the element values as a function of the element index, so its

graphical appearance depends on its type. You can draw a vector in a window. For
legibility, the drawing should appear on a neutral background.

□ Drawing is done in the device context associated to the desired window. By default,
curves are drawn in blue and annotations in black. You can define: graphicContext, width,
height, originX, originY, color0, color1 and color2.

□ The EC24Vector has three curves drawn instead of one, each corresponding to a color
component. By default the red, blue and green pens are used.
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Vector types

● EBW8Vector: a sequence of gray-level pixel values, often extracted from an image profile
(used by EasyImage::Lut, EasyImage::SetupEqualize, EasyImage::ImageToLineSegment,
EasyImage::LineSegmentToImage, EasyImage::ProfileDerivative...).

Graphical representation of an EBW8Vector (see Draw method)

● EBW16Vector: a sequence of gray-level pixel values, using an extended range (16 bits), mainly
for intermediate computations.

Graphical representation of an EBW16Vector

● EBW32Vector: a sequence of gray-level pixel values, using an extended range (32 bits), mainly
for intermediate computations
(used in EasyImage::ProjectOnARow, EasyImage::ProjectOnAColumn, ...).

Graphical representation of an EBW32Vector
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● EC24Vector: a sequence of color pixel values, often extracted from an image profile
(used by EasyImage::ImageToLineSegment, EasyImage::LineSegmentToImage,
EasyImage::ProfileDerivative, ...).

Graphical representation of an EC24Vector

● EBW8PathVector: a sequence of gray-level pixel values, extracted from an image profile or
contour, with corresponding pixel coordinates
(used by EasyImage::ImageToPath, EasyImage::PathToImage, ...).

Graphical representation of an EBW8PathVector (see Draw method)

● EBW16PathVector: a sequence of gray-level pixel values, extracted from an image profile or
contour, with corresponding pixel coordinates
(used by EasyImage::ImageToPath, EasyImage::PathToImage, ...).

Graphical representation of an EBW16PathVector (see Draw method)
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● EC24PathVector: a sequence of color pixel values, extracted from an image profile or contour,
with corresponding pixel coordinates
(used by EasyImage::ImageToPath, EasyImage::PathToImage, ...).

Graphical representation of an EC24PathVector (see Draw method)

● EBWHistogramVector: a sequence of frequency counts of pixels in a BW8 or BW16 image
(used by EasyImage::IsodataThreshold, EasyImage::Histogram, EasyImage::AnalyseHistogram,
EasyImage::SetupEqualize, ...).

Graphical representation of an EBWHistogramVector (see Draw method)

● EPathVector: a sequence of pixel coordinates. The corresponding pixels need not be
contiguous
(used by EasyImage::PathToImage and EasyImage::Contour).

Graphical representation of an EPathVector (see Draw method)

● EPeakVector: peaks found in an image profile
(used by EasyImage::GetProfilePeaks).

● EColorVector: a description of colors
(used by EasyColor::ClassAverages and EasyColor::ClassVariances).
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2.9. ROI Main Properties

ROIs are defined by a width, a height, and origin x and y coordinates.
The origins are specified with respect to the top left corner in the parent image or ROI.
The ROI must be wholly contained in its parent image.
The processing/analysis time of a BW1 ROI is faster if OrgX and Width are multiples of 8.

Save and load

You can save or load an ROI as a separate image, to be used as if it was a full image. The ROIs
perform no memory allocation at all and never duplicate parts of their parent image, the
parent image provides them with access to its image data.

The image size of the new file must match the size of the ROI being loaded into it. The image
around the ROI remains unchanged.

ROI Classes

An Open eVision ROI inherits parameters from the abstract class EBaseROI.

There are several ROI types, according to their pixel type. They have the same characteristics as
the corresponding image types.

□ EROIBW1
□ EROIBW8
□ EROIBW16
□ EROIBW32
□ EROIC15
□ EROIC16
□ EROIC24
□ EROIC24A

Attachment

An ROI must be attached to a parent (image/ROI) with parameters that set the parent, position
and size, and these links are updated transparently, avoiding dangling pointers.
A normal image cannot be attached to another image or ROI.

Nesting

Set and Get functions change or query the width, height and position of the origin of an ROI,
with respect to its immediate or topmost parent image.

An image may accommodate an arbitrary number of ROIs, which can be nested in a hierarchical
way. Moving the ROI also moves the embedded ROIs accordingly. The image/ROI classes provide
several methods to traverse the hierarchy of ROIs associated with an image.

Open eVision User Guide

ebaseroi-width.htm
ebaseroi-height.htm
ebaseroi-orgx.htm
ebaseroi-orgy.htm
ebaseroi-orgx.htm
ebaseroi-width.htm
ebaseroi-save.htm
ebaseroi-load.htm
ebaseroi-class.htm
eroibw1-class.htm
eroibw8-class.htm
eroibw16-class.htm
eroibw32-class.htm
eroic15-class.htm
eroic16-class.htm
eroic24-class.htm
eroic24a-class.htm
ebaseroi-attach.htm


27

Nested ROIs: Two sub-ROIs attached to an ROI, itself attached to the parent image

Cropping

CropToImage crops an ROI which is partially out of its image. The resized ROI never grows.
An exception is thrown if a function attempts to use an ROI that has limits that extend outside
of the parents.

NOTE
(In Open eVision 1.0.1 and earlier, an ROI was silently resized or repositioned
when placed out of its image and sometimes grew. If ROI limits extended
outside parents, they were silently resized to remain within parent limits.)

Resizing and moving

ROIs can easily be resized and positioned by two functions and dragging handles:

● EBaseROI::Drag adjusts the ROI coordinates while the cursor moves.

● EBaseROI::HitTest informs if the cursor is placed over a dragging handle.
□ Once the handle is known, the cursor shape can be changed by an OnSetCursor MFC event

handler. HitTest is unpredictable if called while dragging is in progress.
□ HitTest can be used in an OnSetCursor MFC event handler to change the cursor shape, or

before a dragging operation like OnLButtonDown,
(or EvSetCursor and EvLButtonDown in Borland/CodeGear's OWL)
(or FormMouseMove and FormMouseDown in Borland/CodeGear's VCL).
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2.10. Arbitrarily Shaped ROI (ERegion)

See also: example: Inspecting Pads Using Regions / code snippets: ERegion

Regions or arbitrarily shaped ROI

You define and use regions of interest (ROI) to restrict the area processed with your vision tool
and to reduce and optimize the processing time.

In Open eVision:
□ An ROI (EROIxxx class) designates a rectangular region of interest.
□ A region (ERegion class) designates an arbitrarily shaped ROI. With regions, you can

determine precisely which part of the image, down to a single pixel, is used for your
processing.

Currently, only the following Open eVision methods support ERegions:

Library Method
EasyImage::Threshold
EasyImage::Copy
EasyImage::ConvolKernel
EasyImage::ConvolSymmetricKernel
EasyImage::ConvolLowpass1
EasyImage::ConvolLowpass2
EasyImage::ConvolLowpass3
EasyImage::ConvolUniform
EasyImage::ConvolGaussian
EasyImage::ConvolHighpass1
EasyImage::ConvolHighpass2
EasyImage::ConvolGradientX
EasyImage::ConvolGradientY
EasyImage::ConvolGradient
EasyImage::ConvolSobelX
EasyImage::ConvolSobelY
EasyImage::ConvolSobel
EasyImage::ConvolPrewittX
EasyImage::ConvolPrewittY
EasyImage::ConvolPrewitt
EasyImage::ConvolRoberts
EasyImage::ConvolLaplacianX
EasyImage::ConvolLaplacianY
EasyImage::ConvolLaplacian8
EasyImage::DilateBox
EasyImage::ErodeBox
EasyImage::OpenBox

EasyImage EasyImage::CloseBox
EasyImage::WhiteTopHatBox
EasyImage::BlackTopHatBox
EasyImage::MorphoGradientBox
EasyImage::ErodeDisk
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Library Method
EasyImage::DilateDisk
EasyImage::OpenDisk
EasyImage::CloseDisk
EasyImage::WhiteTopHatDisk
EasyImage::BlackTopHatDisk
EasyImage::MorphoGradientDisk
EasyImage::Median
EasyImage::ScaleRotate
EasyImage::DoubleThreshold
EasyImage::Histogram
EasyImage::Area
EasyImage::AreaDoubleThreshold
EasyImage::BinaryMoments
EasyImage::WeightedMoments
EasyImage::GravityCenter
EasyImage::PixelCount
EasyImage::PixelMax
EasyImage::PixelMin
EasyImage::PixelAverage
EasyImage::PixelStat
EasyImage::PixelVariance
EasyImage::PixelStdDev
EasyImage::PixelCompare

Easy3D

EDepthMapToMeshConverter::Convert
EDepthMapToPointCloudConverter::Convert
EStatistics::ComputePixelStatistics
EStatistics::ComputeStatistics
E3DObjectExtractor::Extract
EZMapToPointCloudConverter::Convert

EasyObject EImageEncoder::Encode

EasyFind
EPatternFinder::Find
EPatternFinder::Learn

EasyOCR2
EOCR2::Read
EOCR2::Detect

EasyGauge

EPointGauge::Measure
ELineGauge::Measure
ERectangleGauge::Measure
ECircleGauge::Measure
EWedgeGauge::Measure

EasyMatch
EMatcher::LearnPattern
EMatcher::Match

EasyQRCode
EQRCodeReader::SetSearchField
EQRCodeReader::Read

TIP
In the future Open eVision releases, the support of ERegions will be gradually
extended to all operators.
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Creating regions

Open eVision offers multiple ways to create regions, depending on the shape you need:

The ERegion is the base class for all regions and the most versatile. It encodes a region using a
Run-Length Encoded (RLE) representation.

□ The RLE representation of a region is made of runs (horizontal, 1-pixel high slices).
□ The runs are stored in the form of their ordinate, starting abscissa and length.

Run-Length Encoding of a circle-shaped region

To create a region, either:
□ Use one of the geometry-based region classes.
□ Use the result of another tool, such as EasyFind, EasyMatch or EasyObject.
□ Combine or modify other regions.
□ Use a mask image.
□ Directly provide the list of runs.

Geometry-based regions

Geometry based regions are specialized classes of regions that are encompassed in simple
geometries. Open eVision currently provides classes based on a rectangle, a circle, an ellipse or
a polygon.

Use these classes to setup geometric regions and modify them with translation, rotation and
scaling. The transformation operators return new regions, leaving the source object unchanged.

● ERectangleRegion
□ The contour of an ERectangleRegion class is a rectangle.
□ Define it using its center, width, height and angle.
□ Alternatively, use an ERectangle instance, such as one returned by an ERectangleGauge

instance.

Rectangle region separating a bar code from the background
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● ECircleRegion
□ The contour of an ECircleRegion class is a circle.
□ Define it using its center and radius or 3 non-aligned points.
□ Alternatively, use an ECircle instance, such as one returned by an ECircleGauge instance.

Circle region encompassing the useful part of an X-Ray image

● EEllipseRegion
□ The contour of an EEllipseRegion class is an ellipse.
□ Define it using its center, long and short radius and angle.

Ellipse region encompassing a waffle

● EPolygonRegion
□ The contour of an EPolygonRegion class is a polygon.
□ It is constructed using the list of its vertices.

Polygon region encompassing a key
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Using the result of other tools

The ERegion class provides a set of specialized constructors to create regions from the results of
another tool.

In a tool chain, these constructors restrict the processing of a tool to the area issued from the
previous tool.

Open eVision provides constructors for the following tools:
□ EasyFind: EFoundPattern
□ EasyMatch: EMatchPosition
□ EasyGauge: ECircle and ERectangle
□ EasyObject: ECodedElement

TIP
When compatible, Open eVision also provides specialized constructors for
the geometry-based regions. For instance, ECircleRegion provides a
constructor using an ECircle.

