
Open eVision
Image Pre-Processing Libraries

USER GUIDE

© EURESYS s.a. 2018 - Document D121ET-Using Image Pre-Processing Libraries C++-Open eVision-2.6.1.1110 built on 2018-11-20

2

Terms of Use

EURESYS s.a. shall retain all property rights, title and interest of the documentation of the hardware and the
software, and of the trademarks of EURESYS s.a.

All the names of companies and products mentioned in the documentation may be the trademarks of their
respective owners.

The licensing, use, leasing, loaning, translation, reproduction, copying or modification of the hardware or the
software, brands or documentation of EURESYS s.a. contained in this book, is not allowed without prior notice.

EURESYS s.a. may modify the product specification or change the information given in this documentation at any
time, at its discretion, and without prior notice.

EURESYS s.a. shall not be liable for any loss of or damage to revenues, profits, goodwill, data, information systems or
other special, incidental, indirect, consequential or punitive damages of any kind arising in connection with the use
of the hardware or the software of EURESYS s.a. or resulting of omissions or errors in this documentation.

This documentation is provided with Open eVision 2.6.1 (doc build 1110).
© 2018 EURESYS s.a.

Open eVision User Guide

3

Contents

1. Dealing with Pixel Containers and Files 6
1.1. Pixel Container Definition 6
1.2. Pixel Container Types 8
1.3. Supported Image File Types 9
1.4. Pixel and File Types Compatibility 10
1.5. Color Types 12

2. Manipulating Pixels Containers and Files 13
2.1. Pixel Container File Save 13
2.2. Pixel Container File Load 15
2.3. Memory Allocation 15
2.4. Image and Depth Map Buffer 16
2.5. Image Drawing and Overlay 19
2.6. 3D Rendering of 2D Images 20
2.7. Vector Types and Main Properties 21
2.8. ROI Main Properties 25
2.9. Flexible Masks 26
2.10. Profile 30

3. Image Pre-Processing Libraries 32
3.1. EasyImage - Pre-Processing Grayscale Image 33

Intensity Transformation 33
Thresholding 36
Arithmetic and Logic 38
Non-Linear Filtering 40
Geometric Transforms 46
Noise Reduction and Estimation 48
Scalar Gradient 51
Vector Operations 51
Canny Edge Detector 53
Harris Corner Detector 54
Overlay 56
Operations on Interlaced Video Frames 56
Flexible Masks in EasyImage 57

3.2. EasyColor - Pre-processing Color Images 58
Bayer Transform 62
LUT for Gain/Offset (Color) 63
LUT for Color Calibration 64
LUT for Color Balance 64

3.3. EasyImage - Computing Image Statistics 66
3.4. EasyDeepLearning - Classifying Images 70

What EasyDeepLearning can do 70
Workflow 71
EasyDeepLearning Studio 72
Managing the Dataset 74
Using the Classifier 76

Open eVision User Guide

4

Accelerating the Computation with a NVIDIA GPU 79

4. Using Open eVision Studio 81
4.1. Selecting your Programming Language 82
4.2. Navigating the Interface 83
4.3. Running Tools on Images 84

Step 1: Selecting a Tool 84
Step 2: Opening an Image 85
Step 3: Managing ROIs 85
Step 4: Configuring the Tool 87
Step 5: Running the Tool and Checking Execution Time 88
Step 6: Using the Generated Code 90

4.4. Pre-Processing and Saving Images 91

5. Tutorials 93
5.1. EasyImage 93

Converting a Gray-Level Image into a Binary Image 93
Extracting an Object Contour 94
Transforming a Gray-Level image into its Black and White Edges 96
Detecting the Corners of an Object Using Harris Corner Detector 97
Detecting a Horizontal or Vertical Line Using Projection 97
Creating a Flexible Mask 98
Computing Gray-Level Statistics Using a Flexible Mask 100
Detecting the Corners of an Object Using Hit-and-Miss Transform 101
Extracting a Vector Using Profile Function 102
Enhancing an X-ray image 103
Correcting Non-Uniform Illumination 104
Correcting Shear Effect 105
Correcting Skew Effect 106

5.2. EasyColor 107
Performing Thresholding on Color Images 107
Performing Color Segmentation 109

6. Code Snippets 111
6.1. Basic Types 112

Loading and Saving Images 112
Interfacing Third-Party Images 112
Retrieving Pixel Values 112
ROI Placement 113
Vector Management 113
Exception Management 114

6.2. EasyImage 115
Thresholding 115
Single Thresholding 115
Double Thresholding 115
Histogram-Based Single Thresholding 116
Histogram-Based Double Thresholding 116
Arithmetic and Logic Operations 117
Convolution 117
Pre-Defined Kernel Filtering 117
User-Defined Kernel Filtering 118
Non-Linear Filtering 118
Morphological Filtering 118
Hit-and-Miss Transform 119
Vector Operations 119
Path Sampling 119

Open eVision User Guide

5

Profile Sampling 120
Statistics 120
Image Statistics 120
Sliding Windows Statistics 121
Histogram-Based Statistics 121
Noise Reduction by Integration 121
Feature Point Detectors 123
Using Flexible Masks 124

6.3. EasyColor 125
Colorimetric Systems Conversion 125
Color Components 125
White Balance 126
Pseudo-Coloring 126
Bayer Pattern Decoding 126

Open eVision User Guide

6

1. Dealing with Pixel Containers
and Files

1.1. Pixel Container Definition
Images

Open eVision image objects contain image data that represents rectangular images.

Each image object has a data buffer, accessible via a pointer, where pixel values are stored
contiguously, row by row.

Image main parameters

An Open eVision image object has a rectangular array of pixels characterized by EBaseROI
parameters .
n Width is the number of columns (pixels) per row of the image.
n Height is the number of rows of the image. (Maximum width / height is 32,767 (215-1) in

Open eVision 32-bit, and 2,147,483,647 (231-1) in Open eVision 64-bit.)
n Size is the width and height.

The Plane parameter contains the number of color components. Gray-level images = 1. Color
images = 3.

Classes

Image and ROI classes derive from abstract class EBaseROI and inherit all its properties.

Open eVision User Guide

7

Depth maps

A depth map is way to represent a 3D object using a 2D grayscale image, each pixel in the
image representing a 3D point.

The pixel coordinates are the representation of the X and Y coordinates of the point while the
grayscale value of the pixel is a representation of the Z coordinate of the point.

Point clouds

A point cloud (https://en.wikipedia.org/wiki/Point_cloud) is an unstructured set of 3D points
representing discrete positions on the surface of an object.

Open eVision User Guide

8

3D point clouds are produced by various 3D scanning techniques, such as Laser Triangulation,
Time of Flight or Structured Lighting.

1.2. Pixel Container Types
Images

Several image types are supported according to their pixel types: black and white, gray levels,
color, etc.

Easy.GetBestMatchingImageType returns the best matching image type for a given file on disk.

BW1
1-bit black and white images (8 pixels
are stored in 1 byte)

EImageBW1

BW8
8-bit grayscale images (each pixel is
stored in 1 byte)

EImageBW8

BW16
16-bit grayscale images (each pixel is
stored in 2 bytes)

EImageBW16

BW32
32-bit grayscale images (each pixel is
stored in 4 bytes)

EImageBW32

C15

15-bit color images (each pixel is
stored in 2 bytes).
Compatible with Microsoft® Windows
RGB15 color images and MultiCam
RGB15 format.

EImageC15

Open eVision User Guide

9

C16

16-bit color images (each pixel is
stored in 2 bytes).
Compatible with Microsoft® Windows
RGB16 color images and MultiCam
RGB16 format.

EImageC16

C24

C24 images store 24-bit color images
(each pixel is stored in 3 bytes).
Compatible with Microsoft® Windows
RGB24 color images and MultiCam
RGB24 format.

EImageC24

C24A

C24A images store 32-bit color images
(each pixel is stored in 4 bytes).
Compatible with Microsoft® Windows
RGB32 color images and MultiCam
RGB32 format.

EImageC24A

Depth Maps

8 and 16-bit depth map values are stored in buffers compatible with the 2D Open eVision
images.

EDepth8
8-bit depth map (each pixel is stored in
1 byte as an integer)

EDepthMap8

EDepth16
16-bit depth map (each pixel is stored
in 2 bytes as a fixed point)

EDepthMap16

EDepth32f
32-bit depth map (each pixel is stored
in 4 bytes as a float)

EDepthMap32f

Point Clouds

Point Cloud
Set of points coordinates (stored as
float)

E3DPointCloud

1.3. Supported Image File Types

Type Description

BMP Uncompressed image data format (Windows Bitmap Format)

JPEG
Lossy data compression standard issued by the Joint Photographic Expert Group
registered as ISO/IEC 10918-1. Compression irretrievably looses quality.

JFIF JPEG File Interchange Format

Open eVision User Guide

10

Type Description

JPEG-
2000

Data compression standard issued by the Joint Photographic Expert Group
registered as ISO/IEC 15444-1 and ISO/IEC 15444-2. Open eVision supports only
lossy compression format, file format and code stream variants.

- code stream describes the image samples.
- file format includes meta-information such as image resolution and color
space.

PNG Lossless data compression method (Portable Network Graphics).

Serialized
Euresys proprietary image file format obtained from the serialization of Open
eVision image objects.

TIFF

Tag Image File Format is currently controlled by Adobe Systems and uses the
LibTIFF third-party library to process images written for 5.0 or 6.0 TIFF
specification.

File save operations are lossless and use CCITT 1D compression for 1-bit binary
pixel types and LZW compression for all others.

File load operations support all TIFF variants listed in the LibTIFF specification.

1.4. Pixel and File Types Compatibility
Depth map to image conversion

For a 8- and 16-bit depth maps, the AsImage() method returns a compatible image object
(respectively EImageBW8 and EImageBW16) that can be used with Open eVision’s 2D processing
features.

Pixel and file types compatibility

Pixel access

The recommended method to access pixels is to use SetImagePtr and GetImagePtr to embed
the image buffer access in your own code. See also Image Construction and Memory Allocation
and Retrieving Pixel Values.

Use of the following methods should be limited because of the overhead incurred by each
function call:

Direct access

EROIBW8::GetPixel and SetPixel methods are implemented in all image and ROI classes to
read and write a pixel value at given coordinates. To scan all pixels of an image, you could run
a double loop on the X and Y coordinates and use GetPixel or SetPixel each iteration, but
this is not recommended.

Open eVision User Guide

11

For performance reasons, these accessors should not be used when a significant number of pixel
needs to be processed. When that is the case, retrieving the internal buffer pointer using
GetBufferPtr() and iterating on the pointer is recommended.

Quick Access to BW8 Pixels

In BW8 images, a call to EBW8PixelAccessor::GetPixel or SetPixel will be faster than a
direct EROIBW8::GetPixel or SetPixel.

Supported structures

n EBW1, EBW8, EBW32
n EC15 (*), EC16 (*), EC24 (*)
n EC24A

n EDepth8, EDepth16, EDepth32f,

(*) These formats support RGB15 (5-5-5 bit packing), RGB16 (5-6-5 bit packing) and RGB32 (RGB +
alpha channel) but they must be converted to/from EC24 using EasyImage::Convert before
any processing.

Note: Transition with versions prior to eVision 6.5 should be seamless: image pixel types were
defined using typedef of integral types, pixel values were treated as unsigned numbers and
implicit conversion to/from previous types is provided.

Pixel and File Type compatibility during Load or Save operations

Type BMP JPEG JPEG2000 PNG TIFF Serialized

BW1 Ok N/A N/A Ok Ok Ok

BW8 Ok Ok Ok Ok Ok Ok

BW16 N/A N/A Ok Ok Ok (***) Ok

BW32 N/A N/A N/A N/A Ok (***) Ok

C15 Ok Ok (**) Ok (**) Ok (**) Ok (**) Ok

C16 Ok Ok (**) Ok (**) Ok (**) Ok (**) Ok

C24 Ok Ok Ok Ok Ok (**) Ok

C24A Ok N/A N/A Ok N/A Ok

Depth8 Ok Ok Ok Ok Ok Ok

Depth16 N/A N/A Ok Ok Ok (***) Ok

Depth32f N/A N/A N/A N/A N/A Ok

N/A: Not supported. An exception occurs if you use the combination.

Ok: Image integrity is preserved with no data loss (apart from JPEG and JPEG2000, lossy
compression).

(**) C15 and C16 formats are automatically converted into C24 during the save operation.

(***) BW16 and BW32 are not supported by Baseline TIFF readers.

Open eVision User Guide

12

1.5. Color Types
EISH: Intensity, Saturation, Hue color system.

ELAB: CIE Lightness, a*, b* color system.

ELCH: Lightness, Chroma, Hue color system.

ELSH: Lightness, Saturation, Hue color system.

ELUV: CIE Lightness, u*, v* color system.

ERGB: NTSC/PAL/SMPTE Red, Green, Blue color system.

EVSH: Value, Saturation, Hue color system.

EXYZ: CIE XYZ color system.

EYIQ: CCIR Luma, Inphase, Quadrature color system.

EYSH: CCIR Luma, Saturation, Hue color system.

EYUV: CCIR Luma, U Chroma, V Chroma color system.

Open eVision User Guide

13

2. Manipulating Pixels Containers
and Files

2.1. Pixel Container File Save
Images and Depth Maps

The Save method of an image or the SaveImage method of a depth map or a ZMap saves the
image data of an image or of a depth map or a ZMap object into a file using two arguments:
n Path: path, filename, and file name extension.
n Image File Type. If omitted, the file name extension is used.

Images bigger than 65,536 (either width or height) must be saved in Open eVision proprietary
format.

Save throws an exception when:
n The requested image file format is incompatible with the image pixel types
n The Auto file type selection method and the file name extension is not supported

When saving a 16-bit depth map, the fixed point precision is lost and the pixels are considered as 16-
bit integers.

image file type arguments

Argument Image File Type

EImageFileType_Auto(*) Automatically determined by the filename extension. See below.

EImageFileType_Euresys Open eVision Serialization.

EImageFileType_Bmp Windows bitmap - BMP

EImageFileType_Jpeg JPEG File Interchange Format - JFIF

EImageFileType_Jpeg2000 JPEG 2000 File format/Code Stream -JPEG2000

EImageFileType_Png Portable Network Graphics - PNG

EImageFileType_Tiff Tagged Image File Format - TIFF

(*) Default value.

Open eVision User Guide

14

Assigned image file type if argument is ImageFileType_Auto or missing

File name extension(*) Automatically assigned image file type

BMP Windows Bitmap Format

JPEG, JPG JPEG File Interchange Format - JFIF

JP2 JPEG 2000 file format

J2K, J2C JPEG 2000 Code Stream

PNG Portable Network Graphics

TIFF, TIF Tagged Image File Format

(*) Case-insensitive.

Saving JPEG and JPEG2000 lossy compressions

SaveJpeg and SaveJpeg2K specify the compression quality when saving compressed images.
They have two arguments:
n Path: a string of characters including the path, filename, and file name extension.
n Compression quality of the image file, an integer value in range [0: 100].

SaveJpeg saves image data using JPEG File Interchange Format – JFIF.
SaveJpeg2K saves image data using JPEG 2000 File format.

JPEG compression values

JPEG compression Description

JPEG_DEFAULT_QUALITY (-1) Default quality (*)

100 Superb image quality, lowest compression factor

75 Good image quality (*)

50 Normal image quality

25 Average image quality

10 Bad Image quality

(*) The default quality corresponds to the good image quality (75).

Representative JPEG 2000 compression quality values

JPEG 2000 compression Description

-1 Default quality (*)

1 Highest image quality, lowest compression factor

Open eVision User Guide

15

JPEG 2000 compression Description

16 Good Image Quality (*) (16:1 rate)

512 Lowest image quality, highest compression factor

(*) The default quality corresponds to the good image quality (16:1 rate).

Point Clouds

● Use the Save method to save the point cloud in Open eVision proprietary file format.

● Use the SavePCD method to save the point cloud in a file compatible with other software
such as PCL (Point Cloud Library).

2.2. Pixel Container File Load
Images and Depth Maps

● Use the Load method to load image data into an image object:

□ It has one argument: the path: path, filename, and file name extension.

□ File type is determined by the file format.

□ The destination image is automatically resized according to the size of the image on disk.

● The Load method throws an exception when:

□ File type identification fails

□ File type is incompatible with pixel type of the image object

Serialized image files of Open eVision 1.1 and newer are incompatible with serialized image files of
previous Open eVision versions.

When loading a BW16 image (with integer values) in a depth map, the fixed point precision set in the
depth map (0 by default) is left unchanged and used.

Point Clouds

● Use the Load method to save the point cloud in Open eVision proprietary file format.

● Use the LoadPCD method to save the point cloud in a file compatible with other software
such as PCL (Point Cloud Library).

2.3. Memory Allocation
An image can be constructed with an internal or external memory allocation.

Open eVision User Guide

16

Internal Memory Allocation

The image object dynamically allocates and unallocates a buffer. Memory management is
transparent.
When the image size changes, re-allocation occurs.
When an image object is destroyed, the buffer is unallocated.
To declare an image with internal memory allocation:
1. Construct an image object, for instance EImageBW8, either with width and height arguments,

OR using the SetSize function.
2. Access a given pixel. There are several functions that do this. GetImagePtr returns a pointer

to the first byte of the pixel at given coordinates.

External Memory Allocation

The user controls buffer allocation, or links a third-party image in the memory buffer to an Open
eVision image.
Image size and buffer address must be specified.
When an image object is destroyed, the buffer is unaffected.
To declare an image with external memory allocation:
1. Declare an image object, for instance EImageBW8.
2. Create a suitably sized and aligned buffer (see Image Buffer).
3. Set the image size with the SetSize function.
4. Access the buffer with GetImagePtr. See also Retrieving Pixel Values.

2.4. Image and Depth Map Buffer
Image and depth map pixels are stored contiguously, from top row to bottom, from left to right,
in Windows bitmap format (top-down DIB1) into an associated buffer.

The buffer address is a pointer to the start address of the buffer, which contains the top left
pixel of the image.

1device-independent bitmap

Open eVision User Guide

17

Image Buffer pitch

● Alignment must be a multiple of 4 bytes.

● Open eVision 1.2 onwards default pitch is 32 bytes for performance reasons (Open eVision
1.1.5 was 8 bytes).

Memory Layout

● EImageBW1 stores 8 pixels in one byte.

