
Open eVision
Text Identification Tools

USER GUIDE

© EURESYS s.a. 2018 - Document D127ET-Text Identification Tools C++-Open eVision-2.6.1.1110 built on 2018-11-20

2

Terms of Use

EURESYS s.a. shall retain all property rights, title and interest of the documentation of the hardware and the
software, and of the trademarks of EURESYS s.a.

All the names of companies and products mentioned in the documentation may be the trademarks of their
respective owners.

The licensing, use, leasing, loaning, translation, reproduction, copying or modification of the hardware or the
software, brands or documentation of EURESYS s.a. contained in this book, is not allowed without prior notice.

EURESYS s.a. may modify the product specification or change the information given in this documentation at any
time, at its discretion, and without prior notice.

EURESYS s.a. shall not be liable for any loss of or damage to revenues, profits, goodwill, data, information systems or
other special, incidental, indirect, consequential or punitive damages of any kind arising in connection with the use
of the hardware or the software of EURESYS s.a. or resulting of omissions or errors in this documentation.

This documentation is provided with Open eVision 2.6.1 (doc build 1110).
© 2018 EURESYS s.a.

Open eVision User Guide

3

Contents

1. Dealing with Pixel Containers and Files 5
1.1. Pixel Container Definition 5
1.2. Pixel Container Types 7
1.3. Supported Image File Types 8
1.4. Pixel and File Types Compatibility 9
1.5. Color Types 11

2. Manipulating Pixels Containers and Files 12
2.1. Pixel Container File Save 12
2.2. Pixel Container File Load 14
2.3. Memory Allocation 14
2.4. Image and Depth Map Buffer 15
2.5. Image Drawing and Overlay 18
2.6. 3D Rendering of 2D Images 19
2.7. Vector Types and Main Properties 20
2.8. ROI Main Properties 24
2.9. Flexible Masks 25
2.10. Profile 29

3. Text Identification Tools 31
3.1. EasyOCR - Reading Texts 32
Workflow 32
Learning Process 32
Segmenting 33
Recognition 34
3.2. EasyOCR2 - Reading Texts (Improved) 36
3.3. EasyOCV - Validating Texts 44

Learning Passes 47
Inspect and compare image with model 48

Degrees of Freedom 48
Quality Indicators 50
Advanced Features 52
Programming with EasyOCV 53

4. Using Open eVision Studio 59
4.1. Selecting your Programming Language 60
4.2. Navigating the Interface 61
4.3. Running Tools on Images 62

Step 1: Selecting a Tool 62
Step 2: Opening an Image 63
Step 3: Managing ROIs 63
Step 4: Configuring the Tool 65
Step 5: Running the Tool and Checking Execution Time 66
Step 6: Using the Generated Code 68

4.4. Pre-Processing and Saving Images 69

Open eVision User Guide

4

5. Tutorials 71
5.1. EasyOCR 71

Learning Characters and Creating an EasyOCR Font 71
Recognizing Characters According to a Font 73

5.2. EasyOCV 74
Creating an EasyOCV Model File 74
Inspecting Characters in an Image According to a Model File 75
Inspecting Characters in an ROI According to a Model File 76
Learning a Model Using Statistics (1) 78
Learning a Model Using Statistics (2) 81

6. Code Snippets 83
6.1. Basic Types 84

Loading and Saving Images 84
Interfacing Third-Party Images 84
Retrieving Pixel Values 84
ROI Placement 85
Vector Management 85
Exception Management 86

6.2. EasyOCR 87
Learning Characters 87
Recognizing Characters 87

6.3. EasyOCR2 88
Detecting Characters 88
Learning Characters 89
Reading Characters 90

6.4. EasyOCV 92
Creating an OCV Model 92
Inspecting 92
Setting Inspection Parameters 93
Retrieving Diagnostics 94
Statistical Learning 94

Open eVision User Guide

5

1. Dealing with Pixel Containers
and Files

1.1. Pixel Container Definition
Images

Open eVision image objects contain image data that represents rectangular images.

Each image object has a data buffer, accessible via a pointer, where pixel values are stored
contiguously, row by row.

Image main parameters

An Open eVision image object has a rectangular array of pixels characterized by EBaseROI
parameters .
n Width is the number of columns (pixels) per row of the image.
n Height is the number of rows of the image. (Maximum width / height is 32,767 (215-1) in

Open eVision 32-bit, and 2,147,483,647 (231-1) in Open eVision 64-bit.)
n Size is the width and height.

The Plane parameter contains the number of color components. Gray-level images = 1. Color
images = 3.

Classes

Image and ROI classes derive from abstract class EBaseROI and inherit all its properties.

Open eVision User Guide

6

Depth maps

A depth map is way to represent a 3D object using a 2D grayscale image, each pixel in the
image representing a 3D point.

The pixel coordinates are the representation of the X and Y coordinates of the point while the
grayscale value of the pixel is a representation of the Z coordinate of the point.

Point clouds

A point cloud (https://en.wikipedia.org/wiki/Point_cloud) is an unstructured set of 3D points
representing discrete positions on the surface of an object.

Open eVision User Guide

7

3D point clouds are produced by various 3D scanning techniques, such as Laser Triangulation,
Time of Flight or Structured Lighting.

1.2. Pixel Container Types
Images

Several image types are supported according to their pixel types: black and white, gray levels,
color, etc.

Easy.GetBestMatchingImageType returns the best matching image type for a given file on disk.

BW1
1-bit black and white images (8 pixels
are stored in 1 byte)

EImageBW1

BW8
8-bit grayscale images (each pixel is
stored in 1 byte)

EImageBW8

BW16
16-bit grayscale images (each pixel is
stored in 2 bytes)

EImageBW16

BW32
32-bit grayscale images (each pixel is
stored in 4 bytes)

EImageBW32

C15

15-bit color images (each pixel is
stored in 2 bytes).
Compatible with Microsoft® Windows
RGB15 color images and MultiCam
RGB15 format.

EImageC15

Open eVision User Guide

8

C16

16-bit color images (each pixel is
stored in 2 bytes).
Compatible with Microsoft® Windows
RGB16 color images and MultiCam
RGB16 format.

EImageC16

C24

C24 images store 24-bit color images
(each pixel is stored in 3 bytes).
Compatible with Microsoft® Windows
RGB24 color images and MultiCam
RGB24 format.

EImageC24

C24A

C24A images store 32-bit color images
(each pixel is stored in 4 bytes).
Compatible with Microsoft® Windows
RGB32 color images and MultiCam
RGB32 format.

EImageC24A

Depth Maps

8 and 16-bit depth map values are stored in buffers compatible with the 2D Open eVision
images.

EDepth8
8-bit depth map (each pixel is stored in
1 byte as an integer)

EDepthMap8

EDepth16
16-bit depth map (each pixel is stored
in 2 bytes as a fixed point)

EDepthMap16

EDepth32f
32-bit depth map (each pixel is stored
in 4 bytes as a float)

EDepthMap32f

Point Clouds

Point Cloud
Set of points coordinates (stored as
float)

E3DPointCloud

1.3. Supported Image File Types

Type Description

BMP Uncompressed image data format (Windows Bitmap Format)

JPEG
Lossy data compression standard issued by the Joint Photographic Expert Group
registered as ISO/IEC 10918-1. Compression irretrievably looses quality.

JFIF JPEG File Interchange Format

Open eVision User Guide

9

Type Description

JPEG-
2000

Data compression standard issued by the Joint Photographic Expert Group
registered as ISO/IEC 15444-1 and ISO/IEC 15444-2. Open eVision supports only
lossy compression format, file format and code stream variants.

- code stream describes the image samples.
- file format includes meta-information such as image resolution and color
space.

PNG Lossless data compression method (Portable Network Graphics).

Serialized
Euresys proprietary image file format obtained from the serialization of Open
eVision image objects.

TIFF

Tag Image File Format is currently controlled by Adobe Systems and uses the
LibTIFF third-party library to process images written for 5.0 or 6.0 TIFF
specification.

File save operations are lossless and use CCITT 1D compression for 1-bit binary
pixel types and LZW compression for all others.

File load operations support all TIFF variants listed in the LibTIFF specification.

1.4. Pixel and File Types Compatibility
Depth map to image conversion

For a 8- and 16-bit depth maps, the AsImage() method returns a compatible image object
(respectively EImageBW8 and EImageBW16) that can be used with Open eVision’s 2D processing
features.

Pixel and file types compatibility

Pixel access

The recommended method to access pixels is to use SetImagePtr and GetImagePtr to embed
the image buffer access in your own code. See also Image Construction and Memory Allocation
and Retrieving Pixel Values.

Use of the following methods should be limited because of the overhead incurred by each
function call:

Direct access

EROIBW8::GetPixel and SetPixel methods are implemented in all image and ROI classes to
read and write a pixel value at given coordinates. To scan all pixels of an image, you could run
a double loop on the X and Y coordinates and use GetPixel or SetPixel each iteration, but
this is not recommended.

Open eVision User Guide

10

For performance reasons, these accessors should not be used when a significant number of pixel
needs to be processed. When that is the case, retrieving the internal buffer pointer using
GetBufferPtr() and iterating on the pointer is recommended.

Quick Access to BW8 Pixels

In BW8 images, a call to EBW8PixelAccessor::GetPixel or SetPixel will be faster than a
direct EROIBW8::GetPixel or SetPixel.

Supported structures

n EBW1, EBW8, EBW32
n EC15 (*), EC16 (*), EC24 (*)
n EC24A

n EDepth8, EDepth16, EDepth32f,

(*) These formats support RGB15 (5-5-5 bit packing), RGB16 (5-6-5 bit packing) and RGB32 (RGB +
alpha channel) but they must be converted to/from EC24 using EasyImage::Convert before
any processing.

Note: Transition with versions prior to eVision 6.5 should be seamless: image pixel types were
defined using typedef of integral types, pixel values were treated as unsigned numbers and
implicit conversion to/from previous types is provided.

Pixel and File Type compatibility during Load or Save operations

Type BMP JPEG JPEG2000 PNG TIFF Serialized

BW1 Ok N/A N/A Ok Ok Ok

BW8 Ok Ok Ok Ok Ok Ok

BW16 N/A N/A Ok Ok Ok (***) Ok

BW32 N/A N/A N/A N/A Ok (***) Ok

C15 Ok Ok (**) Ok (**) Ok (**) Ok (**) Ok

C16 Ok Ok (**) Ok (**) Ok (**) Ok (**) Ok

C24 Ok Ok Ok Ok Ok (**) Ok

C24A Ok N/A N/A Ok N/A Ok

Depth8 Ok Ok Ok Ok Ok Ok

Depth16 N/A N/A Ok Ok Ok (***) Ok

Depth32f N/A N/A N/A N/A N/A Ok

N/A: Not supported. An exception occurs if you use the combination.

Ok: Image integrity is preserved with no data loss (apart from JPEG and JPEG2000, lossy
compression).

(**) C15 and C16 formats are automatically converted into C24 during the save operation.

(***) BW16 and BW32 are not supported by Baseline TIFF readers.

Open eVision User Guide

11

1.5. Color Types
EISH: Intensity, Saturation, Hue color system.

ELAB: CIE Lightness, a*, b* color system.

ELCH: Lightness, Chroma, Hue color system.

ELSH: Lightness, Saturation, Hue color system.

ELUV: CIE Lightness, u*, v* color system.

ERGB: NTSC/PAL/SMPTE Red, Green, Blue color system.

EVSH: Value, Saturation, Hue color system.

EXYZ: CIE XYZ color system.

EYIQ: CCIR Luma, Inphase, Quadrature color system.

EYSH: CCIR Luma, Saturation, Hue color system.

EYUV: CCIR Luma, U Chroma, V Chroma color system.

Open eVision User Guide

12

2. Manipulating Pixels Containers
and Files

2.1. Pixel Container File Save
Images and Depth Maps

The Save method of an image or the SaveImage method of a depth map or a ZMap saves the
image data of an image or of a depth map or a ZMap object into a file using two arguments:
n Path: path, filename, and file name extension.
n Image File Type. If omitted, the file name extension is used.

Images bigger than 65,536 (either width or height) must be saved in Open eVision proprietary
format.

Save throws an exception when:
n The requested image file format is incompatible with the image pixel types
n The Auto file type selection method and the file name extension is not supported

When saving a 16-bit depth map, the fixed point precision is lost and the pixels are considered as 16-
bit integers.

image file type arguments

Argument Image File Type

EImageFileType_Auto(*) Automatically determined by the filename extension. See below.

EImageFileType_Euresys Open eVision Serialization.

EImageFileType_Bmp Windows bitmap - BMP

EImageFileType_Jpeg JPEG File Interchange Format - JFIF

EImageFileType_Jpeg2000 JPEG 2000 File format/Code Stream -JPEG2000

EImageFileType_Png Portable Network Graphics - PNG

EImageFileType_Tiff Tagged Image File Format - TIFF

(*) Default value.

Open eVision User Guide

13

Assigned image file type if argument is ImageFileType_Auto or missing

File name extension(*) Automatically assigned image file type

BMP Windows Bitmap Format

JPEG, JPG JPEG File Interchange Format - JFIF

JP2 JPEG 2000 file format

J2K, J2C JPEG 2000 Code Stream

PNG Portable Network Graphics

TIFF, TIF Tagged Image File Format

(*) Case-insensitive.

Saving JPEG and JPEG2000 lossy compressions

SaveJpeg and SaveJpeg2K specify the compression quality when saving compressed images.
They have two arguments:
n Path: a string of characters including the path, filename, and file name extension.
n Compression quality of the image file, an integer value in range [0: 100].

SaveJpeg saves image data using JPEG File Interchange Format – JFIF.
SaveJpeg2K saves image data using JPEG 2000 File format.

JPEG compression values

JPEG compression Description

JPEG_DEFAULT_QUALITY (-1) Default quality (*)

100 Superb image quality, lowest compression factor

75 Good image quality (*)

50 Normal image quality

25 Average image quality

10 Bad Image quality

(*) The default quality corresponds to the good image quality (75).

