
Open eVision
Code Identification Tools

USER GUIDE

© EURESYS s.a. 2018 - Document D131ET-Code Identification Tools .NET-Open eVision-2.6.1.1110 built on 2018-11-20

2

Terms of Use

EURESYS s.a. shall retain all property rights, title and interest of the documentation of the hardware and the
software, and of the trademarks of EURESYS s.a.

All the names of companies and products mentioned in the documentation may be the trademarks of their
respective owners.

The licensing, use, leasing, loaning, translation, reproduction, copying or modification of the hardware or the
software, brands or documentation of EURESYS s.a. contained in this book, is not allowed without prior notice.

EURESYS s.a. may modify the product specification or change the information given in this documentation at any
time, at its discretion, and without prior notice.

EURESYS s.a. shall not be liable for any loss of or damage to revenues, profits, goodwill, data, information systems or
other special, incidental, indirect, consequential or punitive damages of any kind arising in connection with the use
of the hardware or the software of EURESYS s.a. or resulting of omissions or errors in this documentation.

This documentation is provided with Open eVision 2.6.1 (doc build 1110).
© 2018 EURESYS s.a.

Open eVision User Guide

3

Contents

1. Dealing with Pixel Containers and Files 5
1.1. Pixel Container Definition 5
1.2. Pixel Container Types 7
1.3. Supported Image File Types 8
1.4. Pixel and File Types Compatibility 9
1.5. Color Types 11

2. Manipulating Pixels Containers and Files 12
2.1. Pixel Container File Save 12
2.2. Pixel Container File Load 14
2.3. Memory Allocation 14
2.4. Image and Depth Map Buffer 15
2.5. Image Drawing and Overlay 18
2.6. 3D Rendering of 2D Images 19
2.7. Vector Types and Main Properties 19
2.8. ROI Main Properties 24
2.9. Flexible Masks 25
2.10. Profile 29

3. Code Identification Tools 31
3.1. EasyBarCode - Reading Bar Codes 32

Reading Bar Codes 32
Reading Mail Bar Codes 36

3.2. EasyMatrixCode - Reading Matrix Codes 40
EasyMatrixCode vs EasyMatrixCode2 40
Specifications 41
Reading a Matrix Code 42
Learning a Matrix Code 44

3.3. EasyQRCode - Reading QR Codes 45
Workflow 46
QR code definition 46
Read a QR code 49
Advanced features 49

4. Using Open eVision Studio 52
4.1. Selecting your Programming Language 53
4.2. Navigating the Interface 54
4.3. Running Tools on Images 55

Step 1: Selecting a Tool 55
Step 2: Opening an Image 56
Step 3: Managing ROIs 56
Step 4: Configuring the Tool 58
Step 5: Running the Tool and Checking Execution Time 59
Step 6: Using the Generated Code 61

4.4. Pre-Processing and Saving Images 62

Open eVision User Guide

4

5. Tutorials 64
5.1. EasyBarCode 64

Reading Bar Codes Automatically 64
5.2. EasyMatrixCode 65

Reading Data Matrix Codes Automatically 65
Learning a Data Matrix Code and Creating an EasyMatrixCode Model File 66

6. Code Snippets 69
6.1. Basic Types 70

Loading and Saving Images 70
Interfacing Third-Party Images 70
Retrieving Pixel Values 70
ROI Placement 71
Vector Management 71
Exception Management 72

6.2. EasyBarCode 73
Reading a Bar Code 73
Reading a Bar Code Following a Given Symbology 73
Reading a Bar Code of Known Location 74
Reading a Mail Bar Code 74

6.3. EasyMatrixCode 76
Automatic Reading 76
Reading with Prior Learning 76
Advanced Tuning of the Search Parameters 77
Retrieving Print Quality Grading 77

6.4. EasyQRCode 79
Automatic Reading of a QR Code 79
Retrieving Information of a QR Code 79
Decoding the First QR Code Detected 80
Tuning the Search Parameters 80

Open eVision User Guide

5

1. Dealing with Pixel Containers
and Files

1.1. Pixel Container Definition
Images

Open eVision image objects contain image data that represents rectangular images.

Each image object has a data buffer, accessible via a pointer, where pixel values are stored
contiguously, row by row.

Image main parameters

An Open eVision image object has a rectangular array of pixels characterized by EBaseROI
parameters .
n Width is the number of columns (pixels) per row of the image.
n Height is the number of rows of the image. (Maximum width / height is 32,767 (215-1) in

Open eVision 32-bit, and 2,147,483,647 (231-1) in Open eVision 64-bit.)
n Size is the width and height.

The Plane parameter contains the number of color components. Gray-level images = 1. Color
images = 3.

Classes

Image and ROI classes derive from abstract class EBaseROI and inherit all its properties.

Open eVision User Guide

6

Depth maps

A depth map is way to represent a 3D object using a 2D grayscale image, each pixel in the
image representing a 3D point.

The pixel coordinates are the representation of the X and Y coordinates of the point while the
grayscale value of the pixel is a representation of the Z coordinate of the point.

Point clouds

A point cloud (https://en.wikipedia.org/wiki/Point_cloud) is an unstructured set of 3D points
representing discrete positions on the surface of an object.

Open eVision User Guide

7

3D point clouds are produced by various 3D scanning techniques, such as Laser Triangulation,
Time of Flight or Structured Lighting.