Example memory layout of the first 2 pixels of a BW1 image buffer:

● EImageBW8 and EDepthMap8 store each pixel in one byte.

Example memory layout of the first pixels of a BW8 image buffer:

● EImageBW16 stores each pixel in a 16-bit word (two bytes).

Open eVision User Guide

18

Example memory layout of the first pixels of a BW16 image buffer:

● EImageC15 stores each pixel in 2 bytes. Each color component is coded with 5-bits.
The 16th bit is left unused.

Example memory layout of the first pixels of a C15 image buffer:

● EImageC16 stores each pixel in 2 bytes. The first and third color components are coded with
5-bits.
The second color component is coded with 6-bits.

Example memory layout of the first pixels of a C16 image buffer:

● EDepthMap16 store each pixel in 2 bytes using a fixed point format.

● EImageC24 stores each pixel in 3 bytes. Each color component is coded with 8-bits.

Open eVision User Guide

19

Example memory layout of the first pixels of a C24 image buffer:

● EImageC24A stores each pixel in 4 bytes. Each color component is coded with 8-bits.
The alpha channel is also coded with 8-bits.

Example memory layout of the first pixels of a C24A image buffer:

● EDepthMap32f store each pixel in 4 bytes using a float format.

2.5. Image Drawing and Overlay
n Drawing uses Windows GDI1 system calls.

MFC2 applications normally use OnDraw event handler to draw, where a pointer to a device
context is available.
Borland/CodeGear's OWL or VCL use a Paint event handler.

n The color palette in 256-color display mode gives optimal rendering. Gray-level images can
be improved using LUT3s (using histogram stretching techniques or pseudo-coloring).

n The zoom can be different horizontally and vertically.
n DrawFrameWithCurrentPen method draws a frame.
n Non-destructive overlaying drawing operations do not alter the image contents, such as

MoveTo/LineTo.

1Graphics Device Interface
2Microsoft Foundation Class
3LookUp Tables

Open eVision User Guide

20

n Destructive overlaying drawing operations alter the image contents by drawing inside the
image such as Easy::OpenImageGraphicContext. Gray-level [color] images can only
receive a gray-level [color] overlay.

2.6. 3D Rendering of 2D Images
These images are viewed by rotating them around the X-axis, then the Y-axis.

Gray 3D Rendering

Easy::Render3D prepares a 3-dimensional rendering where gray-level values are altitudes.
Magnification factors in the three directions (X = width, Y = height and Z = depth) can be given.
The rendered image appears as independent dots whose size can be adjusted to make the
surface more or less opaque.

3D rendering

Color Histogram 3D Rendering

Easy::RenderColorHistogram prepares a 3-dimensional rendering of a color image
histogram.
The pixels are drawn in the RGB space (not XY-plane) to show clustering and dispersion of RGB
values.
This function can process pixels in other color systems (using EasyColor to convert), but the raw
RGB image is required to display the pixels in their usual colors.

Magnification factors in all three directions (X = red, Y = green and Z = blue) can be given.

Color histogram rendering

Open eVision User Guide

21

2.7. Vector Types and Main Properties
A vector is a one-dimensional array of pixels (taken from an image profile or contour).

EVector is the base class for all vectors. It contains all non-type-specific methods, mainly for
counting elements and serialization.

Profile in a C24 image RGB values plot along profile
RGB values array
(EC24Vector)

A vector manages an array of elements. Memory allocation is transparent, so vectors can be
resized dynamically. Whenever a function uses a vector, the vector type, size and structure are
automatically adjusted to suit the function needs.

The use of vectors is quite straightforward:
1. Create a vector of the appropriate type, using its constructor and pre-allocate elements if

required.

Vector types

n EBW8Vector: a sequence of gray-level pixel values, often extracted from an image profile
(used by EasyImage::Lut, EasyImage::SetupEqualize,
EasyImage::ImageToLineSegment, EasyImage::LineSegmentToImage,
EasyImage::ProfileDerivative, ...).

Graphical representation of an EBW8Vector (see Draw method)

n EBW16Vector: a sequence of gray-level pixel values, using an extended range (16 bits),
mainly for intermediate computations.

Open eVision User Guide

22

Graphical representation of an EBW16Vector

n EBW32Vector: a sequence of gray-level pixel values, using an extended range (32 bits),
mainly for intermediate computations
(used in EasyImage::ProjectOnARow, EasyImage::ProjectOnAColumn, ...).

Graphical representation of an EBW32Vector

n EC24Vector: a sequence of color pixel values, often extracted from an image profile
(used by EasyImage::ImageToLineSegment, EasyImage::LineSegmentToImage,
EasyImage::ProfileDerivative, ...).

Graphical representation of an EC24Vector

n EBW8PathVector: a sequence of gray-level pixel values, extracted from an image profile
or contour, with corresponding pixel coordinates
(used by EasyImage::ImageToPath, EasyImage::PathToImage, ...).

Open eVision User Guide

23

Graphical representation of an EBW8PathVector (see Draw method)

n EBW16PathVector: a sequence of gray-level pixel values, extracted from an image profile
or contour, with corresponding pixel coordinates
(used by EasyImage::ImageToPath, EasyImage::PathToImage, ...).

Graphical representation of an EBW16PathVector (see Draw method)

n EC24PathVector: a sequence of color pixel values, extracted from an image profile or
contour, with corresponding pixel coordinates
(used by EasyImage::ImageToPath, EasyImage::PathToImage, ...).

Graphical representation of an EC24PathVector (see Draw method)

n EBWHistogramVector: a sequence of frequency counts of pixels in a BW8 or BW16 image
(used by EasyImage::IsodataThreshold, EasyImage::Histogram,
EasyImage::AnalyseHistogram, EasyImage::SetupEqualize, ...).

Open eVision User Guide

24

Graphical representation of an EBWHistogramVector (see Draw method)

n EPathVector: a sequence of pixel coordinates. The corresponding pixels need not be
contiguous
(used by EasyImage::PathToImage and EasyImage::Contour).

Graphical representation of an EPathVector (see Draw method)

n EPeakVector: peaks found in an image profile
(used by EasyImage::GetProfilePeaks).

n EColorVector: a description of colors
(used by EasyColor::ClassAverages and EasyColor::ClassVariances).

2. Fill a vector with values. First empty it, using the EVector::Empty member, then add
elements one at a time by calling the EC24Vector::AddElement member. You can access
any element by means of indexing.

3. Access a vector element, either for reading or writing. Use the brackets operator, for
instance, EC24Vector::operator[].

4. Determine the current number of elements, use member EVector::NumElements.
5. Draw the vector.

A pixel vector is a plot of the element values as a function of the element index, so its
graphical appearance depends on its type. You can draw a vector in a window. For legibility,
the drawing should appear on a neutral background.
Drawing is done in the device context associated to the desired window. By default, curves
are drawn in blue, annotations are drawn in black. The following parameters can be defined:
graphicContext, width, height, origin, origin, color0, color1, color2.
The EC24Vector has three curves drawn instead of one, each corresponding to a color
component. By default, red, blue and green pens are used.

Open eVision User Guide

25

2.8. ROI Main Properties
ROIs are defined by a width, a height, and origin x and y coordinates.
The origins are specified with respect to the top left corner in the parent image or ROI.
The ROI must be wholly contained in its parent image.
The processing/analysis time of a BW1 ROI is faster if OrgX and Width are multiples of 8.

Save and load

You can save or load an ROI as a separate image, to be used as if it was a full image. The ROIs
perform no memory allocation at all and never duplicate parts of their parent image, the
parent image provides them with access to its image data.

The image size of the new file must match the size of the ROI being loaded into it. The image
around the ROI remains unchanged.

ROI Classes

An Open eVision ROI inherits parameters from the abstract class EBaseROI.

There are several ROI types, according to their pixel type. They have the same characteristics as
the corresponding image types.
n EROIBW1

n EROIBW8

n EROIBW16

n EROIBW32

n EROIC15

n EROIC16

n EROIC24

n EROIC24A

Attachment

An ROI must be attached to a parent (image/ROI) with parameters that set the parent, position
and size, and these links are updated transparently, avoiding dangling pointers.
A normal image cannot be attached to another image or ROI.

Nesting

Set and Get functions change or query the width, height and position of the origin of an ROI,
with respect to its immediate or topmost parent image.

An image may accommodate an arbitrary number of ROIs, which can be nested in a
hierarchical way. Moving the ROI also moves the embedded ROIs accordingly. The image/ROI
classes provide several methods to traverse the hierarchy of ROIs associated with an image.

Open eVision User Guide

26

Nested ROIs: Two sub-ROIs attached to an ROI, itself attached to the parent image

Cropping

CropToImage crops an ROI which is partially out of its image. The resized ROI never grows.
An exception is thrown if a function attempts to use an ROI that has limits that extend outside
of the parents.

Note: (In Open eVision 1.0.1 and earlier, an ROI was silently resized or repositioned when placed
out of its image and sometimes grew. If ROI limits extended outside parents, they were silently
resized to remain within parent limits.)

Resizing and moving

n ROIs can easily be resized and positioned by two functions and dragging handles:
n EBaseROI::Drag adjusts the ROI coordinates while the cursor moves.
n EBaseROI::HitTest informs if the cursor is placed over a dragging handle. Once the

handle is known, the cursor shape can be changed by an OnSetCursor MFC event
handler. HitTest is unpredictable if called while dragging is in progress.
HitTest can be used in an OnSetCursor MFC event handler to change the cursor shape, or
before a dragging operation like OnLButtonDown,
(or EvSetCursor and EvLButtonDown in Borland/CodeGear's OWL)
(or FormMouseMove and FormMouseDown in Borland/CodeGear's VCL).
In VB6, MouseDown, MouseMove,MouseUp events return the current cursor position in
twips rather than pixels, so conversion is mandatory.

2.9. Flexible Masks
ROIs vs flexible masks

ROIs and masks restrict processing to part of an image:
n "ROI Main Properties" on the previous page apply to all Open eVision functions. Using

Regions of Interest accelerates processing by reducing the number of pixels. Open eVision
supports hierarchically nested rectangular ROIs.

n Flexible Masks are recommended to process disconnected ROIs or non-rectangular shapes.
They are supported by some EasyObject and EasyImage library functions.

Open eVision User Guide

27

Flexible Masks

A flexible mask is a BW8 image with the same height and width as the source image. It contains
shapes of areas that must be processed and ignored areas (that will not be considered during
processing):
n All pixels of the flexible mask having a value of 0 define the ignored areas.
n All pixels of the flexible mask having any other value than 0 define the areas to be processed.

Source image Associated mask Processed masked image

A flexible mask can be generated by any application that outputs BW8 images and by some
EasyObject and EasyImage functions.

Flexible Masks in EasyImage

Source image (left) and mask variable (right)

Simple steps to use flexible masks in Easyimage

1. Call the functions from EasyImage that take an input mask as an argument. For instance,
one can evaluate the average value of the pixels in the white layer and after in the black
layer.

2. Display the results.

Resulting image

EasyImage Functions that support flexible masks

n EImageEncoder::Encode has a flexible mask argument for BW1, BW8, BW16, and C24
source images.

Open eVision User Guide

28

n AutoThreshold.
n Histogram (function HistogramThreshold has no overload with mask argument).
n RmsNoise, SignalNoiseRatio.
n Overlay (no overload with mask argument for BW8 source images).
n ProjectOnAColumn, ProjectOnARow (Vector projection).
n ImageToLineSegment, ImageToPath (Vector profile).

Flexible Masks in EasyObject

A flexible mask can be generated by any application that outputs BW8 images or uses the Open
eVision image processing functions.
EasyObject can use flexible masks to restrict blob analysis to complex or disconnected shaped
regions of the image.

If an object of interest has the same gray level as other regions of the image, you can define
"keep" and "ignore" areas using flexible masks and Encode functions.

A flexible mask is a BW8 image with the same height and width as the source image.
n A pixel value of 0 in the flexible mask masks the corresponding source image pixel so it

doesn't appear in the encoded image.
n Any other pixel value in the flexible mask causes the pixel to be encoded.

EasyObject functions that create flexible masks

Source image

1) ECodedImage2::RenderMask: from a layer of an encoded image

1. To encode and extract a flexible mask, first construct a coded image from the source image.
2. Choose a segmentation method (for the image above the default method

GrayscaleSingleThreshold is suitable).
3. Select the layer(s) of the coded image that should be encoded (i.e. white and black layers

using minimum residue thresholding).
4. Make the mask image the desired size using mask.SetSize(sourceImage.GetWidth(),

sourceImage.GetHeight()).
5. Exploit the flexible mask as an argument to ECodedImage2::RenderMask.

Open eVision User Guide

29

BW8 resulting image that can be used as a flexible mask

2) ECodedElement::RenderMask: from a blob or hole

1. Select the coded elements of interest.
2. Create a loop extracting a mask from selected coded elements of the coded image using

ECodedElement::RenderMask.
3. Optionally, compute the feature value over each of these selected coded elements.

BW8 resulting image that can be used as a flexible mask

3) EObjectSelection::RenderMask: from a selection of blobs

EObjectSelection::RenderMask can, for example, discard small objects resulting from
noise.

BW8 resulting image that can be used as a flexible mask

Open eVision User Guide

30

Example: Restrict the areas encoded by EasyObject

Find four circles (left) Flexible mask can isolate the central chip (right)

1. Declare a new ECodedImage2 object.
2. Setup variables: first declare source image and flexible mask, then load them.
3. Declare an EImageEncoder object and, if applicable, select the appropriate segmenter.

Setup the segmenter and choose the appropriate layer(s) to encode.
4. Encode the source image. Encoding a layer with just the area in the flexible mask is then

pretty straightforward.
We see that the circles are correctly segmented in the black layer with the grayscale single
threshold segmenter:

5. Select all objects of the coded image.
6. Select objects of interest by filtering out objects that are too small.
7. Display the blob feature by iterating over the selected objects to display the chosen feature.

2.10. Profile
Profile Sampling

A profile is a series of pixel values sampled along a line/path/contour in an image.
n EasyImage::ImageToLineSegment copies the pixel values along a given line segment

(arbitrarily oriented and wholly contained within the image) to a vector. The vector length is
adjusted automatically. This function supports flexible mask.

n A path is a series of pixel coordinates stored in a vector.
EasyImage::ImageToPath copies the corresponding pixel values to the vector. This
function supports flexible mask.

Open eVision User Guide

31

n A contour is a closed or not (connected) path, forming the boundary of an object.
EasyImage::Contour follows the contour of an object, and stores its constituent pixels
values inside a profile vector.

Profile Analysis

The profile can be processed to find peaks or transitions:
n A transition corresponds to an object edge (black to white or white to black). It can be

detected by taking the first derivative of the signal (which transforms transitions (edges) into
peaks) and looking for peaks in it.
EasyImage::ProfileDerivative computes the first derivative of a profile extracted from a
gray-level image.
The EBW8 data type only handles unsigned values, so the derivative is shifted up by 128.
Values under [above] 128 correspond to negative [positive] derivative (decreasing [increasing]
slope).

n A peak is the portion of the signal that is above [or below] a given threshold - the maximum
or minimum of the signal. This may correspond to the crossing of a white or black line or
thin feature. It is defined by its:
n Amplitude: difference between the threshold value and the max [or min] signal value.
n Area: surface between the signal curve and the horizontal line at the given threshold.

EasyImage::GetProfilePeaks detects max and min peaks in a gray-level profile. To
eliminate false peaks due to noise, two selection criteria are used. The result is stored in a
peaks vector.

Profile Insertion Into an Image

EasyImage::LineSegmentToImage copies the pixel values from a vector or constant to the
pixels of a given line segment (arbitrarily oriented and wholly contained within the image).

EasyImage::PathToImage copies the pixel values from a vector or a constant to the pixels of
a given path.

Open eVision User Guide

32

3. Image Pre-Processing Libraries

Open eVision User Guide

33

3.1. EasyImage - Pre-Processing
Grayscale Image
EasyImage operations prepare images so that further processing gets better results by:
n isolating defects using thresholding or intensity transformations
n compensating perspective effects (for non-flat surfaces such as a bottle label)
n processing complex or disconnected shapes using flexible masks

The main functions are:
n Intensity Transformations change the gray-level of each pixel to clarify objects (histogram

stretching).
n Thresholding transforms a binary image into a bi- or tri-level grayscale image by classifying

the pixel values.
n Arithmetic and logic functions manipulate pixels in two images, or one image and a

constant.
n Non-Linear Filtering functions use non-linear combinations of neighboring pixels (using a

kernel) to highlight a shape, or to remove noise.
n Geometric transforms move selected pixels to realign, resize, rotate and warp.
n Noise Reduction and Estimation functions ensure that noise is not unacceptably enhanced

by other operations (thresholding, high-pass filtering).
n Gradient Scalar generates a gradient direction or gradient magnitude map from a gray-level

image.
n Vector operations extract 1-dimensional data from an image into a vector, for example to

detect scratches or outlines, or to clarify images.
n Harris corner detector returns a vector of points of interest in a BW8 image.
n Canny edge detector returns a BW8 image of the edges found in a BW8 image.
n Overlay overlays an image on top of a color image.
n Operations on Interlaced Video Frames eliminate interlaced image artifacts by rebuilding or

re-aligning fields.
n Flexible Masks help process irregular shapes in EasyImage.

Intensity Transformation
These EasyImage functions change the gray-levels of pixels to increase contrast.

Gain offset

Gain Offset changes each pixel to [old gray value * Gain coefficient + Offset].

Open eVision User Guide

34

n gain adjusts contrast. It should remain close to 1.
n offset adjusts intensity (brightness). It can be positive or negative.
n The resulting values are always saturated to range [0..255].

In this example, the resulting image has better contrast and is brighter than the source image.

Source and result images (with gain = 1.2 and offset = +12)

Color images have three separate gain and offset values, one per color component (red, green,
blue).

Example of gain/offset applied on a color image

Normalization

Normalize makes images of the same scene comparable, even with different lighting.

It compares the average gray level (brightness) and standard deviation (contrast) of the source
image and a reference image. Then, it normalizes the source image with gain and offset
coefficients such that the output image has the same brightness and contrast as the reference
image. This operation assumes that the camera response is reasonably linear and the image
does not saturate.