Combining regions

Use the following operations to create a new region by combining existing regions:

● Union
□ The ERegion::Union(const ERegion&, const ERegion&)method returns the region that is the

addition of the two regions passed as arguments.

Union of 2 circles

● Intersection
□ The ERegion::Intersection(const ERegion&, const ERegion&)method returns the region that is

the intersection of the two regions passed as argument.

Intersection of 2 circles
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● Subtraction
□ The ERegion::Subtraction(const ERegion&, const ERegion&)method returns the first region

passed as argument after removing the second one.

Subtraction of 2 circles

Morphological operations on regions

The initial arbitrary region used to illustrate the different morphological operations

● Grow
□ The ERegion::Grow(int radius)method returns a region that is the dilation of the region by

a disk with a radius equals to the argument.

Grow of the arbitrary region

● Shrink
□ The ERegion::Shrink(int radius)method returns a region that is the erosion of the region

by a disk with a radius equals to the argument.

Shrink of the arbitrary region

Open eVision User Guide

eregion-subtraction.htm
eregion-grow.htm
eregion-shrink.htm


34

● Contour
□ The ERegion::Contour(int thickness, bool centered = true)method returns a region that is

the contour of the region.

Contour of the arbitrary region

Free-hand drawing a region

● The ERegionFreeHandPainter class provides the methods that allow you to create a region by
hand, using the mouse or any other user input method.

● The RegionFreeHand sample, available both in C++ and C#, shows how to use this class to draw
a region on an image.

Using regions

The tools supporting regions provide methods that follow one of these conventions:
□ Method(const EImage& source, const ERegion& region)
□ Method(const EImage& source, const ERegion& region, EImage& destination)

NOTE
The source, the region and the destination must be compatible. It means
that the region must at least partly fit in the source, and that source and
destination must have the same size.

Preparing the region

● Open eVision automatically prepares the regions when it applies them to an image, but this
preparation can take some time.

● If you do not want your first call to a method to take longer than the next ones, you can
prepare the region in advance by using the appropriate Prepare()method.

● To manually prepare the regions, adapt the internal RLE description to your images.

Drawing regions

The ERegion classes provide several methods to display the regions:

● ERegion::Draw() draws the region area, in a semi-transparent way, in the provided device
context.

● ERegion::DrawContour() draws the region contour in the provided device context.
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● ERegion::ToImage() renders the region as a mask into the provided destination image.
□ You can configure the foreground and the background colors.
□ If you initialized your image with a width and a height, Open eVision renders the region

inside those bounds.
□ If not, Open eVision resizes the image to contain the whole region.
□ Use ToImage() to create masks for the Open eVision functions that support them.

ERegions and EROIs

● The older EROI classes of Open eVision are compatible with the new regions.

● Some tools allow the usage of regions with source and/or destinations that are ERoi instead
of EImage follow one of these conventions:
□ Method(const ERoi& source, const ERegion& region)
□ Method(const ERoi& source, const ERegion& region, ERoi& destination)

TIP
In that case, the coordinates used for the region are relative to the reduced
ROI space instead of the whole image space .

ERegion and 3D

● The new regions are compatible with the 2.5D representations of Easy3D (EDepthMap and
EZMap).

● You can also reduce the domain of processing when using these classes.

2.11. Flexible Masks

ROIs vs flexible masks

ROIs and masks restrict processing to part of an image:
□ "ROI Main Properties" on page 26 apply to all Open eVision functions. Using Regions of

Interest accelerates processing by reducing the number of pixels. Open eVision supports
hierarchically nested rectangular ROIs.

□ Flexible Masks are recommended to process disconnected ROIs or non-rectangular
shapes. They are supported by some EasyObject and EasyImage library functions.

Open eVision User Guide

eregion-toimage.htm
eregion-toimage.htm
edepthmap-class.htm
ezmap-class.htm
EasyObject - Analyzing Blobs.htm
EasyImage - Pre-Processing Images.htm


36

Flexible Masks

A flexible mask is a BW8 image with the same height and width as the source image. It contains
shapes of areas that must be processed and ignored areas (that will not be considered during
processing):

□ All pixels of the flexible mask having a value of 0 define the ignored areas.
□ All pixels of the flexible mask having any other value than 0 define the areas to be

processed.

Source image Associated mask Processed masked image

A flexible mask can be generated by any application that outputs BW8 images and by some
EasyObject and EasyImage functions.

Flexible Masks in EasyImage

Code Snippets

Source image (left) and mask variable (right)

Simple steps to use flexible masks in Easyimage

1. Call the functions from EasyImage that take an input mask as an argument. For
instance, one can evaluate the average value of the pixels in the white layer and after in the
black layer.

2. Display the results.

Resulting image
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EasyImage Functions that support flexible masks

● EImageEncoder::Encode has a flexible mask argument for BW1, BW8, BW16, and C24 source
images.

● AutoThreshold.

● Histogram (function HistogramThreshold has no overload with mask argument).

● RmsNoise, SignalNoiseRatio.

● Overlay (no overload with mask argument for BW8 source images).

● ProjectOnAColumn, ProjectOnARow (Vector projection).

● ImageToLineSegment, ImageToPath (Vector profile).

Flexible Masks in EasyObject

A flexible mask can be generated by any application that outputs BW8 images or uses the Open
eVision image processing functions.

EasyObject can use flexible masks to restrict blob analysis to complex or disconnected shaped
regions of the image.

If an object of interest has the same gray level as other regions of the image, you can define
"keep" and "ignore" areas using flexible masks and Encode functions.

A flexible mask is a BW8 image with the same height and width as the source image.
□ A pixel value of 0 in the flexible mask masks the corresponding source image pixel so it

doesn't appear in the encoded image.
□ Any other pixel value in the flexible mask causes the pixel to be encoded.

EasyObject functions that create flexible masks

Source image

1) ECodedImage2::RenderMask: from a layer of an encoded image

1. To encode and extract a flexible mask, first construct a coded image from the source image.

2. Choose a segmentation method (for the image above the default method
GrayscaleSingleThreshold is suitable).

3. Select the layer(s) of the coded image that should be encoded (i.e. white and black layers
using minimum residue thresholding).

4. Make the mask image the desired size using mask.SetSize(sourceImage.GetWidth(),
sourceImage.GetHeight()).
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5. Exploit the flexible mask as an argument to ECodedImage2::RenderMask.

BW8 resulting image that can be used as a flexible mask

2) ECodedElement::RenderMask: from a blob or hole

1. Select the coded elements of interest.

2. Create a loop extracting a mask from selected coded elements of the coded image using
ECodedElement::RenderMask.

3. Optionally, compute the feature value over each of these selected coded elements.

BW8 resulting image that can be used as a flexible mask

3) EObjectSelection::RenderMask: from a selection of blobs

EObjectSelection::RenderMask can, for example, discard small objects resulting from noise.

BW8 resulting image that can be used as a flexible mask
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Example: Restrict the areas encoded by EasyObject

Find four circles (left) Flexible mask can isolate the central chip (right)

1. Declare a new ECodedImage2 object.

2. Setup variables: first declare source image and flexible mask, then load them.

3. Declare an EImageEncoder object and, if applicable, select the appropriate segmenter. Setup
the segmenter and choose the appropriate layer(s) to encode.

4. Encode the source image. Encoding a layer with just the area in the flexible mask is then
pretty straightforward.
We see that the circles are correctly segmented in the black layer with the grayscale single
threshold segmenter:

5. Select all objects of the coded image.

6. Select objects of interest by filtering out objects that are too small.

7. Display the blob feature by iterating over the selected objects to display the chosen feature.

2.12. Profile

Code Snippets

Profile Sampling

A profile is a series of pixel values sampled along a line/path/contour in an image.

● EasyImage::ImageToLineSegment copies the pixel values along a given line segment (arbitrarily
oriented and wholly contained within the image) to a vector. The vector length is adjusted
automatically. This function supports flexible masks.

● A path is a series of pixel coordinates stored in a vector.
EasyImage::ImageToPath copies the corresponding pixel values to the vector. This function
supports flexible masks.

Open eVision User Guide

ecodedimage2-class.htm
eimageencoder-class.htm
egrayscalesinglethresholdsegmenter-class.htm
egrayscalesinglethresholdsegmenter-class.htm
profile-sampling.htm
easyimage-imagetolinesegment.htm
epathvector-class.htm
epath-struct.htm
easyimage-imagetopath.htm


40

● A contour is a closed or not (connected) path, forming the boundary of an object.
EasyImage::Contour follows the contour of an object, and stores its constituent pixels values
inside a profile vector.

Profile Analysis

The profile can be processed to find peaks or transitions:

● A transition corresponds to an object edge (black to white or white to black). It can be
detected by taking the first derivative of the signal (which transforms transitions (edges)
into peaks) and looking for peaks in it.
EasyImage::ProfileDerivative computes the first derivative of a profile extracted from a gray-
level image.
The EBW8 data type only handles unsigned values, so the derivative is shifted up by 128.
Values under [above] 128 correspond to negative [positive] derivative (decreasing
[increasing] slope).

● A peak is the portion of the signal that is above [or below] a given threshold - the maximum
or minimum of the signal. This may correspond to the crossing of a white or black line or
thin feature. It is defined by its:
□ Amplitude: difference between the threshold value and the max [or min] signal value.
□ Area: surface between the signal curve and the horizontal line at the given threshold.

EasyImage::GetProfilePeaks detects max and min peaks in a gray-level profile. To eliminate false
peaks due to noise, two selection criteria are used. The result is stored in a peaks vector.

Profile Insertion Into an Image

EasyImage::LineSegmentToImage copies the pixel values from a vector or constant to the pixels of a
given line segment (arbitrarily oriented and wholly contained within the image).

EasyImage::PathToImage copies the pixel values from a vector or a constant to the pixels of a given
path.
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3. Deep Learning Tools

Deep Learning Tools - Inspecting Images with Deep
Learning

Purpose and Workflow

Tools

The deep learning tools are based on deep convolutional neural networks (CNNs):

● EasyClassify classifies images into a predefined set of classes. Use this tool to identify a
product in an image or to detect if the product is good or defective.

● EasySegment Supervised segments defects and/or various elements in images. In the
supervised mode, the training images must be precisely annotated with their expected
segmentation (also called the ground truth).

● EasySegment Unsupervised detects and segments defects in images. This tool works in an
unsupervised way. This means that it is trained on good products only.

As you build only a model of what a good product is and not a model of what a defective
product is:
□ The advantages are that the tool can detect and segment defects that are not in your

dataset or that are unexpected and that it doesn’t require to annotate the images with
their expected segmentation (this can be very time consuming).

□ The drawback is that the type of defects that the tool can detect and segment is more
limited than when you build an explicit model of the defects.

□ You can use EasySegment Unsupervised to produce a rough annotation of the images
required by EasySegment Supervised.

● EasyLocate locates objects and/or defects in images. The neural network predicts the
location and the label of the object and/or defect.
□ The location of the object is represented by its bounding box.
□ EasyLocate works well with partially occulted objects.
□ You can use it for defect detection and counting applications.
□ Compared to EasySegment, it detects two objects or defects with the same label and that

are overlapping or touching each other as two different objects or defects and not as a
single blob.

By opposition to traditional machine vision techniques, the deep learning tools do not require
an explicit model of what to recognize and/or segment inside an image. Instead, they learn this
model from a set of example images. Thus the deep learning tools can solve machine vision
problems where an explicit model is too complex to build.
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Specifications

EasyClassify EasySegment
Unsupervised

EasySegment
Supervised EasyLocate

Minimum image
size 128 × 128 64 × 64 128 × 128

Maximum image
size 1024 × 1024 10 000 × 10 000

500 000 pixels
(for ex.

707 × 707 for
square image)

Best image size 256 × 256 -
600 × 600 n.a. n.a.