1.2. Pixel Container Types
Images

Several image types are supported according to their pixel types: black and white, gray levels,
color, etc.

Easy.GetBestMatchingImageType returns the best matching image type for a given file on disk.

BW1
1-bit black and white images (8 pixels
are stored in 1 byte)

EImageBW1

BW8
8-bit grayscale images (each pixel is
stored in 1 byte)

EImageBW8

BW16
16-bit grayscale images (each pixel is
stored in 2 bytes)

EImageBW16

BW32
32-bit grayscale images (each pixel is
stored in 4 bytes)

EImageBW32

C15

15-bit color images (each pixel is
stored in 2 bytes).
Compatible with Microsoft® Windows
RGB15 color images and MultiCam
RGB15 format.

EImageC15

Open eVision User Guide

8

C16

16-bit color images (each pixel is
stored in 2 bytes).
Compatible with Microsoft® Windows
RGB16 color images and MultiCam
RGB16 format.

EImageC16

C24

C24 images store 24-bit color images
(each pixel is stored in 3 bytes).
Compatible with Microsoft® Windows
RGB24 color images and MultiCam
RGB24 format.

EImageC24

C24A

C24A images store 32-bit color images
(each pixel is stored in 4 bytes).
Compatible with Microsoft® Windows
RGB32 color images and MultiCam
RGB32 format.

EImageC24A

Depth Maps

8 and 16-bit depth map values are stored in buffers compatible with the 2D Open eVision
images.

EDepth8
8-bit depth map (each pixel is stored in
1 byte as an integer)

EDepthMap8

EDepth16
16-bit depth map (each pixel is stored
in 2 bytes as a fixed point)

EDepthMap16

EDepth32f
32-bit depth map (each pixel is stored
in 4 bytes as a float)

EDepthMap32f

Point Clouds

Point Cloud
Set of points coordinates (stored as
float)

E3DPointCloud

1.3. Supported Image File Types

Type Description

BMP Uncompressed image data format (Windows Bitmap Format)

JPEG
Lossy data compression standard issued by the Joint Photographic Expert Group
registered as ISO/IEC 10918-1. Compression irretrievably looses quality.

JFIF JPEG File Interchange Format

Open eVision User Guide

9

Type Description

JPEG-
2000

Data compression standard issued by the Joint Photographic Expert Group
registered as ISO/IEC 15444-1 and ISO/IEC 15444-2. Open eVision supports only
lossy compression format, file format and code stream variants.

- code stream describes the image samples.
- file format includes meta-information such as image resolution and color
space.

PNG Lossless data compression method (Portable Network Graphics).

Serialized
Euresys proprietary image file format obtained from the serialization of Open
eVision image objects.

TIFF

Tag Image File Format is currently controlled by Adobe Systems and uses the
LibTIFF third-party library to process images written for 5.0 or 6.0 TIFF
specification.

File save operations are lossless and use CCITT 1D compression for 1-bit binary
pixel types and LZW compression for all others.

File load operations support all TIFF variants listed in the LibTIFF specification.

1.4. Pixel and File Types Compatibility
Depth map to image conversion

For a 8- and 16-bit depth maps, the AsImage() method returns a compatible image object
(respectively EImageBW8 and EImageBW16) that can be used with Open eVision’s 2D processing
features.

Pixel and file types compatibility

Pixel access

The recommended method to access pixels is to use SetImagePtr and GetImagePtr to embed
the image buffer access in your own code. See also Image Construction and Memory Allocation
and Retrieving Pixel Values.

Use of the following methods should be limited because of the overhead incurred by each
function call:

Direct access

EROIBW8.GetPixel and SetPixel methods are implemented in all image and ROI classes to
read and write a pixel value at given coordinates. To scan all pixels of an image, you could run
a double loop on the X and Y coordinates and use GetPixel or SetPixel each iteration, but
this is not recommended.

Open eVision User Guide

10

For performance reasons, these accessors should not be used when a significant number of pixel
needs to be processed. When that is the case, retrieving the internal buffer pointer using
GetBufferPtr() and iterating on the pointer is recommended.

Quick Access to BW8 Pixels

In BW8 images, a call to EBW8PixelAccessor.GetPixel or SetPixel will be faster than a
direct EROIBW8.GetPixel or SetPixel.

Supported structures

n EBW1, EBW8, EBW32
n EC15 (*), EC16 (*), EC24 (*)
n EC24A

n EDepth8, EDepth16, EDepth32f,

(*) These formats support RGB15 (5-5-5 bit packing), RGB16 (5-6-5 bit packing) and RGB32 (RGB +
alpha channel) but they must be converted to/from EC24 using EasyImage.Convert before any
processing.

Note: Transition with versions prior to eVision 6.5 should be seamless: image pixel types were
defined using typedef of integral types, pixel values were treated as unsigned numbers and
implicit conversion to/from previous types is provided.

Pixel and File Type compatibility during Load or Save operations

Type BMP JPEG JPEG2000 PNG TIFF Serialized

BW1 Ok N/A N/A Ok Ok Ok

BW8 Ok Ok Ok Ok Ok Ok

BW16 N/A N/A Ok Ok Ok (***) Ok

BW32 N/A N/A N/A N/A Ok (***) Ok

C15 Ok Ok (**) Ok (**) Ok (**) Ok (**) Ok

C16 Ok Ok (**) Ok (**) Ok (**) Ok (**) Ok

C24 Ok Ok Ok Ok Ok (**) Ok

C24A Ok N/A N/A Ok N/A Ok

Depth8 Ok Ok Ok Ok Ok Ok

Depth16 N/A N/A Ok Ok Ok (***) Ok

Depth32f N/A N/A N/A N/A N/A Ok

N/A: Not supported. An exception occurs if you use the combination.