Representative JPEG 2000 compression quality values

JPEG 2000 compression Description

-1 Default quality (*)

1 Highest image quality, lowest compression factor

Open eVision User Guide

14

JPEG 2000 compression Description

16 Good Image Quality (*) (16:1 rate)

512 Lowest image quality, highest compression factor

(*) The default quality corresponds to the good image quality (16:1 rate).

Point Clouds

● Use the Save method to save the point cloud in Open eVision proprietary file format.

● Use the SavePCD method to save the point cloud in a file compatible with other software
such as PCL (Point Cloud Library).

2.2. Pixel Container File Load
Images and Depth Maps

● Use the Load method to load image data into an image object:

□ It has one argument: the path: path, filename, and file name extension.

□ File type is determined by the file format.

□ The destination image is automatically resized according to the size of the image on disk.

● The Load method throws an exception when:

□ File type identification fails

□ File type is incompatible with pixel type of the image object

Serialized image files of Open eVision 1.1 and newer are incompatible with serialized image files of
previous Open eVision versions.

When loading a BW16 image (with integer values) in a depth map, the fixed point precision set in the
depth map (0 by default) is left unchanged and used.

Point Clouds

● Use the Load method to save the point cloud in Open eVision proprietary file format.

● Use the LoadPCD method to save the point cloud in a file compatible with other software
such as PCL (Point Cloud Library).

2.3. Memory Allocation
An image can be constructed with an internal or external memory allocation.

Open eVision User Guide

15

Internal Memory Allocation

The image object dynamically allocates and unallocates a buffer. Memory management is
transparent.
When the image size changes, re-allocation occurs.
When an image object is destroyed, the buffer is unallocated.
To declare an image with internal memory allocation:
1. Construct an image object, for instance EImageBW8, either with width and height arguments,

OR using the SetSize function.
2. Access a given pixel. There are several functions that do this. GetImagePtr returns a pointer

to the first byte of the pixel at given coordinates.

External Memory Allocation

The user controls buffer allocation, or links a third-party image in the memory buffer to an Open
eVision image.
Image size and buffer address must be specified.
When an image object is destroyed, the buffer is unaffected.
To declare an image with external memory allocation:
1. Declare an image object, for instance EImageBW8.
2. Create a suitably sized and aligned buffer (see Image Buffer).
3. Set the image size with the SetSize function.
4. Access the buffer with GetImagePtr. See also Retrieving Pixel Values.

2.4. Image and Depth Map Buffer
Image and depth map pixels are stored contiguously, from top row to bottom, from left to right,
in Windows bitmap format (top-down DIB1) into an associated buffer.

The buffer address is a pointer to the start address of the buffer, which contains the top left
pixel of the image.

1device-independent bitmap

Open eVision User Guide

16

Image Buffer pitch

● Alignment must be a multiple of 4 bytes.

● Open eVision 1.2 onwards default pitch is 32 bytes for performance reasons (Open eVision
1.1.5 was 8 bytes).

Memory Layout

● EImageBW1 stores 8 pixels in one byte.

Example memory layout of the first 2 pixels of a BW1 image buffer:

● EImageBW8 and EDepthMap8 store each pixel in one byte.

Example memory layout of the first pixels of a BW8 image buffer:

● EImageBW16 stores each pixel in a 16-bit word (two bytes).

Open eVision User Guide

17

Example memory layout of the first pixels of a BW16 image buffer:

● EImageC15 stores each pixel in 2 bytes. Each color component is coded with 5-bits.
The 16th bit is left unused.

Example memory layout of the first pixels of a C15 image buffer:

● EImageC16 stores each pixel in 2 bytes. The first and third color components are coded with
5-bits.
The second color component is coded with 6-bits.

Example memory layout of the first pixels of a C16 image buffer:

● EDepthMap16 store each pixel in 2 bytes using a fixed point format.

● EImageC24 stores each pixel in 3 bytes. Each color component is coded with 8-bits.

Open eVision User Guide

18

Example memory layout of the first pixels of a C24 image buffer:

● EImageC24A stores each pixel in 4 bytes. Each color component is coded with 8-bits.
The alpha channel is also coded with 8-bits.

Example memory layout of the first pixels of a C24A image buffer:

● EDepthMap32f store each pixel in 4 bytes using a float format.

2.5. Image Drawing and Overlay
n Drawing uses Windows GDI1 system calls.

MFC2 applications normally use OnDraw event handler to draw, where a pointer to a device
context is available.
Borland/CodeGear's OWL or VCL use a Paint event handler.

n The color palette in 256-color display mode gives optimal rendering. Gray-level images can
be improved using LUT3s (using histogram stretching techniques or pseudo-coloring).

n The zoom can be different horizontally and vertically.
n DrawFrameWithCurrentPen method draws a frame.
n Non-destructive overlaying drawing operations do not alter the image contents, such as

MoveTo/LineTo.

1Graphics Device Interface
2Microsoft Foundation Class
3LookUp Tables

Open eVision User Guide

19

n Destructive overlaying drawing operations alter the image contents by drawing inside the
image such as Easy::OpenImageGraphicContext. Gray-level [color] images can only
receive a gray-level [color] overlay.

2.6. 3D Rendering of 2D Images
These images are viewed by rotating them around the X-axis, then the Y-axis.

Gray 3D Rendering

Easy::Render3D prepares a 3-dimensional rendering where gray-level values are altitudes.
Magnification factors in the three directions (X = width, Y = height and Z = depth) can be given.
The rendered image appears as independent dots whose size can be adjusted to make the
surface more or less opaque.

3D rendering

Color Histogram 3D Rendering

Easy::RenderColorHistogram prepares a 3-dimensional rendering of a color image
histogram.
The pixels are drawn in the RGB space (not XY-plane) to show clustering and dispersion of RGB
values.
This function can process pixels in other color systems (using EasyColor to convert), but the raw
RGB image is required to display the pixels in their usual colors.

Magnification factors in all three directions (X = red, Y = green and Z = blue) can be given.

Color histogram rendering

Open eVision User Guide

20

2.7. Vector Types and Main Properties
A vector is a one-dimensional array of pixels (taken from an image profile or contour).

EVector is the base class for all vectors. It contains all non-type-specific methods, mainly for
counting elements and serialization.

Profile in a C24 image RGB values plot along profile
RGB values array
(EC24Vector)

A vector manages an array of elements. Memory allocation is transparent, so vectors can be
resized dynamically. Whenever a function uses a vector, the vector type, size and structure are
automatically adjusted to suit the function needs.

The use of vectors is quite straightforward:
1. Create a vector of the appropriate type, using its constructor and pre-allocate elements if

required.

Vector types

n EBW8Vector: a sequence of gray-level pixel values, often extracted from an image profile
(used by EasyImage::Lut, EasyImage::SetupEqualize,
EasyImage::ImageToLineSegment, EasyImage::LineSegmentToImage,
EasyImage::ProfileDerivative, ...).

Graphical representation of an EBW8Vector (see Draw method)

n EBW16Vector: a sequence of gray-level pixel values, using an extended range (16 bits),
mainly for intermediate computations.

Open eVision User Guide

21

Graphical representation of an EBW16Vector

n EBW32Vector: a sequence of gray-level pixel values, using an extended range (32 bits),
mainly for intermediate computations
(used in EasyImage::ProjectOnARow, EasyImage::ProjectOnAColumn, ...).

Graphical representation of an EBW32Vector

n EC24Vector: a sequence of color pixel values, often extracted from an image profile
(used by EasyImage::ImageToLineSegment, EasyImage::LineSegmentToImage,
EasyImage::ProfileDerivative, ...).

Graphical representation of an EC24Vector

n EBW8PathVector: a sequence of gray-level pixel values, extracted from an image profile
or contour, with corresponding pixel coordinates
(used by EasyImage::ImageToPath, EasyImage::PathToImage, ...).

Open eVision User Guide

22

Graphical representation of an EBW8PathVector (see Draw method)

n EBW16PathVector: a sequence of gray-level pixel values, extracted from an image profile
or contour, with corresponding pixel coordinates
(used by EasyImage::ImageToPath, EasyImage::PathToImage, ...).

Graphical representation of an EBW16PathVector (see Draw method)

n EC24PathVector: a sequence of color pixel values, extracted from an image profile or
contour, with corresponding pixel coordinates
(used by EasyImage::ImageToPath, EasyImage::PathToImage, ...).

Graphical representation of an EC24PathVector (see Draw method)

n EBWHistogramVector: a sequence of frequency counts of pixels in a BW8 or BW16 image
(used by EasyImage::IsodataThreshold, EasyImage::Histogram,
EasyImage::AnalyseHistogram, EasyImage::SetupEqualize, ...).

Open eVision User Guide

23

Graphical representation of an EBWHistogramVector (see Draw method)

n EPathVector: a sequence of pixel coordinates. The corresponding pixels need not be
contiguous
(used by EasyImage::PathToImage and EasyImage::Contour).

Graphical representation of an EPathVector (see Draw method)

n EPeakVector: peaks found in an image profile
(used by EasyImage::GetProfilePeaks).

n EColorVector: a description of colors
(used by EasyColor::ClassAverages and EasyColor::ClassVariances).

2. Fill a vector with values. First empty it, using the EVector::Empty member, then add
elements one at a time by calling the EC24Vector::AddElement member. You can access
any element by means of indexing.

3. Access a vector element, either for reading or writing. Use the brackets operator, for
instance, EC24Vector::operator[].

4. Determine the current number of elements, use member EVector::NumElements.
5. Draw the vector.

A pixel vector is a plot of the element values as a function of the element index, so its
graphical appearance depends on its type. You can draw a vector in a window. For legibility,
the drawing should appear on a neutral background.
Drawing is done in the device context associated to the desired window. By default, curves
are drawn in blue, annotations are drawn in black. The following parameters can be defined:
graphicContext, width, height, origin, origin, color0, color1, color2.
The EC24Vector has three curves drawn instead of one, each corresponding to a color
component. By default, red, blue and green pens are used.

Open eVision User Guide

24

2.8. ROI Main Properties
ROIs are defined by a width, a height, and origin x and y coordinates.
The origins are specified with respect to the top left corner in the parent image or ROI.
The ROI must be wholly contained in its parent image.
The processing/analysis time of a BW1 ROI is faster if OrgX and Width are multiples of 8.

Save and load

You can save or load an ROI as a separate image, to be used as if it was a full image. The ROIs
perform no memory allocation at all and never duplicate parts of their parent image, the
parent image provides them with access to its image data.

The image size of the new file must match the size of the ROI being loaded into it. The image
around the ROI remains unchanged.

ROI Classes

An Open eVision ROI inherits parameters from the abstract class EBaseROI.

There are several ROI types, according to their pixel type. They have the same characteristics as
the corresponding image types.
n EROIBW1

n EROIBW8

n EROIBW16

n EROIBW32

n EROIC15

n EROIC16

n EROIC24

n EROIC24A

Attachment

An ROI must be attached to a parent (image/ROI) with parameters that set the parent, position
and size, and these links are updated transparently, avoiding dangling pointers.
A normal image cannot be attached to another image or ROI.

Nesting

Set and Get functions change or query the width, height and position of the origin of an ROI,
with respect to its immediate or topmost parent image.

An image may accommodate an arbitrary number of ROIs, which can be nested in a
hierarchical way. Moving the ROI also moves the embedded ROIs accordingly. The image/ROI
classes provide several methods to traverse the hierarchy of ROIs associated with an image.

Open eVision User Guide

25

Nested ROIs: Two sub-ROIs attached to an ROI, itself attached to the parent image

Cropping

CropToImage crops an ROI which is partially out of its image. The resized ROI never grows.
An exception is thrown if a function attempts to use an ROI that has limits that extend outside
of the parents.

Note: (In Open eVision 1.0.1 and earlier, an ROI was silently resized or repositioned when placed
out of its image and sometimes grew. If ROI limits extended outside parents, they were silently
resized to remain within parent limits.)

Resizing and moving

n ROIs can easily be resized and positioned by two functions and dragging handles:
n EBaseROI::Drag adjusts the ROI coordinates while the cursor moves.
n EBaseROI::HitTest informs if the cursor is placed over a dragging handle. Once the

handle is known, the cursor shape can be changed by an OnSetCursor MFC event
handler. HitTest is unpredictable if called while dragging is in progress.
HitTest can be used in an OnSetCursor MFC event handler to change the cursor shape, or
before a dragging operation like OnLButtonDown,
(or EvSetCursor and EvLButtonDown in Borland/CodeGear's OWL)
(or FormMouseMove and FormMouseDown in Borland/CodeGear's VCL).
In VB6, MouseDown, MouseMove,MouseUp events return the current cursor position in
twips rather than pixels, so conversion is mandatory.

2.9. Flexible Masks
ROIs vs flexible masks

ROIs and masks restrict processing to part of an image:
n "ROI Main Properties" on the previous page apply to all Open eVision functions. Using

Regions of Interest accelerates processing by reducing the number of pixels. Open eVision
supports hierarchically nested rectangular ROIs.

n Flexible Masks are recommended to process disconnected ROIs or non-rectangular shapes.
They are supported by some EasyObject and EasyImage library functions.

Open eVision User Guide

26

Flexible Masks

A flexible mask is a BW8 image with the same height and width as the source image. It contains
shapes of areas that must be processed and ignored areas (that will not be considered during
processing):
n All pixels of the flexible mask having a value of 0 define the ignored areas.
n All pixels of the flexible mask having any other value than 0 define the areas to be processed.

Source image Associated mask Processed masked image

A flexible mask can be generated by any application that outputs BW8 images and by some
EasyObject and EasyImage functions.

Flexible Masks in EasyImage

Source image (left) and mask variable (right)

Simple steps to use flexible masks in Easyimage

1. Call the functions from EasyImage that take an input mask as an argument. For instance,
one can evaluate the average value of the pixels in the white layer and after in the black
layer.

2. Display the results.

Resulting image

EasyImage Functions that support flexible masks

n EImageEncoder::Encode has a flexible mask argument for BW1, BW8, BW16, and C24
source images.

Open eVision User Guide

27

n AutoThreshold.
n Histogram (function HistogramThreshold has no overload with mask argument).
n RmsNoise, SignalNoiseRatio.
n Overlay (no overload with mask argument for BW8 source images).
n ProjectOnAColumn, ProjectOnARow (Vector projection).
n ImageToLineSegment, ImageToPath (Vector profile).

