
Open eVision
GETTING STARTED

© EURESYS s.a. 2018 - Document D102ET-Getting Started-Open eVision-2.5.1.1107 built on 2018-07-23

2

Terms of Use

EURESYS s.a. shall retain all property rights, title and interest of the documentation of the hardware and the
software, and of the trademarks of EURESYS s.a.

All the names of companies and products mentioned in the documentation may be the trademarks of their
respective owners.

The licensing, use, leasing, loaning, translation, reproduction, copying or modification of the hardware or the
software, brands or documentation of EURESYS s.a. contained in this book, is not allowed without prior notice.

EURESYS s.a. may modify the product specification or change the information given in this documentation at any
time, at its discretion, and without prior notice.

EURESYS s.a. shall not be liable for any loss of or damage to revenues, profits, goodwill, data, information systems or
other special, incidental, indirect, consequential or punitive damages of any kind arising in connection with the use
of the hardware or the software of EURESYS s.a. or resulting of omissions or errors in this documentation.

This documentation is provided with Open eVision 2.5.1 (doc build 1107).
© 2018 EURESYS s.a.

Open eVision Getting Started

3

Contents

1. Solving a Vision Problem 4

2. Discovering Open eVision Libraries 10

3. Dealing with Pixel Containers and Files 12
3.1. Pixel Container Definition 12
3.2. Pixel Container Types 14
3.3. Supported Image File Types 15
3.4. Pixel and File Types Compatibility 16
3.5. Color Types 18

4. Selecting your Programming Language 19

5. Navigating the Interface 20

6. Running Tools on Images 22
6.1. Step 1: Selecting a Tool 22
6.2. Step 2: Opening an Image 23
6.3. Step 3: Managing ROIs 24
6.4. Step 4: Configuring the Tool 26
6.5. Step 5: Running the Tool and Checking Execution Time 27
6.6. Step 6: Using the Generated Code 28

7. Pre-Processing and Saving Images 30

Open eVision Getting Started

4

1. Solving a Vision Problem

A typical vision-based application follows these steps:

1. Acquire images

External images must be stored in a host PC memory buffer with a known address. They must be
linked to the Open eVision image object with parameters containing the address and pitch (32
bytes default) of the buffer, and the width and height of the image.
For details see Image Construction and Memory Allocation.

To optimize resolution and repeatability, the area of interest should occupy most of the field of
view, and the targeted inspection equipment should be simulated as accurately as possible,
with realistic lighting.

You should create two series of images:
n objects without defects (accepted by the inspection process) in all situations (such as

unstable lighting conditions and movement freedom).
n objects with unacceptable defects (to be rejected by the inspection process).

Use Open eVision Libraries to process the images:

2. Pre-process images

Reduce defects or enhance properties (such as contrast between the object of interest and
background).

3. Locate objects of interest

Locate the area of interest using techniques such as segmentation, edge detection or pattern
matching.

Open eVision Getting Started 1. Solving a Vision Problem

5

4. Analyse your findings

EasyObject measures unknown shapes
EasyGauge returns accurate measurements of known objects
EasyImage provides statistical parameters

Measurements are performed locally so quantify the shape of objects geometrically, defects can
be related to abnormal gray-level values.

5. Optimize your application

Your solution must reliably separate good images from bad images by comparing ROI features
to assess quality, detect defects, and recognize and sort objects.
If it can't, repeat steps 2 and 3 to improve your set of features.

Develop thread safe applications

Open eVision supports simultaneous execution by multiple (unlimited) threads on the same CPU,
but data can only be accessed by one thread at a time
So independent tasks can execute simultaneously in your application, but each bit of shared
data must be controlled by a separate task.

Rules for Thread-Safe Developments

The following rules avoid data corruption, crashes and misbehaving programs.