Ok: Image integrity is preserved with no data loss (apart from JPEG and JPEG2000, lossy
compression).

(**) C15 and C16 formats are automatically converted into C24 during the save operation.

(***) BW16 and BW32 are not supported by Baseline TIFF readers.

Open eVision User Guide

11

1.5. Color Types
EISH: Intensity, Saturation, Hue color system.

ELAB: CIE Lightness, a*, b* color system.

ELCH: Lightness, Chroma, Hue color system.

ELSH: Lightness, Saturation, Hue color system.

ELUV: CIE Lightness, u*, v* color system.

ERGB: NTSC/PAL/SMPTE Red, Green, Blue color system.

EVSH: Value, Saturation, Hue color system.

EXYZ: CIE XYZ color system.

EYIQ: CCIR Luma, Inphase, Quadrature color system.

EYSH: CCIR Luma, Saturation, Hue color system.

EYUV: CCIR Luma, U Chroma, V Chroma color system.

Open eVision User Guide

12

2. Manipulating Pixels Containers
and Files

2.1. Pixel Container File Save
Images and Depth Maps

The Save method of an image or the SaveImage method of a depth map or a ZMap saves the
image data of an image or of a depth map or a ZMap object into a file using two arguments:
n Path: path, filename, and file name extension.
n Image File Type. If omitted, the file name extension is used.

Images bigger than 65,536 (either width or height) must be saved in Open eVision proprietary
format.

Save throws an exception when:
n The requested image file format is incompatible with the image pixel types
n The Auto file type selection method and the file name extension is not supported

When saving a 16-bit depth map, the fixed point precision is lost and the pixels are considered as 16-
bit integers.

image file type arguments

Argument Image File Type

EImageFileType_Auto(*) Automatically determined by the filename extension. See below.

EImageFileType_Euresys Open eVision Serialization.

EImageFileType_Bmp Windows bitmap - BMP

EImageFileType_Jpeg JPEG File Interchange Format - JFIF

EImageFileType_Jpeg2000 JPEG 2000 File format/Code Stream -JPEG2000

EImageFileType_Png Portable Network Graphics - PNG

EImageFileType_Tiff Tagged Image File Format - TIFF

(*) Default value.

Open eVision User Guide

13

Assigned image file type if argument is ImageFileType_Auto or missing

File name extension(*) Automatically assigned image file type

BMP Windows Bitmap Format

JPEG, JPG JPEG File Interchange Format - JFIF

JP2 JPEG 2000 file format

J2K, J2C JPEG 2000 Code Stream

PNG Portable Network Graphics

TIFF, TIF Tagged Image File Format

(*) Case-insensitive.

Saving JPEG and JPEG2000 lossy compressions

SaveJpeg and SaveJpeg2K specify the compression quality when saving compressed images.
They have two arguments:
n Path: a string of characters including the path, filename, and file name extension.
n Compression quality of the image file, an integer value in range [0: 100].

SaveJpeg saves image data using JPEG File Interchange Format – JFIF.
SaveJpeg2K saves image data using JPEG 2000 File format.

JPEG compression values

JPEG compression Description

JPEG_DEFAULT_QUALITY (-1) Default quality (*)

100 Superb image quality, lowest compression factor

75 Good image quality (*)

50 Normal image quality

25 Average image quality

10 Bad Image quality

(*) The default quality corresponds to the good image quality (75).

Representative JPEG 2000 compression quality values

JPEG 2000 compression Description

-1 Default quality (*)

1 Highest image quality, lowest compression factor

Open eVision User Guide

14

JPEG 2000 compression Description

16 Good Image Quality (*) (16:1 rate)

512 Lowest image quality, highest compression factor

(*) The default quality corresponds to the good image quality (16:1 rate).

Point Clouds

● Use the Save method to save the point cloud in Open eVision proprietary file format.

● Use the SavePCD method to save the point cloud in a file compatible with other software
such as PCL (Point Cloud Library).

2.2. Pixel Container File Load
Images and Depth Maps

● Use the Load method to load image data into an image object:

□ It has one argument: the path: path, filename, and file name extension.

□ File type is determined by the file format.

□ The destination image is automatically resized according to the size of the image on disk.

● The Load method throws an exception when:

□ File type identification fails

□ File type is incompatible with pixel type of the image object

Serialized image files of Open eVision 1.1 and newer are incompatible with serialized image files of
previous Open eVision versions.

When loading a BW16 image (with integer values) in a depth map, the fixed point precision set in the
depth map (0 by default) is left unchanged and used.

Point Clouds

● Use the Load method to save the point cloud in Open eVision proprietary file format.

● Use the LoadPCD method to save the point cloud in a file compatible with other software
such as PCL (Point Cloud Library).