Flexible Masks in EasyObject

A flexible mask can be generated by any application that outputs BW8 images or uses the Open
eVision image processing functions.
EasyObject can use flexible masks to restrict blob analysis to complex or disconnected shaped
regions of the image.

If an object of interest has the same gray level as other regions of the image, you can define
"keep" and "ignore" areas using flexible masks and Encode functions.

A flexible mask is a BW8 image with the same height and width as the source image.
n A pixel value of 0 in the flexible mask masks the corresponding source image pixel so it

doesn't appear in the encoded image.
n Any other pixel value in the flexible mask causes the pixel to be encoded.

EasyObject functions that create flexible masks

Source image

1) ECodedImage2::RenderMask: from a layer of an encoded image

1. To encode and extract a flexible mask, first construct a coded image from the source image.
2. Choose a segmentation method (for the image above the default method

GrayscaleSingleThreshold is suitable).
3. Select the layer(s) of the coded image that should be encoded (i.e. white and black layers

using minimum residue thresholding).
4. Make the mask image the desired size using mask.SetSize(sourceImage.GetWidth(),

sourceImage.GetHeight()).
5. Exploit the flexible mask as an argument to ECodedImage2::RenderMask.

Open eVision User Guide

28

BW8 resulting image that can be used as a flexible mask

2) ECodedElement::RenderMask: from a blob or hole

1. Select the coded elements of interest.
2. Create a loop extracting a mask from selected coded elements of the coded image using

ECodedElement::RenderMask.
3. Optionally, compute the feature value over each of these selected coded elements.

BW8 resulting image that can be used as a flexible mask

3) EObjectSelection::RenderMask: from a selection of blobs

EObjectSelection::RenderMask can, for example, discard small objects resulting from
noise.

BW8 resulting image that can be used as a flexible mask

Open eVision User Guide

29

Example: Restrict the areas encoded by EasyObject

Find four circles (left) Flexible mask can isolate the central chip (right)

1. Declare a new ECodedImage2 object.
2. Setup variables: first declare source image and flexible mask, then load them.
3. Declare an EImageEncoder object and, if applicable, select the appropriate segmenter.

Setup the segmenter and choose the appropriate layer(s) to encode.
4. Encode the source image. Encoding a layer with just the area in the flexible mask is then

pretty straightforward.
We see that the circles are correctly segmented in the black layer with the grayscale single
threshold segmenter:

5. Select all objects of the coded image.
6. Select objects of interest by filtering out objects that are too small.
7. Display the blob feature by iterating over the selected objects to display the chosen feature.

2.10. Profile
Profile Sampling

A profile is a series of pixel values sampled along a line/path/contour in an image.
n EasyImage::ImageToLineSegment copies the pixel values along a given line segment

(arbitrarily oriented and wholly contained within the image) to a vector. The vector length is
adjusted automatically. This function supports flexible mask.

n A path is a series of pixel coordinates stored in a vector.
EasyImage::ImageToPath copies the corresponding pixel values to the vector. This
function supports flexible mask.

Open eVision User Guide

30

n A contour is a closed or not (connected) path, forming the boundary of an object.
EasyImage::Contour follows the contour of an object, and stores its constituent pixels
values inside a profile vector.

Profile Analysis

The profile can be processed to find peaks or transitions:
n A transition corresponds to an object edge (black to white or white to black). It can be

detected by taking the first derivative of the signal (which transforms transitions (edges) into
peaks) and looking for peaks in it.
EasyImage::ProfileDerivative computes the first derivative of a profile extracted from a
gray-level image.
The EBW8 data type only handles unsigned values, so the derivative is shifted up by 128.
Values under [above] 128 correspond to negative [positive] derivative (decreasing [increasing]
slope).

n A peak is the portion of the signal that is above [or below] a given threshold - the maximum
or minimum of the signal. This may correspond to the crossing of a white or black line or
thin feature. It is defined by its:
n Amplitude: difference between the threshold value and the max [or min] signal value.
n Area: surface between the signal curve and the horizontal line at the given threshold.

EasyImage::GetProfilePeaks detects max and min peaks in a gray-level profile. To
eliminate false peaks due to noise, two selection criteria are used. The result is stored in a
peaks vector.

Profile Insertion Into an Image

EasyImage::LineSegmentToImage copies the pixel values from a vector or constant to the
pixels of a given line segment (arbitrarily oriented and wholly contained within the image).

EasyImage::PathToImage copies the pixel values from a vector or a constant to the pixels of
a given path.

Open eVision User Guide

31

3. Text Identification Tools

Open eVision User Guide

32

3.1. EasyOCR - Reading Texts
EasyOCR optical character recognition library reads short texts (such as serial numbers, part
numbers and dates).

It uses font files (pre-defined OCR-A, OCR-B and Semi standard fonts, or other learned fonts)
with a template matching algorithm that can recognize even badly printed, broken or
connected characters of any size.

There are 4 steps to recognizing characters:

1. Raw image
2. Object

segmentation
3. Character isolation

4. Character
recognition

Workflow

Learning Process

You can learn characters to create font file if required.

Open eVision User Guide

33

Characters are presented one by one to EasyOCR which analyzes them and builds a database of
characters called a font. Each character has a numeric code (usually its ASCII code) and belongs
to a character class (which may be used in the recognition process).

Font files are created as follows:
1. NewFont clears the current font.
2. LearnPattern or LearnPatterns adds the patterns from the source image to the font.

Patterns are ordered by their index value, as assigned by the FindAllChars process.
The patterns in a font are stored as a small array of pixels, by default 5 pixels wide and 9
pixels high. This size can be changed before learning, using parameters PatternWidthand
PatternHeight.

3. RemovePattern removes unwanted patterns (optional).
4. Save writes the contents of the font to a disk file with parameter values: NoiseArea,

MaxCharWidth, MaxCharHeight, MinCharWidth, MinCharHeight, CharSpacing,
TextColor.

Segmenting

For learning as well as recognition, EasyOCR segments the characters, i.e. locates the
characters and determines their bounding box. This is done by means of blob analysis
(thresholding followed by a grouping of pixels of the same color, as is done by EasyObject). After
blobs have been found, they can be filtered to remove unwanted features (small blobs of noise,
large extraneous objects, ...).
1. EasyOCR analyses the blobs to locate the characters and their bounding box, using one of

two segmentation modes:

n keep objects mode: one blob corresponds to one character.
n repaste objects mode: the blobs are grouped into characters of a nominal size. This is useful

when characters are broken or made up of several parts. When a blob is too large to be
considered a single character, it can be split automatically using CutLargeChars.

Character segmentation by blob grouping

2. Filters remove very large and very small unwanted features.

3. EasyOCR processes the character image to normalize the size into a bounding box, extracts
relevant features, and stores them in the font file. The patterns in a font are stored as arrays of
pixels defined by PatternWidth and PatternHeight (by default 5 pixels wide and 9 pixels
high).

Open eVision User Guide

34

Segmentation parameters

Segmentation parameters must be the same during learning and recognition. Good
segmentation improves recognition.
n The Threshold parameter helps separate the text from the background.

A too high value thickens black characters on white background and may cause merging, a
too small value makes parts disappear.
If the lighting conditions are very variable, automatic thresholding is a good choice.

Too high threshold value (left), Threshold adjustment (middle), Too low threshold value
(right)

n NoiseArea: Blob areas smaller than this value are discarded. Make sure small character
features are preserved (i.e., the dot over an "i" letter).

n MaxCharWidth, MaxCharHeight: Maximum character size. If a blob does not fit in a
rectangle with these dimensions, it is discarded or split into several parts using vertical
cutting lines. If several blobs fit in a rectangle with these dimensions, they are grouped
together.

n MinCharWidth, MinCharHeight: Minimum character size. If a blob or a group of blobs fits
in a rectangle with these dimensions, it is discarded.

n CharSpacing: The width of the smallest gap between adjacent letters. If it is larger than
MaxCharWidth it has no effect.
If the gap between two characters is wider than this, they are treated as different characters.
This stops thin characters being incorrectly grouped together.

n RemoveBorder: Blobs near image/ROI edges cannot normally be exploited for character
recognition. By default, they are discarded.

Recognition

The characters are compared to a set of patterns, called a font. A character is recognized by
finding the best match between a character and a pattern in the font. After the character has
been located, it is normalized in size (stretched to fit in a predefined rectangle) for matching.
The normalized character is compared to each normalized template in the font database and
the best matches are returned.
1. Load: reads a pre-recorded font from a disk file.
2. BuildObjects: The image is segmented into objects or blobs (connected components)

which help find the characters. This step can be bypassed if the exact position of the
characters is known. If the character isolation process is bypassed, you must specify the
known locations of the characters: AddChar and EmptyChars.

Open eVision User Guide

35

3. FindAllChars: selects the objects considered as characters and sorts them from top to
bottom then left to right.

4. ReadText: performs the matching and filters characters if the marking structure is fixed or a
character set filter was provided.
Character recognition: The characters are compared to a set of patterns, called a font.
The best match is stretched to fit in a predefined rectangle and compared to each

normalized template in the font database.
A Character set filter can improve recognition reliability and run time by restricting the
range of characters to be compared. For instance, if a marking always consists of two
uppercase letters followed by five digits, the last of which is always even, it is possible to
assign each character a class (maximum 32 classes) then set the character filter to allow the
following classes at recognition time: two uppercase, four even or odd digits, one even digit.

Steps 2 to 4 can be repeated at will to process other images or ROIs. The Recognize method
can be used as well.

Additional information, such as geometric position of the detected characters, can be obtained
using: CharGetOrgX, CharGetOrgY, CharGetWidth, CharGetHeight, ...

CompareAspectRatio makes character and font comparison sensitive to the difference
between narrow and wide characters. It improves recognition when characters look like each
other after size normalization.

Recognition parameters

n MaxCharWidth, MaxCharHeight: if a blob does not fit within a rectangle with these
dimensions, it is not considered as a possible character (too large) and is discarded.
Furthermore, if several blobs fit in a rectangle with these dimensions, they are grouped
together, forming a single character. The outer rectangle size should be chosen such that it
can contain the largest character from the font, enlarged by a small safety margin.

n MinCharWidth, MinCharHeight: if a blob or a group of blobs does fit in a rectangle with
these dimensions, it is not considered as a possible character (too small) and is discarded.
The inner rectangle size should be chosen such that it is contained in the smallest character
from the font, shrunk by a small safety margin.

n RemoveNarrowOrFlat: Small characters are discarded if they are narrow or flat. By default
they are discarded when they are both narrow and flat.

n CharSpacing: if two blobs are separated by a vertical gap wider than this value, they are
considered to belong to different characters. This feature is useful to avoid the grouping of
thin characters that would fit in the outer rectangle. Its value should be set to the width of
the smallest gap between adjacent letters. If it is set to a large value (larger than
MaxCharWidth), it has no effect.

n CutLargeChars: when a blob or grouping of blobs is larger than MaxCharWidth, it is
discarded. When enabled, the blob is split into as many parts as necessary to fit and the
amount of white space to be inserted between the split blobs is set by RelativeSpacing.
This is an attempt to separate touching characters.

Open eVision User Guide

36

n RelativeSpacing: when the CutLargeChars mode is enabled, setting this value allows
specifying the amount of white space that should be inserted between the split parts of the
blobs.

Invalid recognition settings

Advanced tuning

These recognition parameters can be tuned to optimize recognition:

CompareAspectRatio: when this setting is on, EasyOCR is less tolerant of size and takes into
account the measured aspect ratio. Using this mode improves the recognition when characters
look similar after size normalization as it enforces the difference between narrow and wide
characters.
Filtering the characters (in the ReadText method), can be used if the marking structure is fixed.
When objects are larger than the MaxCharWidth property, they can be split into as many parts
as needed, using vertical cutting lines.
ESegmentationMode, character isolation mode defines how characters are isolated:
n Keep objects mode: a character is a blob; no attempt is made to group blobs, thus damaged

characters cannot be handled and small features such as accents and dots may be discarded
by the minimum character size criterion.

n Repaste objects mode: blobs are grouped to form distinct characters if they fit in the
maximum character size and are not separated by a vertical gap, thus preserving accents
and dots.

3.2. EasyOCR2 - Reading Texts
(Improved)

EasyOCR2 is an optical recognition library designed to read short texts such as serial numbers,
expiry dates or lot codes printed on labels or on parts.

It uses an innovative segmentation method to detect blobs in the image, and then places
textboxes over the detected blobs following a user-defined topology (number of lines, words and
characters in the text). These methods support text rotation up to 360 degrees, can handle non-
uniform illumination, textured backgrounds, as well as dot-printed or fragmented characters.

A character type (letter / digit / symbol) can be specified for each character in the text,
improving recognition rate and speed. The character database that is used for recognition can
be learned from sample images or read from a TrueType font (.ttf) file.

Open eVision User Guide

37

Text recognition with EasyOCR2 follows four phases:

Input image (left) and fitting textboxes (right)

Image segmentation (left) and recognition (right)

EasyOCR2 vs EasyOCR

EasyOCR2 will give better results than EasyOCR when dealing with:

□ Unknown text rotation

□ Dotted or fragmented characters

□ Non-uniform illumination or textured backgrounds

● When TrueType font files are available that match the text to be read, EasyOCR2 allows the
user to use those font files directly for recognition, while EasyOCR does not.

● When none of the above are relevant to the application, the user may prefer to use EasyOCR
to EasyOCR2 due to its superior computational speed.

Open eVision User Guide

38

Workflow

Detection

EasyOCR2 finds characters in an image as follows:

1. EasyOCR2 segments the image, finding blobs that represent (parts of) the characters.

2. Blobs that are too large or too small to be considered part of a character are filtered out.

3. EasyOCR2 fits character boxes to the detected blobs according to a given topology and
detectionMethod.

The topology describes the structure of the text in the image, defining the number of lines,
the number of words per line and the number of characters per word.

4. EasyOCR2 extracts the pixels inside each character box from the image.

The resulting character-images can be used to learn or recognize the characters.