Number of
channels 1 or 3 (grayscale and color images)

Bit depth 8 bits, 16 bits
Number of
labels 2 - 1000 2 (good and

defective) 2 - 64

Minimum
number of
images per
label

2

1 for the good
label

0 for the defective
label

1

Supported
formats bmp, png, jpeg, j2k, tiff

TIP
To accelerate computations, we strongly recommend running the deep
learning tools on a recent NVIDIA GPU. Refer to the section "Hardware
Support (CPU/GPU)" on page 47 for installing the required NVIDIA CUDA and
deep learning library.

Workflow
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To create an application based on the deep learning tools:

1. Capture a dataset of images representative of the problem you want to solve.
□ The capture conditions must be as close as possible to the production conditions.
□ Preferably, all images should have the same resolution.
□ The number of images needed to obtain a good performance depends on the complexity

of the task and the tool used.
□ With EasyClassify, you can use the training with as few as 10 images per label.

Nevertheless, complex tasks may require more than 100 images per label.
□ With EasySegment Unsupervised, you can use less than 10 “good” images. Nevertheless,

complex tasks may require more than 100 “good” images.
□ With EasySegment Supervised, the required number of images depends on the size and

the number of elements to segment in each image. You can use as few as 10 elements per
label. Nevertheless, complex tasks may require more than 100 elements per label.

□ With EasyLocate, the number of images depends on the number of objects/defects in the
images. You can use as few as 10 objects per label. Nevertheless, complex tasks may
require more than 100 objects per label.

□ Please refer to the specifications of each tool for the constraints on the resolution and the
number of images.

2. Manually label the images in the dataset with the different categories you want to recognize.

These categories depend on the tool:
□ EasyClassify:

- Each image must correspond to one and only one category.
- There must be at least 2 categories.

□ EasySegment Unsupervised:
- A single category for images of good samples.
- As many categories as you want (including none) for images of defective samples.

□ EasySegment Supervised:
- You must annotate the pixels of the images with a ground truth segmentation
- There must be at least one segmentation label in addition to the Background label.

□ EasyLocate:
- You must annotate the defects or the objects with a bounding box and a label.

Use the EClassificationDataset class to compile your labeled images.

3. Choose the deep learning tool that suits your needs.

All deep learning tools are child classes of the EDeepLearningTool class:
□ EasyClassify: EClassifier class
□ EasySegment: EUnsupervisedSegmenter and ESupervisedSegmenter classes.
□ EasyLocate: ELocator class.

4. Train the deep learning tool on the dataset.

5. Apply the trained tool in production.

Each tool returns a specific object.
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Tools and Resources

Deep Learning Studio

Deep Learning Studio is a graphical user interface that you can use to:
□ Create datasets (load, label and segment images),
□ Configure and visualize the data augmentation transformations,
□ Train a deep learning tool,
□ Analyze the performance of the tool,
□ Apply the tool to new images.

TIP
The Deep Learning Studio is available in the installation folder of Open
eVision.

Resources and code snippets

● The Deep Learning Additional Resources package, separate from the Open eVision installer,
provide several sample datasets and deep learning tools trained with these datasets:
□ For EasyClassify: the MiniWaffle and Stone Tiles datasets
□ For EasySegment Unsupervised: the Fabric dataset
□ For EasySegment Supervised: the Coffee dataset
□ For EasyLocate: the ElectronicComponentsBag and CeramicCapacitor datasets

● Some sample programs in the folder Sample Programs show how to train and use a deep
learning tool.

● Some code snippets are also provided for illustration and reference.
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Workflow illustration with Deep Learning Studio

You can use Deep Learning Studio to perform steps 2 and 3 of the process described in section
"Purpose and Workflow" on page 41.

Manual labeling of images (step 2) and creating the dataset (steps 3a and 3b)

Splitting the dataset (step 3c) and starting the training (steps 3d and 3e)
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Analyzing the performance (step 3f)

Classifying images (step 4)
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Hardware Support (CPU/GPU)

Using a CPU

● Deep learning algorithms perform a lot of computations and can be very slow to train on a
CPU.

For example, for EasyClassify, on a high-end Intel Core i9-7900X CPU with a single thread,
with no data augmentation:
□ The training can process up to 0.5 MegaPixels/second.
□ The validation and classification can process up to 1.5 MegaPixels/second.

● Use the EDeepLearningTool::SetEnableGPU(false)method to use the CPU with the deep learning
tools.

TIP
The deep learning tools support CPU processing for both 32-bit and 64-bit
applications. However, the memory of a 32-bit application is limited to 2 GB
and this can slow the training or the classification of large images.

Using an NVIDIA CUDA® GPU

● Using a recent NVIDIA GPU greatly accelerates the processing speeds.

For EasyClassify, on a NVIDIA GeForce 1080Ti, with no data augmentation:
□ The training can process up to 50 MegaPixels/second.
□ The validation can process up to 160 MegaPixels/second.
□ The classification of a single image can process up to 55 MegaPixels/second (equivalent

to more than 800 256 x 256 grayscale images/second).

TIP
Please be aware that the actual speed varies with the input image format,
the data augmentation, the batch size and the GPU model.

1. To use an NVIDIA GPU with the deep learning tools, install the following NVIDIA libraries on
your computer:
□ NVIDIA CUDA® Toolkit version v11.1 (https://developer.nvidia.com/cuda-toolkit)
□ NVIDIA CUDA® Deep Neural Network library (cuDNN) v8.1 for CUDA 11.1

(https://developer.nvidia.com/cudnn)

2. According to the installation location:
□ If you install the NVIDIA CUDA® Toolkit in its default location (C:\Program Files\NVIDIA GPU

Computing Toolkit\CUDA\v11.1), a deep learning tool automatically finds what it needs.
□ Otherwise, copy the DLLs cusolver64_11.dll, curand64_10.dll, cufft64_10.dll and cublas64_

11.dll in the Open eVision DLL folder (its default location is C:\Program Files
(x86)\Euresys\Open eVision X.X\Bin64\).
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3. Install the NVIDIA CUDA ® Deep Neural Network library (cuDNN) that comes as a zip archive:

a. Unzip the files.

b. Copy the unzipped files to the NVIDIA CUDA® Toolkit installation directory as indicated in
https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installwindows.

c. If the NVIDIA CUDA® Toolkit is not installed in its default location, copy all the DLL files
cudnn*8.dll in the Open eVision DLL folder (its default location is C:\Program Files
(x86)\Euresys\Open eVision X.X\Bin64\).

4. Use the method EDeepLearningTool::SetEnableGPU(true) to use the GPU with the deep learning
tools.

Using multiple GPUs

You can use multiple GPUs for the training and the batch classification.

● In the API, to set the list of GPUs, use the EDeepLearningTool::SetGPUIndexesmethod.

NOTE
Using multiple GPUs increases the training and batch classification speed
only if these GPUs are Quadro or Tesla models with the TCC driver model
(see
https://docs.nvidia.com/gameworks/content/developertools/desktop/nsight
/tesla_compute_cluster.htm).
Using multiple GeForce GPUs is slower than using a single one. If there are
more than one GPU installed on your computer, set the index of the GPU to
use with the EDeepLearningTool::SetGPUIndexesmethod.

● In Deep Learning Studio, to choose the processing devices, select an execution profile.

● You can configure these execution profiles to match your needs.

● GPU processing is not possible with 32-bit applications.

Image cache

The image cache is the part of the memory reserved for storing images during training.

● The default size is 1 GB.

● With large dataset, increasing the image cache size may improve the training speed.
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To specify the cache size in bytes:

● In the API, use the EDeepLearningTool::SetImageCacheSizemethod.

● In Deep Learning Studio, click on the Configure button below the Execution profile control
and select Image cache in the menu.

Multicore processing

The deep learning tools support multicore processing (see "Multicore Processing" on page 1):

● In the API, use the multicore processing helper function from Open eVision (that is Easy
::SetMaxNumberOfProcessingThreads() with a value greater than 1).

● In Deep Learning Studio, click on the Configure button below the Execution profile control
and select CPU Settings in the menu.

Managing the Images

Images and Labels
Images

● In the API, a dataset is represented by an object of the EClassificationDataset type.

● The supported image file types are:
□ PNG
□ TIFF
□ JPEG
□ BMP
□ J2K

● The supported Open eVision image object types are:
□ EImageType_BW8
□ EImageType_BW16
□ EImageType_C24
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Labels

● There are 3 types of labels:
□ The image labels represent a characteristic of an image and its content. Use them to

annotate images for EasyClassify or EasySegment Unsupervised.
□ The segmentation labels represent a characteristics of pixels. Use them to annotate

image pixels for EasySegment Supervised.
□ The object labels represent a characteristic of a region of an image delimited by a

bounding box. Use them to annotate images for EasyLocate.

● Images have the following labeling states:
□ Labeled or Unlabeled if the image is or is not associated with an image label.

- Only labeled images are used to train an EasyClassify or an EasySegment Unsupervised
tool.
- In the API, use EClassificationDataset::HasLabel(imageIndex).

□ With or without segmentation if the image has or has not a ground truth segmentation.
- Only images with segmentation are used to train an EasySegment Supervised tool.
- In the API, use EClassificationDataset::HasSegmenation(imageIndex).

□ With or without object labeling if the image has or has not a ground truth object labeling.
- Only images with object labeling are used to train an EasyLocate tool.
- In the API, use EClassificationDataset::HasObjectLabeling(imageIndex).

● The ground truth segmentation of an image has the following state:
□ Background when all the pixels of the image are associated with the Background

segmentation label.
- In defect detection applications, a background segmentation means that the image
contains no defect.

□ With foreground blobs when the segmentation contains at least one pixel associated with
a segmentation label different from Background.
- In defect detection applications, a segmentation with foreground blobs means that the
image contains defects.
- In the API, use EClassificationDataset::HasForegroundSegments(imageIndex).

● The ground truth object labeling of an image has the following state:
□ No objects when there is no object in the image.

- In defect detection applications, an image with no object means that the image contains
no defect.

□ With objects when there is at least one object in the image.
- In defect detection applications, an image with objects means that the image contains
defects.
- In the API, use EClassificationDataset::GetImageNumObjects(imageIndex) to determine if the
image has objects or not.
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● In Deep Learning Studio, the icons (visible) and (hidden) represent the visibility state of
the images with the corresponding state and/or image label in the image list.
□ Click on these icons to toggle the visibility state.

Adding Images
● In Deep Learning Studio, add image files (PNG, TIFF, JPEG, BMP and J2K types) to your

datasets in one of the following ways:
□ Click on the Add images button to add images without any label nor segmentation.

□ Right-click on an image label and click Add images to label to directly associate these
images to the label.
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□ Drag and drop your files directly on an image label to directly associate these images to
the label..

● Add a single image to a EClassificationDataset, in one of the following ways:
□ EClassificationDataset::AddImage(path[, label]) for an image file,
□ EClassificationDataset::AddImage(img[, label]) for an Open eVision image object.
□ You can specify a label to immediately associate the image with the label. Otherwise, the

image is unlabeled.

● Add several images with the EClassificationDataset::AddImages(filter[, label])method.

filter is a glob pattern with the wildcard characters:
□ *means "zero or more characters"
□ ?means "a single character"

For example, EClassificationDataset::AddImages("*good*.png", "good") adds all PNG image files
that contain “good” in their filename.

TIP
The EClassificationDataset class automatically generates the set of labels
from the labels of the images that you add to the dataset.

NOTE
By default, all images are unlabeled and have no ground truth segmentation.

Editing the Segmentation of an
Image
In Deep Learning Studio:

● To initialize or reset the segmentation of an image to all Background pixels:
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a. Select one or more images in the image list.

b. Right click on the selection.

c. Click on Reset segmentation.