2.3. Memory Allocation
An image can be constructed with an internal or external memory allocation.

Open eVision User Guide

15

Internal Memory Allocation

The image object dynamically allocates and unallocates a buffer. Memory management is
transparent.
When the image size changes, re-allocation occurs.
When an image object is destroyed, the buffer is unallocated.
To declare an image with internal memory allocation:
1. Construct an image object, for instance EImageBW8, either with width and height arguments,

OR using the SetSize function.
2. Access a given pixel. There are several functions that do this. GetImagePtr returns a pointer

to the first byte of the pixel at given coordinates.

External Memory Allocation

The user controls buffer allocation, or links a third-party image in the memory buffer to an Open
eVision image.
Image size and buffer address must be specified.
When an image object is destroyed, the buffer is unaffected.
To declare an image with external memory allocation:
1. Declare an image object, for instance EImageBW8.
2. Create a suitably sized and aligned buffer (see Image Buffer).
3. Set the image size with the SetSize function.
4. Access the buffer with GetImagePtr. See also Retrieving Pixel Values.

2.4. Image and Depth Map Buffer
Image and depth map pixels are stored contiguously, from top row to bottom, from left to right,
in Windows bitmap format (top-down DIB1) into an associated buffer.

The buffer address is a pointer to the start address of the buffer, which contains the top left
pixel of the image.

1device-independent bitmap

Open eVision User Guide

16

Image Buffer pitch

● Alignment must be a multiple of 4 bytes.

● Open eVision 1.2 onwards default pitch is 32 bytes for performance reasons (Open eVision
1.1.5 was 8 bytes).

Memory Layout

● EImageBW1 stores 8 pixels in one byte.

Example memory layout of the first 2 pixels of a BW1 image buffer:

● EImageBW8 and EDepthMap8 store each pixel in one byte.

Example memory layout of the first pixels of a BW8 image buffer:

● EImageBW16 stores each pixel in a 16-bit word (two bytes).

Open eVision User Guide

17

Example memory layout of the first pixels of a BW16 image buffer:

● EImageC15 stores each pixel in 2 bytes. Each color component is coded with 5-bits.
The 16th bit is left unused.

Example memory layout of the first pixels of a C15 image buffer:

● EImageC16 stores each pixel in 2 bytes. The first and third color components are coded with
5-bits.
The second color component is coded with 6-bits.

Example memory layout of the first pixels of a C16 image buffer:

● EDepthMap16 store each pixel in 2 bytes using a fixed point format.

● EImageC24 stores each pixel in 3 bytes. Each color component is coded with 8-bits.

Open eVision User Guide

18

Example memory layout of the first pixels of a C24 image buffer:

● EImageC24A stores each pixel in 4 bytes. Each color component is coded with 8-bits.
The alpha channel is also coded with 8-bits.

Example memory layout of the first pixels of a C24A image buffer:

● EDepthMap32f store each pixel in 4 bytes using a float format.

2.5. Image Drawing and Overlay
n Drawing uses Windows GDI1 system calls.

MFC2 applications normally use OnDraw event handler to draw, where a pointer to a device
context is available.
Borland/CodeGear's OWL or VCL use a Paint event handler.

n The color palette in 256-color display mode gives optimal rendering. Gray-level images can
be improved using LUT3s (using histogram stretching techniques or pseudo-coloring).

n The zoom can be different horizontally and vertically.
n DrawFrameWithCurrentPen method draws a frame.
n Non-destructive overlaying drawing operations do not alter the image contents, such as

MoveTo/LineTo.

1Graphics Device Interface
2Microsoft Foundation Class
3LookUp Tables

Open eVision User Guide

19

n Destructive overlaying drawing operations alter the image contents by drawing inside the
image such as Easy.OpenImageGraphicContext. Gray-level [color] images can only receive
a gray-level [color] overlay.

2.6. 3D Rendering of 2D Images
These images are viewed by rotating them around the X-axis, then the Y-axis.

Gray 3D Rendering

Easy.Render3D prepares a 3-dimensional rendering where gray-level values are altitudes.
Magnification factors in the three directions (X = width, Y = height and Z = depth) can be given.
The rendered image appears as independent dots whose size can be adjusted to make the
surface more or less opaque.

3D rendering

Color Histogram 3D Rendering

Easy.RenderColorHistogram prepares a 3-dimensional rendering of a color image histogram.
The pixels are drawn in the RGB space (not XY-plane) to show clustering and dispersion of RGB
values.
This function can process pixels in other color systems (using EasyColor to convert), but the raw
RGB image is required to display the pixels in their usual colors.

Magnification factors in all three directions (X = red, Y = green and Z = blue) can be given.

Color histogram rendering

2.7. Vector Types and Main Properties
A vector is a one-dimensional array of pixels (taken from an image profile or contour).

Open eVision User Guide

20

EVector is the base class for all vectors. It contains all non-type-specific methods, mainly for
counting elements and serialization.

Profile in a C24 image RGB values plot along profile
RGB values array
(EC24Vector)

A vector manages an array of elements. Memory allocation is transparent, so vectors can be
resized dynamically. Whenever a function uses a vector, the vector type, size and structure are
automatically adjusted to suit the function needs.

The use of vectors is quite straightforward:
1. Create a vector of the appropriate type, using its constructor and pre-allocate elements if

required.

Vector types

n EBW8Vector: a sequence of gray-level pixel values, often extracted from an image profile
(used by EasyImage.Lut, EasyImage.SetupEqualize,
EasyImage.ImageToLineSegment, EasyImage.LineSegmentToImage,
EasyImage.ProfileDerivative, ...).