Open eVision Getting Started 1. Solving a Vision Problem

6

Thread-safe basic types classes

Basic types Recommendations Restrictions

Basic pixel structures

EColor, EPeak, EISH, ELAB, ELCH,
ELSH, ELUV, EBW1, EBW8,
EBW8Path, EBW16, EBW16Path,
EBW32, EC15, EC16, EC24, EC24A,
EC24Path, EPath, ERGB, ERGBColor,
EVSH, EXYZ, EYIQ, EYSH, EYUV,
EDepth8, EDepth16 and EDepth32f

No

Pixel collection classes

EColorLookup, EPseudoColorLookup,
EPeakVector, EBW8Vector,
EBWHistogramVector,
EBW8PathVector, EBW16PathVector,
EBW16Vector, EBW32Vector,
EC24Vector, EPathVector,
EColorVector, EColorLookup and
EC24PathVector

No restrictions on
read-only access.

A single instance may not be
modified by several threads.

If a thread is modifying an
instance, no other thread can
access it.

Image classes

EImageBW1, EImageBW8,
EImageBW16, EImageBW32,
EImageC15, EImageC16, EImageC24
and EImageC24A

No restrictions on
read-only access.

A single instance may not be
modified by several threads.

If a thread is modifying an
instance, no other thread can
access it.

Depth map classes

EDepthMap8, EDepthMap16 and
EDepthMap32f

No restrictions on
read-only access.

A single instance may not be
modified by several threads.

If a thread is modifying an
instance, no other thread can
access it.

Open eVision Getting Started 1. Solving a Vision Problem

7

Basic types Recommendations Restrictions

Point cloud classes

E3DPointCloud

No restrictions on
read-only access.

A single instance may not be
modified by several threads.

If a thread is modifying an
instance, no other thread can
access it.

ROI classes

EROIBW1, EROIBW8, EROIBW16,
EROIBW32, EROIC15, EROIC16,
EROIC24 and EROIC24A

EDepthMapROI8, EDepthMapROI16
and EDepthMapROI32f

No restrictions on
read-only access.

A single instance may not be
modified by several threads.

If a thread is modifying an
instance, no other thread can
access it.

Different ROI can be added or
removed from an image or
moved event if their parent
image is the same.
Consequently, different threads
can work on different areas of
an image possibly changing in
position and size during the
process.

Thread-safe library classes

Library Recommendations Restrictions

EasyImage and EasyColor

Static methods from this class
(provided threading rules
applying to their arguments
are not broken).

No

EasyObject No

EasyMatch, EasyFind,
EasyQRCode and EasyOCR2

EMatcher, EMatchPosition,
EPatternFinder and
EFoundPattern

A single instance cannot be
accessed from several
threads.

Search field (read-only) can
be shared by different
objects.

EasyGauge and Shape
subclasses

Can be attached, moved or
removed from different
threads, even in the same
hierarchy.

A single instance must not
be used by different
threads.

Open eVision Getting Started 1. Solving a Vision Problem

8

Library Recommendations Restrictions

Gauging classes
(EPointGauge, ELineGauge,
ERectangleGauge,
ECircleGauge, EWedgeGauge),
EWorldShape and
EFrameShape)

Basic geometric classes
(EFrame, EPoint, ECircle,
ELine, ERectangle and
EWedge)

Can be accessed from
different threads provided
that an instance is not used
by two different threads
simultaneously.

Gauging classes measuring
and processing operations

May be executed in different
threads with no blocking even
if these gauges perform their
measuring operations in the
same image.

Multiple CPU usage will be
optimal.

A single instance cannot be
read / modified by two
threads .

EWorldShape
A single instance cannot be
read / modified from
different threads.

EasyOCR, EasyOCV and
EasyBarCode

EOCR, EOCV, EOCVChar,
EOCVText and EBarCode

Different instances may be
created and used from
different threads.

A single instance cannot be
accessed from several
threads.

EChecker
Different instances may be
used from different threads.

EasyMatrixCode

EMatrixCodeReader

Multiple CPU usage will be
optimal.