Open eVision User Guide

35

The reference image (from which the average and standard deviation are computed),
the source image (too bright),

and the normalized image (contrast and brightness are the same as the reference image)

Uniformization

Uniformize compensates for non-uniform illumination and/or camera sensitivity based on one
or two reference images. The reference image should not contain saturated pixel values and
have minimum noise.
n When one reference image is used, the transformation is similar to an adaptive (space-

variant) gain; each pixel in the reference image encodes the gain for the corresponding pixel
in the source image.

n When two reference images are used, the transformation is similar to an adaptive gain and
offset; each pixel in the reference images encodes either the gain or the offset for the
corresponding pixel in the source image.

Example of an image uniformized with two reference images

Open eVision User Guide

36

Lookup tables

Lut uses a lookup table of new pixel values to replace the current ones - efficient for BW8 and
BW16 images. If the transform function never changes, it is best to use a lookup table.

Example of a transform

Thresholding

Thresholding transforms an image by classifying the pixel values using these methods:
n "Automatic thresholding" on the next page (BW8 and BW16 images only)
n "AutoThreshold" on page 38 (BW8 and BW16 images only)
n "Manual thresholding" on the next page using one or two threshold values
n "Histogram based" on the next page (computed before using the thresholding function)

These functions also return the average gray levels of each pixel below and above the threshold.

Keys to successful thresholding

n Object and background areas should be of uniform color and illumination. Image
uniformization may be required prior to thresholding.

n The gray level range of the object and background must be sufficiently different (all
background pixels should be darker than the darkest object pixel).

Open eVision User Guide

37

n You must decide if the threshold value should be:
o constant: absolute threshold
o adapted to ambient light intensity: relative or automatic threshold

Automatic thresholding

The threshold is calculated automatically if you use one of these arguments with the
EasyImage::Threshold function.

Min Residue: Minimizes the quadratic difference between the source and resulting image
(default if Threshold function is invoked without a argument).

Max Entropy: Maximizes the entropy (i.e. the amount of information) between object and
background of the resulting image.

Isodata: Calculates a threshold value that is an average of the gray levels: halfway between the
average gray level of pixels below the threshold, and the average gray level of pixels above the
threshold.

Manual thresholding

Manual thresholds require that the user supplies one or two threshold values:
n one value to the Threshold function to classify source image pixels (BW8/BW16/C24) into

two classes and create a bi-level image. This can be:
o relativeThreshold is the percentage of pixels below the threshold. The Threshold

function then computes the appropriate threshold value, or
o absoluteThreshold. This value must be within the range of pixel values in the source

image.
n two values to the DoubleThreshold function to classify source image pixels (BW8/BW16)

into three classes and create a tri-level image.
o LowThreshold is the lower limit of the threshold
o HighThreshold is the upper limit of the threshold

Histogram based

When a histogram of the source image is available, you can speed up the automatic
thresholding operation by computing the threshold value from the histogram (using
HistogramThreshold or HistogramThresholdBW16) and using that value in a manual
thresholding operation.

Open eVision User Guide

38

These functions also return the average gray levels of each pixel below and above the threshold.

AutoThreshold

When no source image histogram is available, AutoThreshold can still calculate a threshold
value using these threshold modes: EThresholdMode_Relative, _MinResidue, _MaxEntropy and _
Isodata.

This function supports flexible masks.

Arithmetic and Logic
Reasons you may use arithmetic and logic are:
n to emphasize differences between images by subtracting the pixels (a conformity check).
n to compensate for non-uniform lighting by dividing the target image by the image of the

background alone.
n to remove unwanted areas of an image by preparing an appropriate mask, and clearing all

the pixels that belong to the mask by using logical combinations of pixels.
n to create a combined image by combining the pixels of two source images to generate a

resulting image.

Arithmetic operations are handled by the Oper function, EArithmeticLogicOperation enum
lists all supported operators.

These operations can be applied to images and constants, they have one or two source
arguments (image or integer constants) and one destination argument. If the source operands
are a color and a gray-level image, each color component combines with the gray-level
component to give a color image. Histogram equalization can improve your results.

arithmetic and logic combinations

Allowed combinations

General Copy Invert Shift Logical Overlay Set

Const BW8 -> Image BW8 x

Const C24 -> Image C24 x

Image BW8 -> Image BW8 x x

Image BW8 -> Image C24 x x x

Image C24 -> Image C24 x x

Const BW8, Image BW8 -> Image
BW8

x

Image BW8, Const BW8 -> Image
BW8

x x x

Image BW8, Image BW8 ->
Image BW8

x x x

Open eVision User Guide

39

General Copy Invert Shift Logical Overlay Set

Image BW8, Image BW8 ->
Image C24

x x

Const C24, Image C24 -> Image
C24

x

Image C24, Const C24 -> Image
C24

x x

Image C24, Image C24 -> Image
C24

x x

Image C24, Image BW8 -> Image
C24

x x x

Image BW8, Image C24 -> Image
C24

x x x

Note: Note: For logical operators, a pixel with value 0 is assumed FALSE, otherwise TRUE. The
result of a logical operation is 0 when FALSE and 255 otherwise.

The classification of operations in the above table are:

General

n Compare (abs. value of the difference)
n Saturated sum
n Saturated difference
n Saturated product
n Saturated quotient
n Modulo
n Overflow-free sum
n Overflow-free difference
n Overflow-free product
n Overflow-free quotient
n Bitwise AND
n Bitwise OR
n Bitwise XOR
n Minimum
n Maximum
n Equal
n Not equal
n Greater or equal
n Lesser or equal
n Greater
n Lesser

Open eVision User Guide

40

Copy

n Sheer Copy

Invert

n Invert (negative)

Shift

n Left Shift
n Right Shift

Logical

n Logical AND
n Logical OR
n Logical XOR

Overlay

n Add an overlay

Set

Operators Copy if mask = 0 and Copy if mask <> 0 are very handy to perform masking: the first
image argument serves as a mask that allows or disallows changing the pixel values in the
destination image.
n Copy if mask = 0
n Copy if mask <> 0

Non-Linear Filtering
These functions use non-linear combinations of neighboring pixels to highlight a shape, or to
remove noise.

Most can be destructive (except top-hat and median filters) i.e. the source image is overwritten
by the destination image. Destructive operations are faster.

All have a gray image and a bilevel equivalent, for example ErodeBox and BiLevelErodeBox.
1. They define the required shape by a "Kernel" on the next page (usually in a 3x3 matrix).
2. They slide this Kernel over the image to determine the value of the destination pixel when

a match is found:
n Erosion, Dilation: shrinks / grows image regions.
n Opening, Closing: removes / fills image region boundary pixels.
n Thinning, Thickening: erodes / dilates using image pattern matching.
n Top-Hat filters: retains all the tiny image details while removing everything else.

Open eVision User Guide

41

n Morphological distance: indicates how many erosions are required to make a pixel
black.

n Morphological gradient: indicates the outer and inner edges of the erosion and dilation
processes.

n Median filter: removes impulsive noise.
n Hit-and-Miss transform: detects patterns of foreground /background pixels, can create

skeletons.

Kernel

Rectangular kernel of half width = 3 and half height = 2 (left) Circular kernel of half width =
2 (right)

The morphological operators combine the pixel values in a neighborhood of given shape
(square, rectangular or circular) and replace the central pixel of the neighborhood by the
result.The combining function is non-linear, and in most cases is a rank filter: which considers
the N values in the given neighborhood, sorts them increasingly and selects the K-th largest.
Three special cases are most often used erosion, dilation andmedian filter where : K can be 1
(minimum of the set), N (maximum) or N/2 (median).

Erosion, Dilation, Opening, Closing, Top-Hat and Morphological Gradient operations all use
rectangular or circular kernels of odd size. Kernel size has an important impact on the result.

examples

HalfWidth/HalfHeight Actual width/height

0 1

1 3

2 5

3 7

Erosion, Dilation

Erosion reduces white objects and enlarges black objects, Dilation does the opposite.

Open eVision User Guide

42

Erosion Dilation

Erosion thins white objects by removing a layer of pixels along the objects edges: ErodeBox,
ErodeDisk. As the kernel size increases, white objects disappear and black ones get fatter.

Dilation thickens white objects by adding a layer of pixels along the objects edges: DilateBox,
DilateDisk. As the kernel size increases, white objects get fatter and black ones disappear.

Opening, Closing

Opening removes tiny white objects / dust. Closing removes tiny black holes / dust.

Opening Closing

An Opening is an erosion followed by a dilation using OpenBox, OpenDisk.
The global effect is to preserve the overall shape of objects, while removing white details that
are smaller than the kernel size.

A Closing is a dilation followed by an erosion using CloseBox, CloseDisk.
The global effect is to preserve the overall shape of objects, while removing the black details
that are smaller than the kernel size.

Thinning, Thickening

These functions use a 3x3 kernel to grow (Thick) or remove (Thin) pixels:
n Thinning: can help edge detectors by reducing lines to single pixel thickness.
n Thickening: can help determine approximate shape, or skeleton.

When a match is found between the kernel coefficients and the neighborhood of a pixel, the
pixel value is set to 255 if thickening, or 0 if thinning. The kernel coefficients are:
n 0: matching black pixel, value 0
n 1: matching non black pixel, value > 0
n -1: don't care

Top-Hat filters

Top-hat filters are excellent for improving non-uniform illumination.

Open eVision User Guide

43

White top-hat filter: source and destination images

They take the difference between an image and its opening (or closure). Thus, they keep the
features that an opening (or closing) would erase. The result is a perfectly flat background
where only black or white features smaller than the kernel size appear.
n White top-hat filter enhances thin white features: WhiteTopHatBox ,WhiteTopHatDisk.
n Black top-hat filter enhances thin black features:BlackTopHatBoxBlackTopHatDisk.

Morphological distance

Distance computes the morphological distance (number of erosion passes to set a pixel to
black) of a binary image (0 for black, non 0 for white) and creates a destination image, where
each pixel contains the morphological distance of the corresponding pixel in the source image.

Morphological gradient

The morphological gradient performs edge detection - it removes everything in the image but
the edges.

The morphological gradient is the difference between the dilation and the erosion of the image,
using the same structuring element.

MorphoGradientBox, MorphoGradientDisk.

Dilation – Erosion = Gradient

Median

The Median filter removes impulse noise, whilst preserving edges and image sharpness.
It replaces every pixel by the median (central value) of its neighbors in a 3x3 square kernel, thus,
outer pixels are discarded.

Open eVision User Guide

44

Median filter: source and destination images

Open eVision User Guide

45

Hit-and-Miss transform

Hit-and-miss transform operates on BW8, BW16 or C24 images or ROIs to detect a particular
pattern of foreground and background pixels in an image.

Hit-and-miss transform

The HitAndMiss function has three arguments:

n A pointer to the source image of type EROIBW8, EROIBW16, or EROIC24
n A pointer to the destination image of type corresponding to the type of the source image.

The sizes of the source and destination images must be identical.
n A kernel of type EHitAndMissKernel Two constructors are available for the kernel object:

o EHitAndMissKernel(int startX, int startY, int endX, int endY) where:
startX, startY are coordinates of the top left of the kernel, must be less than or equal to
zero.
endX, endY are coordinates of the bottom right of the kernel, must be greater than or
equal to zero.
The constructed kernel has no explicit restrictions on its size, and the following
characteristics:
kernel width = (endX – startX + 1), kernel height = (endY – startY + 1)

o EHitAndMissKernel(unsigned int halfSizeX, unsigned int halfSizeY) where:
halfSizeX is half of the kernel width – 1, must be greater than zero.
halfSizeY is half of the kernel height – 1, must be greater than zero.
The constructed kernel has the following characteristics:
kernel width = ((2 x halfSizeX) + 1), kernel height = ((2 x halfSizeY) +

1)

kernel StartX = - halfSizeX, kernel StartY = - halfSizeY

example: detecting corners in a binary image.

The hit-and-miss transform can be used to locate corners.

Open eVision User Guide

46

Binary source image

1. Define the kernel by detecting the left corner. The left corner pixel has black pixels on its
immediate left, top and bottom; and it has white pixels on its right. The following hit-and-miss
kernel will detect the left corner:

- +
- + +
- +

2. Apply the filter on the source image. Note that the resulting image should be properly sized.

Resulting image, highlighted pixel is located on left corner of rhombus

3. Locate the three remaining corners in the same way: Declare three kernels that are the
rotation of the filter above and apply them.

4. Detect the right, top and bottom corners.

Geometric Transforms
Geometric transformation moves selected pixels in an image, which is useful if a shape in an
image is too large / small / distorted, to make point-to-point comparisons possible.

The selected area may be any shape, but the resulting image is always rectangular. Pixels in the
destination image that have corresponding pixels that are outside of the selected area are
considered not relevant and are left black.

Open eVision User Guide

47

When the source coordinates for a destination pixel are not integer, an interpolation technique
is required.
The nearest neighborhood method is the quickest - it uses the closest source pixel.
The bi-linear interpolation method is more accurate but slower - it uses a weighted average of
the four neighboring source pixels.

Possible geometric transformations are:

ReAlignment

The simplest way to realign two misaligned images is to accurately locate features in both
images (landmarks or pivots, using pattern matching, point measurement or other) and realign
one of the images so that these features are superimposed.

You can register an image by realigning one, two or three pivot points to reference positions. For
best accuracy, the pivot points should be as far apart as possible.
n A single pivot point transform is a simple translation. If interpolation bits are used, sub-pixel

translation is achieved.
n Two pivot points use a combination of translation, rotation and optionally scaling. If scaling

is not allowed, the second pivot point may not be matched exactly. Scaling should not
normally be used unless it corresponds to a change of lens magnification or viewing
distance.

n Three pivot points use a combination of translation, rotation, shear correction and
optionally scaling. A shear effect can arise when acquiring images with a misaligned line-
scan camera.

Mirroring

This destructive feature modifies the source image to create a mirror image:
n horizontally (the columns are swapped) or
n vertically (the rows are swapped).

Translation, Scaling and Rotation

If the position or size of an object of interest changes, you can measure the change in position
or size and generate a corrected image using the ScaleRotate and Shrink functions.

EasyImage::ScaleRotate performs:
n Image translation: you provide the position coordinates of a pivot-point in the source image

and a corresponding pivot point in the destination image.
n Image scaling: you provide scaling factor values for X- and Y-axis.
n Image rotation: you provide a rotation angle value.

For resampling, the nearest neighbor rule or bilinear interpolation with 4 or 8 bits of accuracy is
used. The size of the destination image is arbitrary.

Open eVision User Guide

48

Scale and rotate example

Shrink

EasyImage::Shrink: resizes an image to be smaller, applying pre-filtering to avoid aliasing.

LUT-based unwarping

If the feature of interest is distorted due to its shape (anamorphosized), you can unwarp a
circular ring-wedge shape (such as text on CD labels)into a straight rectangle. A ring-wedge is
delimited by two concentric circles and two straight lines passing through the center.

EasyImage::SetCircleWarp prepares warp images for use with function EasyImage::Warp
which moves each pixel to locations specified in the "warp" images which are used as lookup
tables.

Noise Reduction and Estimation
Noise can degrade the visual quality of images, and certain processing operations (thresholding,
high-pass filtering) will enhance noise in a non-acceptable way. Acquired images are always
noisy (this is best observed on live images where the pixel values fluctuate around the true
intensity). When acquired with 8 bits of accuracy, the noise level typically amounts to about 3
to 5 gray-level values. One distinguishes several forms of noise:
n additive: noise amplitude is not related to image contents
n multiplicative: noise amplitude is proportional to local intensity
n uniform: noise amplitude follows a smooth distribution centered around zero
n impulse: noise amplitude is infinite.

Impulse noise produces a "salt and pepper" effect, while uniform noise blends.

Spatial noise reduction (if you only have 1 image):

Reduces uniform and impulse noise but blurs edges.
Cannot distinguish noise from actual signal changes, so always spoils part of the signal.
Uses the correlation between neighboring pixel values to perform convolution or median

Open eVision User Guide

49

filtering:
n Convolution replaces the value at each pixel by a combination of its neighbors, leading to a

localized averaging. Linear filtering is recommended to reduce uniform noise. Beware that it
tends to blur edges.

Uniform noise reduction by low-pass filtering

n Median filtering replaces each pixel by the median value in the pixel neighborhood (5-th
largest value in a 3x3 neighborhood). This reduces impulse noise and keeps sharpness.

Impulse noise reduction by median filtering

o EasyImage::Median

o EasyImage::BiLevelMedian

Temporal noise reduction (for several images, e.g. moving objects):

Temporal noise reduction is achieved by combining the successive values of individual pixels
across time. EasyImage implements recursive averaging and moving averaging.

EasyImage provides three ways to minimize noise by means of several images:
n Temporal average: just accumulates N images and average them; using standard arithmetic

operations, as illustrated below. Creates de-noised image after N acquisitions using average
values. Noise varies from frame to frame while the signal remains unchanged, so if several
images of the same (still) scene are available, noise can be separated from the signal.
The disadvantage of producing one de-noised image after N acquisitions only, is that fast
display refresh is not possible.

Simple average

Open eVision User Guide

50

n Temporal moving average: accumulates the last N images and updates the de-noised image
each time a new one is acquired, in such a way that the computation time does not depend
on N. The whole process is handled by EMovingAverage. The disadvantage of this method is
that it combines noisy images together.

Moving average

n Temporal recursive average: combines a noisy image with the previously de-noised image
using EasyImage::RecursiveAverage.

Recursive average

Recursive averaging

This is a well known process for noise reduction by temporal integration. The principle is to
continuously update a noise-free image by blending it, using a linear combination, with the
raw, noisy, live image stream. Algorithmically, this amounts to the following:

DSTN=a*Src+(1-a)*DstN-1

where a is a mixture coefficient. The value of this coefficient can be adjusted so that a
prescribed noise reduction ratio is achieved.

This procedure is effective when applied to still images, but generates a trailing effect on
moving objects. The larger the noise reduction ratio, the heavier the trailing effect is. To work
around this, a non-linearity can be introduced in the blending process: small gray-level value
variations between successive images are usually noise, while large variations correspond to
changes in the image.

EasyImage::RecursiveAverage uses this observation and applies stronger noise reduction to
small variations and conversely. This reduces noise in still areas and trailing in moving areas.

For optimal performance, the non-linearity must be pre-computed once for all using function
EasyImage::SetRecursiveAverageLUT.

Note: Before the first call to the EasyImage::RecursiveAveragemethod, the 16-bit work
image must be cleared (all pixel values set to zero).