Graphical representation of an EBW8Vector (see Draw method)

n EBW16Vector: a sequence of gray-level pixel values, using an extended range (16 bits),
mainly for intermediate computations.

Open eVision User Guide

21

Graphical representation of an EBW16Vector

n EBW32Vector: a sequence of gray-level pixel values, using an extended range (32 bits),
mainly for intermediate computations
(used in EasyImage.ProjectOnARow, EasyImage.ProjectOnAColumn, ...).

Graphical representation of an EBW32Vector

n EC24Vector: a sequence of color pixel values, often extracted from an image profile
(used by EasyImage.ImageToLineSegment, EasyImage.LineSegmentToImage,
EasyImage.ProfileDerivative, ...).

Graphical representation of an EC24Vector

n EBW8PathVector: a sequence of gray-level pixel values, extracted from an image profile
or contour, with corresponding pixel coordinates
(used by EasyImage.ImageToPath, EasyImage.PathToImage, ...).

Open eVision User Guide

22

Graphical representation of an EBW8PathVector (see Draw method)

n EBW16PathVector: a sequence of gray-level pixel values, extracted from an image profile
or contour, with corresponding pixel coordinates
(used by EasyImage.ImageToPath, EasyImage.PathToImage, ...).

Graphical representation of an EBW16PathVector (see Draw method)

n EC24PathVector: a sequence of color pixel values, extracted from an image profile or
contour, with corresponding pixel coordinates
(used by EasyImage.ImageToPath, EasyImage.PathToImage, ...).

Graphical representation of an EC24PathVector (see Draw method)

n EBWHistogramVector: a sequence of frequency counts of pixels in a BW8 or BW16 image
(used by EasyImage.IsodataThreshold, EasyImage.Histogram,
EasyImage.AnalyseHistogram, EasyImage.SetupEqualize, ...).

Open eVision User Guide

23

Graphical representation of an EBWHistogramVector (see Draw method)

n EPathVector: a sequence of pixel coordinates. The corresponding pixels need not be
contiguous
(used by EasyImage.PathToImage and EasyImage.Contour).

Graphical representation of an EPathVector (see Draw method)

n EPeakVector: peaks found in an image profile
(used by EasyImage.GetProfilePeaks).

n EColorVector: a description of colors
(used by EasyColor.ClassAverages and EasyColor.ClassVariances).

2. Fill a vector with values. First empty it, using the EVector.Empty member, then add
elements one at a time by calling the EC24Vector.AddElement member. You can access
any element by means of indexing.

3. Access a vector element, either for reading or writing. Use the brackets operator, for
instance, EC24Vector.operator[].

4. Determine the current number of elements, use member EVector.NumElements.
5. Draw the vector.

A pixel vector is a plot of the element values as a function of the element index, so its
graphical appearance depends on its type. You can draw a vector in a window. For legibility,
the drawing should appear on a neutral background.
Drawing is done in the device context associated to the desired window. By default, curves
are drawn in blue, annotations are drawn in black. The following parameters can be defined:
graphicContext, width, height, origin, origin, color0, color1, color2.
The EC24Vector has three curves drawn instead of one, each corresponding to a color
component. By default, red, blue and green pens are used.

Open eVision User Guide

24

2.8. ROI Main Properties
ROIs are defined by a width, a height, and origin x and y coordinates.
The origins are specified with respect to the top left corner in the parent image or ROI.
The ROI must be wholly contained in its parent image.
The processing/analysis time of a BW1 ROI is faster if OrgX and Width are multiples of 8.

Save and load

You can save or load an ROI as a separate image, to be used as if it was a full image. The ROIs
perform no memory allocation at all and never duplicate parts of their parent image, the
parent image provides them with access to its image data.

The image size of the new file must match the size of the ROI being loaded into it. The image
around the ROI remains unchanged.

ROI Classes

An Open eVision ROI inherits parameters from the abstract class EBaseROI.

There are several ROI types, according to their pixel type. They have the same characteristics as
the corresponding image types.
n EROIBW1

n EROIBW8

n EROIBW16

n EROIBW32

n EROIC15

n EROIC16

n EROIC24

n EROIC24A

Attachment

An ROI must be attached to a parent (image/ROI) with parameters that set the parent, position
and size, and these links are updated transparently, avoiding dangling pointers.
A normal image cannot be attached to another image or ROI.

Nesting

Set and Get functions change or query the width, height and position of the origin of an ROI,
with respect to its immediate or topmost parent image.

An image may accommodate an arbitrary number of ROIs, which can be nested in a
hierarchical way. Moving the ROI also moves the embedded ROIs accordingly. The image/ROI
classes provide several methods to traverse the hierarchy of ROIs associated with an image.

Open eVision User Guide

25

Nested ROIs: Two sub-ROIs attached to an ROI, itself attached to the parent image

Cropping

CropToImage crops an ROI which is partially out of its image. The resized ROI never grows.
An exception is thrown if a function attempts to use an ROI that has limits that extend outside
of the parents.

Note: (In Open eVision 1.0.1 and earlier, an ROI was silently resized or repositioned when placed
out of its image and sometimes grew. If ROI limits extended outside parents, they were silently
resized to remain within parent limits.)