● To edit the segmentation:

a. Double click on the image to open it in the image editor.

b. Click on the Segmentation button (ALT + S).

c. To reset or unset the segmentation, uncheck the Segmentation checkbox (CTRL + S).
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d. Select a segmentation label, a drawing tool and enclose the segmentation.

e. Change the segmentation label of a blob by right-clicking on it

Editing the Objects of an Image
In Deep Learning Studio:

● To initialize or reset the object labeling of an image:
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a. Select one or more images in the image list.

b. Right click on the selection.

c. Click on Reset object labeling.

● To edit the objects:

a. Double click on the image to open it in the image editor.

b. Click on the Objects button (ALT + O).

c. To reset or unset the object labeling, uncheck the Object labeling checkbox (CTRL + L).

d. Click on the Add objects button to add new objects with the label indicated next to the
button.
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e. Click on the Edit objects button to modify the bounding box or the label of an object.

ROI and Mask
Setting a ROI

Use an ROI (region of interest) to crop an image or a whole dataset to a rectangular area aligned
with the axis.

In the API:

● To define an ROI for an image:
□ Specify the ROI when you add the image to the dataset.
□ Or use EClassificationDataset::SetRegionOfInterest.
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In Deep Learning Studio:

● To change the ROI:

a. Select an image from the dataset.

b. Click on the ROI button (ALT + I).

c. Drag the ROI green box, or directly set the ROI origin (x and y), Width and Height.

d. Click on the Apply button (CTRL + A).
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● To set the same ROI for all the images of the dataset:

a. Set the ROI for one of the image.

b. Click on the Apply to All Images button (CTRL + SHIFT + A).

Setting a mask

Set a mask on an image in a dataset to remove the pixels in the mask area from any
computation. The mask works as a “don’t care area”.

In the API:

● To define a mask for an image:
□ Specify the mask when you add the image to the dataset.
□ Or use EClassificationDataset::SetMask.

In Deep Learning Studio:

● To change the mask:

a. Select an image from the dataset.

b. Click on the Mask button (ALT + M).

c. Select a kind of ERegion to draw the mask.
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d. Draw the mask.

e. Click on the Apply button (CTRL + A).

TIP
Click on the Open mask button to use an image to specify a mask. All the
pixels of the image (such as an EROIBW8) that are over 127 are considered as
part of the mask.

● To set the same mask for all the images of the dataset:

a. Specify the mask for one of the images.

b. Click on the Apply to All Images button (CTRL + SHIFT + A).
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Managing the Dataset

Training and Validation Datasets
It is important to use at least 2 separate datasets of images:

□ A training dataset to train the classifier.
□ A validation dataset to automatically select the best classifier during the training.
□ An optional test dataset to evaluate the final performance of your classifier.

WARNING
These datasets MAY NOT contain:
- Images of the other datasets.
- Images of an object of interest extracted from images of the other datasets.

Deep Learning Studio automatically and randomly splits the dataset into a training and a
validation dataset. Add images to the test dataset in the tab Test and results.

Why is it important?

Deep learning techniques can suffer from overfitting; this means that the trained classifier is too
focused on the specific images present in the training dataset and it is not able to learn a
general model of your data. Such tools perform poorly in production.

The validation dataset is used during training to prevent and know when overfitting occurs. This
keeps the tool in a state that gives the best performance on the validation dataset. Without the
validation dataset, it is impossible to know if a tool that performs well on its training dataset
can perform well in production too.

Thus, a tool that gives high performance on the training dataset but much lower performance
on the validation dataset has overfitted.

To fix overfitting:
□ You can add more images in your dataset.
□ Or, in some cases, you can use data augmentation.

TIP
Data augmentation generates random transformations of the images in the
training dataset to make the tool robust to geometric, luminosity or noise
differences that are not present in the original training dataset.
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Splitting the dataset

To create your training and validation datasets:

● In Deep Learning Studio:
□ Create a single dataset in the Images and labels tab.
□ Set the splitting percentages in the Training tab.
□ During the training, the dataset automatically splits into a training and a validation

dataset according to this splitting percentage.

● In the API:
□ Create directly 2 EClassificationDataset objects containing 2 different sets of images.
□ Or randomly split an EClassificationDataset dataset into 2 parts with the methods:

- For EasyClassify and EasySegment Unsupervised: EClassificationDataset::SplitDataset
(trainingDataset, validationDataset, trainingProportion)
- For EasySegment Supervised: EClassificationDataset::SplitDatasetForSegmentation
(trainingDataset, validationDataset, trainingProportion)
- For Easylocate: EClassificationDataset::SplitDatasetForLocator(trainingDataset,
validationDataset, trainingProportion)
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Using Data Augmentation
Data augmentation performs random transformations on images given to a deep learning tool
(EClassifier, EUnsupervisedSegmenter or ESupervisedSegmenter object) during the training.

● Experiment different settings to choose the best parameters for your data augmentation.

● Configure data augmentation according to your problem. However, flips, shifts (20 - 40 px),
brightness (5%), contrast (0.95 to 1.05) or salt and pepper noise (2%) can be useful on many
datasets.

● Check that the transformations do not change the label of an image (for example a defect
that disappears because of a rotation or a contrast change).

Use EClassificationDataset::SetEnableDataAugmentation(true/false) to enable or disable these
transformations.

NOTE
With EasyLocate, we do not recommend to use rotation and shear data
augmentation as it is not possible to compute the minimal bounding box
surrounding the object after these geometric transformations.

In Deep Learning Studio:

● Configure the data augmentation in the second tab (Image properties and augmentation).

● Display and review the data augmented images with the minimum settings (Lower limits
augmentation), the maximum settings (Upper limits augmentation) or the random settings
(Random augmentation).
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In the API:

Use EClassificationDataset::SetEnableDataAugmentation(true/false) to enable or disable these
transformations.

The possible transformations are:

Geometric transformations

● Horizontal and vertical flips (enabled with EClassificationDataset::SetEnableHorizontalFlip and
EClassificationDataset::SetEnableVerticalFlip)

● Scaling (between a minimum and maximum value defined with
EClassificationDataset::SetMinScale and EClassificationDataset::SetMaxScale)

● Horizontal and vertical shifts (between –maxValue and maxValue defined with
EClassificationDataset::SetMaxHorizontalShift(maxValue) and
EClassificationDataset::SetMaxVerticalShift(maxValue))

● Rotations (between 0 and a maximum value defined with
EClassificationDataset::SetMaxRotationAngle)

● Horizontal and vertical shear (between –maxValue and maxValue defined with
EClassificationDataset::SetMaxHorizontalShear and EClassificationDataset::SetMaxVerticalShear)

Color and luminosity transformations

● Brightness offset (between –maxValue and maxValue defined with
EClassificationDataset::SetMaxBrightnessOffset)

● Contrast gain (between a minimum and maximum value defined with
EClassificationDataset::SetMinContrastGain and EClassificationDataset::SetMaxContrastGain)

● Gamma corrections (between a minimum and maximum value defined with
EClassificationDataset::SetMinGamma and EClassificationDataset::SetMaxGamma)
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● Hue offset (between –maxValue and maxValue defined with
EClassificationDataset::SetMaxHueOffset)

● Saturation gain (between a minimum and maximum value defined with
EClassificationDataset::SetMinSaturationGain and EClassificationDataset::SetMaxSaturationGain)

Noise transformations

TIP
The standard deviation is expressed as a percentage of the maximum pixel
value.

● Gaussian noise, also called additive white noise, generated with a standard deviation
(between a minimum and maximum value defined with
EClassificationDataset::SetGaussianNoiseMinimumStandardDeviation and
EClassificationDataset::SetGaussianNoiseMaximumStandardDeviation)

● Speckle noise, a multiplicative noise, generated from a Gamma distribution with a mean of 1
and a standard deviation (between a minimum and a maximum value defined with
EClassificationDataset::SetSpeckleNoiseMinimumStandardDeviation and
EClassificationDataset::GetSpeckleNoiseMinimumStandardDeviation).

● Salt and pepper noise generated from a pixel density (between a minimum and a maximum
value defined with EClassificationDataset:: SetSaltAndPepperNoiseMinimumDensity and
EClassificationDataset::SetSaltAndPepperNoiseMaximumDensity).
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Training a Deep Learning Tool

In the API, to train a deep learning tool, call the EDeepLearningTool::Train(trainingDataset,
validationDataset, numberOfIterations)method.

● An Iteration corresponds to going through all the images in the training dataset once.
□ The training process requires a large number of iterations to obtain good results.
□ The training process requires a large number of iterations to obtain good results.
□ The default number of iterations is 50.
□ The larger the number of iterations, the longer the training is and the better the results

you obtain.

● Multiple iterations:
□ Calling the EDeepLearningTool::Trainmethod several times with the same training and

validation dataset is equivalent to calling it once but with a larger number of iterations.
□ Call EDeepLearningTool::GetNumTrainedIterations to get the total number of iterations used to

train the classifier.
□ In successive calls to EDeepLearningTool::Train:

- You can add images to the training and validation dataset to train the tool to recognize
new instances of your problem.
- We do not recommend that you remove images from the dataset as the tool might
forget about these images during the new training phase.

● The training process is asynchronous:
□ EDeepLearningTool::Train launches a new thread that does the training in background.
□ EDeepLearningTool::WaitForTrainingCompletion suspends the program until the whole training

is completed.
□ EDeepLearningTool::WaitForIterationCompletion suspends the program until the current

iteration is completed.
□ During the training, EDeepLearningTool::GetCurrentTrainingProgression shows the progression

of the training.

● The batch size corresponds to the number of image patches that are processed together.
□ The training is influenced by the batch size.
□ A large batch size increases the processing speed of a single iteration on a GPU but

requires more memory.
□ The training process is not able to learn a good model with too small batch sizes.
□ By default, the batch size is determined automatically during the training to optimize the

training speed with respect to the available memory.
- Use EDeepLearningTool::SetOptimizeBatchSize(false) to disable this behavior.
- Use EDeepLearningTool::SetBatchSize to change the size of your batch.

□ EDeepLearningTool::GetBatchSizeForMaximumInferenceSpeed gets the batch size that maximizes
the batch classification speed on a GPU according to the available memory.

□ It is common to choose powers of 2 as the batch size for performance reasons.
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EasyClassify - Classifying Images

Tool and Images

EasyClassify is the deep learning classification library of Open eVision (EClassifier class).

Deep Learning Studio

To create a classification tool in Deep Learning Studio:

1. Start Deep Learning Studio.

2. Select EasyClassify in the New deep learning tool dialog.

Input image format and normalization

● The input image format must have the width, height and number of channels corresponding
to the input of the neural network.

● By default, a classifier uses the image format of the first image inserted in the training
dataset:
□ All other images are automatically reformatted (anisotropic rescaling and conversion

between color and grayscale).
□ If EClassifier::SetEnableAutomaticImageReformat(false) is called, the classifier throws an

exception when attempting to train or classify an image that does not have the correct
image format.
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● In Deep Learning Studio, you can set the input image format in the Tool properties and data
augmentation tab.

● In the API, you can also set manually the input image format with the methods SetWidth,
SetHeight and SetChannels (1 channel for grayscale images and 3 channels for color images).

● The input image format must have a resolution of at least 128 x 128 for the normal and the
large capacity or 64 x 64 for the small capacity and at most 1024 x 1024.
For the best processing speed, use the lowest resolution at which your "objects of interest"
are still recognizable.
□ If your original images are smaller than the minimum resolution, upscale them to a

resolution higher or equal to 128 x 128.
□ If your original images are larger than the maximum resolution, lower the resolution:

- If the "objects of interest" are still recognizable, explicitly set the input image format of
the classifier to this lower resolution.
- If the "objects of interest" are not recognizable, divide your original images into sub-
windows and use these sub-windows to train the classifier and make predictions. This
presents the additional advantage of localizing the "object of interest" inside the original
image.
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● The Capacity of the neural network (default: Normal) represents the quantity of information
that it is capable of learning.
□ The small network is much smaller in memory and faster at inference.
□ The large network can handle more complex datasets. It is also better for datasets with a

lot of noise.