A workflow detecting text in an image could be as follows:

a. Set the required detection parameters.

b. Alternatively, call Load to read a pre-made model (.o2m) file containing detection
parameters from disk.

Open eVision User Guide

39

c. Call Detect to extract the text from the image.

The method Detect will return an EOCR2Text structure that contains a textbox and a bitmap
image for each character, hierarchically stored in EOCR2Line -> EOCR2Word -> EOCR2Char
structures.

See example in code snippet: "Detecting Characters" on page 88

An example of a fixed-width font, processed with the detectionMethod
‘EOCR2DetectionMethod_FixedWidth’

An example of a proportional font, processed with the detectionMethod
‘EOCR2DetectionMethod_Proportional’

The textAngle estimate for this image is slightly off when NumDetectionPasses=1

The textAngle estimate is better when NumDetectionPasses=2

Open eVision User Guide

40

For this dotted text, setting 'CharsMaxFragmentation' to 0.1 leads to incomplete
segmentation results

Setting 'CharsMaxFragmentation' to 0.01 gives better segmentation results

Detection parameters

Required parameters

□ The parameter Topology tells the box-fitting method how to structure the textboxes it
fits to the detected blobs. Using a modified version of Regex expressions, the topology
determines the number of lines in the text, the number of words per line and the number
of characters per word. The section Recognition Parameters contains an extensive
explanation of the syntax for the Topology.

□ The parameter CharsWidthRange tells the segmentation and detection methods how
wide the characters in the image can be.

□ The parameter CharsHeight tells the segmentation and detection methods how high the
characters in the image can be.

□ The parameter TextPolarity tells the segmentation method whether it should look for
light characters on a dark background or vice versa.

Advanced parameters for segmentation (optional):

□ The CharsMaxFragmentation parameter tells the segmentation algorithm how small
blobs can be to be considered (part of) a character. The minimum allowed area of a blob
is given by:

minArea = CharsMaxFragmentation * CharsHeight * min
(CharsWidthRange)

This parameter should be set between 0 and 1, the default setting is 0.1.
□ The MaxVariation parameter determines how stable a blob in the image should be in

order to be considered a potential character.
A region with clearly defined edges is generally considered stable while a blurry region is
not. A high setting allows detection of blobs that are more unstable, a low setting allows
only very stable blobs.
This parameter should be set between 0 and 1, the default setting is 0.25.

Open eVision User Guide

41

□ The DetectionDelta parameter determines the range of grayscale values used to
determine the stability of a blob.
A low setting will make the algorithm more sensitive to noise; a high setting will make the
algorithm insensitive to blobs with low contrast to the background.
This parameter should be set between 1 and 127, the default setting is 12.

Advanced parameters for detection (optional)

□ The parameter DetectionMethod selects the algorithm used for fitting. The setting
EOCR2DetectionMethod_FixedWidth (default) is optimized for texts with fixed width
fonts (including dotted text), the setting EOCR2DetectionMethod_Proportional is
optimized for texts with proportional fonts.

□ The TextAngleRange parameter tells the box-fitting method how the text in the image is
oriented. It will test the following range of rotation angles:

min(TextAngleRange) ≤ angle ≤ max(TextAngleRange)

where angles are defined with respect to the horizontal. The unit for the angles
(degrees/radians/revolutions/grades) can be set using easy::SetAngleUnit().

The default setting for this parameter is [-20, 20] degrees.
□ The parameter NumDetectionPasses determines how many passes are made to fit

textboxes to the detected blobs. The initial pass will fit textboxes to all detected blobs.
Subsequent passes will select only those blobs that are covered by the textboxes from the
previous pass and fit textboxes to that subset of blobs, potentially resulting in a more
optimal fit.
This parameter should be set to either 1 or 2, the default setting is 1.

Advanced parameters, specific for the setting EOCR2DetectionMethod_FixedWidth

□ The RelativeSpacesWidthRange parameter tells the box-fitting method how wide the
spaces between words may be. It will test the following range of spaces:

min(SpacesWidthRange) * charWidth ≤ space ≤ max(SpacesWidthRange) *
charWidth

□ The parameter CharsWidthBias biases the optimization toward wider of narrower
character boxes.

□ The parameter CharsSpacingBias biases the optimization toward smaller or larger
spacing between characters boxes.

Additional remarks

□ When the setting EOCR2DetectionMethod_FixedWidth is selected, all character boxes
will have the same width and they do not necessarily have to fit tightly around the
characters.

Open eVision User Guide

42

□ When the setting EOCR2DetectionMethod_Proportional is selected, the character
boxes will fit tightly around the characters, if any character falls outside the range of
allowed character widths, the detection will fail.

Learning

In order to recognize characters, EasyOCR2 requires a database of known reference characters.
We may generate this character database from images and/or from TrueType system fonts.

A workflow to build a character database could be as follows:

a. Set the required detection parameters or call Load to read the model (.o2m) file from
disk.

b. Optionally, call ClearCharacterDatabase to clear the current character database.

c. Call Detect to extract the text from the image.

d. Call SetText in the extracted text structure to set the correct value for each character.

e. Call Learn to add the detected characters and their correct value to the current
character database.

f. Call SaveCharacterDatabase to save the current character database to disk.

g. Alternatively, call Save to save the model file to disk, including the detection parameters
and the created character database.

See example in code snippet: "Learning Characters" on page 89

Recognition

EasyOCR2 recognizes characters using a classifier that is trained on the character database. For
each input character, the classifier will calculate a score for all candidate outputs, the
candidate with the highest score will be returned as the recognition result. Through the
Topology parameter, prior information about each character can be passed to the classifier,
reducing the number of candidates and improving the recognition rate.

The production workflow for recognizing text from images could be as follows:

□ Call Load to read the model (.o2m) file from disk. The model file contains all detection
parameters, as well as the topology and the reference character database.

□ Load or acquire the image.

□ Call Read to detect and recognize the characters.

□ Alternatively, call Detect to extract the text from the image, followed by Recognize to
recognize the extracted text. This allows the user to modify elements of the detected text
before recognition if so desired.

The methods Read and Recognize will return a string with the recognition results. To access
more in-depth information about the results, one may call ReadText. This returns an
EOCR2Text structure that contains the coordinates and sizes of each textbox as well as a
bitmap image and a list of recognition scores for each character.

See example in code snippet: "Reading Characters" on page 90

Open eVision User Guide

43

Recognition parameters

The Topology parameter specifies the structure of the text (number of lines/words/characters)
as well as the type of characters in the text. The recognition method will limit the number of
candidates for each character based on the given topology.

It uses modified regular expression wildcards:

□ “.” (dot) represents any character (not including a space).

□ “L” represents an alphabetic character.
 - “Lu” represents an uppercase alphabetic character.
 - “Ll” represents a lowercase alphabetic character.

□ “N” represents a digit.
□ “P” represents the punctuation characters: ! “ # % & ‘ () * , - . / : ; < > ? @ [\] _ { | } ~
□ “S” represents the symbols: $ + - < = > | ~
□ “\n” represents a line break.
□ “ ” (space) represents a space between two words.

Combinations can be made, for example: [LN] represents an alpha-numeric character. To specify
multiple characters, simply add {n} at the end for n characters. If the amount of characters is
uncertain, specify {n,m} for a minimum of n characters and a maximum of m characters.

The topology “[LuN]{3,5}PN{4} \n .{5} LL” represents a text comprised of 2 lines:

□ The first line has 1 word composed of 3 to 5 uppercase alpha-numeric characters,
followed by a punctuation character and 4 digits.

□ The second line has 2 words. The first word comprises of 5 wildcard characters, the
second word has 2 letters (upper- or lowercase).

The topology “L{3}P N{6} \n L{3}P NNPN{4}” represents a text with 2 lines:

□ The first line has 2 words. The first word has 3 uppercase letters followed by a
punctuation mark, the second word has 6 digits.

□ The second line also has two words. The first word has 3 uppercase letters followed by a
punctuation mark. The second word has 2 digits, followed by a punctuation mark and 4
additional digits.

The topology “.{10} \n .{7} \n .{5} .{5} \n .{5} .{7}” represents a text with 4 lines:

□ The first line contains a single word of 10 (ASCII) characters

□ The second line contains a single word of 7 characters

□ The third line contains two words, each of 5 characters.

□ The fourth line contains two words of 5 and 7 characters respectively.

Open eVision User Guide

44

3.3. EasyOCV - Validating Texts
Optical Character Verification compares a geometric pattern, a sample, with a predefined
model, a template, while taking into account relative displacement of the constituent parts. For
example, a printed part number may be checked for: correct placement with respect to the
component body, sufficient contrast, good character shapes, or absence of inking defects.

Workflow

From the raw image to the final model, the model definition follows a logical sequence of steps.

Raw image
Thresholded

image
Free blobs

Free
characters

Single text Final model

1. Threshold the image to separate the foreground (marking) from the background.
2. Free blobs: Blob analysis is performed and the detected objects may be selected depending

on their size to generate a set of candidates. (Blobs can be selected or unselected manually,
to add features of unusual size or delete spurious objects.)

3. Free characters: The blobs are aggregated into boxes corresponding to the characters.
(Manual correction is possible.)

4. Create single text: The characters are aggregated into boxes corresponding to the texts.
(Manual correction is possible.)

5. Create final model: The system will analyze the shape of the template and generate the
required data structures that represent it and allow fast inspection. It will also perform some
quality measurement on the template for later comparison with the sample. At this stage,
only texts and their constituent characters are stored. The free characters and free objects
are discarded.

6. Before the template can be saved, the inspection parameters must be defined . These
include:
n the allowed ranges for the location parameters of the texts with respect to their nominal

position in the inspected ROI. These parameters correspond to translation and rotation
(scaling in both horizontal and vertical directions, and shearing).

n the allowed ranges of character location with respect to their nominal position in the
texts (during translation).

n the allowed ranges of the quality ratings with respect to their nominal values. These
parameters can be chosen among the area of the character background and foreground,
the accumulated gray level of these areas, and a similarity coefficient.

Learning Process

Model structure

Inspection takes place in a rectangular ROI. The marking is a set of texts, made of characters,

Open eVision User Guide

45

which are made of blobs. Typically there is only one text, and each character is a blob.

Texts are sets of
characters

Characters are sets of
blobs

Blobs are "atomic" constituents of
markings

In a simple application, a ready-made template (Open eVision Studio provides a comprehensive
template editor) is used in the inspection phase.

EasyOCV requires training on correctly printed marks to create a good quality template. Using a
single image to create a template has drawbacks:
n the chosen image may itself have small, unnoticed defects and not be fully representative of

the whole population.
n a single image gives no insight on the random variations between acceptable samples, and

gives no way to adjust quality indicator tolerances.
n the default quality tolerances may not give the sharpness you would like to detect.

Statistics will help you define acceptance criteria. Quality indicator reference values are
computed from the template image.

template design considerations

n Should marking be one piece of text or several? This depends on the possible movements;
marks that move together should be considered a single text. During inspection, texts can
move independently of each other.

n How much can the text position vary in terms of translation, rotation [and possibly
scaling and/or shearing]?

n Can the text be decomposed into characters ? A character is the smallest part of a marking
that can be inspected in isolation. A small displacement from its nominal position can be
allowed and measured.

n Can individual characters move with respect to their containing text ?

Open eVision User Guide

46

n What movement may occur ? Placement repeatability must be evaluated. If the part travels
along a guide, sometimes only translation occurs which can be handled by a single
alignment pattern (fiducial). If rotation or scaling can occur, two alignment patterns are
preferable.

Bad: rotation not handled

n Are the alignment patterns fixed, well-contrasted features, not subject to
degradation, that move rigidly with the inspected part ?
When two are used, they should be located as far apart as possible for optimal accuracy.
The pattern ROIs should not contain extraneous features likely to change from sample to
sample. The patterns should be small so that rotation and scaling has little impact, but
large enough to contain information at different scales.

Bad: the location pattern is not repeatable

n Is the search area as small as possible to reduce search time and avoid false matches, but
big enough to contain the match?
Check on a representative set of images that location by pattern matching never fails by
touching the search area edges.

Bad: too tight search areas

n Does the inspected ROI on the mother image surround all areas where defects may be
detected, but not raise false alarms?

Open eVision User Guide

47

Bad: undue inspection of the background

Access the template components

The OCV context contains a list of texts. Each text contains a list of characters.

To access a specific text, you provide its index, traversing the hierarchy from the OCV context.
To address a particular character, you provide the indexes of both the text and the character.

Access by index (second character of first text)

You can access and modify several components collectively. Every text and every character has
a boolean selected property, so that in a single operation, you can read/write the value of a
property for all currently selected elements. When reading a property, a value is only returned if
it is identical for all selected elements.

Access a group of selected components

Scattering operations over selected components is very handy for interactive editors that list
and modify parameters for single items or groups of items.

Learning Passes
After ROI placement and pattern learning (Register operations), training still requires two
passes:

Open eVision User Guide

48

n To compute an average ideal, noise-free, image that reveals the central tendency of the part
image.
For each image, realign and normalize (Register).
If the operation is successful (good pattern location), call
Learn(ELearningMode_Average) for immediate processing (on-the-fly learning), or
AddPathName for deferred processing (batch learning).

n To measure devations around the average image.
For each image, realign and normalize (Register).
If the operation is successful, call
Learn(ELearningMode_AbsDeviation) for immediate processing and recommended method,
or
Learn(ELearningMode_RmsDeviation)for enhancing large deviations.

The images used can be the same for both passes, or two distinct sets of images of different
sizes can be used (on-the-fly learning). BatchLearn performs both passes for all images in the
file list.
A learning set size of at least 16 images is recommended.

Inspect and compare image with
model
Normally when you inspect the sample image and compare with the model, text-level
inspection is sufficient.
Character-level inspection is more detailed and complex.
The inspection process involves two operations.
n Locate: A region of interest is scanned and the best match is found between it and the

template, using all desired "Degrees of Freedom" below.
n Score: Every sample character is compared to the corresponding template character.

Character quality indicators are computed, collated into "Quality Indicators" on page 50
quality indicators of the text, and compared to acceptance intervals. Unacceptable values
have their corresponding characters flagged, a diagnostic code is generated, and global
diagnostics summarizing all text and character defects are issued.