A single instance cannot be
used by several threads.

A single MatrixCode cannot
be used in multiple threads.

Report errors

When an Open eVision function fails, an exception is thrown which contains an error code and
a description. To catch a potential exception, the function call is included in a try-catch block.

Measure execution times

Timing a particular piece of code is achieved simply with start and stop operations:
n Start timing: Easy::.StartTiming
n Stop timing: Easy::.StopTiming

Open eVision Getting Started 1. Solving a Vision Problem

9

n Clock resolution: Easy::.TrueTimingResolution

help is available:

n
Open eVision Studio

Speeds up and automates the creation of a solution. You can test the functions to find
appropriate parameter values, and generate code of your operations to copy and paste into
prototype applications.

n
Open eVision examples

Euresys download area contains:

n sample projects: how to use Open eVision libraries with a particular IDE.
n sample application programs: how to combine Open eVision functions and libraries in a

variety of combinations and applications.

Open eVision Getting Started 1. Solving a Vision Problem

http://www.euresys.com/downloadarea/Download.asp

10

2. Discovering Open eVision
Libraries

The Open eVision libraries are a set of powerful image processing tools, tailored for use in
computer vision applications. They cover most state-of-the-art techniques in digital image
processing, from classical algorithms to advanced solutions ready-made for specific tasks.

Even though many of the available tools are designed to be self-consistent and easy to use, the
advanced user should find everything he needs to build his own workflow by combining the
numerous building blocks provided.

Open eVision is made of a set of C++, ActiveX and .NET classes designed to be integrated into
your application. The libraries are in no way a closed solution and do require to be integrated
in your own application, leaving you all the freedom to deal with all other aspects of the
automation not related to image processing.

Foundations

n Basic Types and Operations contains the definition of fundamental objects , types, classes
and functions used in all Open eVision components.

n Easy3D contains a set of tools for solving computer vision problem using 3D acquisition and
processing.

Preprocessing

n EasyImage contains gray-level image processing functions that improve image quality and
contrast between background and objects of interest as well as linear and non-linear
filtering,and geometric transformations.

n EasyColor contains color image processing functions that efficiently convert images between
several color systems.

Blob inspection

n EasyObject obtains information about distinct objects (blob analysis), identifies them using
connected component labeling, then sorts them and selects with them respect to their
geometric features.

n EasyObject 2 contains advanced blob detection and analysis tools.

Pattern matching

n EasyMatch locates patterns in an image based on a pixel-by-pixel comparison with a
reference pattern or template. It can be used for image registration or component placement
inspection.

Open eVision Getting Started 2. Discovering Open eVision Libraries

11

n EasyFind locates patterns in an image based on a geometrical model from a reference
pattern or template. Compared to EasyMatch, it is computationally fast,robust against noise,
occlusion, blurring and illumination variations.

2D measurement

n EasyGauge assesses dimensions of objects to sub-pixel precision, detects edges, locates
points and fits geometric models. EasyGauge can measure in physical units (mm, inch, ...)
instead of pixels if the field of view is calibrated.

Mark-Inspection Libraries

n EasyOCR performs optical character recognition. It can be used for reading serial numbers
or printed labels.

n EasyOCR2 contains advanced optical character recognition functions.
n EasyOCV checks the print quality of labels against a template. EasyOCV can inspect the

global image or independent shapes. It can detect issues with low contrast, misalignment,
scratches or incorrect markings.

n Echecker creates a Golden template and inspects images. It uses EasyOCV library
functions.

n EasyBarCode reads bar codes.
n EasyMatrixCode reads Data Matrix codes.
n EasyQRCode detects and decodes QR codes.

Image statistics

n EasyImage statistics contains tools for quantifying image focus, sliding window statistics and
histogram analysis.