In the API:
□ The capacity values are defined by the enumerate type EClassifierCapacity.
□ Use EClassifier::SetCapacity to set the capacity of your tool.

Histogram equalization

The classifier can also apply an histogram equalization to every input image:
□ In Deep Learning Studio, activate it in the image format controls in the Image properties

and augmentation tab.
□ In the API, use EClassifier::SetEnableHistogramEqualization(true) to activate it.

Training

To train your tool, see "Training a Deep Learning Tool" on page 65.

Validating the Results

In Deep Learning Studio:

● The metrics are always computed without applying data augmentation on the images.

● In the Training tab, the metrics Best validation error and Best validation accuracy are
computed during the training using the label weights.
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● In the Dataset results tab, there are 3 metrics displayed:
□ The weighted error and the weighted accuracy (normalized with respect to the label

weights instead of being dependent of the number of images for each label).
□ The dataset accuracy (it does not use the label weights).

TIP
If your dataset has a very different number of images for each of the labels,
it is called unbalanced. In this case, the dataset accuracy is biased towards
the labels containing the most images (the dataset accuracy mainly reflects
the accuracy of these labels).

● In the Dataset results tab, the confusion matrix shows the number of images according to
their true labels and their label predicted by the classifier.
□ The diagonal elements of the matrix shown in green are the correctly classified images.
□ All the other elements of the matrix are badly classified images.
□ Select one or more elements of the matrix to show the corresponding images.

In the API:

● After the completion of each iteration, EasyClassify automatically computes several
performance metrics about the training and validation dataset:
□ Call the methods EClassifier::GetTrainingMetrics(iteration) and

EClassifier::GetValidationMetrics(iteration) to read these metrics.
□ The iterations are indexed between 0 and EDeepLearningTool::GetNumTrainedIterations()-1.
□ Call EDeepLearningTool::GetBestIteration() to retrieve the iteration that produced the best

performance.
□ After the training, the classifier is back in the state corresponding to this best iteration.
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● The metrics are represented by an EClassificationMetrics object that contains the following
performance metrics:
□ The classification error (EClassificationMetrics::GetError()), also called the cross-entropy

loss: the quantity that is minimized during the training. It is computed from the
probabilities computed by the classifier.
- The error for a single image is the negative of the logarithm of the probability
corresponding to the true label of the image. So, if this probability is low, the error for the
image is high.
- The error of the dataset is the average of the errors of each image in the dataset.

□ The classification accuracy (EClassificationMetrics::GetAccuracy()): the number of images
correctly classified divided by the total number of images in the dataset.

□ The confusion matrix (EClassificationMetrics::GetConfusion(groundtruthLabel,
predictedLabel)): the number of images labeled as groundtruthLabel that are classified as
predictedLabel.

TIP
Call EClassifier::Evaluate to evaluate a dataset independently of the training.

Classifying New Images

Classify images

● In Deep Learning Studio, open the Test and results tab to:
□ Classify new images.
□ Display detailed results for each image of the main dataset.

● Once the classifier is trained, call EClassifier::Classify to classify an Open eVision image.

This method returns a EClassificationResult object:
□ EClassificationResult::GetBestLabel() returns the most probable label for the image.
□ EClassificationResult::GetBestProbability() returns the probability associated with the most

probable label.
□ EClassificationResult::GetProbability(label) returns the probability associated with the

given label.
□ EClassificationResult::GetRanking(label) returns the ranking of the given label. The ranking

goes from 1 (most probable) to EClassifier::GetNumLabels() (least probable).
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● You can also do batch classification or directly classify a vector of Open eVision images:
□ Images are processed together in groups determined by the batch size.
□ On a GPU, it is usually much faster to classify a group of images than a single image.
□ On a CPU, implement a multithread approach to accelerate the classification. In that

case, each thread must have its own instance of EClassifier (see code snippets).

TIP
The batch classification has a tradeoff between the throughput (the number
of images classified per second) and the latency (the time needed to obtain
the result of an image): on a GPU, the higher the batch size, the higher the
throughput and the latency. So, use batch classification to improve the
classification speed at the cost of a longer time before obtaining the
classification result of an image.

● Use EClassifier::GetHeatmap(img, label) to obtain an heat map highlighting the pixels that
contribute the most to a label.
□ In some cases, this heat map can provide a rough localization of the object corresponding

to the label.
□ The heat map is colored, and the important parts are displayed in red.

Memory requirements

● In addition to the properties of the classifier object and the weights of the neural network,
an EClassifier object dynamically allocates memory for intermediate results during the
training and the classification of new images.

● The size of the intermediate results depends on the width (W), height (H), batch size (B), and
whether the operations are performed on a GPU or a CPU.

● For training, these intermediate results need about the following amount of memory:

TrainingMemoryCPU = 0.000453 ×W ×H ×B –292 (MB)

TrainingMemoryGPU = 0.000440 ×W ×H ×B + 25 (MB)

● For classification, these intermediate results need up to the following memory:

ClassificationMemoryCPU = 0.000232 ×W ×H ×B –97 (MB)

ClassificationMemoryGPU = 0.000226 ×W ×H ×B + 13 (MB)

● For example, training a classifier or making classifications with 256 x 256 images and a batch
size of 32 on a GPU will take around respectively 950 MB or 500 MB.

TIP
Since large memory allocations take a lot of time, a classification does not
released this memory and the next classifications can reuse it as long as the
width, height, batch size and computation device remain the same. As such,
the first classification is always slower due to the memory allocations.
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Benchmarks for EasyClassify

Test conditions

□ These numbers are only indicative and represent only the memory required for the neural
network.

□ Your actual memory requirements may be bigger or lower according to your GPU model.
□ The GPU must have more memory than the indicated amount to work because storing

images and results may require additional GPU memory and because of memory
fragmentation.

□ The training time is approximately twice the inference time per image. An iteration is
equivalent to a loop over all the images in the dataset.

□ The GPU used for these benchmarks is a NVIDIA GeForce 1080 Ti.
□ The CPU used is an Intel Core i9 7900X.

Capacity small

Image size Batch
Inference Training

GPU Memory
(MB)

GPU inference time
/image

CPU inference
time

GPU Memory
(MB)

128 × 128

1 19 2.7 ms 10.2 ms -
4 29 0.88 ms - 54
16 67 0.6 ms - 134
64 232 0.39 ms - 463

256 × 256

1 30 3.3 ms 45.3 ms -
4 74 1.99 ms - 144
16 247 1.35 ms - 497
64 959 1.14 ms - 1924

512 × 512

1 74 7.9 ms 199 ms -
4 260 4.56 ms - 519
16 998 5.89 ms - 2001
64 3908 4.74 ms - 7936

Capacity normal

Image size Batch
Inference Training

GPU Memory
(MB)

GPU inference time
/image

CPU inference
time

GPU Memory
(MB)

128 × 128

1 92 4.4 ms 13 ms -
4 102 1.29 ms - 166
16 141 0.66 ms - 320
64 277 0.41 ms - 608

256 × 256

1 103 5.3 ms 50 ms -
4 145 2.33 ms - 253
16 315 1.3 ms - 1219
64 1042 1.1 ms - 2144
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Image size Batch
Inference Training

GPU Memory
(MB)

GPU inference time
/image

CPU inference
time

GPU Memory
(MB)

512 × 512

1 155 17.8 ms 199 ms -
4 332 5.8 ms - 1110
16 1069 4.3 ms - 2605
64 4122 4.22 ms - 8533

Capacity large

Image size Batch
Inference Training

GPU Memory
(MB)

GPU inference time
/image

CPU inference
time

GPU Memory
(MB)

128 × 128

1 32 2.4 ms 17.1 ms -
4 50 1.2 ms - 100
16 131 0.9 ms - 255
64 421 0.6 ms - 848

256 × 256

1 54 4.2 ms 69 ms -
4 137 2.7 ms - 275
16 473 1.8 ms - 990
64 1830 1.3 ms - 3660

512 × 512

1 145 15.9 ms 324 ms -
4 502 8.6 ms - 1004
16 1932 7.2 ms - 3961
64 7690 6.2 ms - 15380

EasySegment - Detecting and Segmenting Defects

Unsupervised vs Supervised Modes

EasySegment is the deep learning segmentation library of Open eVision.

It contains 2 different modes:

● The unsupervised mode:
□ The tool is trained only with good images (EUnsupervisedSegmenter class).
□ This mode does not require a ground truth segmentation and the creation of the dataset

is thus much quicker than for the supervised mode.
□ This mode can detect unexpected defects while the supervised mode is only capable of

detecting defects similar to those in the dataset.

● The supervised mode:
□ The tool is trained using the ground truth segmentation defined for the images

(ESupervisedSegmenter class).
□ This mode can detect and segment more types of defects with better accuracy than the

unsupervised mode. It directly builds a model for the defects while the unsupervised
mode builds a model of the good images and tries to detect variations from this model.

□ You can also use this mode to segment other types of objects than defects.
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EasySegment Unsupervised

Tool and Configuration
EasySegment Unsupervised is the deep learning tool part of the EasySegment segmentation
library of Open eVision. It detects and segments defects in images.

This tool trains in an unsupervised way. This means that it is trained only with good images. So
it does not require any ground truth segmentation of the defects.

Deep Learning Studio

To create an unsupervised segmentation tool in Deep Learning Studio:

1. Start Deep Learning Studio.

2. Select EasySegment Unsupervised in the New deep learning tool dialog.

The following dialog is displayed at the start of Deep Learning Studio or when you create a new
deep learning tool from the toolbar.
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Configuration

The unsupervised segmenter tool has 6 parameters:

1. The Good label is the name of the class that contains the good images.

2. The Capacity of the neural network (default: Normal) represents the quantity of information it
is capable of learning. A larger capacity makes the tool slower.

In the API:
□ The capacity is represented by the enumerate type EUnsupervisedSegmenterCapacity.
□ EUnsupevisedSegmenter::Capacity sets the capacity of the tool.

3. The Image type (default: Monochrome (1 channel)):

In the API:
□ To use monochrome (grayscale, 1 channel) images, set

EUnsupervisedSegmenter::ForceGrayscale to true.
□ To use color (3 channels) images, set EUnsupervisedSegmenter::ForceGrayscale to false.

4. The Sampling density (EUnsupervisedSegmenter::SamplingDensity) is the parameter of the sliding
window algorithm used to process whole images using patches of size
(EUnsupervisedSegmenter::PatchSize).
□ It indicates how much overlap there is between the image patches:

100 - 100 / SamplingDensity (%)
□ In practice, the stride between 2 consecutive patches is:

PatchSize / SampleDensity (pixels)

5. The Patch size (EUnsupervisedSegmenter::PatchSize) is the size of the patches processed by the
neural network.
□ By default, the patch size is determined automatically from the images in the training

dataset.
□ You can also select the resolution of the patch size from the drop down list.
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6. Use the Scale (EUnsupervisedSegmenter::Scale) to automatically resize your images to a lower
resolution and accelerate the processing.

In Deep Learning Studio:
□ If the dataset contains images with different resolutions, the Input width and the Input

height indicate the range of the resolutions with the given scale.
□ If all the images in the dataset have the same resolution, set either the Input width or the

Input height to change the scale.

Training

To train your tool, see "Training a Deep Learning Tool" on page 65.

Validating the Results
There are 2 types of metric for the unsupervised segmentation tool:

□ Unsupervised metric only uses the results of the tool on good images. There is only one
unsupervised metric: the error.

□ Supervised metrics require both good and defective images. The supervised metrics are
the AUC (Area Under ROC Curve), the ROC curve, the accuracy, the good detection rate
(also called the true negative rate), the defect detection rate (also called the true positive
rate).