Resizing and moving

n ROIs can easily be resized and positioned by two functions and dragging handles:
n EBaseROI.Drag adjusts the ROI coordinates while the cursor moves.
n EBaseROI.HitTest informs if the cursor is placed over a dragging handle. Once the

handle is known, the cursor shape can be changed by an OnSetCursor MFC event
handler. HitTest is unpredictable if called while dragging is in progress.
HitTest can be used in an OnSetCursor MFC event handler to change the cursor shape, or
before a dragging operation like OnLButtonDown,
(or EvSetCursor and EvLButtonDown in Borland/CodeGear's OWL)
(or FormMouseMove and FormMouseDown in Borland/CodeGear's VCL).
In VB6, MouseDown, MouseMove,MouseUp events return the current cursor position in
twips rather than pixels, so conversion is mandatory.

2.9. Flexible Masks
ROIs vs flexible masks

ROIs and masks restrict processing to part of an image:
n "ROI Main Properties" on the previous page apply to all Open eVision functions. Using

Regions of Interest accelerates processing by reducing the number of pixels. Open eVision
supports hierarchically nested rectangular ROIs.

n Flexible Masks are recommended to process disconnected ROIs or non-rectangular shapes.
They are supported by some EasyObject and EasyImage library functions.

Open eVision User Guide

26

Flexible Masks

A flexible mask is a BW8 image with the same height and width as the source image. It contains
shapes of areas that must be processed and ignored areas (that will not be considered during
processing):
n All pixels of the flexible mask having a value of 0 define the ignored areas.
n All pixels of the flexible mask having any other value than 0 define the areas to be processed.

Source image Associated mask Processed masked image

A flexible mask can be generated by any application that outputs BW8 images and by some
EasyObject and EasyImage functions.

Flexible Masks in EasyImage

Source image (left) and mask variable (right)

Simple steps to use flexible masks in Easyimage

1. Call the functions from EasyImage that take an input mask as an argument. For instance,
one can evaluate the average value of the pixels in the white layer and after in the black
layer.

2. Display the results.

Resulting image

EasyImage Functions that support flexible masks

n EImageEncoder.Encode has a flexible mask argument for BW1, BW8, BW16, and C24 source
images.

Open eVision User Guide

27

n AutoThreshold.
n Histogram (function HistogramThreshold has no overload with mask argument).
n RmsNoise, SignalNoiseRatio.
n Overlay (no overload with mask argument for BW8 source images).
n ProjectOnAColumn, ProjectOnARow (Vector projection).
n ImageToLineSegment, ImageToPath (Vector profile).

Flexible Masks in EasyObject

A flexible mask can be generated by any application that outputs BW8 images or uses the Open
eVision image processing functions.
EasyObject can use flexible masks to restrict blob analysis to complex or disconnected shaped
regions of the image.

If an object of interest has the same gray level as other regions of the image, you can define
"keep" and "ignore" areas using flexible masks and Encode functions.

A flexible mask is a BW8 image with the same height and width as the source image.
n A pixel value of 0 in the flexible mask masks the corresponding source image pixel so it

doesn't appear in the encoded image.
n Any other pixel value in the flexible mask causes the pixel to be encoded.

EasyObject functions that create flexible masks

Source image

1) ECodedImage2.RenderMask: from a layer of an encoded image

1. To encode and extract a flexible mask, first construct a coded image from the source image.
2. Choose a segmentation method (for the image above the default method

GrayscaleSingleThreshold is suitable).
3. Select the layer(s) of the coded image that should be encoded (i.e. white and black layers

using minimum residue thresholding).
4. Make the mask image the desired size using mask.SetSize(sourceImage.GetWidth(),

sourceImage.GetHeight()).
5. Exploit the flexible mask as an argument to ECodedImage2.RenderMask.

Open eVision User Guide

28

BW8 resulting image that can be used as a flexible mask

2) ECodedElement.RenderMask: from a blob or hole

1. Select the coded elements of interest.
2. Create a loop extracting a mask from selected coded elements of the coded image using

ECodedElement.RenderMask.
3. Optionally, compute the feature value over each of these selected coded elements.

BW8 resulting image that can be used as a flexible mask

3) EObjectSelection.RenderMask: from a selection of blobs

EObjectSelection.RenderMask can, for example, discard small objects resulting from noise.

BW8 resulting image that can be used as a flexible mask

Example: Restrict the areas encoded by EasyObject

Open eVision User Guide

29

Find four circles (left) Flexible mask can isolate the central chip (right)

1. Declare a new ECodedImage2 object.
2. Setup variables: first declare source image and flexible mask, then load them.
3. Declare an EImageEncoder object and, if applicable, select the appropriate segmenter.

Setup the segmenter and choose the appropriate layer(s) to encode.
4. Encode the source image. Encoding a layer with just the area in the flexible mask is then

pretty straightforward.
We see that the circles are correctly segmented in the black layer with the grayscale single
threshold segmenter:

5. Select all objects of the coded image.
6. Select objects of interest by filtering out objects that are too small.
7. Display the blob feature by iterating over the selected objects to display the chosen feature.

2.10. Profile
Profile Sampling

A profile is a series of pixel values sampled along a line/path/contour in an image.
n EasyImage.ImageToLineSegment copies the pixel values along a given line segment

(arbitrarily oriented and wholly contained within the image) to a vector. The vector length is
adjusted automatically. This function supports flexible mask.

n A path is a series of pixel coordinates stored in a vector.
EasyImage.ImageToPath copies the corresponding pixel values to the vector. This function
supports flexible mask.

n A contour is a closed or not (connected) path, forming the boundary of an object.
EasyImage.Contour follows the contour of an object, and stores its constituent pixels
values inside a profile vector.