Open eVision Getting Started 2. Discovering Open eVision Libraries

12

3. Dealing with Pixel Containers
and Files

3.1. Pixel Container Definition
Images

Open eVision image objects contain image data that represents rectangular images.

Each image object has a data buffer, accessible via a pointer, where pixel values are stored
contiguously, row by row.

Image main parameters

An Open eVision image object has a rectangular array of pixels characterized by EBaseROI
parameters .
n Width is the number of columns (pixels) per row of the image.
n Height is the number of rows of the image. (Maximum width / height is 32,767 (215-1) in

Open eVision 32-bit, and 2,147,483,647 (231-1) in Open eVision 64-bit.)
n Size is the width and height.

The Plane parameter contains the number of color components. Gray-level images = 1. Color
images = 3.

Classes

Image and ROI classes derive from abstract class EBaseROI and inherit all its properties.

Open eVision Getting Started 3. Dealing with Pixel Containers and Files

13

Depth maps

A depth map is way to represent a 3D object using a 2D grayscale image, each pixel in the
image representing a 3D point.

The pixel coordinates are the representation of the X and Y coordinates of the point while the
grayscale value of the pixel is a representation of the Z coordinate of the point.

Point clouds

A point cloud (https://en.wikipedia.org/wiki/Point_cloud) is an unstructured set of 3D points
representing discrete positions on the surface of an object.

Open eVision Getting Started 3. Dealing with Pixel Containers and Files

14

3D point clouds are produced by various 3D scanning techniques, such as Laser Triangulation,
Time of Flight or Structured Lighting.

3.2. Pixel Container Types
Images

Several image types are supported according to their pixel types: black and white, gray levels,
color, etc.

Easy.GetBestMatchingImageType returns the best matching image type for a given file on disk.

BW1
1-bit black and white images (8 pixels
are stored in 1 byte)

EImageBW1

BW8
8-bit grayscale images (each pixel is
stored in 1 byte)

EImageBW8

BW16
16-bit grayscale images (each pixel is
stored in 2 bytes)

EImageBW16

BW32
32-bit grayscale images (each pixel is
stored in 4 bytes)

EImageBW32

C15

15-bit color images (each pixel is
stored in 2 bytes).
Compatible with Microsoft® Windows
RGB15 color images and MultiCam
RGB15 format.

EImageC15

Open eVision Getting Started 3. Dealing with Pixel Containers and Files

15

C16

16-bit color images (each pixel is
stored in 2 bytes).
Compatible with Microsoft® Windows
RGB16 color images and MultiCam
RGB16 format.

EImageC16

C24

C24 images store 24-bit color images
(each pixel is stored in 3 bytes).
Compatible with Microsoft® Windows
RGB24 color images and MultiCam
RGB24 format.

EImageC24

C24A

C24A images store 32-bit color images
(each pixel is stored in 4 bytes).
Compatible with Microsoft® Windows
RGB32 color images and MultiCam
RGB32 format.

EImageC24A

Depth Maps

8 and 16-bit depth map values are stored in buffers compatible with the 2D Open eVision
images.

EDepth8
8-bit depth map (each pixel is stored in
1 byte as an integer)

EDepthMap8

EDepth16
16-bit depth map (each pixel is stored
in 2 bytes as a fixed point)

EDepthMap16

EDepth32f
32-bit depth map (each pixel is stored
in 4 bytes as a float)

EDepthMap32f

Point Clouds

Point Cloud
Set of points coordinates (stored as
float)

E3DPointCloud

3.3. Supported Image File Types

Type Description

BMP Uncompressed image data format (Windows Bitmap Format)

JPEG
Lossy data compression standard issued by the Joint Photographic Expert Group
registered as ISO/IEC 10918-1. Compression irretrievably looses quality.

JFIF JPEG File Interchange Format

Open eVision Getting Started 3. Dealing with Pixel Containers and Files

16

Type Description

JPEG-
2000

Data compression standard issued by the Joint Photographic Expert Group
registered as ISO/IEC 15444-1 and ISO/IEC 15444-2. Open eVision supports only
lossy compression format, file format and code stream variants.