The unsupervised segmentation tool computes a score for each image (see
EUnsupervisedSegmenterResult::ClassificationScore). The label of a result is obtained by
thresholding this score with the segmenter classification threshold
(EUnsupervisedSegmenter::ClassificationThreshold). So, the supervised metrics also depends on the
value of this classification threshold.

The ROC curve (Receiver Operating Characteristic) is the plot of the defect detection rate (the
true positive rate) against the rate of good images classified as defective (also called the false
positive rate). It is obtained by varying the classification threshold. The ROC curve shows the
possible tradeoffs between the good detection rate and the defect detection rate.

The area under the ROC curve (AUC) is independent of the chosen classification threshold and
represents the overall performance of the tool. Its value is between 0 (bad performance) and 1
(perfect performance).
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In Deep Learning Studio:

● In the Training tab, the metrics Best validation error and Best validation AUC are
computed during the training on the validation dataset without using data augmentation.
The validation error, the training error and the validation AUC are plotted for each iteration.

● In the Dataset results tab, various metrics, the confusion matrix, a cumulative score
histogram, and the ROC curve are displayed. You can also change the classification threshold
directly in this tab.
□ The cumulative score histogram shows the cumulative proportion of good (in green) and

defective (in red) images with respect to the scores of the image.
□ You can change the classification threshold in 3 ways : direct input, dragging the

threshold line in the score histogram and selecting a point on the ROC curve.

In the API:

● The metrics are represented by an EUnsupervisedSegmenterMetrics object that contains the
following performance metrics:
□ The error on good image (EUnsupervisedSegmenterMetrics::GetError)
□ The confusion matrix (EDeepLearningDefectDetectionMetrics::GetConfusion)
□ If the results for bad images are included in the metrics,

EUnsupervisedSegmenterMetrics::IsTotallyUnsupervised is false and the following metrics are
also be accessible:
- The accuracy (EDeepLearningDefectDetectionMetrics::GetAccuracy)
- The Area under ROC curve (EDeepLearningDefectDetectionMetrics::GetAreaUnderROCCurve)
- The ROC point corresponding to the classification threshold
(EDeepLearningDefectDetectionMetrics::GetROCPoint)

Applying the Tool to New Images
In Deep Learning Studio:

● Open the Test and results tab to:
□ Apply the segmenter to new images.
□ Display detailed results for each image of the main dataset.
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● Once the unsupervised segmenter is trained, call EUnsupervisedSegmenter::Apply to detect and
segment defects in an Open eVision image.

This method returns a EUnsupervisedSegmenterResult object:
□ EUnsupervisedSegmenterResult::IsGood and EUnsupervisedSegmenterResult::IsDefective returns

whether the tool has decided that the image is good or defective according to the
EUnsupervisedSegmenterResult::ClassificationScore and the
EUnsupervisedSegmenter::ClassificationThreshold.

□ EUnsupervisedSegmenterResult::GetSegmentationMap returns an EImageBW8 image where all pixels
with a value different than 0 are defective pixels.
The value of a defective pixel is proportional to the importance of the defect at that
position.

□ EUnsupervisedSegmenterResult::GetRegion returns an ERegion object corresponding to the
segmented region of the image (all the pixels of
EUnsupervisedSegmenterResult::GetSegmentationMap that have a value strictly higher than 0).

□ EUnsupervisedSegmenterResult::Draw draws the segmentation mask.

Benchmarks for EasySegment
Unsupervised
Test conditions

□ These numbers are only indicative and represent only the memory required for the neural
network.

□ Your actual memory requirements may be bigger or lower according to your GPU model.
□ The GPU must have more memory than the indicated amount to work because storing

images and results may require additional GPU memory and because of memory
fragmentation.

□ The training time is approximately twice the inference time per image. An iteration is
equivalent to a loop over all the images in the dataset.

□ The GPU used for these benchmarks is a NVIDIA GeForce 1080 Ti.
□ The CPU used is an Intel Core i9 7900X.

Image size

□ The inference times are reported for 1024 × 1024 RGB images with all other settings at
their default values.

□ The inference times increase linearly with the width and height of the image. The
inference times of a 512 × 512 image will be 25% of the time reported below.

Capacity small

Patch size Batch
Inference Training

GPU Memory
(MB)

GPU inference time
/image

CPU inference
time

GPU Memory
(MB)

64 × 64

1 2 641 ms 3082 ms -
4 4 299 ms - 7
16 13 202 ms - 31
64 56 199 ms - 134
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Patch size Batch
Inference Training

GPU Memory
(MB)

GPU inference time
/image

CPU inference
time

GPU Memory
(MB)

128 × 128

1 18 389 ms 3234 ms -
4 28 215 ms - 46
16 66 174 ms - 132
64 223 172 ms - 472

256 × 256

1 71 227 ms 2519 ms -
4 109 170 ms - 226
16 256 159 ms - 526
64 875 166 ms - 1777

Capacity normal

Patch size Batch
Inference Training

GPU Memory
(MB)

GPU inference time
/image

CPU inference
time

GPU Memory
(MB)

64 × 64

1 6 835 ms 6208 ms -
4 10 341 ms - 18
16 30 215 ms - 67
64 104 213 ms - 234

128 × 128

1 65 577 ms 6245 ms -
4 82 261 ms - 172
16 152 192 ms - 312
64 447 189 ms - 921

256 × 256

1 182 309 ms 5111 ms -
4 250 194 ms - 620
16 596 171 ms - 1220
64 1756 184 ms - 3710

Capacity large

Patch size Batch
Inference Training

GPU Memory
(MB)

GPU inference time
/image

CPU inference
time

GPU Memory
(MB)

64 × 64

1 18 1188 ms 12880 ms -
4 25 439 ms - 115
16 61 245 ms - 179
64 228 251 ms - 473

128 × 128

1 170 911 ms 13344 ms -
4 203 359 ms - 527
16 409 240 ms - 846
64 1008 219 ms - 2214

256 × 256

1 464 853 ms 11642 ms -
4 594 293 ms - 1103
16 1613 227 ms - 3226
64 3968 215 ms - 8044
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EasySegment Supervised

Tool and Configuration
Deep Learning Studio

To create an supervised segmentation tool in Deep Learning Studio:

1. Start Deep Learning Studio.

2. Select EasySegment Supervised in the New deep learning tool dialog.

The following dialog is displayed at the start of Deep Learning Studio or when you create a new
deep learning tool from the toolbar.
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Configuration

The supervised segmenter tool has 5 parameters:

1. The Capacity of the neural network (default: Normal) represents the quantity of information it
is capable of learning. A larger capacity makes the tool slower.

In the API:
□ The capacity is represented by the enumerate type ESupervisedSegmenterCapacity.
□ ESupevisedSegmenter::Capacity sets the capacity of the tool.

2. The Image type (default: Monochrome (1 channel)):

In the API:
□ To use monochrome (grayscale, 1 channel) images, set ESupervisedSegmenter::ForceGrayscale

to true.
□ To use color (3 channels) images, set EUnsupervisedSegmenter::ForceGrayscale to false.

3. The Sampling density (ESupervisedSegmenter::SamplingDensity) is the parameter of the sliding
window algorithm used to process whole images using patches of size
(ESupervisedSegmenter::PatchSize).
□ It indicates how much overlap there is between the image patches:

100 - 100 / SamplingDensity (%)
□ In practice, the stride between 2 consecutive patches is:

PatchSize / SampleDensity (pixels)

4. The Patch size (ESupervisedSegmenter::PatchSize) is the size of the patches processed by the
neural network.
□ By default, the patch size is determined automatically from the images in the training

dataset.
□ You can also select the resolution of the patch size from the drop down list.

5. Use the Scale (ESupervisedSegmenter::Scale) to automatically resize your images to a lower
resolution and accelerate the processing.

In Deep Learning Studio:
□ If the dataset contains images with different resolutions, the Input width and the Input

height indicate the range of the resolutions with the given scale.
□ If all the images in the dataset have the same resolution, set either the Input width or the

Input height to change the scale.
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Training

To train your tool, see "Training a Deep Learning Tool" on page 65.

Using the Supervised Segmenter
To get the result, a supervised segmenter follows these steps:

1. For each pixel, the supervised segmenter tool computes the probabilities that it belongs to
each of the segmentation labels.

2. From these probabilities, it extracts a set of potential foreground blobs (groups of
contiguous pixels for which the highest probability corresponds to the same foreground
segmentation label).

3. For each one of these potential foreground blobs:
□ It computes a score.
□ It removes, from the predicted segmentation map, the blobs with a score that is below or

equal to the threshold of the supervised segmenter tool.

4. The score of an image is the maximum among the scores of the potential foreground blobs.

NOTE
In the context of defect detection, an image is considered to be without
defect when its score is below or equal to the threshold of the supervised
segmenter tool.

In Deep Learning Studio:

● To apply the segmenter to new images, add these images to the dataset or use the Test and
results tab.

● To visualize the segmentation of an image, check the Predicted segmentation option
(CTRL + P) in the Resultmenu (ALT + R) of the image viewer.
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● If the image has a ground truth, check the Ground truth segmentation option (CTRL + G) to
display it. It appears with a green pattern drawn over it.

Ground truth (left) and prediction on top of ground truth (right)

● To accept the whole predicted segmentation as ground truth, click on the Use prediction as
ground truth button (CTRL + U).

● To accept a single predicted blob as ground truth, right click on the blob and select Accept
into ground truth in the menu.

● A list of blobs with various characteristics is available in the Classify tab.
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In the API:

● To apply the supervised segmenter to an image use ESupervisedSegmenter::Apply. This method
returns a ESupervisedSegmenterResult object.
□ Use ESupervisedSegmenterResult::GetProbabilityMap to retrieve the probability map for a given

label. The probability map pixels contain the index of the predicted label.
□ Use ESupervisedSegmenterResult::Draw to draw the segmentation with the segmentation label

colors of the dataset used for training.
□ Use ESupervisedSegmenterResult::GetBlobs to retrieve the filtered list of blobs.
□ Use e ESupervisedSegmenterResult::Score to retrieve the score of an image.
□ Use ESupervisedSegmenterResult::GetRegionForLabel to obtain an ERegion object containing the

pixels of the specified label.

Evaluating the Results
There are 3 types of metrics for the supervised segmentation tool:

□ The pixel-based metrics that quantify the performance of the tool at the pixel level.
□ The blob-based metrics that quantify the performance of the tool at the blob level. A blob

is a contiguous region of pixels that have the same foreground segmentation label. By
definition, there is no background blob.

□ The image-based metrics that quantify the performance of the tool at the image level.
These metrics are related to the capacity of the tool to correctly detect background
images (images with no blobs) and foreground images (images with blobs).
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● In Deep Learning Studio:
□ The metrics are available in the Dataset results tab.
□ Most metrics depends on the value of the Classification threshold.

● In the API:
□ The metrics are represented by an ESupervisedSegmenterMetrics object.

The pixel-based metrics

● The pixel-based metrics are:
□ The weighted Intersection over Union (IoU) that is the weighted average of the IoU over

all the labels (see per-label metrics).
□ The weighted pixel accuracy that is the weighted average of the accuracy over all the

labels (see per-label metrics).
□ The pixel confusion matrix that shows the number of pixels from a given label that are

predicted to belong to another label.
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● The per label metrics are:
□ The Intersection over Union (IoU) that is the ratio of the intersection between the ground

truth and the prediction for the label to the union of the ground truth and prediction for
the label.

□ The accuracy that is the proportion of the pixels of the label that are correctly predicted.

The blob-based metrics

● The metrics related to the correct prediction of blobs are:
□ The recall that is the ratio of the correctly predicted blobs to the total number of ground

truth blobs.
□ The precision that is the ratio of correctly predicted blobs to the total number of

predicted blobs.
□ The F1-Score that is the harmonic mean of the recall and the precision.
□ The average precision that is the average of the precision for different threshold weighted

by the recall values.
□ The best achievable F1-Score that is the maximum F1-Score achievable by selecting an

appropriate threshold.