Profile Analysis

The profile can be processed to find peaks or transitions:
n A transition corresponds to an object edge (black to white or white to black). It can be

detected by taking the first derivative of the signal (which transforms transitions (edges) into
peaks) and looking for peaks in it.
EasyImage.ProfileDerivative computes the first derivative of a profile extracted from a

Open eVision User Guide

30

gray-level image.
The EBW8 data type only handles unsigned values, so the derivative is shifted up by 128.
Values under [above] 128 correspond to negative [positive] derivative (decreasing [increasing]
slope).

n A peak is the portion of the signal that is above [or below] a given threshold - the maximum
or minimum of the signal. This may correspond to the crossing of a white or black line or
thin feature. It is defined by its:
n Amplitude: difference between the threshold value and the max [or min] signal value.
n Area: surface between the signal curve and the horizontal line at the given threshold.

EasyImage.GetProfilePeaks detects max and min peaks in a gray-level profile. To
eliminate false peaks due to noise, two selection criteria are used. The result is stored in a
peaks vector.

Profile Insertion Into an Image

EasyImage.LineSegmentToImage copies the pixel values from a vector or constant to the
pixels of a given line segment (arbitrarily oriented and wholly contained within the image).

EasyImage.PathToImage copies the pixel values from a vector or a constant to the pixels of a
given path.

Open eVision User Guide

31

3. Code Identification Tools

Open eVision User Guide

32

3.1. EasyBarCode - Reading Bar Codes

Reading Bar Codes

Bar code (EAN 13 symbology)

EasyBarCode can locate and read bar codes automatically.
Location can be performed manually for prototyping or when automatic mode results are
unsatisfactory.

Open eVision User Guide

33

Workflow

Bar code definition

A bar code is a 2D pattern of parallel bars and spaces of varying thickness that represents a
character string. It is arranged according to an encoding convention (symbology) that specifies
the character set and encoding rules.
n The bar code may be black ink on white background or inverted (white ink on black

background).
n The bar code should be preceded and followed by a quiet zone of at least ten times the

module width (smallest bar or space thickness).
n Bars should be surrounded below and above by a quiet zone of a few pixels.
n Bar and space widths must be greater than or equal to 2 pixels.

Open eVision User Guide

34

symbologies

A symbology defines the way a bar code is encoded.

Symbologies can be enabled in StandardSymbologies or AdditionalSymbologies
parameters.

The standard symbologies are enabled by default:
n Code 39
n Code 128
n Code 2/5 5 Interleaved
n Codabar
n EAN 13*
n EAN 128
n MSI
n UPC A*
n UPC E

Note: * EAN 13 and UPC A only differ by the layout of surrounding digits.

Additional symbologies that are supported:
n ADS Anker
n Binary code
n Code 11
n Code 13
n Code 32
n Code 39 Extended (a super-set of Code 39)
n Code 39 Reduced (a subset of Code 39)
n Code 93
n Code 93 Extended
n Code 412 SEMI
n Code 2/5 3 Bars Datalogic
n Code 2/5 3 Bars Matrix
n Code 2/5 5 Bars IATA
n Code 2/5 5 Bars Industry
n Code 2/5 5 Compressed
n Code 2/5 5 Inverted
n Code BCD Matrix
n Code C.I.P
n Code STK
n EAN 8
n IBM Delta Distance A

Open eVision User Guide

35

n Plessey
n Telepen

Checksum

A checksum character enables the reader to check the barcode validity depending on the
symbology:
n The checksum may be mandatory and must be checked by the reader.
n The checksum may be mandatory but may not need to be checked.
n The checksum and its verification may both be optional.

VerifyChecksum enables or disables (default) checksum verification.

Bar code structure (Code 39)

Read a bar code

The Automatic mode reading algorithm locates a bar code in the field of view and Reads it.
If several bar codes are present, only one is located, like a straightforward hand-held bar code
reader.

Before reading, the decoding symbologies must be specified in the StandardSymbologies, or
AdditionalSymbologies properties.

Mono-symbology mode reads the bar code using the expected symbology type(s) and reports the
encoded information (if readable) or the reason for failure (if not readable). There is only one
interpretation for the character string.

Decoded bar code

Note: When the bar code contains \0x00 characters, the std.string.c_str method should not
be used (since C-strings are terminated by the \0x00 character). An iterator over the characters
should be used instead of a C-string.

Open eVision User Guide

36

Advanced features

Locate and Read bar code manually

If automatic localization fails or for prototyping purposes, the user can provide the bar code
position and reading area to manually locate the code.
n Bar code position can be provided graphically by a bounding box around the bar code or by

its parameters. If several symbols appear in the image, they can be processed one after the
other.

n The reading area of the bar code is the area that is read. It should be wider than the bar
code bounding box width, and less high than the bar code bounding box height. It may also
be rotated relatively to the bar code bounding box, to take into account slanting bars
(Advanced mode!).

Bounding box — graphical appearance
(manual location)

Reading area — graphical appearance (manual
location)

Read all interpretations (multi-symbology mode)

Use Detect to report the number of possible symbologies in the NumEnabledSymbologies
property, and list the data contents by decreasing likeliness.