Degrees of Freedom
Degrees of freedom can compensate for misalignment and distortion. Each degree of freedom
increases the running time, so use them sparingly. In many cases, text and character translation
are sufficient. When large amplitude skewing is possible, text translation + skewing can be used.
Care must be exercised when combining the other degrees of freedom.

Text translation

All texts can be moved horizontally (ShiftX) and vertically (ShiftY) in a specified range.

Open eVision User Guide

49

Text translation

Text skewing

All texts can be rotated about the center of their bounding box using the angle defined by Skew.

Text skewing

Character translation

All characters can be moved individually horizontally (ShiftX) and vertically (ShiftY) with
respect to their nominal position.

Character translation

Text X/Y-scaling (Advanced - only use if necessary)

All texts can be re-scaled horizontally ScaleX and vertically ScaleY, while the center of their
bounding box remains fixed. Re-scaling can be isotropic (both scale factors are identical) or
anisotropic.

Anisotropic text scaling

Open eVision User Guide

50

Note: By default, text scaling is supposed to be isotropic. If you think your application might
generate anisotropic scaling for a text, you must set the IsotropicScaling parameters of the
EOCVText corresponding object to FALSE before inspecting. Working with isotropic scaling
results in an effective time saving during inspection.

Text shearing (Advanced - only use if necessary)

All texts can be sheared using the angle parameter Shear, i.e. become italic, while the center of
their bounding box remains fixed.

Text shearing

Degrees of Freedom parameters

The degrees of freedom for location are specified with respect to the position at learning time
nominal position. The characters are remembered relative to the corresponding text center. The
text centers are remembered relative to the template image/ROI center. The default skew and
shear angles are 0 and scale factors are 1.

The parameters must vary within a range of Bias ± Tolerance. If bias is 0, the range is
centered around the nominal value.

The number of positions tried for each degree of freedom is specified as follows:
n Translation: Every integer value in the ranges ShiftXBias ± ShiftXTolerance and

ShiftYBias ± ShiftYTolerance is tried. However, for efficiency reasons, the
ShiftXStride and ShiftYStride parameters can be set to a value larger than 1, so that a
gross location pass with the specified stride is followed by a finer one with unit stride. (The
expected speed-up is on the order of the square of the Stride parameter.) Anyway, choosing
too large a value may cause mismatches when local maxima are present. (A value on the
order of a fraction of the character size is recommended.)

n Skewing, scaling and shearing: the SkewCount, ScaleXCount, ScaleYCount and
ShearCount parameters indicate the number of values tried for each degree of freedom. The
execution time increases as the product of these counts.
When a degree of freedom is not used, its count must be left as 1.
When SkewCount is set to 0, EasyOCV automatically chooses an appropriate count value.

Quality Indicators
After locating the model, the inspection process compares the sample with the template, and
rates the resemblance at a character level.

Open eVision User Guide

51

The parameters computed for the template serve as a reference and are compared to those
computed on the sample.

When the template image is binarized, the marking appears as white foreground on black
background in the character's bounding box. The bounding box is the tightest rectangle that
wholly contains an item, with a safety margin.

Template image, foreground and background
(white pixels)

Sample image, foreground and background
(white pixels)

Area-Based Quality Indicators

When the sample image is rated, thresholding also separates white and black pixels. The
foreground (or background) sample areas are defined as the count of the white(or black) sample
pixels in the foreground (or background) region of a characte. This is not the same as the total
count of white and black pixels in the sample.

The difference between the template and sample areas is the area of defects in the character
foreground [or background].

Foreground and background areas (white pixels)

Note: The area-based indicators rely on thresholding of the sample image. If necessary, the
threshold level must be compensated for a change in intensity (automatic thresholding).

Gray Sum-Based Quality Indicators

A different measure of the amount of light reflected by the marking is given by sums rather than
counts: the foreground [background] sample sum is defined as the sum of the gray-level values
of all pixels of the foreground [background] region of the sample image. The foreground
[background] template sum is the same feature computed on the template image to provide a
reference value. Optionally, the sums are normalized with respect to the reference foreground
and background average gray-levels to compensate for possible changes in gain (contrast) and
offset (intensity).

Open eVision User Guide

52

Foreground and background sums

Note: The sum-based indicators do not rely on thresholding of the sample image, but the
reference foreground and background gray-levels may take into account changes in gain and
offset. Characters are accepted or rejected by comparing the indicator values of the sample and
template: if the difference is larger than the specified tolerance, a defect is reported.
A smaller foreground value indicates under-printing or missing character parts. A larger
background value indicates over-printing or spurious character parts. Character mismatches
provoke both kinds of anomalies.

Correlation-Based Quality Indicators

Normalized correlation rates mismatches between two images. The correlation parameter is a
global score in range 0 to 1, which is implicitly corrected for a change in gain and offset.

Note: The correlation-based quality indicator should be as close as possible to 1. It is not
sensitive to changes in gain or offset.

Reporting

Defects are reported in three ways:
n explanatory diagnostics are given for each inspected character and text;
n the items for which diagnostics are reported are highlighted on the display;
n the relevant items are drawn as a box crossed by its main diagonal.

Advanced Features
EasyOCV can accumulate the results of a series of consecutive inspections: quality indicators
average values and standard deviations. EasyOCV functions can use these statistics to define
acceptance criteria and automatically adjust position and quality tolerance parameters, so you
can better control the manufacturing process.

□ Average values show the long-term trend behavior of the system and detect marking
drifts.

□ Standard deviations show process repeatability and detect appearance of slack.
It is customary to select a tolerance value that is a small multiple of the observed
standard deviation (±2 sigma or ±3 sigma criterion).

Open eVision User Guide

53

Programming with EasyOCV

Introduction

Writing an inspection application for the production line can be simple if no operator
intervention is required to adjust parameters, and if no in-situ learning phase is necessary:
n A model can be loaded once for all.
n Every acquired image is inspected.
n The inspection results are graphically displayed on top of the image.
n A diagnostics report of quality indicators and statistics can be generated.

A more advanced inspection application may allow the operator to modify parameters:
n Dialog boxes must be provided to edit parameters.
n Parameters may be changed globally (same value everywhere), or the operator may select

the texts and characters on which to work.

In a complex application, model edition before learning must be made possible which leads to
more complex programming:
n select and unselect items.
n display and modify parameters.
n load and save to a model file.

The required steps to create an inspection application, from simplest to advanced are:

1. Set ROI for inspection

The ROI should be placed center on the marking, in a position that is repeatable with respect to
the marking substrate. This is achieved either when the position of the inspected object is
known and stable, or when the object has been located by pattern matching or edge
measurement. .

The ROI :
n Defines the effective search area for text using their centers and location parameters (ShiftX,

ShiftY, ...). This way, inspection is not confined to the inspected ROI.
n Locates the marking, then evaluates global contrast in this ROI (centered on the marking

with the learning time dimensions). The ROI is not used to evaluate global contrast of the
marking.

2. Inspect

Uses a threshold level to determine the global contrast of the marking. Automatic thresholding
can be used.

3. Draw inspected items

The inspected texts and characters can be represented by their bounding box, at the position
determined by the location process.

Open eVision User Guide

54

Selected and unselected items can be drawn in different colors.

Items with detected defects appear crossed by their main diagonal.

4. Retrieve Diagnostics and Quality Indicators

Global inspection diagnostics summarize all defects found on the marking and raise alarms.

Detailed diagnostic reports are available for each text and character, and all measured quality
indicators can be retrieved.
n Retrieving text diagnostics and parameters involves a loop where all texts are visited.
n Retrieving character diagnostics and parameters involves a double loop where all texts and

all characters of all texts are visited.

5. Set Inspection Parameters

During operation working parameters can be adjusted in various ways:
n Global change: a parameter value may be set for all texts and/or all characters. This is

straightforward and requires a single call to ScatterTextsParameters,
ScatterTextsCharsParameters, but before calling, make sure that the parameters you
don't want to change are set to an undefined value.

n Custom change: the values can be adjusted individually using a user-defined rule. This
approach is similar to the retrieval of parameters using indexed access.

n Selective change: parameter values can be set for texts or characters in a selected state by
interactively selecting the text or characters.

Selecting Items Interactively

To retrieve or modify parameters, individually or grouped, the operator must have the ability to
select them using a mouse. EasyOCV provides a general selection/de-selection mechanism:
several functions can toggle the state of all/selected/unselected items in a given rectangle.

Note: The rectangle is usually obtained by a dragging operation. A degenerate rectangle
(reduced to a single point) can be used to handle point clicking.

Since the toggling mechanism combined with the possible rectangle extent and current
selection mode is tricky, let us give a few examples.

Assume a model of three texts in the following states: Selected, Selected, Unselected.
n Using a rectangle that contains all three of them will set them to states Unselected,

Unselected, Selected (SSU -> UUS).
n Using a rectangle that touches the first of them will set the states to Unselected, Selected,

Unselected (SSU -> USU).

Now consider the same operations applied to the selected texts only.
n Using a rectangle that contains all three texts will set them to states Unselected,

Unselected, Unselected (SSU -> UUU).

Open eVision User Guide

55

n Using a rectangle that touches the first of them will set the states to Unselected, Selected,
Unselected (SSU -> USU).

Now consider the same operations applied to the unselected texts only.
n Using a rectangle that contains all three texts will set them to states Selected, Selected,

Selected (SSU -> SSS).
n Using a rectangle touches the first of them will leave their states unchanged (SSU -> SSU).

Note: This selection mechanism applies to texts and characters at inspection time
(SelectSample...). It also applies to free objects, free characters and texts during the model
edition phases (SelectTemplate...).

Compute Inspection Statistics

Using EasyOCV, gathering statistical information on the process is possible. For each measured
parameter (location parameters and quality indicators), the average and standard deviation
can be estimated from a number of samples.

The procedure is straightforward: after an image has been inspected, one can request that the
measured parameters be taken into account as valid samples by calling UpdateStatistics.
(If, for any reason, the sample is to be rejected, just do not call UpdateStatistics.) After at
least two sample images have been processed, the average and standard deviations can be
obtained. The standard mechanisms for text and character parameters retrieval can be used.

To compute the statistics afresh on new samples, start by calling ClearStatistics. The
number of samples accumulated so far is given by StatisticsCount.

Adjust Inspection Parameters from Statistics

Statistics may be used to adjust location and quality indicators. When making adjustments to
individual texts or characters, the selection mechanism described above is applicable.

To adjustquality ranges indicators, call AdjustTextsQualityRanges,
AdjustCharsQualityRanges. If you do not want to adjust the quality range of a particular
indicator, you should de-activate it by setting UsedQualityIndicators.
n the bias value of each indicator is assigned the average value of the inspected samples

(provided they had been added to statistics).
n the indicator tolerance is assigned s times the standard deviation, where s is a security factor

to provide.

To adjust location parameters, call AdjustTextsLocationRanges,
AdjustCharsLocationRanges. When adjusting location parameters, you must
specifyminimum and maximum values and a security factor may also be specified.

Interactively Edit a Model

Writing an OCV model editor requires a good understanding of windowed applications design. In
particular, it is important to know how to manage the mouse cursor movements, when and
how to refresh the display, handle dragging of selection rectangles and the like. It is out of the
scope of this documentation to explain these features which are deeply related to Windows

Open eVision User Guide

56

programming. Also note that the level of functionality, from blind -no operator intervention- to
full fledged editing is a matter of taste and of programming skill.

Recall the steps in defining the model structure:
1. An ECodedImage object is used to segment the image into blobs (BuildObjects method).
2. Possibly, blob selection by all means provided in EasyObject (legacy), is performed

(SelectObjectsUsingFeature or SelectObjectsUsingPosition). In particular, small
blobs generated by noise should be unselected.

3. The selected blobs are passed to the OCV object and enter the free objects list (EasyObject
(legacy)'s blobs become OCV's free objects, or TemplateObjects).

4. At this point, the objects in the free list can be selected/unselected interactively.
5. The (selected) free objects are then used to generate free characters, using one of the

available grouping policy (free objects become free characters, or TemplateChars).
6. At this point, the free characters can be selected/unselected interactively.
7. The (selected) free characters are then used to generate texts. The default policy is to group

all free characters in a single piece of text (free characters become texts, or TemplateTexts;
these texts now contain embedded characters, or TemplateTextChars).

In the simplest form of a model editor, steps 4 and 6 can be skipped, meaning that all free
objects and all free characters will enter the model. A better editor will allow withdrawal of
unwanted items and explicit grouping (steps 4 and 6). An even more powerful editor should
allow grouping as well as ungrouping (backwards from 3 to 2, from 5 to 4, from 7 to 6).

At any time, the following operations can be handled:
n The model components can be selected/unselected interactively (using

SelectTemplateObjects, SelectTemplateChars, SelectTemplateTexts).
n New items can be grouped to form new higher level items (using CreateTemplateObjects,

CreateTemplateChars, CreateTemplateTexts).
n Items can be ungrouped by destroying the higher level item (using DeleteTemplateTexts,

DeleteTemplateChars, DeleteTemplateObjects).

A clean way to organize the editor is to define a sequence of separate phases dealing with
objects, free objects, free characters and texts.

Advanced Features: Change contrast, location mode, Quality indicators
and resample characters

Contrast Parameters

Image contrast is an important factor during both learning and inspection.

The background and foreground information must be separated using an appropriate threshold,
that may be determined automatically. After a threshold is given, the average gray level of the
background and foreground are computed separately, and become the reference gray
levels. These are used to measure the image contrast and normalize the gray level quality
indicators if needed.

Open eVision User Guide

57

The background and foreground reference gray levels are computed for both the template and
sample images. See the EOCVChar properties. The sample contrast may then be compared to
the templates contrast reference value, to diagnose an over-contrasted or under-contrasted
image before further analysis.

Note: The template threshold directly influences the thickness of the blobs in the model.

Note: The sample threshold influences the reference gray levels of the sample image.

Note: When gray level normalization is used, it influences location score,gray-level sums, and
blob thickness in the sample image, which has immediate consequences on the sample areas.

Location Modes

For location of the model components, a search process is used during which EasyOCV tries to
find the character edges in the sample image, possibly transformed. Four location modes are
provided: raw, binarized, gradient and Laplacian. See enumeration constants
ELocationMode.