Noise estimation (of image compared to reference image):

To estimate the amount of noise, two or more successive images are required. In the simplest

Open eVision User Guide

51

mode, two noisy images are compared. (Other modes are available: if a noise-free image is
available, it is compared to a noisy one; a noise-free image can also be built by temporal
averaging.) Calculates the root-mean-square amplitude and signal-to-noise ratio.
n EasyImage::RmsNoise computes the root-mean-square amplitude of noise, by comparing a

given image to a reference image. This function supports flexible mask and an input mask
argument. BW8, BW16 and C24 source images are supported.
The reference image can be noiseless (obtained by suppressing the source of noise), or
affected by a noise of the same distribution as the given image.

n EasyImage::SignalNoiseRatio computes the signal to noise ratio, in dB, by comparing a
given image to a reference image. This function supports flexible mask and an input mask
argument. BW8, BW16 and C24 source images are supported.
The reference image can be noiseless (obtained by suppressing the source of noise) or be
affected by a noise of the same distribution as the given image.

Signal amplitude is the sum of the squared pixel gray-level values.

Noise amplitude is the sum of the squared difference between the pixel gray-level values of the
given image and the reference.

Scalar Gradient
EasyImage::GradientScalar computes the (scalar) gradient image derived from a given
source image.

The scalar value derived from the gradient depends on the preset lookup-table image.

The gradient of a grayscale image corresponds to a vector, the components of which are the
partial derivatives of the gray-level signal in the horizontal and vertical direction. A vector can
be characterized by a direction and a length, corresponding to the gradient orientation, and the
gradient magnitude.

This function generates a gradient direction or gradient magnitude map (gray-level image) from
a given gray-level image.
For efficiency, a pre-computed lookup-table is used to define the desired transformation.
This lookup-table is stored as a standard EImageBW8/EImageBW16.
Use EasyImage::ArgumentImage or EasyImage::ModulusImage once before calling
GradientScalar.

Vector Operations
Extracting 1-dimensional data from an image generates linear sets of data that are handled as
vectors. Subsequent operations are fast because of the reduced amount of data. The methods
are either:

Open eVision User Guide

52

Projection

Projects the sum or average of all gray color-level values in a given direction, into various
vector types (levels are added when projecting into an EBW32Vector and averaged when
projecting into an EBW8Vector, EBW16Vector or EC24Vector). These functions support
flexible mask.
n EasyImage::ProjectOnAColumn projects an image horizontally onto a column.
n EasyImage::ProjectOnARow projects an image vertically onto a row.

Profile

Samples a series of pixel values along a given segment, path or contour, then analyze and
modify their Peaks and Transitions to make images clearer:
1. Obtain the profile of a line segment / path / contour.

EasyImage::ImageToLineSegment copies the pixel values along a given line segment
(arbitrarily oriented) to a vector. The line segment must be entirely contained within the
image. The vector length is adjusted automatically. This function supports flexible mask.
EasyImage::ImageToPath copies the corresponding pixel values to the vector. The
function supports flexible mask. A path is a series of pixel coordinates stored in a vector.
EasyImage::Contour follows the contour of an object, and stores its constituent pixels
values inside a profile vector. A contour is a closed or not (connected) path, forming the
boundary of an object.

Open eVision User Guide

53

2. Analyse the profile to find peaks or transitions.

EasyImage::GetProfilePeaks detects max and min peaks in a gray-level profile. To
eliminate false peaks due to noise, two selection criteria are used. The result is stored in a
peaks vector.
A peak is a maximum or minimum of the signal which may correspond to the crossing of a
white or black line or thin feature. It is defined by its:
n Amplitude: difference between the threshold value and the max [or min] signal value.
n Area: surface between the signal curve and the horizontal line at the given threshold.
A transition corresponds to an object edge (black to white, or white to black). It can be
detected by taking the first derivative of the signal and looking for peaks in it.
EasyImage::ProfileDerivative computes the first derivative of a profile extracted from
a gray-level image. This derivative transforms transitions (edges) into peaks.
EBW8 data type only handles unsigned values, so the derivative is shifted up by 128. Values
under 128 correspond to negative derivative (decreasing slope), values above 128 correspond
to positive derivative (increasing slope).

3. Insert the profile into an image.

EasyImage::LineSegmentToImage copies the pixel values from a vector or a constant to
the pixels of a given line segment (arbitrarily oriented). The line segment must be wholly
contained within the image.

EasyImage::PathToImage copies pixel values from a vector or a constant to the pixels of a
given path.

Canny Edge Detector
The Canny edge detector facilitates:
n Good detection: finds all edges
n Good localization: the found edges are as close as possible to the "real" edges in the image
n Minimal response: one edge response is accepted for each position, i.e. avoiding multiple

close or intersecting edge responses

Source image and the result after a Canny edge detection

Open eVision User Guide

54

The EasyImage Canny edge detector operates on a grayscale BW8 image and delivers a black-
and-white BW8 image where pixels have only 2 possible values: 0 and 255. Pixels corresponding
to edges in the source image are set to 255; all others are set to 0. It can adjust the scale
analysis, it doesn't allow sub-pixel interpolation and it delivers a binary image after
thresholding.

Canny edge detector example

The Canny edge detector requires only two parameters:
n Characteristic scale of the features of interest: the standard deviation of the Gaussian

filter used to smooth the source image.
n Gradient threshold with hysteresis: maximum magnitude of the gradient of the source

image expressed as a fraction ranging from 0 to 1 (two values).

The API of the Canny edge detector is a single class, ECannyEdgeDetector, with the following
methods:
n Apply: applies the Canny edge detector on an image/ROI.
n GetHighThreshold: returns the high hysteresis threshold for a pixel to be considered as an

edge.
n GetLowThreshold: returns the low hysteresis threshold for a pixel to be considered as an

edge.
n GetSmoothingScale: returns the scale of the features of interest.
n GetThresholdingMode: returns the mode of the hysteresis thresholding.
n ResetSmoothingScale: prevents the smoothing of the source image by a Gaussian filter.
n SetHighThreshold: sets the high hysteresis threshold for a pixel to be considered as an

edge.
n SetLowThreshold: sets the low hysteresis threshold for a pixel to be considered as an edge.
n SetSmoothingScale: sets the scale of the features of interest.
n SetThresholdingMode: sets the mode of the hysteresis thresholding.

The result image must have the same dimensions as the input image.

Harris Corner Detector
The Harris corner detector is invariant to rotation, illumination variation and image noise. It
operates on a grayscale BW8 image and delivers a vector of points of interest.

Open eVision User Guide

55

Harris corner detector example

The EasyImage Harris corner detector requires three parameters:
n The integration scale σi: the standard deviation of the Gaussian Filter used for scale analysis.

σd = 0,7 x σi, where σd is the differentiation scale: the standard deviation of the Gaussian
Filter used for noise reduction during computation of the gradient.

n A corner threshold: a fraction ranging from 0 to 1 of the maximum value of the cornerness of
the source image.

n A Boolean that toggles sub-pixel detection.

The following characteristics are available for every point of interest:

n Corner position (pixel coordinates with sub-pixel accuracy if enabled).
n Cornerness measurement.
n Gradient magnitude with regards to the differentiation scale σd.
n Gradient value along the X-axis with regards to the differentiation scale σd.
n Gradient value along the Y-axis with regards to the differentiation scale σd

The API of the Harris corner detector is a single class named
EHarrisCornerDetector and these methods:

n Apply: applies the Harris corner detector on an image/ROI.
n EHarrisCornerDetector: constructs a EHarrisCornerDetector object initialized to its

default values.
n GetDerivationScale: returns the current derivation scale.
n GetScale: returns the integration scale.
n GetThreshold: returns the current threshold.
n GetThresholdingMode: returns the current thresholding mode for the cornerness measure.
n IsGradientNormalizationEnabled: returns whether the gradient is normalized before the

computation of the cornerness measure.
n IsSubpixelPrecisionEnabled: returns whether the sub-pixel interpolation is enabled.
n SetDerivationScale: sets the derivation scale.
n SetGradientNormalizationEnabled: sets whether the gradient is normalized before the

computation of the cornerness measure.
n SetScale: sets the integration scale.

Open eVision User Guide

56

n SetSubpixelPrecisionEnabled: sets whether the sub-pixel interpolation is enabled.
n SetThreshold: sets the threshold on the cornerness measure for a pixel to be considered as

a corner.
n SetThresholdingMode: sets the thresholding mode for the cornerness measure.

Basic usage of Harris Corner Detector

An object of the EHarrisCornerDetector class can be reused across Harris detector
applications, in order to reduce the setup time.
1. Create an instance of the detector and set the appropriate method, for instance, the

integration scale, SetScale, with the structures of interest that could have a spatial extent
of 2 pixels.

2. Apply the detector with two arguments to the new image : the input image and the interest
points in the input image EHarrisInterestPoints.

3. Access the individual elements of the output vector.

Overlay
EasyImage::Overlay overlays an image on the top of a color image, at a given position.

If a color image is provided as the source image, all the pixels of this image are copied to the
destination image, except the ones that equal the reference color. When a C24 image is used as
overlay source image, the color of the overlay in destination image is the same as the one in the
overlay source image, thus allowing multicolored overlays.

If a BW8 image is provided as the source image, all the overlay image pixels are copied to the
destination image, apart from those that are the reference color which are replaced by the
source images.

This function supports flexible mask and an input mask argument. C24, C15 and C16 source
images are supported.

Operations on Interlaced Video Frames
When an image is interlaced, the two frames (even and odd lines) are not recorded at the same
time. If there is movement in the scene, a visible artifact can result (the edges of objects exhibit
a "comb" effect).

EasyImage::RealignFrame cures this problem if the movement is uniform and horizontal
(objects on a conveyor belt), by shifting one of the frames horizontally. The amplitude of the
shift can be estimated automatically.

EasyImage::GetFrame extracts the frame of given parity from an image while
EasyImage::SetFrame replaces the frame of given parity in an image.

EasyImage::MatchFrames determines the optimal shift amplitude by comparing two
successive lines of the image. These lines should be chosen such that they cross some edges or
non-uniform areas.

Open eVision User Guide

57

EasyImage::RebuildFrame rebuilds one frame of the image by interpolation between the
lines of the other frame.

EasyImage::SwapFrames: interchanges the even and odd rows of an image. This is helpful
when acquisition of an interlaced image has confused even and odd frames.

The same image should be used as source and destination because only the shifted rows are
copied. To use a different destination image, the source image must be copied first in the
destination image object.

The size of the destination image is determined as follows:

dstImage_Width = srcImage_Width
dstImage_Height = (srcImage_Height + 1 - odd) / 2

Flexible Masks in EasyImage

Source image (left) and mask variable (right)

Simple steps to use flexible masks in Easyimage

1. Call the functions from EasyImage that take an input mask as an argument. For instance,
one can evaluate the average value of the pixels in the white layer and after in the black
layer.

2. Display the results.

Resulting image

EasyImage Functions that support flexible masks

n EImageEncoder::Encode has a flexible mask argument for BW1, BW8, BW16, and C24
source images.

n AutoThreshold.
n Histogram (function HistogramThreshold has no overload with mask argument).

Open eVision User Guide

58

n RmsNoise, SignalNoiseRatio.
n Overlay (no overload with mask argument for BW8 source images).
n ProjectOnAColumn, ProjectOnARow (Vector projection).
n ImageToLineSegment, ImageToPath (Vector profile).

3.2. EasyColor - Pre-processing Color
Images
EasyColor makes color image processing as efficient as possible by detecting, classifying and
analyzing objects. Several conversion functions mean that any color system can be processed.

Color definition and supported systems

What Is Color?

The human eye is sensitive to light:
n Intensity, or achromatic sensation, captured by grayscale images.
n Wavelength, or chromatic sensation, described in red, green and blue primary colors.

True color digital images (24 bits per pixel; 8 bits per RGB channel) represent as many colors
as the eye can distinguish.

Visible color gamut in the XYZ color space

There are three color systems:
n Mixture systems (RGB/XYZ) give the proportions of the three primaries to be combined.
n YUV Luma/chroma systems (XYZ/YUV) separate the achromatic (Y) and chromatic sensations

(U & V). Used when a black and white image is required as well (television).
n Intensity/saturation/hue systems (RGB/XYZ/YUV) separate achromatic (black and white

Intensity) from enhanced chromatic (color Saturation and Hue) sensations. Used to eliminate
lighting effects, or to convert RGB images to another color system. More saturated colors are
more vivid, less saturated ones are grayer.

In general:

Open eVision User Guide

59

n RGB is used by monitors, cameras and other display devices.
n YUV is used for efficient transmission of color images by compressing the chrominance

information.
n XYZ is used for device-independent color representation.

All image processing operations can use quantized coordinates: discrete values in the [0..255]
interval, which use a byte representation to store images in a frame buffer.

Color system conversion operations can also use simpler unquantized coordinates: continuous
values, often normalized to the [0..1] interval.

Color Image Processing

A color image is a vector field with three components per pixel. All three RGB components
reflected by an object have amplitude proportional to the intensity of the light source. By
considering the ratio of two color components, one obtains an illumination-independent image.
With a clever combination of three pieces of information per pixel, one can extract better
features.

There are 3 ways to process a color image:
n Component extraction: you can extract the most relevant feature from the triple color

information, to reduce the amount of data. For instance, objects may be distinguished by
their hue, a pre-processing step could transform the image to a gray-level image containing
only hue values.

n De-coupled transformation: you can perform operations separately on each color
component. For instance, adding two images together adds the red, green and blue
components and stores the result, component by component, in a resulting color image.

n Coupled transformation: you can combine all three color components to produce three
derived components. For example, converting YIQ to RGB.

Supported color systems

Easycolor supports color systems RGB, XYZ, L*a*b*, L*u*v*, YUV, YIQ, LCH, ISH/LSH, VSH and
YSH.

RGB is the preferred internal representation as it is compatible with 24-bit Windows Bitmaps.

RGB-based XYZ-based YUV-based

Mixture RGB XYZ —

Luma/Chroma —
L*a*b*
L*u*v*

YUV
YIQ

Intensity/Saturation/Hue
ISH
LSH
VSH

LCH YSH

Transform using LUTs (LookUp Tables)

EasyColors Lookup tables provide an array of values that define what output corresponds to a
given input, so an image can be changed by a user-defined transformation.

Open eVision User Guide

60

A color pixel can take 16,777,216 (224) values, a full color LUT with these entries would occupy
50 MB of memory and transforms would be prohibitively time-consuming. Pre-computed LUTs
make color transforms feasible.

To transform a color image, you initialize a color LUT using one of the following functions:

"LUT for Gain/Offset (Color) " on page 63: EasyImage::GainOffset,

"LUT for Color Calibration" on page 64: Calibrate,

"LUT for Color Balance" on page 64: WhiteBalance,

ConvertFromRGB, ConvertToRGB.

This color LUT is then used in a transform operation such as EasyColor::Transform or you
can create a custom transform using EColorLookup which takes unquantized values
(continuous, normalized to [0..1] intervals), and specifies the source and destination color
systems. Some operations use the LUT on-the-fly thus avoid storing the transformed image, for
example to alter the U (of YUV) component while the image is in RGB format.

The optimum combination of accuracy and speed is determined by the choice of IndexBits
and Interpolation - the accuracy of the transformed values roughly corresponds to the
number of index bits.
n Fewer table entries mean smaller storage requirements, but less accuracy.
n No interpolation gives quicker running time, but less accuracy. Interpolation can recover

8 bits of accuracy per component. When the involved transform is linear (such as YUV to
RGB), interpolation always gives exact results, regardless of the number of table entries.

Index Bits Number of entries Table size (bytes)

4 2(3*4) = 4,096 14,739

5 2(3*5) = 32,768 107,811

6 2(3*6) = 262,144 823,875

Discrete Quantized vs. Continuous Unquantized

Color coordinates in the classical systems are normally continuous values, often normalized to
the [0..1] interval. Computations on such values, termed unquantized, are simpler.

However, storage of images in a frame buffer imposes a byte representation, corresponding to
discrete values, in the [0..255] interval. Such values are termed quantized.

All image processing operations apply to quantized values, but conversion operations can also
be specified using unquantized coordinates.

Open eVision User Guide

61

Bayer transform

Bayer pattern encoded image

A Bayer encoded image is not compatible with a true color image (EC24), but white balance and
gamma correction can be applied to it using EColorLookup parameter in
EasyColor::BayerToC24.
A Bayer image is three times smaller, so processes much faster.

Easyobject can use the Bayer pattern to create a color image.

Transform YUV444 / YUV422

YUV images can be minimized without degrading visual quality using function Format444To422
to convert from 4:4:4 to 4:2:2 format (or you can convert Format 422 To 444).
n 4:4:4 uses 3 bytes of information per pixel.
n 4:2:2 uses 2 bytes of information per pixel.

It stores the even pixels of U and V chroma with the even and odd pixels of Y luma as
follows:

Y[even] U[even] Y[odd] V[even]

Merge, extract and color

A color image contains three color planes of continuous tone images.
A gray-level image can be a component of a color system.

Merge and extract components

EasyColor can change or extract one plane at a time, or all three together. See Compose,
Decompose, GetComponent, SetComponent.

These operations can use a color LUT to transform on the fly, they could build an RGB image
from lightness, saturation and hue planes.

Open eVision User Guide

62

Note: EasyColor functions perform the necessary interleaving / un-interleaving operations to
support Windows bitmap format of interleaved color planes (blue, green and red pixels follow
each other).

Pseudo-color to transform gray-level images to color

The trick is to define a regular gamut of 256 colors and each color will be assigned to pixels
with a corresponding gray-level value.
To define pseudo-color shades, you specify a trajectory in the color space of an arbitrary
system. You can then pseudo-color using the drawing functions color palette (see Image and
Vector Drawing) then save and/or transform it like any other color image.

Gray-level and pseudo-colored image

Separate color objects

This EasyColor process takes a set of distinct colors and associates each pixel with the closest
color, using a layer index that can then be used in EasyObject with the labeled image segmenter
to improve blob creation.

Raw image and segmented image (3 colors)

Bayer Transform
The Bayer pattern is a color image encoding format for capturing color information from a
single sensor.
A color filter with a specific layout is placed in front of the sensor so that some of the pixels
receive red light only, while others receive green or blue only.
An image encoded by the Bayer pattern has the same format as a gray-level image and conveys
three times less information. The true horizontal and vertical resolutions are smaller than those
of a true color image.