- code stream describes the image samples.
- file format includes meta-information such as image resolution and color
space.

PNG Lossless data compression method (Portable Network Graphics).

Serialized
Euresys proprietary image file format obtained from the serialization of Open
eVision image objects.

TIFF

Tag Image File Format is currently controlled by Adobe Systems and uses the
LibTIFF third-party library to process images written for 5.0 or 6.0 TIFF
specification.

File save operations are lossless and use CCITT 1D compression for 1-bit binary
pixel types and LZW compression for all others.

File load operations support all TIFF variants listed in the LibTIFF specification.

3.4. Pixel and File Types Compatibility
Depth map to image conversion

For a 8- and 16-bit depth maps, the AsImage() method returns a compatible image object
(respectively EImageBW8 and EImageBW16) that can be used with Open eVision’s 2D processing
features.

Pixel and file types compatibility

Pixel access

The recommended method to access pixels is to use SetImagePtr and GetImagePtr to embed
the image buffer access in your own code. See also Image Construction and Memory Allocation
and Retrieving Pixel Values.

Use of the following methods should be limited because of the overhead incurred by each
function call:

Direct access

EROIBW8::.GetPixel and SetPixel methods are implemented in all image and ROI classes
to read and write a pixel value at given coordinates. To scan all pixels of an image, you could
run a double loop on the X and Y coordinates and use GetPixel or SetPixel each iteration,
but this is not recommended.

Open eVision Getting Started 3. Dealing with Pixel Containers and Files

17

For performance reasons, these accessors should not be used when a significant number of pixel
needs to be processed. When that is the case, retrieving the internal buffer pointer using
GetBufferPtr() and iterating on the pointer is recommended.

Quick Access to BW8 Pixels

In BW8 images, a call to EBW8PixelAccessor::.GetPixel or SetPixel will be faster than a
direct EROIBW8::.GetPixel or SetPixel.

Supported structures

n EBW1, EBW8, EBW32
n EC15 (*), EC16 (*), EC24 (*)
n EC24A

n EDepth8, EDepth16, EDepth32f,

(*) These formats support RGB15 (5-5-5 bit packing), RGB16 (5-6-5 bit packing) and RGB32 (RGB +
alpha channel) but they must be converted to/from EC24 using EasyImage::.Convert before
any processing.

Note: Transition with versions prior to eVision 6.5 should be seamless: image pixel types were
defined using typedef of integral types, pixel values were treated as unsigned numbers and
implicit conversion to/from previous types is provided.

Pixel and File Type compatibility during Load or Save operations

Type BMP JPEG JPEG2000 PNG TIFF Serialized

BW1 Ok N/A N/A Ok Ok Ok

BW8 Ok Ok Ok Ok Ok Ok

BW16 N/A N/A Ok Ok Ok (***) Ok

BW32 N/A N/A N/A N/A Ok (***) Ok

C15 Ok Ok (**) Ok (**) Ok (**) Ok (**) Ok

C16 Ok Ok (**) Ok (**) Ok (**) Ok (**) Ok

C24 Ok Ok Ok Ok Ok (**) Ok

C24A Ok N/A N/A Ok N/A Ok

Depth8 Ok Ok Ok Ok Ok Ok

Depth16 N/A N/A Ok Ok Ok (***) Ok

Depth32f N/A N/A N/A N/A N/A Ok

N/A: Not supported. An exception occurs if you use the combination.

Ok: Image integrity is preserved with no data loss (apart from JPEG and JPEG2000, lossy
compression).

(**) C15 and C16 formats are automatically converted into C24 during the save operation.

(***) BW16 and BW32 are not supported by Baseline TIFF readers.

Open eVision Getting Started 3. Dealing with Pixel Containers and Files

18

3.5. Color Types
EISH: Intensity, Saturation, Hue color system.

ELAB: CIE Lightness, a*, b* color system.