Experience reveals that binarized and gradient modes are the most reliable at locating
components.. Additionally, the gradient mode is not sensitive to the threshold level. Use of the
Laplacian mode is not recommended.

In case you experience location problems, you should try another location mode.

Location Score

It is highly recommended to keep the default reduction of location scores option turned on.
Reduction consists of dividing a raw location score by the number of points its computation
required. Thus, the calculated scores do not depend on the number of used points any longer;
the number of used points may be decreased without degrading localization to save potential
time, if necessary.

Location scores may also be normalized. This option is useful if the lighting conditions of
sample images are not the same, or when template and sample images have obviously different
reference gray levels. The action of this option is equivalent to performing a global contrast
correction on the sample image (or ROI). Location scores do not depend on reference gray
levels, so are more reliable.

Finally, AccurateTextsLocationScores provides an alternative way to compute text location
score. During the location process, EasyOCV tries first to locate texts using their contours, which
are sets of fixed points one from each other. This rigid definition of text contour has the
drawback of making the library return poor location score values if the sample characters have
moved from their nominal positions, and may result in a false alarm.

If the AccurateTextLocationScores property is turned on, a text location score will be
computed as sum or average of the characters location scores that form the text (depending on
the state of the ReduceLocationScore property). This way, texts location scores become
independent from the position of the characters they contain.

Used Quality Indicators

For a given inspection case, not all quality indicators are relevant. For instance, it sometimes
suffices to use the location scores alone to detect absence of a given marking.

Open eVision User Guide

58

To avoid false alarms raised by unused quality indicators for which the tolerances have not
been adjusted, and to avoid unnecessary processing, it is important to activate only the quality
indicators in use through the UsedQualityIndicators property.

Character Resampling

Normally, when text is inspected with rotation, scaling and/or shearing, some resampling must
be performed to compute the quality indicators on the separate characters. If the angles remain
small and the scale factors remain very close to unity, this resampling can be avoided by setting
the ResampleChars parameter to FALSE.

Open eVision User Guide

59

4. Using Open eVision Studio

Open eVision User Guide

60

4.1. Selecting your Programming
Language
When you start Open eVision Studio for the first time, the following welcome screen is
displayed:

1. Select your programming language.

Your selection is saved and your programming language will be automatically selected next time
you start Open eVision Studio.

Note: When you change your programming language, any script present in the scripting
window is automatically deleted and the window content is reset.

2. Click on one of the Load buttons to already load one or several images for later processing.

3. Check the Do not show at startup box to hide this welcome screen next time you start Open
eVision Studio.

To access this welcome screen at any time, and change this setting, go to the Help >Welcome
Screen menu.

Open eVision User Guide

61

4.2. Navigating the Interface

Open eVision Studio graphical user interface (GUI) is organized as follows:

1. The main menu bar gives you access to the functions and tools of all libraries.

Open eVision Studio does not require any license and allows you to test all libraries. Of course, if you
copy code from Open eVision Studio in your own application but you do not have the required
license, you will receive a "missing license" error at run-time.

2. The main toolbar gives you a quick access to main Open eVision objects such as images,
shapes, gauges, bar codes, matrix codes...

3. The script window displays the code, in the programming language you selected,
corresponding to the actions you perform in Open eVision Studio. You can save or copy this
code in your own application at any time.

4. The image windows display the open images that you can process using the libraries and
tools.

5. The tool windows enable you to easily configure all the available tools. The corresponding
settings are automatically added in the script window for easy reuse.

Most tool windows are floating and you can easily move them outside the Open eVision Studio main
window to make a better use of your screen size.

6. The execution time bar displays the precise time taken for the execution of the selected
functions (measured in milliseconds or microseconds) on your computer. This accurate
measurement helps you to evaluate the performance of your application.

7. The color toolbar displays current information such as the X and Y coordinates of the cursor
on an image and the corresponding pixel value.

8. The status bar displays general information about the application such as the active image
file path...

Open eVision User Guide

62

4.3. Running Tools on Images

Step 1: Selecting a Tool
Usually the first step, when using Open eVision Studio, is to select the library and the tool you
want to use on your image.

To do so:

1. In the main menu bar, click on the library you want to use.

2. Click on the tool you want to use.

All libraries (except EasyImage, EasyColor and EasyGauge) expose only one tool named New Xxx
Tool. Some of these libraries also expose additional functions.

3. In the dialog box, enter a Variable name for the variable that is automatically created and
that will contain the result of the processing.

Example of variable creation dialog box for EasyQRCode

4. Click OK.

The selected tool dialog box opens.

Example of variable creation dialog box for EasyQRCode

Open eVision User Guide

63

The next step is "Step 2: Opening an Image" below.

Step 2: Opening an Image
Once you have selected your library and your tool, you need to open an image to apply this
tool.

In the Source Image area of the selected tool dialog box:

1. Open an image:

□ Click on the Open an Image button and select one or several (using SHIFT and CTRL)
images on your computer.

□ Or select one of the images (or one of the ROIs, if any) already open in the drop-down list.

Note: You can select only images with an appropriate file format (JPG, PNG, TIFF or BMP) and in
8- and/or 24-bit depending on the library.

2. If you selected several images, activate one with the Load Previous or Load Next
buttons.

The tool is automatically applied on any loaded image and, at this stage, the result is displayed
based on the tool default settings.

The next step is "Step 3: Managing ROIs" below.

Step 3: Managing ROIs
In some cases, most often to decrease the processing time or to single-out the object you want
to read, you do not want to process the whole image but only one or several well defined
rectangular parts of this image, or ROIs (Regions Of Interest).

In Open eVision, ROIs are attached to an image and exist only as long as the parent image is
available.

Creating a ROI

1. Open the image:

□ If the image is already open, activate the corresponding image window.

□ If the image is not open yet, go to the main menu: Image > Open... to open one.

2. To create an ROI, go to the main menu: Image > ROI Management....

Open eVision User Guide

64

The ROI Management window is displayed as illustrated below.

3. Select the image in the tree.

4. Click on the New button.

5. In the dialog box, enter a Variable name for the new ROI.

The ROI is represented as a color rectangle on your image as illustrated below.

6. Drag the ROI corner and side handles to move it to the required position.

7. Click on the Close button to close the ROI Management window .

The next step is "Step 4: Configuring the Tool" on the next page.

Managing ROIs

You can add, change and remove ROIs.

An image can have several ROIs. Each ROI can be attached directly to the image (meaning that its
position is relative to the image) or to another ROI (meaning that its position is relative to this
'parent' ROI).

1. To manage ROIs, go to the main menu: Image > ROI Management....

The ROI Management window is displayed with the ROI relation tree as illustrated below.

Open eVision User Guide

65

If the Draw Rois box is checked, all ROIs are displayed on the image with a different color.

2. Select an ROI in the ROI relation tree.

3. Drag the ROI corner and side handles to change the position and size of the selected ROI (as
well as the position of all ROIs attached to it if any).

4. Click on the New button to add a new ROI attached to the selected ROI.

Select the image at the top of the ROI relation tree to attach the ROI directly to the image.

5. Click on the Remove button to delete the selected ROI (and all ROIs attached to it if any).

6. Click on the Close button to close the ROI Management window.

Step 4: Configuring the Tool
Once your image, including its ROIs if you created some, is ready, you need to configure your
tool.

In the tool window:

1. Open the various tabs.

When you create a new tool, all parameters are set with their default value.

Open eVision User Guide

66

Example of the parameter tab of an EasyQRCode tool

2. In each tab, set the value of the parameters as desired.

Please refer to the "Functional Guide" and to the "Reference Manual" for detailed information
about the parameters, their function and their default value.

For specific actions such as learning or using gauges, please refer to the "Functional Guide".

3. Run the tool and analyze the results as described in the next step "Step 5: Running the Tool
and Checking Execution Time" below.

Step 5: Running the Tool and Checking Execution
Time
Once your tool parameters are set, run your tool and, if desired, check the execution time on
your computer.

In the tool window:

1. Click on the Read, Detect, Results or Execute button (depending on the library function), to
run the tool on the selected image.

2. Check the results on the image and in the Results field or area as illustrated below.

Open eVision User Guide

67

Example of results after reading a QRCode

3. If you do not have the expected results:

□ Try to change your parameters (start with default values then change one parameter at a
time).

□ If you image is not good enough, try to enhance it as described in .

4. Check the execution time in the execution time bar at the bottom left of the main Open
eVision Studio window.

The execution time

The execution time is the actual time that the processing took as measured on your computer. It
depends your computer processor, memory, operating system... and, of course, on the processor
load at the time of execution. Thus this execution time slightly varies from execution to execution.

5. To get a more representative execution time, click on the Read, Detect, Results or Execute
button several times and calculate the mean execution time.

6. If your application requires that you reduce the execution time, try:

□ To change the tool parameters,

□ To add one or several ROIs on your image,

□ To enhance your image.

The next step is "Step 6: Using the Generated Code" on the next page.

Open eVision User Guide

68

Step 6: Using the Generated Code
By default, Open eVision Studio translates all the operations you perform in the interface into
code in the language you selected as illustrated below.

Once your tool results suit you, you can save or copy this generated code to use it in your own
application.

Copy and paste the code in your application

In the script window:

1. Select the code section you want to copy.

2. Right click on this code and click Copy in the menu.

3. Go to you development environment tool and paste the code in place.

Save the code

1. Go to the Script menu.

2. Click on Save Script As....

3. Enter a file name and path to save the code as a text file.

Manage the generated code

In the Script menu, you can:

□ Select the programming language (please note that if you change the language, the script
window content is automatically deleted).

□ Activate or deactivate the Script Code Generation. Deactivate this option if you want to
perform some operations without saving them as code.

Open eVision User Guide

69

4.4. Pre-Processing and Saving Images
When should you pre-process your images?

Of course, the best situation is to set up your image acquisition system to have good and easy
to process images so the Open eVision tools run smoothly and efficiently.

If this is not possible or easy to achieve, you can pre-process your images or your ROIs to
enhance and prepare them for the Open eVision tool you want to run.

Using the various available functions, you can adjust the gain and offset of your image, apply a
convolution, threshold, scale, rotate and white balance your image, enhance contours... using
EasyImage and EasyColor functions.

Pre-processing images

The difference between pre-processing an image and running tools is that the pre-processing
generates a new image while the tools mainly extract and retrieve information from the image
without changing it.

To pre-process an image or an ROI:

1. In the main menu bar, click on the library you want to use (EasyImage or EasyColor).

2. Click on the function you want to use.

Most function dialog boxes are similar to the one illustrated below with 2 image selection areas
and a parameter setting area.

Example of a pre-processing dialog box (Threshold with EasyImage)

3. If there are multiple versions for your selected function, open the corresponding tab.

4. In the Source Image area, open the source image (as described in "Step 2: Opening an
Image" on page 63).

5. In the Destination Image area, open or create a new destination image.

6. Set your parameters.

7. Click on the Execute button.

The pre-processed image is available in the destination image as illustrated below.

Open eVision User Guide

70

Source and destinations images (Threshold with EasyImage)

8. If you want to use the destination image outside of Open eVision Studio, save it as described
below.

Saving an image

1. Click in the image you want to save to activate it.

2. To open the save menu either:

□ Right-click in the image

□ Or open the main menu > Image

3. Click on Save as....

4. Select the file format (JPEG, JPEG2000, PNG, TIFF or Bitmap).

5. Enter a name and select a path.

6. Click on the Save button.

Open eVision User Guide

71

5. Tutorials

5.1. EasyOCR

Learning Characters and Creating an EasyOCR Font
"Learning Characters" on page 87

Objective

Following this tutorial, you will learn how to use EasyOCR to learn new characters and save
them in an EasyOCR font.

You'll need first to load a source image (step 1). Then you'll set the segmentation parameters to
isolate each character (step 2). Each character will have to be learnt (step 3), and finally you'll
save all the learnt characters as a font file (step 4). You can also add new characters to an
existing font if needed (step 5).

Source image

The image is segmented so that all the characters are detected

All the characters have been learn

Open eVision User Guide

72

Step 1: Load the source image

1. From the main menu, click EasyOCR, then New OCR Tool.

2. Keep the default variable name for the new OCR object, and click OK.

3. In the Source Image tab, click the Open icon of the Source Image area, and load the image
file EasyOCR\FlatCable\FlatCable1.tif.

4. Keep the default variable name for the new image object, and click OK.

Step 2: Set segmentation parameters

1. Select the Segmentation Parameters tab, and move the red frame in the image above a
character.

2. Tune each property to get a green bounding box around each character:

□ threshold value = 113

□ characters color = Black on White

□ min width = 36

□ min height = 31

□ spacing = 4

□ max width = 98

□ max height = 72

□ noise area = 9

Step 3: Learn new characters

1. Select the Learn tab, and click the character E in the image. You are then prompted to
identify the character along with its class. Enter E in the character field, and select the
'EOcrClass_Uppercase' class. Click OK. Whenever a character has been added to the
current font, its bounding box turns yellow.

2. Click the character 1 in the image. Enter 1 in the character field, and select the 'EOcrClass_
Digit' class. Click OK.

3. Proceed with remaining characters.

Step 4: Save the EasyOCR font

● In the Font File tab, click the Save As... button. Type a file name for the new EasyOCR font
file. Its extension will be .ocr. Finally, click Save.

Step 5: Add characters to an existing font

1. In the Source Image tab, click the Open icon of the Source Image area, and load the image
file EasyOCR\FlatCable\FlatCable2.tif.

2. Keep the default variable name for the new image object, and click OK.

Open eVision User Guide

73

3. In the Recognition tab, click Execute. Characters 2 and 8 are read correctly, but A, W and G
are not (low confidence score). They don't belong to the font.

4. Select the Learn tab, and learn the characters A, W, and G (refer to step 3).

5. Then save the font again (refer to step 4). The new characters have been added.

Recognizing Characters According to a Font
"Recognizing Characters According to a Font" above

Objective

Following this tutorial, you will learn how to use EasyOCR to recognize characters, regarding to
a specific font.

You'll need first to load a source image (step 1), and an EasyOCR font file (step 2). Then you'll
perform the characters recognition (step 3).