Open eVision User Guide

63

Bayer vs. true color format

Note: The Bayer pattern normally starts with a GB/RG block in the upper left corner. If the
image is cropped, this parity rule can be lost, but parity adjustment is unnecessary when
working on a Open eVision ROI.

The Bayer conversion method EasyColor::BayerToC24 transforms an image captured using
the Bayer pattern and stored as a gray-level image, into a true color image. There are three
ways to reconstruct the missing pixels. The more complex the interpolation, the slower the
conversion. However, it is highly recommended to use interpolation.
n Non-interpolated mode: duplicates the nearest pixel to above and/or to the left of the

current pixel.
n Standard interpolated mode: averages relevant neighboring pixels.
n Improved interpolated mode (recommended): interpolates the unknown component

values. This mode reduces visible artifacts along object edges.

Converted images with no (top), standard (left) and improved interpolation method (right)

LUT for Gain/Offset (Color)
Separate gains and offsets can be applied to each of the three components of an image
(contrast enhancement transform). The RGB image must be transformed to the targeted color
space, gains and offsets applied, then transformed back to RGB.
n When applied to a mixture representation, all three gains and offset should vary in a similar

way.

Open eVision User Guide

64

n When applied to luma/chroma representations, the gain and offset of the chromatic
components should vary in a similar way.

n When applied to intensity/saturation/hue representation, it makes no sense to apply gain
and offset to the hue component.

Enhanced saturation / Uniform lightness

Note: The contrast enhancement function can be used to uniformize a given component: setting
the gain to 0 for some component has the same result as setting all pixels to the value of the
offset for this component.

LUT for Color Calibration
Color distortions introduced by the image acquisition chain can be corrected by comparing
sample colors from the image with their true values. A calibrated color chart, such as the IT8, is
required.
n Sample colors are the average color in a suitable ROI using PixelAverage.
n True color values are specified in the XYZ color system. Even though the reference colors are

described by their XYZ coordinates, the image to be calibrated must contain RGB
information.

The calibration transform can be based on one, three or four reference colors. In the first case,
calibration is a gain adjustment for the three color components. In the second and third case, a
linear or affine transform is used.

LUT for Color Balance
A color image can be improved by changing gamma correction and white balance.

These effects can be corrected efficiently by setting up a lookup table using WhiteBalance and
applying it on a series of images by means of Transform.The LUT need only prepared once (it
implements a de-coupled color transformation).

Gamma Pre-Compensation

Many color cameras use a gamma pre-compensation process that deals with the non-linear
response of the display device (such as a TV monitor).

Open eVision User Guide

65

Gamma pre-compensation should be used after processing because using it before would
change the result because of the non-linearity introduced.

The pre-compensation process applies the inverse transform to the signal, so that the image
renders correctly on the display. Three pre-defined gamma values are available, depending on
the video standard at hand:

Video standard Gamma value EasyColor property

NTSC 1/2.2 CompensateNtscGamma

PAL 1/2.8 CompensatePalGamma

SMPTE 0.45 CompensateSmpteGamma

Note: Pre-compensation cancellation and pure pre-compensation correspond to exponents that
are inverse of each other.

Gamma Pre-Compensation Cancellation

Many color cameras have a built-in gamma pre-compensation feature that can be turned off. If
this feature cannot be turned off and is not desired, its effect can be canceled by applying the
direct gamma transform. The following pre-defined gamma values are available for this
purpose:

Video standard Gamma value EasyColor property

NTSC 2.2 NtscGamma

PAL 2.8 PalGamma

SMPTE 1/0.45 SmpteGamma

White Balance

A camera may exhibit color imbalance, i.e. the three color channels having mismatched gains,
or the illuminant (the light sources) not being perfectly white. When this occurs, the white areas
appear as an unsaturated color. The white balance correction automatically adjusts three
independent gains so that the components of a white pixel become equal. This means that a
white balance calibration step is required, during which a white surface must be shown to the
camera and the corresponding color component are measured. PixelAverage can be used for
this purpose.

Raw image, and image with white balance and gamma pre-compensation

Open eVision User Guide

66

3.3. EasyImage - Computing Image
Statistics
EasyObject statistics are related to the objects in an image.

EasyImage statistics are related to whole images (global illumination / contrast, saturation,
presence or absence of an object).

Sliding window (creates new image of avg or std deviation of gray-level
values)

The average and standard deviation of gray-level values can be computed in a sliding window,
i.e., computed for every position of a rectangular window centered on every pixel. The window
size is arbitrary.

Note: The computing time of these functions does not depend on the window size.

The result of the operation is another image.

The local average, EasyImage::LocalAverage, corresponds to a strong low-pass filtering.

Sliding window average

The local standard deviation, EasyImage::LocalDeviation enhances the regions with a high
frequency contents, such as noisy or textured areas.

Sliding window standard deviation

Open eVision User Guide

67

Histogram computation and analysis(and LUT creation)

A histogram is a statistical summary of an image: it shows the number of occurrences of every
gray-level value in an image, and it's shape reveals characteristics of the image. For instance,
peaks in the histogram curve correspond to dominant colors in the image. If the histogram is bi-
modal, a large peak for the dark values corresponding to the background, and smaller peaks in
the light values.

Typical image histogram

Histogram Computation

EasyImage::Histogram computes the histogram of an image. It has an input mask argument.
It supports flexible mask.
BW8, BW16 and BW32 source images are supported.

You can compute the cumulative histogram of an image, i.e. the count of pixels below a given
threshold value, by calling EasyImage::CumulateHistogram after EasyImage::Histogram.

Histogram Analysis

EasyImage::AnalyseHistogram and
EasyImage::AnalyseHistogramBW16 provide statistics and thresholding values:
n Total number of pixels.
n Smallest and largest pixel value (gray-level range).
n Average and standard deviation of the pixel values.
n Value and frequency of the most frequent pixel.
n Value and frequency of the least frequent pixel.

Histogram equalization

EasyImage::Equalize re-maps the gray levels so that the histogram fills in the whole
dynamic range as uniformly as possible.

This may be useful to maximize image contrast, or reveal a lot of image details in dark areas.

Open eVision User Guide

68

Equalized image and histogram

Setup a lookup table

EasyImage::SetupEqualize creates a LUT so you can work explicitly with the histogram and
LUT vectors. It can be more efficient to keep the image histogram for other purposes (i.e
statistics) and keep the equalization LUT to apply to other images.

Equalization lookup table

Image focus

Sharp focusing can be achieved if the EasyImage::Focusing quantity is maximum for a given
image. This function must be called multiple times with multiple images with a different focus
for the basis of an "auto-focus" system.

EasyImage::Focusing computes the total gradient energy of the image. You can then use this
gradient as a measure of the focusing of an image.

The gradients of the image show the edges of the structures present in the image, with strong
values if the image is well-focused and weaker values otherwise.

To compute the total gradient energy of the image, Open eVision:

a. Squares the pixel values of the horizontal and vertical gradient images.

b. Averages the squared pixel values over both images.

c. Sums the averages.

d. Takes the square root of the resulting value.

The resulting value is maximum if the image is well-focused.

Open eVision User Guide

69

A well-focused image, with its (absolute-valued) horizontal and vertical gradients.
The gradients show the edges of the structures with strong values. The total gradient

energy for this image is 17.9.

A badly focused image, with its (absolute-valued) horizontal and vertical gradients.
The gradients show the edges of the structures with weak values. The total gradient energy

for this image is 7.9.

EasyImage statistics functions

Area (number of pixels with values above/on/between thresholds)

n EasyImage::Area counts pixels with values above (or on) a threshold.
n EasyImage::AreaDoubleThreshold counts pixels whose values are comprised between (or

on) two thresholds.

Binary and weighted moments (object position and extent)

n EasyImage::BinaryMoments computes the 0th, 1st or 2nd order moments on a binarized
image, i.e. with a unit weight for those pixels with a value above or equal to the threshold,
and zero otherwise. It provides information such as object position and extent.

n EasyImage::WeightedMoments computes the 0th, 1st, 2nd, 3rd or 4th order weighted
moments on a gray-level image. The weight of a pixel is its gray-level value. It provides
information such as object position and extent.

Gravity center (average pixel coordinates above/on threshold)

n EasyImage::GravityCenter computes the coordinates of the gravity center of an image,
i.e. the average coordinates of the pixels above (or on) the threshold.

Pixel count (between 2 thresholds)

n EasyImage::PixelCount counts the pixels in the three value classes separated by two
thresholds.

Minimum, maximum and average gray-level value

n EasyImage::PixelMax computes the maximum gray-level value in an image.

Open eVision User Guide

70

n EasyImage::PixelMin computes the minimum gray-level value in an image.
n EasyImage::PixelAverage computes the average pixel value in a gray-level or color

image. For a color image, it computes the means of the three pixel color components, the
variances of the components and the covariances between pairs of components.

Average, variance and standard deviation

n EasyImage::PixelStat computes min, max and average gray-level values.
n EasyImage::PixelVariance computes average and variance of pixel values.
n EasyImage::PixelStdDev computes average and standard deviation of pixel values. For a

color image, it computes the standard deviations and correlation coefficients (covariance
over the product of standard deviations) of the pairs of pixel component values.

Number of different pixels by comparing 2 images

n EasyImage::PixelCompare counts the number of different pixels between two images.

3.4. EasyDeepLearning - Classifying
Images

What EasyDeepLearning can do
EasyDeepLearning is a library that classifies images using deep convolutional neural networks
(CNNs). You can use it, for example, to identify a product in an image or to detect if the product
is good or defective.

By opposition to traditional machine vision techniques, EasyDeepLearning does not require an
explicit model of what to recognize inside an image. Instead, it learns this model from a set of
example images. Thus it is able to solve machine vision problems where an explicit model is too
complex to build.

To accelerate computations, we strongly recommend running the EasyDeepLearning library on a
recent NVIDIA GPU. Refer to the section "Accelerating the Computation with a NVIDIA GPU" on
page 79 for installing the required NVIDIA CUDA and deep learning library.

Note: The EasyDeepLearning library runs only on x64 platforms.

Open eVision User Guide

71

Workflow

To create an application based on EasyDeepLearning:

1. Capture a dataset of images representative of the problem you want to solve.

□ The capture conditions must be as close as possible of the production conditions.

□ Preferably, all images should have the same resolution.

□ The number of images needed to obtain a good classification performance depends on
the complexity of the classification task.
However, EasyDeepLearning can solve some classification task steps with as few as 100
images per class.

2. Manually label the images in the dataset with the different categories you want to recognize.

3. Train a deep learning classifier on the labeled dataset.

a. Create an EClassificationDataset object.

b. Use the EClassificationDataset::AddImage method to add the manually labeled images to
the object.

c. Use the EClassificationDataset::SplitDataset method to split the dataset into 2 parts called
the training and the validation datasets,

Or manually create a new EClassificationDataset object for the validation dataset.

d. Create an EClassifier object.

e. Call the EClassifier::Train method with the EClassificationDataset objects as argument.

f. Use the EClassifier::GetValidationMetrics method to analyze the performance of the trained
classifier by retrieving performance metrics computed on the validation dataset.

4. Use the EClassifier::Classify method to use the trained EClassifier object in production and
classify new images.

The method returns an EClassificationResult object that contains a probability for each. Use
the EClassificationResult::GetBestLabel method to get the label with the highest probability.

Open eVision User Guide

72

Overtfitting

It is important to use 2 separate datasets of images:

□ A training dataset to train the classifier.

□ A validation dataset to evaluate how well the classifier performs on images it was not
trained on.

Deep learning techniques can suffer from overfitting; this means that the trained classifier is too
focused on the specific images present in the training dataset and it is not able to learn a
general model for the different labels. Such a classifier performs poorly in production.

Overfitting can happen when the training dataset is not representative enough of the problem
you want to solve.

Solutions to prevent overfitting can be to capture additional images or, in some cases, to use
data augmentation.

Data augmentation generates random transformations of the images in the training dataset to
make the classifier robust to rotations, reflections or scaling that are not present in the original
training dataset.

EasyDeepLearning Studio

EasyDeepLearning Studio

The EasyDeepLearning Studio is a graphical user interface for:

□ Creating datasets and labeling images,

□ Configuring and visualizing the data augmentation transformations,

□ Training a classifier,

□ Analyzing the performance of the classifier.

The EasyDeepLearning Studio is available in the installation folder of Open eVision.

Resources and code snippets

● The sample dataset called “MiniWaffle” illustrated below is available in the folder Sample
Images/EasyDeepLearning/MiniWaffle of the installation folder. This dataset
contains images of good and bad mini waffles.

● Some code snippets are also provided for illustration and reference.

Workflow illustration with EasyDeepLearning Studio

You can use the EasyDeepLearning Studio to perform steps 2 and 3 of the process described in
section "Workflow" on the previous page.

Open eVision User Guide

73

Manual labeling of images (step 2) and creating the dataset (steps 3a and 3b)

Splitting the dataset (step 3c) and starting the training (steps 3d and 3e)

Open eVision User Guide

74

Analyzing the performance (step 3f)

Managing the Dataset
Adding images

The supported image types are EImageType_BW8, EImageType_BW16, and EImageType_C24.

● To add a single image and its label to a EClassificationDataset, use one of these methods:

□ EClassificationDataset::AddImage(path, label) for an image file,

□ EClassificationDataset::AddImage(img, label) for an Open eVision image object.

● To add several image files that share the same label, use the method
EClassificationDataset::AddImages(filter, label)

where filter is a glob pattern with the wildcard characters:

□ * means "zero or more character",

□ ? means "a single character".

For example, EClassificationDataset::AddImages("*good*.png", "good") will add all PNG
image files that contains “good” in their filename.

EasyDeepLearning automatically generates the set of labels from the labels of the images that you
add to the dataset.

Note: The labels are case sensitive.

Open eVision User Guide

75

Setting label weights

Label weights represent the relative importance that the classifier gives to each class during the
training.

By default, all labels are given the same weight of 1.

Set the weight of a label with EClassificationDataset::SetLabelWeight(labelId, weight).

Using data augmentation

Data augmentation performs random transformations on images given to a EClassifier object
during the training.

Use EClassificationDataset::SetEnableDataAugmentation(true/false) to enable or disable those
transformations.

The possible transformations are:

□ Horizontal and vertical flips (enabled with EClassificationDataset::SetEnableHorizontalFlip
and EClassificationDataset::SetEnableVerticalFlip)

□ Scaling (between a minimum and maximum value defined with
EClassificationDataset::SetMinScale and EClassificationDataset::SetMaxScale)

□ Horizontal and vertical shifts (between –maxValue and maxValue defined with
EClassificationDataset::SetMaxHorizontalShift(maxValue) and
EClassificationDataset::SetMaxVerticalShift(maxValue))

□ Rotations (between 0 and a maximum value defined with
EClassificationDataset::SetMaxRotationAngle)

□ Horizontal and vertical shear (between –maxValue and maxValue defined with
EClassificationDataset::SetMaxHorizontalShear and
EClassificationDataset::SetMaxVerticalShear)

□ Brightness offset (between –maxValue and maxValue defined with
EClassificationDataset::SetMaxBrightnessOffset)

□ Contrast gain (between a minimum and maximum value defined with
EClassificationDataset::SetMinContrastGain and
EClassificationDataset::SetMaxContrastGain)

□ Gamma corrections (between a minimum and maximum value defined with
EClassificationDataset::SetMinGamma and EClassificationDataset::SetMaxGamma)

□ Hue offset (between –maxValue and maxValue defined with
EClassificationDataset::SetMaxHueOffset)

□ Saturation gain (between a minimum and maximum value defined with
EClassificationDataset::SetMinSaturationGain and
EClassificationDataset::SetMaxSaturationGain)

Open eVision User Guide

76

Splitting the dataset

To evaluate how well the classifier performs, set some images apart and do not use them during
the training.

To do this, either:

□ Directly create 2 EClassificationDataset objects containing 2 different sets of images,

□ Or randomly split an EClassificationDataset dataset into 2 parts with the method
EClassificationDataset::SplitDataset(trainingDataset, validationDataset, trainingProportion).

Using the Classifier
Input image format and normalization

Note: The input image must be larger than a minimum size of 128 x 128.

To ensure numerical stability, all the images given to an EClassifier object should have the same
format (width, height and number of channels) and should be normalized.

● By default, a classifier uses the image format of the first image inserted in the training
dataset:

□ All other images are automatically reformatted (anisotropic rescaling and conversion
between color and grayscale).

□ If EClassifier::SetEnableAutomaticImageReformat(false) is called, the classifier throws an
exception when attempting to train or classify an image that does not have the correct
image format.

● You can also set manually the input image format with the methods SetWidth, SetHeight and
SetChannels (1 channel for grayscale images and 3 channels for color images).

We recommend that you reduce the resolution of the original images using these methods to
increase the processing speed of the classifier. Note that the “object of interest” must still be
recognizable at the final resolution.

Histogram equalization

The classifier can also apply an histogram equalization to every input image. Use
EClassifier::SetEnableHistogramEqualization(true) to activate it.

Open eVision User Guide

77

Training the classifier

To train a classifier, call the method EClassifier::Train(trainingDataset, validationDataset,
numberOfIterations).

● Iteration:

□ An iteration corresponds to going through all the images in the training dataset once.

□ The training process requires a large number of iterations to obtain good results.

□ The default number of iterations is 50.

□ The larger the number of iterations, the longer the training is and the better the results
you obtain.

Calling the EClassifier::Train() method several times with the same training and validation dataset is
equivalent to calling EClassifier::Train() once but with a larger number of iterations. The total
number of iterations used to train the classifier is accessible through
EClassifier::GetNumTrainedIterations().

● The training process is asynchronous:

□ A call to EClassifier::Train launches a new thread that does the training in background.

□ The method EClassifier::WaitForTrainingCompletion suspends the program until the whole
training is completed.

□ The method EClassifier::WaitForIterationCompletion suspends the program until the
current iteration is completed.

□ During the training, use EClassifier::GetTrainingProgression() to follow the progression of
the training.

● Mini batch size:

The mini batch size corresponds to the number of images that are processed together.

□ The training is influenced by the mini batch size.

□ A large mini batch size increases the processing speed of a single iteration but requires
more memory.

□ The training process is not able to learn a good model with too small or too large mini
batch sizes.

□ The default size of the mini batch is 32 (we recommend that you do not change this value
unless the training fails because you don’t have enough memory).

□ It is common to choose powers of 2 as mini batch size for performance reasons.