ELCH: Lightness, Chroma, Hue color system.

ELSH: Lightness, Saturation, Hue color system.

ELUV: CIE Lightness, u*, v* color system.

ERGB: NTSC/PAL/SMPTE Red, Green, Blue color system.

EVSH: Value, Saturation, Hue color system.

EXYZ: CIE XYZ color system.

EYIQ: CCIR Luma, Inphase, Quadrature color system.

EYSH: CCIR Luma, Saturation, Hue color system.

EYUV: CCIR Luma, U Chroma, V Chroma color system.

Open eVision Getting Started 3. Dealing with Pixel Containers and Files

19

4. Selecting your Programming
Language

When you start Open eVision Studio for the first time, the following welcome screen is
displayed:

1. Select your programming language.

Your selection is saved and your programming language will be automatically selected next time
you start Open eVision Studio.

Note: When you change your programming language, any script present in the scripting
window is automatically deleted and the window content is reset.

2. Click on one of the Load buttons to already load one or several images for later processing.

3. Check the Do not show at startup box to hide this welcome screen next time you start Open
eVision Studio.

To access this welcome screen at any time, and change this setting, go to theHelp >Welcome
Screen menu.

Open eVision Getting Started 4. Selecting your Programming Language

20

5. Navigating the Interface

Open eVision Studio graphical user interface (GUI) is organized as follows:

1. The main menu bar gives you access to the functions and tools of all libraries.

Open eVision Studio does not require any license and allows you to test all libraries. Of course, if you
copy code from Open eVision Studio in your own application but you do not have the required
license, you will receive a "missing license" error at run-time.

2. The main toolbar gives you a quick access to main Open eVision objects such as images,
shapes, gauges, bar codes, matrix codes...

3. The script window displays the code, in the programming language you selected,
corresponding to the actions you perform in Open eVision Studio. You can save or copy this
code in your own application at any time.

4. The image windows display the open images that you can process using the libraries and
tools.

5. The tool windows enable you to easily configure all the available tools. The corresponding
settings are automatically added in the script window for easy reuse.

Most tool windows are floating and you can easily move them outside the Open eVision Studio main
window to make a better use of your screen size.

6. The execution time bar displays the precise time taken for the execution of the selected
functions (measured in milliseconds or microseconds) on your computer. This accurate
measurement helps you to evaluate the performance of your application.

Open eVision Getting Started 5. Navigating the Interface

21

7. The color toolbar displays current information such as the X and Y coordinates of the cursor
on an image and the corresponding pixel value.

8. The status bar displays general information about the application such as the active image
file path...

Open eVision Getting Started 5. Navigating the Interface

22

6. Running Tools on Images

6.1. Step 1: Selecting a Tool
Usually the first step, when using Open eVision Studio, is to select the library and the tool you
want to use on your image.

To do so:

1. In the main menu bar, click on the library you want to use.

2. Click on the tool you want to use.

All libraries (except EasyImage, EasyColor and EasyGauge) expose only one tool namedNew Xxx
Tool. Some of these libraries also expose additional functions.

3. In the dialog box, enter a Variable name for the variable that is automatically created and
that will contain the result of the processing.

Example of variable creation dialog box for EasyQRCode

4. Click OK.

The selected tool dialog box opens.

Open eVision Getting Started 6. Running Tools on Images

23

Example of variable creation dialog box for EasyQRCode

The next step is "Step 2: Opening an Image" below.

6.2. Step 2: Opening an Image
Once you have selected your library and your tool, you need to open an image to apply this
tool.

In the Source Image area of the selected tool dialog box:

1. Open an image:

□ Click on the Open an Image button and select one or several (using SHIFT and CTRL)
images on your computer.

□ Or select one of the images (or one of the ROIs, if any) already open in the drop-down list.