Open eVision User Guide



87

● The confusion matrix:
□ It shows the number of blobs of a given true label that are predicted to be of the

corresponding predicted label.
□ The image list of the Dataset results tab only shows the images containing the blobs

corresponding to the selected cells of the matrix.
□ Each matrix element shows the number of ground truth blob and the number of

corresponding predicted blobs separated by a "/" as a ground truth blob can correspond
to one or more blobs in the prediction and inversely.
A dash (-) indicates that blobs are not defined for this category.

□ For example, in the screenshot below, there are:
- 3 predicted blobs of the label Defect that correspond to the Background.
- 1 ground truth blob of the label Defect that does not correspond to any predicted blob.
- 12 predicted blobs of the label Defect that correspond to 12 ground truth blob of the
same label.

● The metrics for each individual foreground label are:
□ Recall
□ Precision
□ F1-Score

The image-based metrics

● The metrics related to the correct detection of the class of the images (background /
foreground or good / defective in the context of defect detection):
□ The image detection accuracy that is the proportion of image correctly predicted to have

foreground blobs or not.
□ The foreground image detection rate that is the proportion of correctly predicted images

with foreground blobs.
□ The background image detection rate that is the proportion of correctly predicted images

with no foreground blobs.
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□ The image detection AUC (Area under the ROC Curve, see ROC Curve below).
□ The best achievable image detection accuracy that is the maximum image detection

accuracy obtained by changing the threshold.

● The confusion matrix:
□ It shows the number of images of a given true label that are predicted to be of the

corresponding predicted label.
□ The image list of the Dataset results tab only shows the images corresponding to the

selected cells of the matrix.

● The 2 available graphics are:
□ The ROC curve that plots the true positive rate (foreground image detection rate) versus

the false positive rate (1 minus the background image detection rate) for various
threshold values.
Click on a point on the plot to set the threshold at the corresponding value.
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□ The score histogram that plots:
- In green: the cumulative histogram of the scores of the background images.
- In orange: the cumulative histogram of the scores of the foreground images.
- The blue line corresponds to the current value of the threshold.

Benchmarks for EasySegment
Supervised
Test conditions

□ These numbers are only indicative and represent only the memory required for the neural
network.

□ Your actual memory requirements may be bigger or lower according to your GPU model.
□ The GPU must have more memory than the indicated amount to work because storing

images and results may require additional GPU memory and because of memory
fragmentation.

□ The training time is approximately twice the inference time per image. An iteration is
equivalent to a loop over all the images in the dataset.

□ The GPU used for these benchmarks is a NVIDIA GeForce 1080 Ti.
□ The CPU used is an Intel Core i9 7900X.

Image size

□ The inference times are reported for 1024 × 1024 RGB images with all other settings at
their default values.

□ The inference times increase linearly with the width and height of the image. The
inference times of a 512 × 512 image will be 25% of the time reported below.

Capacity small

Patch size Batch
Inference Training

GPU Memory
(MB)

GPU inference time
/image

CPU inference
time

GPU Memory
(MB)

64 × 64

1 16 545 ms 10090 ms -
4 29 187 ms - 151
16 87 123 ms - 263
64 335 122 ms - 573
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Patch size Batch
Inference Training

GPU Memory
(MB)

GPU inference time
/image

CPU inference
time

GPU Memory
(MB)

128 × 128

1 27 261 ms 14085 ms -
4 83 133 ms - 306
16 366 102 ms - 757
64 1441 114 ms - 3139

256 × 256

1 148 544 ms 17606 ms -
4 369 151 ms - 1185
16 1497 111 ms - 3091
64 7050 148 ms - 12564

Capacity normal

Patch size Batch
Inference Training

GPU Memory
(MB)

GPU inference time
/image

CPU inference
time

GPU Memory
(MB)

64 × 64

1 18 789 ms 24458 ms -
4 45 271 ms - 229
16 213 160 ms - 450
64 828 171 ms - 1753

128 × 128

1 110 1952 ms 34032 ms -
4 216 346 ms - 878
16 884 188 ms - 1864
64 3446 177 ms - 6124

256 × 256

1 301 327 ms 42868 ms -
4 864 280 ms - 1822
16 3027 156 ms - 6632
64 14048 - - 25796

Capacity large

Patch size Batch
Inference Training

GPU Memory
(MB)

GPU inference time
/image

CPU inference
time

GPU Memory
(MB)

64 × 64

1 91 7443 ms 58658 ms -
4 140 1076 ms - 727
16 440 437 ms - 1201
64 1666 346 ms - 3332

128 × 128

1 226 1043 ms 83118 ms -
4 562 820 ms - 996
16 1822 289 ms - 4222
64 6925 - - 16156

256 × 256

1 877 1153 ms 106446 ms -
4 2249 567 ms - 3887
16 7417 - - 15603
64 28225 - - 50306
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EasyLocate - Locating Objects and Defects

Tool and Configuration

Deep Learning Studio

To create an EasyLocate tool in Deep Learning Studio:

1. Start Deep Learning Studio.

2. Select EasyLocate in the New deep learning tool dialog.

The following dialog is displayed at the start of Deep Learning Studio or when you create a new
deep learning tool from the toolbar.
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Configuration (main parameters)

The EasyLocate tool has 3 main parameters:

1. The Capacity of the neural network (default: Normal) represents the quantity of information it
is capable of learning. A larger capacity makes the tool slower.

In the API:
□ The capacity is represented by the enumerate type ELocatorCapacity.
□ ELocator::Capacity sets the capacity of the tool.

2. The Image type (default: Monochrome (1 channel) if thedataset contains only grayscale
images, otherwise color (3 channels)):

In the API:
□ To use monochrome (grayscale, 1 channel) images, set ELocator::Channels to 1.
□ To use color (3 channels) images, set ELocator::Channels to 3.

3. The size of the images (Width and Height). You must configure EasyLocate for a specific image
size.
□ The image must contain less than 500 000 pixels (about 707 × 707 pixels for a square

image).
□ The width and the height must be at least 128 pixels.
□ The images are automatically resized to the specified size before EasyLocate processes

them.
□ The lower the image size, the faster EasyLocate is.
□ EasyLocate works best with objects equal to or bigger than 16 × 16 pixels.
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In Deep Learning Studio:
□ Use the Width and Height controls to change the size of the images.
□ Uncheck Keep aspect ratio if you want to control the width and height independently of

each other.
□ By default, the width and height are set to the size of the images in the dataset. or, when

they are bigger than 500 000 pixels, to the maximum possible size so that the aspect ratio
of the image is kept and it contains at most 500 000 pixels.

□ A warning is displayed when the selected size makes the ground truth objects smaller
than 16 × 16 pixels.

In the API:
□ Use ELocator::Width and ELocator::Height to specify the image size.

Configuration (advanced parameters)

The EasyLocate tool has 4 advanced parameters linked to EasyLocate neural network design.

● The EasyLocate neural network works as an image pyramid where the size of the input image
is halved at each level. EasyLocate attempts to detect objects using one or more pyramid
levels depending on the size of the objects to detect.

● To do so, EasyLocate uses a set of typical object size, called anchors, that are assigned to
pyramid levels according to their surface. Then, for each pixel and anchor of a pyramid level,
EasyLocate predicts whether there is an object or not located around that pixel and whose
size approximately matches the anchor.

● EasyLocate then performs a post-processing on the prediction of the neural network. Indeed,
the neural network can predict the same object several times using different levels of the
pyramid, different anchors or neighboring positions in the image. EasyLocate keeps only the
prediction with the highest probability and removes duplicates based on the overlap
between objects.
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The advanced parameters are:

1. The Anchors. By default, the anchors are determined automatically from the objects in your
dataset. The set of anchors must reflect the variety of object sizes that must be detected.

To check or manually edit the anchors, click on See/edit anchors to open the following
dialog:

The dialog lists the current anchors and enables the following operations:
□ To edit an existing anchor, double-click on its width or on its heightin the list.
□ To add or remove an anchor, click on the corresponding button.
□ To generate a new set of anchors, specify the number of subscales, the minimum and the

maximum dimensions of the anchors and one or more aspect ratios.

The dimension of an anchor is the square root of its surface and determines the pyramid
level assigned to the anchor. The number of subscales represent the number of dimensions
to generate for each pyramid level. For each of those dimensions, the anchors with the
specified aspect ratios are generated.

In the API:
□ Use ELocator::SetPredictionAnchors and ELocator::GenerateAnchors.

2. The Maximum number of objects in an image. By default the value is 100. A lower value can
speed up the post-processing of the results.

In the API:
□ Use ELocator::MaxNumberOfObjects.

3. The Same label maximum overlap is the maximum overlap between objects with the same
label. By default the value is 0.5.

In the API:
□ Use ELocator::SameLabelMaxOverlap.

4. The Absolute maximum overlap is the maximum overlap between objects, regardless of their
label. By default the value is 1 and it means that the tool can predict two objects with
different labels but with the exact same bounding box.

In the API:
□ Use ELocator::SameLabelMaxOverlap.

The overlap between two objects is their intersection over union (IoU), defined as the ratio
between the surface of the intersection of their bounding boxes and the surface of the union of
their bounding boxes.
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Training

To train your tool, see "Training a Deep Learning Tool" on page 65.

Locating Objects

In Deep Learning Studio:

● To apply EasyLocate to new images:
□ Add these images to the dataset.
□ Or use the Tests and results tab.

● To visualize the predicted objects of an image:

a. Open the Resultsmenu (ALT + R) of the image viewer.

b. Check the Predicted objects option (CTRL + P).
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● If the image has a ground truth, check the Missing ground truth object option (CTRL + G) to
display missing objects. They appear with a yellow pattern drawn over it.

● In the Results tab on the right side:
□ The list of detected objects shows their label, their score, whether they are matched to a

ground truth object and their predicted bounding box.
□ To see how close a predicted object is to a ground truth object, select the object in the

list on the right side of the image.
The ground truth object is displayed on top of the predicted object with the following
color code:

● To accept all the predicted objects as ground truth:
□ Click on the Use prediction as ground truth button (CTRL + U).
□ Note that it removes any previous ground truth object already present in the image.

● To accept a single predicted object as ground truth:

a. Right click on the object.

b. Select Accept into ground truth in the menu.
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In the API

● To apply EasyLocate to an image, use ELocator::Apply.

This method returns an object ELocatorResult.

● Use ELocatorResult::GetDetectedObjects to retrieve the predicted objects as an array of
ELocatorPredictedObject.

● Use ELocatorResult::Draw to draw all the predicted objects.

● For each predicted object, use:
□ ELocatorObject::Width to get its width.
□ ELocatorObject::Height to get its height.
□ ELocatorObject::Label to get its label.
□ ELocatorPredictedObject::Probability to get its predicted probability.

Validating the Results

The EasyLocate tool exposes 2 types of metrics. These object-based metrics quantify the
performance of the tool :

□ At the object level.
□ At the image level. These metrics are related to the tool ability to correctly detect images

without object and images with objects.

In Deep Learning Studio:

● The metrics are available in the Dataset results tab.

● Most metrics depends on the value of the Detection threshold.
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In the API:

● The metrics are represented by an object ESupervisedSegmenterMetrics.

The object-based metrics

The object-based metrics are computed by matching actual, ground truth objects to detected
objects. A ground truth object and a detected object are matched together if:

□ They have the same label.
□ Their overlap ("Intersection over Union") is higher or equal to the Same label maximum

overlap parameter of the tool.
□ There is no other ground truth that has a higher overlap with the detected object and

there is no other detected object that has a higher overlap with the ground truth object.

The object-based metrics are:

● The Average precision (AP) is the average of the precision (proportion of detected objects
that are matched to a ground truth objects) for different values of recall (true positive rate,
proportion of ground truth objects that are matched to detected objects) obtained by
varying the Detection threshold.
□ Its value is between 0 (bad detector) and 1 (good detector).
□ It is a standard metric for evaluating object detector.