Characters matching the font are automatically detected

Results after explicit recognition

Step 1: Load the source image

1. From the main menu, click EasyOCR, then New OCR Tool.

2. Keep the default variable name for the new OCR object, and click OK.

3. In the Source Image tab, click the Open icon of the Source Image area, and load the image
file EasyOCR\FlatCable\FlatCable1.tif.

Open eVision User Guide

74

4. Keep the default variable name for the new image object, and click OK.

Step 2: Load the font file

● In the Font File tab, click Load, and select the font file
EasyOCR\FlatCable\FlatCable.ocr. In the image, the detected characters are
highlighted in green.

Step 3: Recognize the characters

● In the Recognition tab, click Execute to trigger the recognition of the detected characters.
The recognized characters appear in the Recognition results area. Further information about
each character can be found in the table.

5.2. EasyOCV

Creating an EasyOCV Model File
"Creating an OCV Model" on page 92

Objective

Following this tutorial, you will learn how to build an EasyOCV model file.

You'll need first to load an image (step 1). Then you'll learn the model file (step 2), and perform
the mark inspection (step 3).

Learned model

Step 1: Load the source image

1. From the main menu, click EasyOCV, then New OCV Tool.

2. Keep the default variable name, and click OK.

3. In the Learn tab, click the Open icon of the Source Image area, and load the image file
EasyOCV\T20\T20 A.bmp.

4. Keep the default variable name, and click OK.

Open eVision User Guide

75

Step 2: Learn the model

1. In the Learn tab, click Next subsequently for three times.

2. Click Finish.

The learning process is complete.

Step 3: Save the model file

1. In the Inspect tab, click the Save As... button.

2. Type a file name for the new EasyOCV model file. Its extension will be .ocv.

3. Finally, click Save.

Inspecting Characters in an Image According to a
Model File
"Inspecting" on page 92

Objective

Following this tutorial, you will learn how to load an EasyOCV model file, and to perform mark
inspection in an image.

You'll need first to load source images (step 1), and a model file (step 2). Then, you'll perform
the mark inspection (step 3).

Open eVision User Guide

76

Mark inspection in multiple source images

Step 1: Load the source images

1. From the main menu, click EasyOCV, then New OCV Tool.

2. Keep the default variable name for the new OCV object, and click OK.

3. In the Inspect tab, click the Open icon of the Source Image area, and load the image files
EasyOCV\T20\T20 A.bmp to T20 E.bmp. Use the shift key to select multiple files.

4. Keep the default variable name for the new image object, and click OK.

Step 2: Load the model file

1. In the Inspect tab, click the Load button.

2. Select the model file EasyOCV\T20\T20.ocv.

Step 3: Perform the mark inspection

1. In the Inspect tab, click Execute to trigger the mark inspection.

Texts and characters are highlighted in the source image.

2. In the Parameters and results tab, click Character Overview and Text Overview to display
further information on characters and texts.

3. Click the Quality button, and select characters in the image, to display quality indicators.

4. In the Inspect tab, click the Load Next and Load Previous icons to browse through the
multiple images.

In the T20 E image, the character 2 is underprinted, and the character 0 is overprinted.

Inspecting Characters in an ROI According to a
Model File
"Inspecting" on page 92

Objective

Following this tutorial, you will learn how to load an EasyOCV model file, and to perform mark
inspection in an ROI of a source image.

You'll need first to load a source image and define an ROI where to perform the mark inspection
(steps 1-2). Then, you'll load a model file (step 3). Finally, you'll perform the mark inspection
(step 4).

Open eVision User Guide

77

Mark inspection in multiple ROIs

Step 1: Load the source image

1. From the main menu, click EasyOCV, then New OCV Tool.

2. Keep the default variable name for the new OCV object, and click OK.

3. In the Inspect tab, click the Open icon of the Source Image area, and load the image file
EasyOCV\103\103.bmp.

4. Keep the default variable name for the new image object, and click OK.

Open eVision User Guide

78

Step 2: Define the ROI

1. Right-click in the image, and select New ROI... from the contextual menu.

2. Keep the default variable name for the new ROI object, and click OK.

A default ROI is placed over the image (blue rectangle with handles). The ROI management
dialog box is opened.

3. Enter the following coordinates in the ROI management dialog box: 118, 181, 104, 74 for
OrgX, OrgY, Width, and Height respectively.

Step 3: Load the model file

1. In the Inspect tab, click the Load button.

2. Select the model file EasyOCV\103\103.ocv.

Step 4: Perform the mark inspection

1. In the Inspect tab, select the ROI object from the Source Image drop-down list, and click
Execute to trigger the mark inspection. Texts and characters are highlighted in the source
image.

2. In the Parameters and results tab, click Character Overview and Text Overview to display
further information on characters and texts.

3. Click the Quality button, and select characters in the image, to display quality indicators.

4. Change the ROI position (OrgX, OrgY), an click Execute Inspection at each new position to
trigger the inspection again:

□ (288, 181): OK.

□ (288, 349): OK.

□ (462, 181): the numbers are slanted.

□ (462, 95): the number 0 is wrong.

□ (462, 266): the number 3 is broken.

□ (462, 438): the number 3 is out of shape.

Learning a Model Using Statistics (1)
"Statistical Learning" on page 94

Objective

Following this tutorial, you will learn how to use EasyOCV to learn an EasyOCV model, and tune
it using statistics.

Open eVision User Guide

79

You'll need first to load a reference image (step 1), and learn the model (step 2). Then you'll add
tolerances on the model position (step 3), and use statistics on several images to tune the model
(step 4). Finally, you'll perform the mark inspection on multiple images (step 5).

EasyOCVISE

Mark inspection in multiple images

Step 1: Load the reference image

1. From the main menu, click EasyOCV, then New OCV Tool.

2. Keep the default variable name, and click OK.

Open eVision User Guide

80

3. In the Learn tab, click the Open icon of the Source Image area, and load the image file
EasyOCV\ISE\ISE 01.bmp.

4. Keep the default variable name, and click OK.

Step 2: Learn the model

1. In the Learn tab, click Next to edit the segmented objects. The characters "ASS", "MB" and
"an" are grouped (same color segmentation). They need to be separated.

2. In the image, draw lines to separate touching characters.

3. Click Next twice, and click Finish.

The learning process is complete.

Step 3: Add tolerances to the model

1. In the Parameters and results tab, click Position in the Selected texts parameters area.

2. To allow more translation freedom, enter 80 and 60 as ShiftX and ShiftY tolerances.

3. Click Close. At this stage, the building of the basic EasyOCV model is achieved.

Step 4: Use statistics to tune the model

1. In the Inspect tab, click the Open icon of the Source Image area, and load the image files
EasyOCV\ISE\ISE 01.bmp to ISE 05.bmp. Use the shift key to select multiple files.

2. Keep the default variable name and click OK.

3. In the Inspect tab, click Add to statistics. Click the Load Next icon, and click Add to statistics,
and so on for all the images.

4. In the Parameters and results tab, click the Quality button of the Statistic Tolerance
Adjustment area.

5. Keep the default value in the prompt box. Click OK.

Step 5: Inspect multiple images

1. In the Inspect tab, click the Open icon of the Source Image area, and load the image files
EasyOCV\ISE\ISE 01.bmp to ISE 14 (bad character).bmp. Use the shift key to
select multiple files.

2. Keep the default variable name for the new image object, and click OK.

3. In the Inspect tab, click the Load Next and Load Previous icons to browse through the
multiple images. Take note of the following observations and results.

□ The images ISE 01 to ISE 05 have no defects.

□ In the image ISE 06, the text PBGA is badly printed.

□ In the image ISE 07, the mark is distorted.

□ In the image ISE 08, the mark is blurred.

□ In the image ISE 09, the characters 5 and 2 are incorrect.

Open eVision User Guide

81

□ In the image ISE 10, characters are badly shaped.
□ In the image ISE 11, characters 388 are underprinted.
□ In the image ISE 12, characters ISE are overprinted.
□ In the image ISE 13, two characters are missing.
□ In the image ISE 14, a character is broken.

Learning a Model Using Statistics (2)
"Statistical Learning" on page 94

Objective

Following this tutorial, you will learn how to use the statistic feature and rotation tolerance of
EasyOCV to build a model file.

You'll need first to load a reference image (step 1), and learn the model (text and logo) (step 2).
Then you'll add tolerances on the model position (step 3), and use statistics on several images
to tune the model (step 4). Finally, you'll perform the mark inspection on multiple images (step
5).

Learning text and logo

Step 1: Load the reference image

1. From the main menu, click EasyOCV, then New OCV Tool.

2. Keep the default variable name, and click OK.

3. In the Learn tab, click Open icon of the source image area, and load the image file
EasyOCV\CY7C\CY7C 01.jpg.

4. Keep the default variable name, and click OK.

Step 2: Learn the model

1. In the Learn tab, click Next twice, the characters building dialog box appears.

2. Click Undo Char(s). The text, logo and pins are now highlighted in green.

Open eVision User Guide

82

3. Using your mouse cursor, click-and-drag the rectangle over the text and the logo on the
component.

4. Click Form Auto Chars.

5. Click Next, and then Finish. The learning process is complete.

Step 3: Add tolerances to the model

1. In the Parameters and results tab, click Position in the Selected texts parameters area.

2. To allow more translation freedom, enter 90 and 80 as ShiftX and ShiftY tolerances.

3. To allow translation and rotation, enter 5 as Skew tolerance, and 11 as Skew stride/count.

4. To speed up the location process, enter 7 as ShiftX and ShiftY stride/count.

5. Click Close. At this stage, building of the basic OCV model is achieved.

Step 4: Use statistics to tune the model

1. In the Inspect tab, click the Open icon of the Source Image area, and load the image files
EasyOCV\CY7C\CY7C 01.jpg to CY7C 15.jpg. Use the shift key to select multiple
files.

2. Keep the default variable name, and click OK.

3. Click Add to statistics. Click the Load Next icon, and click Add to statistics, and so on for all
the images.

4. In the Parameters and results tab, click the Quality button from the Statistic Tolerance
Adjustment area.

5. Set the Security Factor to 3.5, and click OK.

Step 5: Inspect multiple images

1. In the Inspect tab, click the Open icon of the Source Image area, and load the image files
EasyOCV\CY7C\CY7C 01.jpg to CY7C 27.jpg. Use the shift key to select multiple
files.

2. Keep the default variable name for the new image object, and click OK.

3. In the Inspect tab, click the Load Next and Load Previous icons to browse through the
multiple images. Observe the detected defaults.

Open eVision User Guide

83

6. Code Snippets

Open eVision User Guide

84

6.1. Basic Types

Loading and Saving Images
//
// This code snippet shows how to load and save an image. //
//

// Images constructor
EImageBW8 srcImage;
EImageBW8 dstImage;

// Load an image file
srcImage.Load("mySourceImage.bmp");

// ...

// Save the destination image into a file
dstImage.Save("myDestImage.bmp");

// Save the destination image into a jpeg file
// The default compression quality is 75
dstImage.Save("myDestImage.jpg");

// Save the destination image into a jpeg file
// set the compression quality to 50
dstImage.SaveJpeg("myDestImage50.jpg", 50);

Interfacing Third-Party Images
///
// This code snippet shows how to link an Open eVision image //
// to an externally allocated buffer. //
///

// Images constructor
EImageBW8 srcImage;

// Size of the third-party image
int sizeX;
int sizeY;

//Pointer to the third-party image buffer
EBW8* imgPtr;

// ...

// Link the Open eVision image to the third-party image
// Assuming the corresponding buffer is aligned on 4 bytes
srcImage.SetImagePtr(sizeX, sizeY, imgPtr);

Retrieving Pixel Values
///

Open eVision User Guide

85

// This code snippet shows the recommended method (fastest) //
// to access the pixel values in a BW8 image //
///

EImageBW8 img;

OEV_UINT8* pixelPtr;
OEV_UINT8* rowPtr;
OEV_UINT8 pixelValue;
OEV_UINT32 rowPitch;
OEV_UINT32 x, y;

rowPtr = reinterpret_cast <OEV_UINT8*>(img.GetImagePtr());
rowPitch = img.GetRowPitch();

for (y = 0; y < height; y++)
{
 pixelPtr = rowPtr;

for (x = 0; x < width; x++)
{

 pixelValue = *pixelPtr;

// Add your pixel computation code here

 *pixelPtr = pixelValue;
 pixelPtr++;
 }

 rowPtr += rowPitch;
}

ROI Placement
///
// This code snippet shows how to attach an ROI to an image //
// and set its placement. //
///

// Image constructor
EImageBW8 parentImage;

// ROI constructor
EROIBW8 myROI;

// ...

// Attach the ROI to the image
myROI.Attach(&parentImage);

//Set the ROI position
myROI.SetPlacement(50, 50, 200, 100);

Vector Management
///
// This code snippet shows how to create a vector, fill it //
// and retrieve the value of a given element. //
///

Open eVision User Guide

86

// EBW8Vector constructor
EBW8Vector ramp;

// Clear the vector
ramp.Empty();

// Fill the vector with increasing values
for(int i= 0; i < 128; i++)
{

ramp.AddElement((EBW8)i);
}

// Retrieve the 10th element value
EBW8 value= ramp[9];

Exception Management
//
// This code snippet shows how to manage //
// Open eVision exceptions. //
//

try
{

// Image constructor
EImageC24 srcImage;

// ...

// Retrieve the pixel value at coordinates (56, 73)
EC24 value= srcImage.GetPixel(56, 730);

}

catch(Euresys::Open_eVision_1_1::EException exc)
{

// Retrieve the exception description
std::string error = exc.What();

}

Open eVision User Guide

87

6.2. EasyOCR

Learning Characters
//
// This code snippet shows how to learn characters //
// based on an image featuring a known text and //
// save the corresponding font file. //
//

// Image constructor
EImageBW8 srcImage;

// EOCR constructor
EOCR ocr;

// Text to be learned (all digits)
// Assuming the image contains this text
const std::string text= "0123456789";

// ...