Note: You can select only images with an appropriate file format (JPG, PNG, TIFF or BMP) and in
8- and/or 24-bit depending on the library.

2. If you selected several images, activate one with the Load Previous or Load Next
buttons.

Open eVision Getting Started 6. Running Tools on Images

24

The tool is automatically applied on any loaded image and, at this stage, the result is displayed
based on the tool default settings.

The next step is "Step 3: Managing ROIs" below.

6.3. Step 3: Managing ROIs
In some cases, most often to decrease the processing time or to single-out the object you want
to read, you do not want to process the whole image but only one or several well defined
rectangular parts of this image, or ROIs (Regions Of Interest).

In Open eVision, ROIs are attached to an image and exist only as long as the parent image is
available.

Creating a ROI

1. Open the image:

□ If the image is already open, activate the corresponding image window.

□ If the image is not open yet, go to the main menu: Image > Open... to open one.

2. To create an ROI, go to the main menu: Image > ROI Management....

The ROI Management window is displayed as illustrated below.

3. Select the image in the tree.

4. Click on the New button.

5. In the dialog box, enter a Variable name for the new ROI.

The ROI is represented as a color rectangle on your image as illustrated below.

Open eVision Getting Started 6. Running Tools on Images

25

6. Drag the ROI corner and side handles to move it to the required position.

7. Click on the Close button to close the ROI Management window .

The next step is "Step 4: Configuring the Tool" on the next page.

Managing ROIs

You can add, change and remove ROIs.

An image can have several ROIs. Each ROI can be attached directly to the image (meaning that its
position is relative to the image) or to another ROI (meaning that its position is relative to this
'parent' ROI).

1. To manage ROIs, go to the main menu: Image > ROI Management....

The ROI Management window is displayed with the ROI relation tree as illustrated below.

If the Draw Rois box is checked, all ROIs are displayed on the image with a different color.

Open eVision Getting Started 6. Running Tools on Images

26

2. Select an ROI in the ROI relation tree.

3. Drag the ROI corner and side handles to change the position and size of the selected ROI (as
well as the position of all ROIs attached to it if any).

4. Click on the New button to add a new ROI attached to the selected ROI.

Select the image at the top of the ROI relation tree to attach the ROI directly to the image.

5. Click on the Remove button to delete the selected ROI (and all ROIs attached to it if any).

6. Click on the Close button to close the ROI Management window.

6.4. Step 4: Configuring the Tool
Once your image, including its ROIs if you created some, is ready, you need to configure your
tool.

In the tool window:

1. Open the various tabs.

When you create a new tool, all parameters are set with their default value.

Example of the parameter tab of an EasyQRCode tool

2. In each tab, set the value of the parameters as desired.

Please refer to the "Functional Guide" and to the "Reference Manual" for detailed information
about the parameters, their function and their default value.

For specific actions such as learning or using gauges, please refer to the "Functional Guide".

3. Run the tool and analyze the results as described in the next step "Step 5: Running the Tool
and Checking Execution Time" on the next page.

Open eVision Getting Started 6. Running Tools on Images

27

6.5. Step 5: Running the Tool and
Checking Execution Time
Once your tool parameters are set, run your tool and, if desired, check the execution time on
your computer.

In the tool window:

1. Click on the Read, Detect, Results or Execute button (depending on the library function), to
run the tool on the selected image.

2. Check the results on the image and in the Results field or area as illustrated below.

Example of results after reading a QRCode

3. If you do not have the expected results:

□ Try to change your parameters (start with default values then change one parameter at a
time).

□ If you image is not good enough, try to enhance it as described in .

4. Check the execution time in the execution time bar at the bottom left of the main Open
eVision Studio window.

The execution time

Open eVision Getting Started 6. Running Tools on Images

28

The execution time is the actual time that the processing took as measured on your computer. It
depends your computer processor, memory, operating system... and, of course, on the processor
load at the time of execution. Thus this execution time slightly varies from execution to execution.