● The recall, also called the "true positive rate", is the proportion of ground truth objects
matched with a predicted object.

● The weighted recall is the weighted average of the recall for each label.

● The precision, also called the "positive predicted value", is the proportion of predicted
objects matched with a ground truth object.

● The weighted precision is the weighted average of the precision for each label.

● The F-Score is the harmonic mean of the recall and the precision.

● The weighted F-Score is the weighted average of the F-Score for each label.

● The Per label metrics table shows various metrics of the objects of each label. The columns
starting with a “#” indicate the number of objects in the corresponding category.
□ Selecting one or more cells from these columns filters the image list to show only the

images that have objects falling in the corresponding categories.
□ If there is no selection, all the images are listed.
□ Use CTRL + Left Click to add cells to the current selection.
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For example, the following selection shows the images containing either:
□ A badly detected “transistor” object
□ A detected (correctly or badly) “diode” object
□ A correctly detected “C2” object
□ An undetected ground truth “C3” object

The image-based metrics

The metrics related to the correct detection of the class of the images (background / with object
or good / defective in the context of defect detection) are:

● The image detection accuracy is the proportion of images correctly predicted to have objects
or not.

● A Confusion matrix listing the number of images in each category.
□ Selecting one or more cells of the confusion matrix filters the image list to show only the

images in the corresponding categories.
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Benchmarks for EasyLocate

Test conditions

□ These numbers are only indicative and represent only the memory required for the neural
network.

□ Your actual memory requirements may be bigger or lower according to your GPU model.
□ The GPU must have more memory than the indicated amount to work because storing

images and results may require additional GPU memory and because of memory
fragmentation.

□ The training time is approximately twice the inference time per image. An iteration is
equivalent to a loop over all the images in the dataset.

□ The GPU used for these benchmarks is a NVIDIA GeForce 1080 Ti.
□ The CPU used is an Intel Core i9 7900X.

Capacity small

Image size Batch
Inference Training

GPU Memory
(MB)

GPU inference time
/image

CPU inference
time

GPU Memory
(MB)

128 × 128

1 58 6.7 ms 78.91 ms -
4 123 2.39 ms - 265
16 453 1.05 ms - 988
64 1711 1 ms - 3506

256 × 256

1 123 7.52 ms 375.43 ms -
4 383 4.49 ms - 893
16 1711 3.22 ms - 3720
64 6745 3.09 ms - 14651

512 × 512

1 383 23 ms 2508 ms -
4 1429 13.69 ms - 3365
16 6745 11.12 ms - 14651
64 26878 - - 53758

Capacity normal

Image size Batch
Inference Training

GPU Memory
(MB)

GPU inference time
/image

CPU inference
time

GPU Memory
(MB)

128 × 128

1 63 7.2 ms 81.55 ms -
4 132 2.55 ms - 279
16 475 1.13 ms - 1032
64 1795 1.04 ms - 3674

256 × 256

1 132 6.93 ms 393 ms -
4 408 4.30 ms - 937
16 1795 3.20 ms - 3888
64 7074 3.28 ms - 15310
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Image size Batch
Inference Training

GPU Memory
(MB)

GPU inference time
/image

CPU inference
time

GPU Memory
(MB)

512 × 512

1 405 24.18 ms 2583 ms -
4 1513 12.5 ms - 3532
16 7074 11.24 ms - 15310
64 28191 - - 56386

Capacity large

Image size Batch
Inference Training

GPU Memory
(MB)

GPU inference time
/image

CPU inference
time

GPU Memory
(MB)

128 × 128

1 196 12.04 ms 141 ms -
4 327 3.65 ms - 726
16 893 1.85 ms - 1938
64 3201 1.33 ms - 7065

256 × 256

1 334 38 ms 684 ms -
4 857 9.17 ms - 2159
16 3201 5.46 ms - 6699
64 12434 - - 26030

512 × 512

1 851 34.6 ms 4266 ms -
4 2952 22.47 ms - 6174
16 12434 - - 26030
64 49367 - - 98737
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4. Code Snippets
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4.1. Basic Types

Loading and Saving Images
Functional Guide | Reference: Load, Save, SaveJpeg

////////////////////////////////////////////////////////////
// This code snippet shows how to load and save an image. //
////////////////////////////////////////////////////////////

// Images constructor
EImageBW8 srcImage;
EImageBW8 dstImage;

// Load an image file
srcImage.Load("mySourceImage.bmp");

// ...

// Save the destination image into a file
dstImage.Save("myDestImage.bmp");

// Save the destination image into a jpeg file
// The default compression quality is 75
dstImage.Save("myDestImage.jpg");

// Save the destination image into a jpeg file
// set the compression quality to 50
dstImage.SaveJpeg("myDestImage50.jpg", 50);

Interfacing Third-Party Images
Functional Guide | Reference: SetImagePtr

///////////////////////////////////////////////////////////////
// This code snippet shows how to link an Open eVision image //
// to an externally allocated buffer. //
///////////////////////////////////////////////////////////////

// Images constructor
EImageBW8 srcImage;

// Size of the third-party image
int sizeX;
int sizeY;

//Pointer to the third-party image buffer
EBW8* imgPtr;

// ...

// Link the Open eVision image to the third-party image
// Assuming the corresponding buffer is aligned on 4 bytes
srcImage.SetImagePtr(sizeX, sizeY, imgPtr);
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Retrieving Pixel Values
Functional Guide | Reference: GetImagePtr

///////////////////////////////////////////////////////////////
// This code snippet shows the recommended method (fastest)  //
// to access the pixel values in a BW8 image                 //
///////////////////////////////////////////////////////////////

EImageBW8 img;

OEV_UINT8* pixelPtr;
OEV_UINT8* rowPtr;
OEV_UINT8  pixelValue;
OEV_UINT32 rowPitch;
int x, y;

rowPtr = reinterpret_cast <OEV_UINT8*>(img.GetImagePtr());
rowPitch = img.GetRowPitch();

for (y = 0; y < height; y++)
{
    pixelPtr = rowPtr;

for (x = 0; x < width; x++)
{

        pixelValue = *pixelPtr;

// Add your pixel computation code here

        *pixelPtr = pixelValue;
        pixelPtr++;
    }

    rowPtr += rowPitch;
}

ROI Placement
Functional Guide | Reference: Attach, SetPlacement

///////////////////////////////////////////////////////////////
// This code snippet shows how to attach an ROI to an image //
// and set its placement. //
///////////////////////////////////////////////////////////////

// Image constructor
EImageBW8 parentImage;

// ROI constructor
EROIBW8 myROI;

// ...

// Attach the ROI to the image
myROI.Attach(&parentImage);

//Set the ROI position
myROI.SetPlacement(50, 50, 200, 100);
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Vector Management
Functional Guide | Reference: Empty, AddElement

///////////////////////////////////////////////////////////////
// This code snippet shows how to create a vector, fill it //
// and retrieve the value of a given element. //
///////////////////////////////////////////////////////////////

// EBW8Vector constructor
EBW8Vector ramp;

// Clear the vector
ramp.Empty();

// Fill the vector with increasing values
for(int i= 0; i < 128; i++)
{

ramp.AddElement((EBW8)i);
}

// Retrieve the 10th element value
EBW8 value= ramp[9];

Exception Management
Functional Guide | Reference: GetPixel, What

////////////////////////////////////////////
// This code snippet shows how to manage //
// Open eVision exceptions. //
////////////////////////////////////////////

try
{

// Image constructor
EImageC24 srcImage;

// ...

// Retrieve the pixel value at coordinates (56, 73)
EC24 value= srcImage.GetPixel(56, 730);

}

catch(Euresys::Open_eVision_1_1::EException exc)
{

// Retrieve the exception description
std::string error = exc.What();

}
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4.2. Deep Learning Tools

Creating a Dataset and Training a Classifier
//////////////////////////////////////////////////////////////
// This code snippet shows how to create a dataset, train a //
// classifier and get the best performance metrics obtained //
// during the training. //
//////////////////////////////////////////////////////////////

// Creating dataset and classifier objects
EClassificationDataset dataset;
EClassificationDataset trainingDataset;
EClassificationDataset validationDataset;
EClassifier classifier;

// Adding images using a glob pattern
dataset.AddImages("*good*.png", "good");
dataset.AddImages("*defective*.png", "defective");

// Enabling data augmentation on the dataset
dataset.SetEnableDataAugmentation(true);

// Rotation of up to 90°
dataset.SetMaxRotationAngle(90);

// Enabling horizontal flips
dataset.SetEnableHorizontalFlip(true);

// Splitting the dataset with 80% of images for the training dataset
// and 20% for the validation dataset
dataset.SplitDataset(trainingDataset, validationDataset, 0.8f);

// Training the classifier for 50 epochs
classifier.Train(trainingDataset, validationDataset, 50);
classifier.WaitForTrainingCompletion();

// Get the best metrics obtained on the validation dataset
EClassificationMetrics bestMetrics = classifier.GetValidationMetrics(classifier.GetBestEpoch());

Loading a Classifier and Classifying a New Image
///////////////////////////////////////////////////////////////
// This code snippet shows how load a trained classifier and //
// classify a new image. //
///////////////////////////////////////////////////////////////

// Image and classifier constructor
EClassifier classifier;
EImageBW8 srcImage;

// String and probability for the most probable result
std::string label;
float probability;

// Load classifier and image
classifier.Load(...);
srcImage.Load(...);

Open eVision User Guide



107

// Classify image
EClassificationResult result = classifier.Classify(srcImage);

// Get the most probable label
label = result.GetBestLabel();
probability = result.GetBestProbability();

Using Multithreading for Classification
///////////////////////////////////////////////////////////////
// This code snippet shows how to parallelize the //
// classification of new images on the CPU. //
// This code snippet is in C++ 11 and requires a recent //
// compiler. //
///////////////////////////////////////////////////////////////

#include <thread>
#define NUM_THREADS 4

void task(EasyDeepLearning::EClassifier *classifier, EImageC24 img)
{
// Classification of the image
EasyDeepLearning::EClassificationResult result = classifier->Classify(img);
std::string label = result.GetBestLabel();
float proba = result.GetBestProbability();

// Perform other actions based on the result
...

}
...
// Vector of classifier: one per thread
std::vector<EasyDeepLearning::EClassifier> classifiers;
classifiers.resize(NUM_THREADS);
for (int i = 0; i < NUM_THREADS; i++)
{
classifiers[i].Load("classifier.ecl");

}

// Our thread pool
std::vector<std::thread> threads;
threads.resize(NUM_THREADS);

// The next thread to use
int threadToUse = 0;
bool hasImage = true;
while (hasImage)
{
EImageC24 image;

// Load or set the data pointer of the image
...

// Check that the threads has done its previous work
if (threads[threadToUse].joinable())
{

threads[threadToUse].join();
}

// Launch a new thread
threads[threadToUse] = std::thread(task, &classifiers[threadToUse], image);
threadToUse = (threadToUse + 1) % NUM_THREADS;
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// Check that we still have an image to process and change the status
// of "hasImage" if necessary.
...

}

// Make sure that all threads are finished
for (int i = 0; i < NUM_THREADS; i++)
{
if (threads[i].joinable())

threads[i].join();
}

Loading an Unsupervised Segmenter and Segmenting an
Image
///////////////////////////////////////////////////////////////
// This code snippet shows how to load a trained //
// unsupervised segmenter and how to segment a new image. //
///////////////////////////////////////////////////////////////

// Image
EImageBW8 image;
image.Load(...) ;

// Segmenter
EUnsupervisedSegmenter segmenter;
segmenter.Load(...);

// Apply the segmenter on the image
EUnsupervisedSegmenterResult r = segmenter.Apply(image);

// Retrieve the segmentation map
EImageBW8 segmentationMap = r.GetSegmentationMap();
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