// Create a new fon
ocr.NewFont(8, 11);

// Adjust the segmentation parameters
ocr.SetTextColor(EOCRColor_BlackOnWhite);
ocr.SetMinCharWidth(15);
ocr.SetMinCharWidth(50);
ocr.SetMinCharHeight(15);
ocr.SetMinCharHeight(75);
ocr.SetNoiseArea(15);

// Segment the characters
ocr.BuildObjects(&srcImage);
ocr.FindAllChars(&srcImage);

// Learn the characters
ocr.LearnPatterns(&srcImage, text, EOCRClass_Digit);

// Save the font into a file
ocr.Save("myFont.ocr");

Recognizing Characters
///
// This code snippet shows how to load a font file, //
// perform a default character recognition operation //
// and perform a character recognition operation //
// using a class filter. //
///

// Image constructor
EImageBW8 srcImage;

// EOCR constructor
EOCR ocr;

Open eVision User Guide

88

// Load the font file
ocr.Load("myFont.ocr");

// ...

// Recognize the characters
std::string text= ocr.Recognize(&srcImage, 10, EOCRClass_AllClasses);

// Alternatively
// Define the character filter (2 letters and 3 digits)
std::vector<UINT32> charFilter;
charFilter.push_back(EOCRClass_UpperCase);
charFilter.push_back(EOCRClass_UpperCase);
charFilter.push_back(EOCRClass_Digit);
charFilter.push_back(EOCRClass_Digit);
charFilter.push_back(EOCRClass_Digit);

// Recognize the characters with class filtering
text= ocr.Recognize(&srcImage, 10, charFilter);

6.3. EasyOCR2

Detecting Characters
//
// This code snippet shows how to detect characters //
// in an image, using a few parameters and a topology //
//

// Load an Image
EImageBW8 image;
image.Load("image.tif");

// Attach a ROI to the image
EROIBW8 roi;
roi.Attach(&image, 50, 224, 340, 96);

// Create an EOCR2 instance
EOCR2 ocr2;

// Set the expected character sizes
ocr2.SetCharsWidthRange(EIntegerRange(25,25));
ocr2.SetCharsHeight(37);

// Set the text polarity, in this case WhiteOnBlack
ocr2.SetTextPolarity(EasyOCR2TextPolarity_WhiteOnBlack);

// Set the topology
ocr2.SetTopology(".{10}\n.{3} .{4}");

// Detect the text in the image. The output Text structure contains:
// - an individual textbox for each character
// - an individual bitmap image for each character
// - a threshold value to binarize the bitmap image for each character
// All structured in a hierarchy with Lines –> Words -> Characters
EOCR2Text text = ocr2.Detect(roi);

Open eVision User Guide

89

The image used in this code snippet

Learning Characters
//
// This code snippet shows how to learn characters //
// based on an image featuring a known text and //
// save the corresponding character database //
//

// Load an Image
EImageBW8 image;
image.Load("image.tif");

// Attach a ROI to the image
EROIBW8 roi;
roi.Attach(&image, 50, 224, 340, 96);

// Create an EOCR2 instance
EOCR2 ocr2;

// Set the required parameters
ocr2.SetCharsWidthRange(EIntegerRange(25,25));
ocr2.SetCharsHeight(37);
ocr2.SetTextPolarity(EasyOCR2TextPolarity_WhiteOnBlack);
ocr2.SetTopology(".{10}\n.{3} .{4}");

// Learn from the reference image:
// 1) Detect the text in the image
EOCR2Text text = ocr2.Detect(roi);
// 2) Set the true values of the text
text.SetText("Bt121KPJ80\n786 9512");
// 3) Add the characters to the character database
ocr2.Learn(text);

// Save the character database
ocr2.SaveCharacterDatabase("myDB.o2d");

// Alternatively, save the model file.
// This will store the character database and the parameter settings
Ocr2.Save("myModel.o2m");

Open eVision User Guide

90

The image used in this code snippet

Reading Characters
Reading using TrueType fonts

//
// This code snippet shows how to //
// - create a character database from TrueType fonts //
// - read the text in an image //
//

// Load an image
EImageBW8 image;
image.Load("image.tif");

// Attach an ROI
EROIBW8 roi;
roi.Attach(&src, 50, 224, 340, 96);

// Create an EOCR2 instance
EOCR2 ocr2;

// Set the required parameters
ocr2.SetCharsWidthRange(EIntegerRange(25,25));
ocr2.SetCharsHeight(37);
ocr2.SetTopology("[LN]{10}\nN{3} N{4}");
ocr2.SetTextPolarity(EasyOCR2TextPolarity_WhiteOnBlack);

// Add TrueType character to the character database
ocr2.AddCharactersToDatabase("C:\\Windows\\Fonts\\calibrib.ttf");
ocr2.AddCharactersToDatabase("C:\\Windows\\Fonts\\yugothb.ttc");

// Read text from the image
std::string result = ocr2.Read(roi);

Open eVision User Guide

91

The image used in this code snippet

Reading using EOCR2 Character Database

//
// This code snippet shows how to //
// - load a pre-made character database //
// - read the text in an image //
//

// Load an image
EImageBW8 image;
image.Load("image.tif");

// Attach an ROI
EROIBW8 roi;
roi.Attach(&src, 50, 224, 340, 96);

// Create an EOCR2 instance
EOCR2 ocr2;

// Set the required parameters
ocr2.SetCharsWidthRange(EIntegerRange(25,25));
ocr2.SetCharsHeight(37);
ocr2.SetTopology("[LN]{10}\nN{3} N{4}");
ocr2.SetTextPolarity(EasyOCR2TextPolarity_WhiteOnBlack);

// Add a pre-made character database to the EOCR2 instance
ocr2.AddCharactersToDatabase("myDB.o2d");

// Read text from the image
std::string result = ocr2.Read(roi);

Reading using EOCR2 Model file

//
// This code snippet shows how to //
// - load a pre-made model file //
// - read the text in an image //
//

// Load an image
EImageBW8 image;
image.Load("image.tif");

// Attach an ROI
EROIBW8 roi;
roi.Attach(&src, 50, 224, 340, 96);

// Create an EOCR2 instance
EOCR2 ocr2;

// Load a pre-made model file, this will:
// - (re)set all parameters
// - add the character database in the model file to the EOCR2 instance
ocr2.Load("myModel.o2m");

// Read text from the image
std::string result = ocr2.Read(roi);

Open eVision User Guide

92

6.4. EasyOCV

Creating an OCV Model
//
// This code snippet shows how to create an OCV model //
// from a golden template and save it into a file. //
//

// Image constructor
EImageBW8 srcImage;

// EOCV constructor
EOCV ocv;

// ECodedImage constructor
ECodedImage blobs;

// ...

// Reset the OCV context
ocv.DeleteTemplateTexts();
ocv.DrawTemplateChars();
ocv.DeleteTemplateObjects();
ocv.ClearStatistics();

// Set the OCV context
ocv.SetTemplateImage(&srcImage);

// Segment the source image
blobs.SetThreshold(EThresholdMode_MinResidue);
blobs.BuildObjects(&srcImage);

// Compute blobs area and unselect small objects
blobs.AnalyseObjects(ELegacyFeature_Area);
blobs.SelectObjectsUsingFeature(ELegacyFeature_Area, 0, 50, ESelectOption_
RemoveLesserOrEqual);

// Add remaining blobs to the OCV context
ocv.CreateTemplateObjects(&blobs);

// Add all selected free objects
ocv.CreateTemplateChars(ESelectionFlag_True, ECharCreationMode_Separate);

// Group all selected free characters in a single text
ocv.CreateTemplateTexts();

// Perform the learning
ocv.Learn(&srcImage);

// Save the ocv model into a file

ocv.Save("myModel.ocv");

Inspecting
//

Open eVision User Guide

93

// This code snippet shows how to load an OCV model //
// file and perform an inspection. //
//

// Image constructor
EImageBW8 srcImage;

// EOCV constructor
EOCV ocv;

// ...

// Load an EasyOCV model file
ocv.Load("myModel.ocv");

// Perform the inspection
ocv.Inspect(&srcImage, EThresholdMode_MinResidue);

Setting Inspection Parameters
///
// This code snippet shows how to set characters //
// and texts inspection parameters. //
///

// EOCV constructor
EOCV ocv;

// Temporary EOCVText object for parameters modification
EOCVText text;

// Reset the text parameters
text.ResetParameters();

// Set the text shift tolerance
text.SetShiftXTolerance(30);
text.SetShiftYTolerance(20);

// Apply the new parameters to all the texts of the ocv context
ocv.ScatterTextsParameters(text, ESelectionFlag_Any);

// Retrieve the first text (index 0) parameters
text.ResetParameters();
ocv.GetTextParameters(text, 0);

// Double the shift tolerance
text.SetShiftXTolerance(text.GetShiftXTolerance() * 2);
text.SetShiftYTolerance(text.GetShiftYTolerance() * 2);

// Apply the new parameters to the ocv context first text only
ocv.SetTextParameters(text, 0);

// Temporary OCVChar object for parameters modification
EOCVChar ch;

// Reset the character parameters
ch.ResetParameters();

// Set the character shift tolerance
ch.SetShiftXTolerance(15);
ch.SetShiftYTolerance(10);

Open eVision User Guide

94

// Apply the new parameters to all the characters of the ocv context
ocv.ScatterTextsCharsParameters(ch, ESelectionFlag_Any, ESelectionFlag_True);

Retrieving Diagnostics
//
// This code snippet shows how to perform an inspection //
// and retrieve the diagnostics. //
//

// Image constructor
EImageBW8 srcImage;

// EOCV constructor
EOCV ocv;

// ...

// Load an EasyOCV model file
ocv.Load("myModel.ocv");

// Perform the inspection
ocv.Inspect(&srcImage, EThresholdMode_MinResidue);

// Retrieve the OCV inspection diagnostics
if(ocv.GetDiagnostics() != EDiagnostic_Undefined)
{

// Check if texts have been found
bool bTextNotFound= ((ocv.GetDiagnostics() & EDiagnostic_TextNotFound) > 0);

// Check if there is text mismatch
bool bTextMismatch= ((ocv.GetDiagnostics() & EDiagnostic_TextMismatch) > 0);

// Check if there is text overprinting
bool bTextOverprinting= ((ocv.GetDiagnostics() & EDiagnostic_TextOverprinting) > 0);

// Check if there is text underprinting
bool bTextUnderprinting= ((ocv.GetDiagnostics() & EDiagnostic_TextUnderprinting) >

0);

// Check if characters have been found
bool bCharNotFound= ((ocv.GetDiagnostics() & EDiagnostic_CharNotFound) > 0);

// Check if there is character mismatch
bool bCharMismatch= ((ocv.GetDiagnostics() & EDiagnostic_CharMismatch) > 0);

// Check if there is character overprinting
bool bCharOverprinting= ((ocv.GetDiagnostics() & EDiagnostic_CharOverprinting) > 0);

// Check if there is character underprinting
bool bCharUnderprinting= ((ocv.GetDiagnostics() & EDiagnostic_CharUnderprinting) >

0);
}

Statistical Learning
///
// This code snippet shows how to perform a statistical //
// learning based on several good quality templates. //

Open eVision User Guide

95

///

// Image constructor
EImageBW8 srcImage;

// EOCV constructor
EOCV ocv;

// ...

// Clear the statistics
ocv.ClearStatistics();

// Loop on the number of good quality sample images
for(int i= 0; i < numSampleImages; i++)
{

// acquire the next sample image into srcImage
// ...

// Perform the inspection
ocv.Inspect(&srcImage, EThresholdMode_MinResidue);

// Update the statistics
ocv.UpdateStatistics();

}

// Adjust the tolerance values based on
// the inspected good quality sample images
ocv.AdjustTextsQualityRanges(3.3f, ESelectionFlag_Any);
ocv.AdjustTextsQualityRanges(3.3f, ESelectionFlag_Any, ESelectionFlag_Any);

Open eVision User Guide

	1. Dealing with Pixel Containers and Files
	1.1. Pixel Container Definition
	1.2. Pixel Container Types
	1.3. Supported Image File Types
	1.4. Pixel and File Types Compatibility
	1.5. Color Types

	2. Manipulating Pixels Containers and Files
	2.1. Pixel Container File Save
	2.2. Pixel Container File Load
	2.3. Memory Allocation
	2.4. Image and Depth Map Buffer
	2.5. Image Drawing and Overlay
	2.6. 3D Rendering of 2D Images
	2.7. Vector Types and Main Properties
	2.8. ROI Main Properties
	2.9. Flexible Masks
	2.10. Profile

	3. Text Identification Tools
	3.1. EasyOCR - Reading Texts
	Workflow
	Learning Process
	Segmenting
	Recognition
	3.2. EasyOCR2 - Reading Texts (Improved)
	3.3. EasyOCV - Validating Texts
	Learning Passes

	Inspect and compare image with model
	Degrees of Freedom
	Quality Indicators
	Advanced Features
	Programming with EasyOCV

	4. Using Open eVision Studio
	4.1. Selecting your Programming Language
	4.2. Navigating the Interface
	4.3. Running Tools on Images
	Step 1: Selecting a Tool
	Step 2: Opening an Image
	Step 3: Managing ROIs
	Step 4: Configuring the Tool
	Step 5: Running the Tool and Checking Execution Time
	Step 6: Using the Generated Code

	4.4. Pre-Processing and Saving Images

	5. Tutorials
	5.1. EasyOCR
	Learning Characters and Creating an EasyOCR Font
	Recognizing Characters According to a Font

	5.2. EasyOCV
	Creating an EasyOCV Model File
	Inspecting Characters in an Image According to a Model File
	Inspecting Characters in an ROI According to a Model File
	Learning a Model Using Statistics (1)
	Learning a Model Using Statistics (2)

	6. Code Snippets
	6.1. Basic Types
	Loading and Saving Images
	Interfacing Third-Party Images
	Retrieving Pixel Values
	ROI Placement
	Vector Management
	Exception Management

	6.2. EasyOCR
	Learning Characters
	Recognizing Characters

	6.3. EasyOCR2
	Detecting Characters
	Learning Characters
	Reading Characters

	6.4. EasyOCV
	Creating an OCV Model
	Inspecting
	Setting Inspection Parameters
	Retrieving Diagnostics
	Statistical Learning