5. To get a more representative execution time, click on the Read, Detect, Results or Execute
button several times and calculate the mean execution time.

6. If your application requires that you reduce the execution time, try:

□ To change the tool parameters,

□ To add one or several ROIs on your image,

□ To enhance your image.

The next step is "Step 6: Using the Generated Code" below.

6.6. Step 6: Using the Generated Code
By default, Open eVision Studio translates all the operations you perform in the interface into
code in the language you selected as illustrated below.

Once your tool results suit you, you can save or copy this generated code to use it in your own
application.

Copy and paste the code in your application

In the script window:

1. Select the code section you want to copy.

2. Right click on this code and click Copy in the menu.

3. Go to you development environment tool and paste the code in place.

Save the code

1. Go to the Script menu.

Open eVision Getting Started 6. Running Tools on Images

29

2. Click on Save Script As....

3. Enter a file name and path to save the code as a text file.

Manage the generated code

In the Script menu, you can:

□ Select the programming language (please note that if you change the language, the script
window content is automatically deleted).

□ Activate or deactivate the Script Code Generation. Deactivate this option if you want to
perform some operations without saving them as code.

Open eVision Getting Started 6. Running Tools on Images

30

7. Pre-Processing and Saving
Images

When should you pre-process your images?

Of course, the best situation is to set up your image acquisition system to have good and easy
to process images so the Open eVision tools run smoothly and efficiently.

If this is not possible or easy to achieve, you can pre-process your images or your ROIs to
enhance and prepare them for the Open eVision tool you want to run.

Using the various available functions, you can adjust the gain and offset of your image, apply a
convolution, threshold, scale, rotate and white balance your image, enhance contours... using
EasyImage and EasyColor functions.

Pre-processing images

The difference between pre-processing an image and running tools is that the pre-processing
generates a new image while the tools mainly extract and retrieve information from the image
without changing it.

To pre-process an image or an ROI:

1. In the main menu bar, click on the library you want to use (EasyImage or EasyColor).

2. Click on the function you want to use.

Most function dialog boxes are similar to the one illustrated below with 2 image selection areas
and a parameter setting area.

Example of a pre-processing dialog box (Threshold with EasyImage)

3. If there are multiple versions for your selected function, open the corresponding tab.

4. In the Source Image area, open the source image (as described in "Step 2: Opening an
Image" on page 23).

Open eVision Getting Started 7. Pre-Processing and Saving Images

31

5. In the Destination Image area, open or create a new destination image.

6. Set your parameters.

7. Click on the Execute button.

The pre-processed image is available in the destination image as illustrated below.

Source and destinations images (Threshold with EasyImage)

8. If you want to use the destination image outside of Open eVision Studio, save it as described
below.

Saving an image

1. Click in the image you want to save to activate it.

2. To open the save menu either:

□ Right-click in the image

□ Or open the main menu > Image

3. Click on Save as....

4. Select the file format (JPEG, JPEG2000, PNG, TIFF or Bitmap).

5. Enter a name and select a path.

6. Click on the Save button.

Open eVision Getting Started 7. Pre-Processing and Saving Images

	1. Solving a Vision Problem
	2. Discovering Open eVision Libraries
	3. Dealing with Pixel Containers and Files
	3.1. Pixel Container Definition
	3.2. Pixel Container Types
	3.3. Supported Image File Types
	3.4. Pixel and File Types Compatibility
	3.5. Color Types

	4. Selecting your Programming Language
	5. Navigating the Interface
	6. Running Tools on Images
	6.1. Step 1: Selecting a Tool
	6.2. Step 2: Opening an Image
	6.3. Step 3: Managing ROIs
	6.4. Step 4: Configuring the Tool
	6.5. Step 5: Running the Tool and Checking Execution Time
	6.6. Step 6: Using the Generated Code

	7. Pre-Processing and Saving Images