□ Use EClassifier::SetMiniBatchSize to change the size of your mini batch.

Open eVision User Guide

78

Validating the results

● After the completion of each iteration, EasyDeepLearning automatically computes several
performance metrics about the training and validation dataset:

□ Call the methods EClassifier::GetTrainingMetrics(iteration) and
EClassifier::GetValidationMetrics(iteration) to read these metrics.

□ The iterations are indexed between 0 and EClassifier::GetNumTrainedIterations()-1.

□ Call EClassifier::GetBestIteration() to retrieve the iteration that produced the best
performance.

□ After the training, the classifier is back in the state corresponding to this best iteration.

● The metrics are represented by an EClassificationMetrics object that contains the following
performance metrics:

□ The classification error (EClassificationMetrics::GetError()): the quantity that is minimized
during the training.

□ The classification accuracy (EClassificationMetrics::GetAccuracy()): the number of images
correctly classified divided by the total number of images in the dataset.

□ The confusion matrix (EClassificationMetrics::GetConfusion(groundtruthLabel,
predictedLabel)): the number of images labeled as groundtruthLabel that are classified as
predictedLabel.

Call EClassifier::Evaluate to evaluate a dataset independently of the training.

Classifying new images

Once the classifier is trained, call EClassifier::Classify to classify an Open eVision image.

This method returns a EClassificationResult object:

□ EClassificationResult::GetBestLabel() returns the most probable label for the image.

□ EClassificationResult::GetBestProbability() returns the probability associated with the most
probable label.

□ EClassificationResult::GetProbability(label) returns the probability associated with the
given label.

□ EClassificationResult::GetRanking(label) returns the ranking of the given label. The ranking
goes from 1 (most probable) to EClassifier::GetNumLabels() (least probable).

You can also directly classify a vector of Open eVision images:

□ Images are processed together in groups determined by the mini batch size.

□ It is usually much faster to classify a group of images than a single image, especially on a
GPU.

Open eVision User Guide

79

Accelerating the Computation with a NVIDIA GPU
CPU versus GPU

● Deep learning algorithms perform a lot of computations and can be very slow to train on a
CPU.

For example, on a high-end Intel Core i9-7900X CPU with a single thread, with no data
augmentation:

□ The training can process up to 0.5 MegaPixels/seconds.

□ The validation and classification can process up to 1.5 MegaPixels/seconds.

● Using a recent NVIDIA GPU greatly accelerates the processing speeds.

On a NVIDIA GeForce 1080Ti, with no data augmentation:

□ The training can process up to 50 MegaPixels/seconds.

□ The validation can process up to 160 MegaPixels/seconds.

□ The classification of a single image can process up to 55 MegaPixels/seconds (equivalent
to more than 800 256 x 256 grayscale images/second).

Please be aware that the actual speed varies with the input image format, the data augmentation,
the batch size and the GPUmodel.

Using an NVIDIA CUDA® GPU

1. To use an NVIDIA GPU with the EasyDeepLearning library, install the following NVIDIA
libraries on the computer:

□ NVIDIA CUDA® Toolkit version v9.0 (https://developer.nvidia.com/cuda-toolkit)

□ NVIDIA CUDA® Deep Neural Network library (cuDNN) v7.0.5
(https://developer.nvidia.com/cudnn)

2. According to the installation location:

□ If you install the NVIDIA CUDA® Toolkit in its default location (C:\Program
Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0), the EasyDeepLearning
library automatically finds what it needs.

□ Otherwise, the DLLs cusolver64_90.dll, curand64_90.dll, cufft64_90.dll and
cublas64_90.dll should be copied in the Open eVision DLL folder (its default location is
C:\Program Files (x86)\Euresys\Open eVision X.X\Bin64\).

Open eVision User Guide

https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cudnn

80

3. Install the NVIDIA CUDA ® Deep Neural Network library (cuDNN) that comes as a zip archive:

a. Unzip the files.

b. Copy the unzipped files to the NVIDIA CUDA® Toolkit installation directory as indicated in
https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installwindows.

c. If the NVIDIA CUDA® Toolkit is not installed in its default location, copy the DLL file
cudnn64_7.dll in the Open eVision DLL folder (its default location is C:\Program
Files (x86)\Euresys\Open eVision X.X\Bin64\).

4. Use the method EClassifier::SetEnableGPU to tell EasyDeepLearning to use the GPU.

5. If there are more than one GPU installed on the computer, set the index of the GPU to use
with the method EClassifier::SetGPUIndex.

Open eVision User Guide

https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installwindows

81

4. Using Open eVision Studio

Open eVision User Guide

82

4.1. Selecting your Programming
Language
When you start Open eVision Studio for the first time, the following welcome screen is
displayed:

1. Select your programming language.

Your selection is saved and your programming language will be automatically selected next time
you start Open eVision Studio.

Note: When you change your programming language, any script present in the scripting
window is automatically deleted and the window content is reset.

2. Click on one of the Load buttons to already load one or several images for later processing.

3. Check the Do not show at startup box to hide this welcome screen next time you start Open
eVision Studio.

To access this welcome screen at any time, and change this setting, go to the Help >Welcome
Screen menu.

Open eVision User Guide

83

4.2. Navigating the Interface

Open eVision Studio graphical user interface (GUI) is organized as follows:

1. The main menu bar gives you access to the functions and tools of all libraries.

Open eVision Studio does not require any license and allows you to test all libraries. Of course, if you
copy code from Open eVision Studio in your own application but you do not have the required
license, you will receive a "missing license" error at run-time.

2. The main toolbar gives you a quick access to main Open eVision objects such as images,
shapes, gauges, bar codes, matrix codes...

3. The script window displays the code, in the programming language you selected,
corresponding to the actions you perform in Open eVision Studio. You can save or copy this
code in your own application at any time.

4. The image windows display the open images that you can process using the libraries and
tools.

5. The tool windows enable you to easily configure all the available tools. The corresponding
settings are automatically added in the script window for easy reuse.

Most tool windows are floating and you can easily move them outside the Open eVision Studio main
window to make a better use of your screen size.

6. The execution time bar displays the precise time taken for the execution of the selected
functions (measured in milliseconds or microseconds) on your computer. This accurate
measurement helps you to evaluate the performance of your application.

7. The color toolbar displays current information such as the X and Y coordinates of the cursor
on an image and the corresponding pixel value.

8. The status bar displays general information about the application such as the active image
file path...

Open eVision User Guide

84

4.3. Running Tools on Images

Step 1: Selecting a Tool
Usually the first step, when using Open eVision Studio, is to select the library and the tool you
want to use on your image.

To do so:

1. In the main menu bar, click on the library you want to use.

2. Click on the tool you want to use.

All libraries (except EasyImage, EasyColor and EasyGauge) expose only one tool named New Xxx
Tool. Some of these libraries also expose additional functions.

3. In the dialog box, enter a Variable name for the variable that is automatically created and
that will contain the result of the processing.

Example of variable creation dialog box for EasyQRCode

4. Click OK.

The selected tool dialog box opens.

Example of variable creation dialog box for EasyQRCode

Open eVision User Guide

85

The next step is "Step 2: Opening an Image" below.

Step 2: Opening an Image
Once you have selected your library and your tool, you need to open an image to apply this
tool.

In the Source Image area of the selected tool dialog box:

1. Open an image:

□ Click on the Open an Image button and select one or several (using SHIFT and CTRL)
images on your computer.

□ Or select one of the images (or one of the ROIs, if any) already open in the drop-down list.

Note: You can select only images with an appropriate file format (JPG, PNG, TIFF or BMP) and in
8- and/or 24-bit depending on the library.

2. If you selected several images, activate one with the Load Previous or Load Next
buttons.

The tool is automatically applied on any loaded image and, at this stage, the result is displayed
based on the tool default settings.

The next step is "Step 3: Managing ROIs" below.

Step 3: Managing ROIs
In some cases, most often to decrease the processing time or to single-out the object you want
to read, you do not want to process the whole image but only one or several well defined
rectangular parts of this image, or ROIs (Regions Of Interest).

In Open eVision, ROIs are attached to an image and exist only as long as the parent image is
available.

Creating a ROI

1. Open the image:

□ If the image is already open, activate the corresponding image window.

□ If the image is not open yet, go to the main menu: Image > Open... to open one.

2. To create an ROI, go to the main menu: Image > ROI Management....

Open eVision User Guide

86

The ROI Management window is displayed as illustrated below.

3. Select the image in the tree.

4. Click on the New button.

5. In the dialog box, enter a Variable name for the new ROI.

The ROI is represented as a color rectangle on your image as illustrated below.

6. Drag the ROI corner and side handles to move it to the required position.

7. Click on the Close button to close the ROI Management window .

The next step is "Step 4: Configuring the Tool" on the next page.

Managing ROIs

You can add, change and remove ROIs.

An image can have several ROIs. Each ROI can be attached directly to the image (meaning that its
position is relative to the image) or to another ROI (meaning that its position is relative to this
'parent' ROI).

1. To manage ROIs, go to the main menu: Image > ROI Management....

The ROI Management window is displayed with the ROI relation tree as illustrated below.

Open eVision User Guide

87

If the Draw Rois box is checked, all ROIs are displayed on the image with a different color.

2. Select an ROI in the ROI relation tree.

3. Drag the ROI corner and side handles to change the position and size of the selected ROI (as
well as the position of all ROIs attached to it if any).

4. Click on the New button to add a new ROI attached to the selected ROI.

Select the image at the top of the ROI relation tree to attach the ROI directly to the image.

5. Click on the Remove button to delete the selected ROI (and all ROIs attached to it if any).

6. Click on the Close button to close the ROI Management window.

Step 4: Configuring the Tool
Once your image, including its ROIs if you created some, is ready, you need to configure your
tool.

In the tool window:

1. Open the various tabs.

When you create a new tool, all parameters are set with their default value.

Open eVision User Guide

88

Example of the parameter tab of an EasyQRCode tool

2. In each tab, set the value of the parameters as desired.

Please refer to the "Functional Guide" and to the "Reference Manual" for detailed information
about the parameters, their function and their default value.

For specific actions such as learning or using gauges, please refer to the "Functional Guide".

3. Run the tool and analyze the results as described in the next step "Step 5: Running the Tool
and Checking Execution Time" below.

Step 5: Running the Tool and Checking Execution
Time
Once your tool parameters are set, run your tool and, if desired, check the execution time on
your computer.

In the tool window:

1. Click on the Read, Detect, Results or Execute button (depending on the library function), to
run the tool on the selected image.

2. Check the results on the image and in the Results field or area as illustrated below.

Open eVision User Guide

89

Example of results after reading a QRCode

3. If you do not have the expected results:

□ Try to change your parameters (start with default values then change one parameter at a
time).

□ If you image is not good enough, try to enhance it as described in .

4. Check the execution time in the execution time bar at the bottom left of the main Open
eVision Studio window.

The execution time

The execution time is the actual time that the processing took as measured on your computer. It
depends your computer processor, memory, operating system... and, of course, on the processor
load at the time of execution. Thus this execution time slightly varies from execution to execution.

5. To get a more representative execution time, click on the Read, Detect, Results or Execute
button several times and calculate the mean execution time.

6. If your application requires that you reduce the execution time, try:

□ To change the tool parameters,

□ To add one or several ROIs on your image,

□ To enhance your image.

The next step is "Step 6: Using the Generated Code" on the next page.

Open eVision User Guide

90

Step 6: Using the Generated Code
By default, Open eVision Studio translates all the operations you perform in the interface into
code in the language you selected as illustrated below.

Once your tool results suit you, you can save or copy this generated code to use it in your own
application.

Copy and paste the code in your application

In the script window:

1. Select the code section you want to copy.

2. Right click on this code and click Copy in the menu.

3. Go to you development environment tool and paste the code in place.

Save the code

1. Go to the Script menu.

2. Click on Save Script As....

3. Enter a file name and path to save the code as a text file.

Manage the generated code

In the Script menu, you can:

□ Select the programming language (please note that if you change the language, the script
window content is automatically deleted).

□ Activate or deactivate the Script Code Generation. Deactivate this option if you want to
perform some operations without saving them as code.

Open eVision User Guide

91

4.4. Pre-Processing and Saving Images
When should you pre-process your images?

Of course, the best situation is to set up your image acquisition system to have good and easy
to process images so the Open eVision tools run smoothly and efficiently.

If this is not possible or easy to achieve, you can pre-process your images or your ROIs to
enhance and prepare them for the Open eVision tool you want to run.

Using the various available functions, you can adjust the gain and offset of your image, apply a
convolution, threshold, scale, rotate and white balance your image, enhance contours... using
EasyImage and EasyColor functions.

Pre-processing images

The difference between pre-processing an image and running tools is that the pre-processing
generates a new image while the tools mainly extract and retrieve information from the image
without changing it.

To pre-process an image or an ROI:

1. In the main menu bar, click on the library you want to use (EasyImage or EasyColor).

2. Click on the function you want to use.

Most function dialog boxes are similar to the one illustrated below with 2 image selection areas
and a parameter setting area.

Example of a pre-processing dialog box (Threshold with EasyImage)

3. If there are multiple versions for your selected function, open the corresponding tab.

4. In the Source Image area, open the source image (as described in "Step 2: Opening an
Image" on page 85).

5. In the Destination Image area, open or create a new destination image.

6. Set your parameters.

7. Click on the Execute button.

The pre-processed image is available in the destination image as illustrated below.

Open eVision User Guide

92

Source and destinations images (Threshold with EasyImage)

8. If you want to use the destination image outside of Open eVision Studio, save it as described
below.

Saving an image

1. Click in the image you want to save to activate it.

2. To open the save menu either:

□ Right-click in the image

□ Or open the main menu > Image

3. Click on Save as....

4. Select the file format (JPEG, JPEG2000, PNG, TIFF or Bitmap).

5. Enter a name and select a path.

6. Click on the Save button.

Open eVision User Guide

93

5. Tutorials

5.1. EasyImage

Converting a Gray-Level Image into a Binary Image
"Thresholding" on page 115

"Single Thresholding" on page 115 - "Double Thresholding" on page 115 - "Histogram-Based
Single Thresholding" on page 116 - "Histogram-Based Double Thresholding" on page 116

Objective

Following this tutorial, you will learn how to use EasyImage to convert a gray-level source
image into a binary destination image. Thresholding an image transforms all the gray pixels
into black or white pixels, depending on whether they are below or above a specified threshold.
Thresholding an image makes further analysis easier.

You'll need first to load an image (step 1). Then you'll set the thresholding parameters (step 2),
and perform the conversion (step 3).

Gray-level source image

Open eVision User Guide

94

Black and white destination image, after thresholding

Step 1: Load the source image

1. From the main menu, click EasyImage, then Threshold.

2. In the Simple Threshold tab, click the Open icon of the Source Image area, and load the
image file EasyMatch\Switch1.tif.

3. Keep the default variable name for the new Image object, and click OK.

Step 2: Set the thresholding parameters

1. In the right area of the Threshold dialog box, move the slider to change the threshold, and
see directly in the source image a preview of the result.

2. Select the Minimum residue option to set a pre-defined algorithm that finds automatically
the right threshold.

Step 3: Perform the conversion

1. Click the New icon in the Destination Image area to create a new destination image.

2. Keep the default settings for the new Image object, and click OK.

3. In the Threshold dialog box, click Execute to perform the thresholding in the destination
image.

Extracting an Object Contour

Objective

Following this tutorial, you will learn how to use EasyImage to trace an object outline in a gray-
level image. The contour extraction allows you to get in a path vector all the points that
constitute an object contour, just by clicking an edge of this object.

You'll need first to load an image (step 1) and set a vector that will contain all the contour
points (step 2). Then you'll click an object edge, and the contour will be extracted automatically
(step 3).

Open eVision User Guide

95

Contours are extracted from object edges

Step 1: Load the source image

1. From the main menu, click EasyImage, then Contour.

2. Click the Open icon of the Source Image area, and load the image file
EasyMatch\Switch1.tif.

3. Keep the default variable name for the new image object, and click OK.

Step 2: Set the destination vector

1. Click the New icon in the Destination Vector area.

2. Keep the default settings and variable name for the new vector object.

3. Click OK.

Step 3: Extract the contour

1. When moving the cursor above the image, an arrow appears.

2. Move the arrow above an object edge, and click.

From this object edge, a contour is traced, and a red line appears around the object.

The destination vector is filled with the points constituting the contour.

Open eVision User Guide

96

Transforming a Gray-Level image into its Black and
White Edges

Objective

Following this tutorial, you will learn how to use EasyImage to transform a gray-level image to
a binary image, keeping only the edges detected in the image. The conversion uses the Canny
edge detector algorithm.

You'll need to load a source image (step 1), and simply apply the Canny edge transformation
(step 2).

Source image (left) and destination image after Canny edge transformation (right)

Step 1: Load the source image

1. From the main menu, click EasyImage, then Canny Edge Detector.

2. Keep the default variable name, and click OK.

3. Click the Open icon of the Source Image area, and load the image file
EasyImage\Key1.tif.

4. Keep the default variable name, and click OK.

Step 2: Apply the Canny edge transformation

1. Click the New icon in the Destination Image area to create a new destination image.

2. Keep the default settings, and click OK.

3. In the canny edge detector dialog box, click Apply to perform the operation in the
destination image.

Open eVision User Guide

97

Detecting the Corners of an Object Using Harris
Corner Detector

Objective

Following this tutorial, you will learn how to use EasyImage to detect the corners of an object.
The detection uses the Harris corner detector algorithm.

You'll need to load a source image (step 1), and simply apply the Harris corner detection (step
2).

Corners are detected in the source image

Step 1: Load the source image

1. From the main menu, click EasyImage, then Harris Corner Detector.

2. Keep the default variable name, and click OK.

3. Click the Open icon of the Source Image area, and load the image file
EasyGauge\Bracket1.tif.

4. Keep the default variable name, and click OK.

Step 2: Apply the Harris corner detection

1. In the Harris corner detector dialog box, enter 2.3 for the Scale property.

2. Click Apply to perform corners detection.

3. Click Results to display the coordinates of all detected corners.

4. The Columns button allows you to display additional properties in the results list.

Detecting a Horizontal or Vertical Line Using
Projection

Open eVision User Guide

98

Objective

Following this tutorial, you will learn how to use EasyImage to detect defects
(horizontal/vertical line) in a gray-level image.

You'll need first to load a source image (step 1), set a vector (step 2), and then detect the defect
(horizontal line) (step 3).

Defects can be detected using the image projection

Step 1: Load the source image

1. From the main menu, click EasyImage, then Projection.

2. Click the Open icon of the Source Image area, and load the image file
EasyImage\Leather.bmp.

3. Keep the default variable name for the new image object, and click OK.

Step 2: Set the destination vector

1. Click the New icon in the Destination Vector area.

2. Select the BW32 option for the vector type, and click OK.

Step 3: Detect the defects

1. In the Image Projection dialog box, select the column button, and click Execute to perform
the operation.

2. The resulting vector and the corresponding plot are displayed in the destination vector
window. The graphical result also appears on the image. Each vector value is the sum of all
pixels values across the corresponding horizontal row (or vertical column). By this mean,
horizontal (or vertical) defects are easily detected.

Creating a Flexible Mask
"Using Flexible Masks" on page 124

Open eVision User Guide

99

Objective

Following this tutorial, you will learn how to create a flexible mask from a source image, to
restrict a future processing to an arbitrary-shaped do-care area.

Flexible masks can be created in any ways to build a bi-level image. Here, we will first load the
source image (step 1), and then successively invert it, and threshold it (steps 2-3). The resulting
image —the flexible mask— will be saved as a new image file (step 4). This new image file is a
bi-level image. However, there are still black areas that need to be erased, before using the
image as a flexible mask. You can use a third-party software, such as Paint, to clear the
unwanted areas.

Source image (left) and flexible mask image (right)

Step 1: Load the source image

1. From the main menu, click EasyImage, then Arithmetic & logic.

2. Click the Open icon of the Source Image 0 area, and load the image file
EasyImage\Key1.tif.

3. Keep the default variable name for the new image object, and click OK.

Step 2: Invert the image

1. Click the New icon of the Destination area.

2. Keep the default settings for the new image object, and click OK.

3. In the Operation drop-down list, select Invert, and click Execute

Step 3: Threshold the image

1. From the main menu, click EasyImage, then Threshold.

2. In the Source Image area, select the inverted image from the drop-down list.

3. Click the New icon of the Destination area.

4. Keep the default settings for the new image object, and click OK.

5. Select the Absolute option, enter '46' as the threshold value, and click Execute.

Open eVision User Guide

100

Step 4: Save the flexible mask

1. Right-click in the destination image, and select Save As....

2. Type a file name for the new flexible mask file. Finally, click Save.

The new image now is a bi-level image. However, there are still black areas that need to be erased,
before using the image as a flexible mask. You can use a third-party software, such as Paint, to clear
the unwanted areas.

Computing Gray-Level Statistics Using a Flexible
Mask
"Using Flexible Masks" on page 124

Objective

Following this tutorial, you will learn how to compute gray-level statistics on an arbitrary-
shaped area only.

You'll need first to load a source image (step 1), and a flexible mask image (step 2). The mask
image must be applied on the source image (step 3), to separate do-care areas (that must be
considered) and don't-care areas (that should not be considered). Finally, the gray-level
statistics are computed on the do-care area only (step 4).

Source image (left) and flexible mask image (right)

Step 1: Load the source image

1. From the main menu, click EasyImage, then Image Statistics, Gray Scale.

2. Click the Open icon of the Source Image area, and load the image file EasyImage\Key1.tif.

3. Keep the default variable name for the new image object, and click OK.

Step 2: Load the flexible mask image

1. From the main menu, click Image, then Open....

2. Load the image file EasyImage\Mask2.bmp.

Open eVision User Guide

101

3. Keep the default variable name for the new image, and click OK.

Step 3: Apply the flexible mask on the source image

1. In the Mask area of the Gray Scale Image Pixels Statistics dialog box, select the mask image
from the drop-down list.

2. The source image preview in the dialog box shows (in red diagonal lines) the don't-care area,
that is the area that will be not be considered when computing the gray-level statistics.

Step 4: Compute the gray-level statistics

1. Select the Pixel Count check-box.

2. Click Execute.

The results are displayed in the read-only fields below.

Detecting the Corners of an Object Using Hit-and-
Miss Transform
"Hit-and-Miss Transform" on page 119

Objective

Following this tutorial, you will learn how to use EasyImage to detect top corners in an image,
using the hit-and-miss transform.

You'll need to load a source image (step 1), set the kernel that represents a top corner (step 2),
and then set a destination image and simply execute the hit-and-miss transform (step 3).

Source image (left) and top corner detected in the source image (white dot)

Step 1: Load the source image

1. From the main menu, click EasyImage, then Hit And Miss.

2. Click the Open icon of the Source Image area, and load the image file
EasyImage\Diamond.bmp.

3. Keep the default variable name, and click OK.

Open eVision User Guide

102

Step 2: Set the hit-and-miss kernel

● In the Hit And Miss dialog box, set the kernel according to the following values:

Kernel that detects top corners

Step 3: Apply the hit-and-miss transform

1. Click the New icon of the Destination Image area.

2. Keep the default parameters and variable name, and click OK.

3. Click Execute to perform the operation.

The top corner (white dot) is detected.

4. Try with other kernel configurations to detect the other corners.

Extracting a Vector Using Profile Function
"Profile Sampling" on page 120

Objective

Following this tutorial, you will learn how to use EasyImage to detect scratches.

You'll need first to load an image (step 1), set a destination vector, and detect the scratches
(step 2).

Scratches can be detected using a profile

Open eVision User Guide

103

Step 1: Load the source image

From the main menu, click EasyImage, then Profile.

1. Click the Open icon of the Source Image area, and load the image file
EasyImage\Plastic.tif.

2. Keep the default variable name for the new image object, and click OK.

Step 2: Set the destination vector and detecting the scratches

1. Click the New icon in the Destination Vector area.

2. Select the BW8 option for the vector type, and click OK.

3. A profile appears on the image (red line segment). In the destination vector window, vector
values correspond to pixels along the line segment.

The scratch is detected as a sharp deviation in the vector graph.

4. Using the mouse, drag the handles to move or resize the red line segment, and observe the
plot evolution.

The sharp deviation appears whenever the line segment is placed across the scratch.

Enhancing an X-ray image

Objective

Following this tutorial, you will learn how to use EasyImage to enhance an X-ray image.

You'll need first to load an image (step 1), then define convolution parameters to enhance the
image (step 2).

Source image (left) and enhanced image, after predefined and user-defined convolutions
(right)

Open eVision User Guide

104

Step 1: Load the source image

1. From the main menu, click EasyImage, then Convolution.

2. Click the Open icon of the Source Image area, and load the image file
EasyImage\XRay.bmp.

3. Keep the default variable name for the new image object, and click OK.

4. Click the New icon of the Destination Image area to create a new destination image.

5. Keep the default variable name and click OK.

Step 2: Set the convolution parameters

1. From the Predefined kernels drop-down list, select Highpass2, and click Execute to perform
the operation.

The image is no longer blurred but the result is bad because the filter has revealed the noise of
the source image. We need to create a new convolution kernel that will apply a softer high-pass
filtering.

2. Click the New icon next to the User defined kernels drop-down list.

3. Keep the default dimension (3x3) and variable name, and click OK.

4. Enter the following kernel data from left to right and top to bottom: -1, -1, -1; -1, 15, -1; -1, -
1, -1, and click Apply.

5. Click Execute in the Convolution dialog box to perform the operation. The image is much
clearer now.

Correcting Non-Uniform Illumination

Objective

Following this tutorial, you will learn how to use EasyImage to correct non-uniform illumination
in an image.

You'll need first to load an image (step 1), load a light reference image (step 2), and perform the
correction (step 3).

Open eVision User Guide

105

Source image, with non-uniform illumination (left) and corrected image (right)

Step 1: Load the source image

1. From the main menu, click EasyImage, then Uniformize.

2. Click the Open icon of the Source Image area, and load the image file EasyImage\Board
(original).tif.

3. Keep the default variable name for the new image object, and click OK.

Step 2: Load the reference image

1. Click the Open icon of the Light Reference area, and load the image file
EasyImage\Board (light reference).tif.

To obtain the light reference image, we used a white screen illuminated in the same condition
as the board (original image).

2. Keep the default variable name for the new image object, and click OK.

Step 3: Perform the correction

1. Click the New icon in the Destination Image area to create a new destination image.

2. Keep the default values and click OK.

3. Click Execute to perform the operation.

4. In both source and destination images, right-click and select 3D Rendering.

5. In the new 3D windows, click and drag the mouse to rotate the view. Compare the profiles.

Correcting Shear Effect

Objective

Following this tutorial, you will learn how to use EasyImage to correct a shear effect in an
image. The following image is taken by a line-scan camera. The camera sensor was misaligned,
resulting in a so-called shear effect.

You'll need first to load an image (step 1), create a destination image (step 2), and then set
pivots parameters to perform the correction (step 3).

Open eVision User Guide

106

Source image, with a shear effect (left) and corrected image (right)

Step 1: Load the source image

1. From the main menu, click EasyImage, then Register.

2. Click the Open icon of the Source Image area, and load the image file
EasyImage\Shear.tif.

3. Keep the default variable name for the new image object, and click OK. Three pivots points
appear in the image.

Step 2: Create a destination image

1. Click the New icon of the Destination Image area.

2. Enter '768' and '576' as image width and height, and click OK to accept the default name.
Three pivots points appear in the image.

Step 3: Set the pivots parameters

1. In the source image, using the mouse, drag each pivot to the center of the fiducial marks (the
dots around the U18 area).

Notice that the source pivots coordinates, in the Register dialog box, have changed accordingly.

2. To correct the image, enter the following destination pivots coordinates:

□ X0: 170

□ Y0: 495

□ X1: 470

□ Y1: 495

□ X2: 170

□ Y2: 144

3. Click Execute to perform the operation.

Correcting Skew Effect

Open eVision User Guide

107

Objective

Following this tutorial, you will learn how to use EasyImage to correct skew effect in an image.

You'll need first to load an image (step 1), create a destination image (step 2), and then set a
correction angle to perform the correction (step 3).

Source image, with a skew effect (left) and corrected image (right)

Step 1: Loading the source image

1. From the main menu, click EasyImage, then Scale and Rotate.

2. Click the Open icon of the Source Image area, and load the image file
EasyImage\CCD.tif.

3. Keep the default variable name for the new image object, and click OK.

Step 2: Creating a destination image

1. Click the New icon of the Destination Image area.

2. Enter '768' and '576' as image width and height, and click OK to accept the default name.

Step 3: Setting the correction angle

1. Select the Rotate option, and enter -16.17 in the Angle (Deg) field. (To measure this rotation
angle, refer to Measuring the rotation angle of an object.)

2. From the Interpolation bits drop-down list, select 8 bits to get a better result.

3. Click Execute to perform the operation.

5.2. EasyColor

Performing Thresholding on Color Images
"Color Components" on page 125

Open eVision User Guide

108

Objective

Following this tutorial, you will learn how to use EasyColor to segment a color source image, by
setting a threshold value for each color component of the current color system. For example, to
retrieve the solder pads on a PCB, you'll perform a color segmentation based on the golden
pixels (H), with a loose discrimination on the brightness (L) and saturation (S), to eliminate
surface and lighting effects.

You'll need first to load a color source image, create a destination image, and a color lookup
table (steps 1-3). Then, you'll set the color system and tune each component tolerance to get a
satisfying segmentation of the solder pads (step 4).

Source image

Thresholded image

Step 1: Load the source image

1. From the main menu, click EasyColor, then Threshold.

2. Click the Open icon of the Source Image area, and load the image file EasyColor\BGA
Substrate Color.jpg.

3. Keep the default variable name for the new Image object, and click OK.

4. Disable the Preview Mode check-box to see the raw source image.

Step 2: Create a destination image

1. Click the New icon of the Destination Image area.

2. Keep the default variable name for the new Image object, and click OK.

Open eVision User Guide

109

Step 3: Create a color lookup table

1. Click the New icon of the Color Lookup area.

2. Keep the default variable name for the new color lookup object, and click OK.

Step 4: Perform the color segmentation

1. Select LSH from the Color System drop-down list.

2. In the source image, click in a golden pad. The pixel lightness, saturation and hue values are
updated in the Color Threshold dialog box.

3. Adjust the tolerance of lightness and saturation to enlarge the range of thresholded pixels,
until you get a satisfying segmentation in the destination image.

Performing Color Segmentation
"Color Components" on page 125

Objective

Following this tutorial, you will learn how to use EasyImage to perform color segmentation.

You'll need first to load an image (step 1), create a color look-up table (step 2), and perform the
segmentation (step 3).

Source image

Segmented image

Step 1: Load the source image

1. From the main menu, click EasyColor, then Threshold.

2. Click the Open icon of the Source Image area, and load the image file
EasyColor\Pills.tif.

3. Keep the default variable name for the new image object, and click OK.

4. Disable the Preview Mode check-box to see the raw source image.

Open eVision User Guide

110

Step 2: Create a color lookup table

1. Click the New icon of the Color Lookup area.

2. Keep the default variable name for the new color lookup object, and click OK.

Step 3: Perform the color segmentation

1. Select LSH from the Color System drop-down list.

2. In the source image, click in the center of a green pill. The pixel lightness, saturation and hue
values are updated in the Color Threshold dialog box.

3. Increase the lightness tolerance up to 120. Increase the saturation tolerance up to 50.

4. Enable the Preview Mode check-box to see the result of the segmentation. If needed, click in
the green pills to improve the result.

5. Click the New icon of the Destination Image area.

6. Keep the default settings for the new Image object, and click OK.

7. The new image is automatically thresholded. Clicking Execute will insert the corresponding
code into the script windows.

Open eVision User Guide

111

6. Code Snippets

Open eVision User Guide

112

6.1. Basic Types

Loading and Saving Images
//
// This code snippet shows how to load and save an image. //
//

// Images constructor
EImageBW8 srcImage;
EImageBW8 dstImage;

// Load an image file
srcImage.Load("mySourceImage.bmp");

// ...

// Save the destination image into a file
dstImage.Save("myDestImage.bmp");

// Save the destination image into a jpeg file
// The default compression quality is 75
dstImage.Save("myDestImage.jpg");

// Save the destination image into a jpeg file
// set the compression quality to 50
dstImage.SaveJpeg("myDestImage50.jpg", 50);

Interfacing Third-Party Images
///
// This code snippet shows how to link an Open eVision image //
// to an externally allocated buffer. //
///

// Images constructor
EImageBW8 srcImage;

// Size of the third-party image
int sizeX;
int sizeY;

//Pointer to the third-party image buffer
EBW8* imgPtr;

// ...

// Link the Open eVision image to the third-party image
// Assuming the corresponding buffer is aligned on 4 bytes
srcImage.SetImagePtr(sizeX, sizeY, imgPtr);

Retrieving Pixel Values
///

Open eVision User Guide

113

// This code snippet shows the recommended method (fastest) //
// to access the pixel values in a BW8 image //
///

EImageBW8 img;

OEV_UINT8* pixelPtr;
OEV_UINT8* rowPtr;
OEV_UINT8 pixelValue;
OEV_UINT32 rowPitch;
OEV_UINT32 x, y;

rowPtr = reinterpret_cast <OEV_UINT8*>(img.GetImagePtr());
rowPitch = img.GetRowPitch();

for (y = 0; y < height; y++)
{
 pixelPtr = rowPtr;

for (x = 0; x < width; x++)
{

 pixelValue = *pixelPtr;

// Add your pixel computation code here

 *pixelPtr = pixelValue;
 pixelPtr++;
 }

 rowPtr += rowPitch;
}

ROI Placement
///
// This code snippet shows how to attach an ROI to an image //
// and set its placement. //
///

// Image constructor
EImageBW8 parentImage;

// ROI constructor
EROIBW8 myROI;

// ...

// Attach the ROI to the image
myROI.Attach(&parentImage);

//Set the ROI position
myROI.SetPlacement(50, 50, 200, 100);

Vector Management
///
// This code snippet shows how to create a vector, fill it //
// and retrieve the value of a given element. //
///

Open eVision User Guide

114

// EBW8Vector constructor
EBW8Vector ramp;

// Clear the vector
ramp.Empty();

// Fill the vector with increasing values
for(int i= 0; i < 128; i++)
{

ramp.AddElement((EBW8)i);
}

// Retrieve the 10th element value
EBW8 value= ramp[9];

Exception Management
//
// This code snippet shows how to manage //
// Open eVision exceptions. //
//

try
{

// Image constructor
EImageC24 srcImage;

// ...

// Retrieve the pixel value at coordinates (56, 73)
EC24 value= srcImage.GetPixel(56, 730);

}

catch(Euresys::Open_eVision_1_1::EException exc)
{

// Retrieve the exception description
std::string error = exc.What();

}

Open eVision User Guide

115

6.2. EasyImage

Thresholding

Single Thresholding

//
// This code snippet shows how to perform minimum residue //
// thresholding, absolute thresholding and relative //
// thresholding operations. //
//

// Images constructor
EImageBW8 srcImage;
EImageBW8 dstImage;

// ...

// Source and destination images must have the same size
dstImage.SetSize(&srcImage);

// Minimum residue thresholding (default method)
EasyImage::Threshold(&srcImage, &dstImage);

// Absolute thresholding (threshold = 110)
EasyImage::Threshold(&srcImage, &dstImage, 110);

// Relative thresholding (70% black, 30% white)
EasyImage::Threshold(&srcImage, &dstImage, EThresholdMode_Relative, 0, 255, 0.7f);

Double Thresholding

//
// This code snippet shows how to perform a thresholding //
// operation based on low and high threshold values. //
//

// Images constructor
EImageBW8 srcImage;
EImageBW8 dstImage;

// ...

// Source and destination images must have the same size
dstImage.SetSize(&srcImage);

// Double thresholding, low threshold = 50, high threshold = 150,
// pixels below 50 become black, pixels above 150 become white,
// pixels between thresholds become gray
EasyImage::DoubleThreshold(&srcImage, &dstImage, 50, 150, 0, 128, 255);

Open eVision User Guide

116

Histogram-Based Single Thresholding

//
// This code snippet shows how to perform a minimum residue //
// thresholding operation based on an histogram. //
//

// Images constructor

EImageBW8 srcImage;

EImageBW8 dstImage;

// Histogram constructor
EBWHistogramVector histo;

// Variables
unsigned int thresholdValue;
float avgBelowThr, avgAboveThr;

// ...

// Compute the histogram
EasyImage::Histogram(&srcImage, &histo);

// Compute the single threshold (and the average pixel values below and above the
threshold)
thresholdValue= EThresholdMode_MinResidue;
EasyImage::HistogramThreshold(&histo, thresholdValue, avgBelowThr, avgAboveThr);

// Source and destination images must have the same size
dstImage.SetSize(&srcImage);

// Perform the single thresholding
EasyImage::Threshold(&srcImage, &dstImage, thresholdValue);

Histogram-Based Double Thresholding

//
// This code snippet shows how to perform a double thresholding //
// operation. The low and high threshold values are computed //
// according to the minimum residue method based on an histogram. //
//

// Images constructor
EImageBW8 srcImage;
EImageBW8 dstImage;

// Histogram constructor
EBWHistogramVector histo;

// Variables
EBW8 lowThr;
EBW8 highThr;
float avgBelowThr, avgBetweenThr, avgAboveThr;

// ...

// Compute the histogram
EasyImage::Histogram(&srcImage, &histo);

Open eVision User Guide

117

// Compute the low and high threshold values automatically
// (and the average pixel values below, between and above the threshold)
EasyImage::ThreeLevelsMinResidueThreshold(&histo, lowThr, highThr, avgBelowThr,
avgBetweenThr, avgAboveThr);

// Source and destination images must have the same size
dstImage.SetSize(&srcImage);

// Perform the double thresholding
EasyImage::DoubleThreshold(&srcImage, &dstImage, lowThr.Value, highThr.Value);

Arithmetic and Logic Operations
//
// This code snippet shows how to apply miscellaneous //
// arithmetic and logic operations to images. //
//

// Images constructor
EImageBW8 srcGray0, srcGray1, dstGray;
EImageC24 srcColor, dstColor;

// ...

// All images must have the same size
dstGray.SetSize(&srcGray0);
// ...

// Subtract srcGray1 from srcGray0
EasyImage::Oper(EArithmeticLogicOperation_Subtract, &srcGray0, &srcGray1, &dstGray);

// Multiply srcGray0 by a constant value
EasyImage::Oper(EArithmeticLogicOperation_Multiply, &srcGray0, (EBW8)2, &dstGray);

// Add a constant value to srcColor
EasyImage::Oper(EArithmeticLogicOperation_Add, &srcColor, EC24(128,64,196),
&dstColor);

// Erase (blacken) the destination image where the source image is black
EasyImage::Oper(EArithmeticLogicOperation_SetZero, &srcGray0, (EBW8)0, &dstGray);

Convolution

Pre-Defined Kernel Filtering

///
// This code snippet shows how to apply miscellaneous //
// convolution operations based on pre-defined kernels. //
///

// Images constructor
EImageBW8 srcImage;
EImageBW8 dstImage;

// ...

// Source and destination images must have the same size
dstImage.SetSize(&srcImage);

Open eVision User Guide

118

// Perform a Uniform filtering (5x5 kernel)
EasyImage::ConvolUniform(&srcImage, &dstImage, 2);

// Perform a Highpass filtering
EasyImage::ConvolHighpass1(&srcImage, &dstImage);

// Perform a Gradient filtering
EasyImage::ConvolGradient(&srcImage, &dstImage);

// Perform a Sobel filtering
EasyImage::ConvolSobel(&srcImage, &dstImage);

User-Defined Kernel Filtering

///
// This code snippet shows how to apply a convolution //
// operation based on a user-defined kernel. //
///

// Images constructor
EImageBW8 srcImage;
EImageBW8 dstImage;

// ...

// Create and define a user-defined kernel
// (Frei-Chen row gradient, positive only)
EKernel kernel;
kernel.SetKernelData(0.2929f, 0, -0.2929f,

0.4142f, 0, -0.4142f,
0.2929f, 0, -0.2929f);

// Source and destination images must have the same size
dstImage.SetSize(&srcImage);

// Apply the convolution kernel
EasyImage::ConvolKernel(&srcImage, &dstImage, &kernel);

Non-Linear Filtering

Morphological Filtering

///
// This code snippet shows how to apply miscellaneous //
// morphological filtering operations. //
///

// Images constructor
EImageBW8 srcImage;
EImageBW8 dstImage;

// ...

// Source and destination images must have the same size
dstImage.SetSize(&srcImage);

// Perform an erosion (3x3 square kernel)
EasyImage::ErodeBox(&srcImage, &dstImage, 1);

Open eVision User Guide

119

// Perform a dilation (5x3 rectangular kernel)
EasyImage::DilateBox(&srcImage, &dstImage, 2, 1);

// Perform an Open operation (5x5 circular kernel)
EasyImage::OpenDisk(&srcImage, &dstImage, 2);

Hit-and-Miss Transform

//
// This code snippet shows how to highlight the left corner //
// of a rhombus by means of a Hit-and-Miss operation. //
//

// Images constructor
EImageBW8 srcImage;
EImageBW8 dstImage;

// ...

// Create and define a Hit-and-Miss kernel
// corresponding to the left corner of a rhombus
EHitAndMissKernel leftCorner(-1, -1, 1, 1);

// Left column of the kernel

leftCorner.SetValue(-1, 0, EHitAndMissValue_Background);

// Middle column of the kernel
leftCorner.SetValue(0, -1, EHitAndMissValue_Background);
leftCorner.SetValue(0, 0, EHitAndMissValue_Foreground);
leftCorner.SetValue(0, 1, EHitAndMissValue_Background);

// Right column of the kernel
leftCorner.SetValue(1, -1, EHitAndMissValue_Foreground);
leftCorner.SetValue(1, 0, EHitAndMissValue_Foreground);
leftCorner.SetValue(1, 1, EHitAndMissValue_Foreground);

// Source and destination images must have the same size
dstImage.SetSize(&srcImage);

// Apply the Hit-and-Miss kernel
EasyImage::HitAndMiss(&srcImage, &dstImage, leftCorner);

Vector Operations

Path Sampling

//
// This code snippet shows how to retrieve and store the //
// pixel values along a given path together with the //
// corresponding pixel coordinates. //
//

// Image constructor
EImageBW8 srcImage;

// ...

Open eVision User Guide

120

// Vector constructor
EBW8PathVector path;

// Path definition
path.Empty();
for (int i = 0; i < 100; i++)
{

EBW8Path p;
p.X = i;
p.Y = i;
p.Pixel = 128;
path.AddElement(p);

}

// Get the image data along the path
EasyImage::ImageToPath(&srcImage, &path);

Profile Sampling

//
// This code snippet shows how to set, retrieve and store //
// the pixel values along a given line segment. //
//

// Image constructor
EImageBW8 srcImage;

// ...

// Vector constructor
EBW8Vector profile;

// Get the image data along segment (10,510)-(500,40)
EasyImage::ImageToLineSegment(&srcImage, &profile, 10, 510, 500, 40);

// Set all these points to white (255) in the image
EasyImage::LineSegmentToImage(&srcImage, 255, 10, 510, 500, 40);

Statistics

Image Statistics

//
// This code snippet shows how to compute basic image statistics. //
//

// Image constructor
EImageBW8 srcImage;

// ...

// Count the number of pixels above the threshold (128)
INT32 count;
EasyImage::Area(&srcImage, 128, count);

Open eVision User Guide

121

// Compute the pixels' average and standard deviation values
float stdDev, average;
EasyImage::PixelStdDev(&srcImage, stdDev, average);

// Compute the image gravity center (pixels above threshold)
float x, y;
EasyImage::GravityCenter(&srcImage, 128, x, y);

Sliding Windows Statistics

//
// This code snippet shows how to perform sliding windows statistics. //
//

// Images constructor
EImageBW8 srcImage;
EImageBW8 dstImage0, dstImage1;

// ...

// All images must have the same size
dstImage0.SetSize(&srcImage);
dstImage1.SetSize(&srcImage);

// Local average in a 11x11 window
EasyImage::LocalAverage(&srcImage, &dstImage0, 5, 5);

// Local deviation in a 11x11 window
EasyImage::LocalDeviation(&srcImage, &dstImage1, 5, 5);

Histogram-Based Statistics

///
// This code snippet shows how to compute statistics //
// based on an histogram. //
///

// Image constructor
EImageBW8 srcImage;

// ...

// Histogram constructor
EBWHistogramVector histo;

// Compute the histogram
EasyImage::Histogram(&srcImage, &histo);

// Compute the average gray-level value
float average = EasyImage::AnalyseHistogram(&histo, EHistogramFeature_
AveragePixelValue, 0, 255);

// Compute the gray-level standard deviation
float deviation = EasyImage::AnalyseHistogram(&histo, EHistogramFeature_
PixelValueStdDev, 0, 255);

Noise Reduction by Integration

Open eVision User Guide

122

Temporal Noise Reduction

///
// This code snippet shows how to perform noise //
// reduction by temporal averaging. //
///

// Images constructor
EImageBW16 noisyImage, cleanImage;

// 16 bits work image used as an accumulator
EImageBW16 store;

// ...

// All images must have the same size
cleanImage.SetSize(&noisyImage);
store.SetSize(&noisyImage);

// Clear the accumulator image
EasyImage::Oper(EArithmeticLogicOperation_Copy, (EBW16)0, &store);

// Accumulation loop
int n;
for (n=0; n < 10; n++)
{
// Acquire a new image into noisyImage
// ...

// Add this new noisy image into the accumulator
EasyImage::Oper(EArithmeticLogicOperation_Add, &noisyImage, &store, &store);

}

// Perform noise reduction
EasyImage::Oper(EArithmeticLogicOperation_Divide, &store, (EBW16)n, &cleanImage);

Recursive Average

///
// This code snippet shows how to perform noise //
// reduction by recursive averaging. //
///

// Images constructor
EImageBW8 noisyImage, cleanImage;

// 16 bits work image used as an accumulator
EImageBW16 store;

// ...

// All images must have the same size
cleanImage.SetSize(&noisyImage);
store.SetSize(&noisyImage);

// Clear the accumulator image
EasyImage::Oper(EArithmeticLogicOperation_Copy, (EBW16)0, &store);

// Prepare the transfer lookup table (reduction factor = 3)
EBW16Vector lut;
EasyImage::SetRecursiveAverageLUT(&lut, 3.f);

Open eVision User Guide

123

// Perform the noise reduction
EasyImage::RecursiveAverage(&noisyImage, &store, &cleanImage, &lut);

Feature Point Detectors

Harris Corner Detector

//
// This code snippet shows how to retrieve corners' coordinates //
// by means of the Harris corner detector algorithm. //
//

// Image constructor
EImageBW8 srcImage;

// ...

// Harris corner detector
EHarrisCornerDetector harris;
EHarrisInterestPoints interestPoints;
harris.SetIntegrationScale(2.f);

// Perform the corner detection
harris.Apply(srcImage, interestPoints);

// Retrieve the number of corners
unsigned int index = interestPoints.GetPointCount();

// Retrieve the first corner coordinates
EPoint point = interestPoints.GetPoint(0);
float x = point.GetX();
float y = point.GetY();

Canny Edge Detector

///
// This code snippet shows how to highlight edges //
// by means of the Canny edge detector algorithm. //
///

// Images constructor
EImageBW8 srcImage;
EImageBW8 dstImage;

// ...

// Canny edge detector
ECannyEdgeDetector canny;

// Source and destination images must have the same size
dstImage.SetSize(&srcImage);

// Perform the edges detection
canny.Apply(srcImage, dstImage);

Open eVision User Guide

124

Using Flexible Masks

Computing Pixels Average

///
// This code snippet shows how to compute statistics //
// inside a region defined by a flexible mask. //
///

// Images constructor
EImageBW8 srcImage;
EImageBW8 mask;

// ...

// Compute the average value of the source image pixels
// corresponding to the mask do-care areas only
float average;
EasyImage::PixelAverage(&srcImage, &mask, average);

Open eVision User Guide

125

6.3. EasyColor

Colorimetric Systems Conversion
//
// This code snippet shows how to convert a color image //
// from the RGB to the Lab colorimetric system. //
//

// Images constructor
EImageC24 srcImage;
EImageC24 dstImage;

// ...

// Prepare a lookup table for
// the RGB to La*b* conversion
EColorLookup lookup;
lookup.ConvertFromRgb(EColorSystem_Lab);

// Source and destination images must have the same size
dstImage.SetSize(&srcImage);

// Perform the color conversion
EasyColor::Transform(&srcImage, &dstImage, &lookup);

Color Components
//
// This code snippet shows how to create a color image //
// from 3 grayscale images and extract the luminance //
// component from a color image. //
//

// Images constructor
EImageBW8 red, green, blue;
EImageC24 colorImage;
EImageBW8 luminance;

// ...

// Source and destination images must have the same size
colorImage.SetSize(&red);

// Combine the color planes into a color image
EasyColor::Compose(&red, &green, &blue, &colorImage);

// Prepare a lookup table for
// the RGB to LSH conversion
EColorLookup lookup;
lookup.ConvertFromRgb(EColorSystem_Lsh);

// Source and destination images must have the same size
luminance.SetSize(&colorImage);

// Get the Luminance component
EasyColor::GetComponent(&colorImage, &luminance, 0, &lookup);

Open eVision User Guide

126

White Balance
///
// This code snippet shows how to perform white balancing. //
///

// Images constructor
EImageC24 srcImage, dstImage;
EImageC24 whiteRef;

// ...

// Create a lookup table
EColorLookup lut;

// Measure the calibration values from a white reference image
float r, g, b;
EasyImage::PixelAverage(&whiteRef, r, g, b);

// Prepare the lookup table for
// a white balance operation
lut.WhiteBalance(1.00f, EasyColor::GetCompensateNtscGamma(), r, g, b);

// Source and destination images must have the same size
dstImage.SetSize(&srcImage);

// Perform the white balance operation
lut.Transform(&srcImage, &dstImage);

Pseudo-Coloring
///
// This code snippet shows how to perform pseudo-coloring. //
///

// Images constructor
EImageBW8 srcImage;
EImageC24 dstImage;

// ...

// Create a pseudo-color lookup table
EPseudoColorLookup pcLut;

// Define a shade of pure tints, from red to blue
pcLut.SetShading(EC24(255, 0, 0), EC24(0, 0, 255), EColorSystem_Ish);

// Source and destination images must have the same size
dstImage.SetSize(&srcImage);

// Generate the pseudo-colored image
EasyColor::PseudoColor(&srcImage, &dstImage, &pcLut);

Bayer Pattern Decoding
//
// This code snippet shows how to perform Bayer pattern decoding. //
//

Open eVision User Guide

127

// Images constructor
EImageBW8 bayerImage;
EImageC24 dstImage;

// ...

// Source and destination images must have the same size
dstImage.SetSize(&bayerImage);

// Convert to true color with simple interpolation, default parity assumed
EasyColor::BayerToC24(&bayerImage, &dstImage);

Open eVision User Guide

	1. Dealing with Pixel Containers and Files
	1.1. Pixel Container Definition
	1.2. Pixel Container Types
	1.3. Supported Image File Types
	1.4. Pixel and File Types Compatibility
	1.5. Color Types

	2. Manipulating Pixels Containers and Files
	2.1. Pixel Container File Save
	2.2. Pixel Container File Load
	2.3. Memory Allocation
	2.4. Image and Depth Map Buffer
	2.5. Image Drawing and Overlay
	2.6. 3D Rendering of 2D Images
	2.7. Vector Types and Main Properties
	2.8. ROI Main Properties
	2.9. Flexible Masks
	2.10. Profile

	3. Image Pre-Processing Libraries
	3.1. EasyImage - Pre-Processing Grayscale Image
	Intensity Transformation
	Thresholding
	Arithmetic and Logic
	Non-Linear Filtering
	Geometric Transforms
	Noise Reduction and Estimation
	Scalar Gradient
	Vector Operations
	Canny Edge Detector
	Harris Corner Detector
	Overlay
	Operations on Interlaced Video Frames
	Flexible Masks in EasyImage

	3.2. EasyColor - Pre-processing Color Images
	Bayer Transform
	LUT for Gain/Offset (Color)
	LUT for Color Calibration
	LUT for Color Balance

	3.3. EasyImage - Computing Image Statistics
	3.4. EasyDeepLearning - Classifying Images
	What EasyDeepLearning can do
	Workflow
	EasyDeepLearning Studio
	Managing the Dataset
	Using the Classifier
	Accelerating the Computation with a NVIDIA GPU

	4. Using Open eVision Studio
	4.1. Selecting your Programming Language
	4.2. Navigating the Interface
	4.3. Running Tools on Images
	Step 1: Selecting a Tool
	Step 2: Opening an Image
	Step 3: Managing ROIs
	Step 4: Configuring the Tool
	Step 5: Running the Tool and Checking Execution Time
	Step 6: Using the Generated Code

	4.4. Pre-Processing and Saving Images

	5. Tutorials
	5.1. EasyImage
	Converting a Gray-Level Image into a Binary Image
	Extracting an Object Contour
	Transforming a Gray-Level image into its Black and White Edges
	Detecting the Corners of an Object Using Harris Corner Detector
	Detecting a Horizontal or Vertical Line Using Projection
	Creating a Flexible Mask
	Computing Gray-Level Statistics Using a Flexible Mask
	Detecting the Corners of an Object Using Hit-and-Miss Transform
	Extracting a Vector Using Profile Function
	Enhancing an X-ray image
	Correcting Non-Uniform Illumination
	Correcting Shear Effect
	Correcting Skew Effect

	5.2. EasyColor
	Performing Thresholding on Color Images
	Performing Color Segmentation

	6. Code Snippets
	6.1. Basic Types
	Loading and Saving Images
	Interfacing Third-Party Images
	Retrieving Pixel Values
	ROI Placement
	Vector Management
	Exception Management

	6.2. EasyImage
	Thresholding
	Single Thresholding
	Double Thresholding
	Histogram-Based Single Thresholding
	Histogram-Based Double Thresholding
	Arithmetic and Logic Operations
	Convolution
	Pre-Defined Kernel Filtering
	User-Defined Kernel Filtering
	Non-Linear Filtering
	Morphological Filtering
	Hit-and-Miss Transform
	Vector Operations
	Path Sampling
	Profile Sampling
	Statistics
	Image Statistics
	Sliding Windows Statistics
	Histogram-Based Statistics
	Noise Reduction by Integration
	Feature Point Detectors
	Using Flexible Masks

	6.3. EasyColor
	Colorimetric Systems Conversion
	Color Components
	White Balance
	Pseudo-Coloring
	Bayer Pattern Decoding