Then call the Decode method in a loop, using GetDecodedSymbology to walk through the list
of successful symbologies in decreasing order of likelihood.

Reading Mail Bar Codes

Mail bar code example

Specifications

The Mail Bar code Reader:

● Detects and decodes postal 4-state bar codes.

Open eVision User Guide

37

● Supports multiple mail bar codes in an image.

● Supports various symbologies.

● Supports the 4 main bar code orientations, with a tolerance of 3°.

● Detects bars that are at least 3 pixels wide.

Workflow

4-state bar codes

A 4-state bar code is a special kind of bar code where data is encoded on the height and
position of the bars rather than their width.

Each bar can have one of 4 possible states:

□ Short and centered

□ Medium and elevated

□ Medium and lowered

□ Full height

Mail bar code symbologies

The symbology of a mail bar code specifies how to decode the bar code and how to interpret its
contents.

Every country uses its own flavor of mail bar code, or symbology. Some countries, like the US,
even use multiple symbologies.

As of now, the Open eVision Mail Bar code Reader supports the following symbologies:

□ US: PLANET, POSTNET and Intelligent Mail

Open eVision User Guide

38

□ Japan: Japan Post

Mail bar code orientation

The Open eVision Mail Bar code Reader is designed to be used in mail-handling machines. As
such it is optimized to handle the 4 main orientations you encounter in such machines:

□ No Rotation: The mail barcode is horizontal and read from left to right

□ Rotated 90° to the right: The mail barcode is vertical and read from top to bottom

□ Rotated 90° to the left: The mail barcode is vertical and read from bottom to top

□ Rotated 180°: The mail barcode is upside down, horizontal, and read from right to left.

For each of these orientations, an additional rotation of -3 to 3 degrees is allowed.

Checksum

Some symbologies specify the presence of a checksum in the bar code data.

This checksum is an additional character computed from all others encoded characters. It
enables the reader to check the decoded character string coherence.

● The Mail Bar code Reader allows the user to verify or not the checksum for all enabled
symbologies.

● By default, checksum is not controlled.

● To enable or disable checksum verification for all enabled symbologies, set the
ValidateChecksum property.

Reading the mail bar codes in an image

To read all the mail barcodes in a given image:

1. Create an EMailBarcodeReader object.

2. Optionally, select the relevant symbologies using the ExpectedSymbologies property.

By default, Mail Bar code Reader will consider all supported symbologies.

3. Optionally, select the relevant orientations using the ExpectedOrientations property.

By default, Mail Bar code Reader will test all supported orientations.

4. Call Read on the source image or ROI.

Each mail bar code detected is returned as an EMailBarcode object.

5. Each EMailBarcode objects contains the following information:

□ The decoded string, using the Text property.

□ The decoded string, split up in semantic parts, using the ComponentStrings property.

□ The bar code orientation, using the Orientation property.

□ The bar code position, using the Position property.

Open eVision User Guide

39

US Intelligent Mail bar code with highlighted position and decoded information

Advanced parameters

The advanced parameters of the EMailBarcodeReader object are:

● EnableDottedBarcodes activates the support for dotted barcodes (barcodes whose bars
are printed with dots).

By default, this property is set to false.

Dotted Mail Barcode

● EnableClutteredBarcodes activates the support for cluttered barcodes (barcodes in
which some bars are connected).

By default, this property is set to true.

Cluttered Mail Barcode

● ValidateChecksum activates the validation of the bar codes checksums, if present.

By default, this property is set to false.

Open eVision User Guide

40

3.2. EasyMatrixCode - Reading Matrix
Codes

EasyMatrixCode vs EasyMatrixCode2
Introducing EasyMatrixCode2

Important: EasyMatrixCode2 is currently in beta release, so performance and features are not a
complete image of the finished product.

Starting with release 2.5, Open eVision introduces a new data matrix code reader functionality,
named "EasyMatrixCode2". In the future, EasyMatrixCode2 should replace the current
EasyMatrixCode (called "EasyMatrixCode1" from now on) with the following benefits:

□ Ability to read multiple data matrix codes in an image.

□ Improved consistency of reading and grading results.

□ Improved consistency of processing time.

□ Improved handling of deformed data matrix codes (this feature is not available yet and
will be in a later release).

Note: The relevant classes are stored in the EasyMatrixCode2 name space.

Workflow

EasyMatrixCode1

Open eVision User Guide

41

EasyMatrixCode2

1. Load the image.

2. Read the data matrix codes in the image using EMatrixCodeReader.Read().

3. Loop on found data matrix codes.

4. Display the decoded text.

Specifications
Data matrix code definition

● A data matrix code is a two-dimensional rectangular array of black and white cells which
conveys a string of characters (digits, letters and special characters).

□ It is encoded to achieve maximum packing.

□ Each cell corresponds to a bit of information.

□ Additional redundant bits allow error correction for robust reading of degraded symbols.

● A data matrix code is located using the Finder pattern:

□ The bottom and left edges of a Data Matrix code contain only black cells.

□ The top and right edges have alternating cells.

● A data matrix code is characterized by:

□ Its logical size (number of cells).

□ Its encoding type: ECC 000 (odd symbol sizes, deprecated) or ECC 200 (even symbol
sizes)..

Note: The data matrix code definition is provided by ISO/IEC and approved as standard ISO/IEC
16022.

Open eVision User Guide

42

Specifications

ECC 200, 26x26 cells data matrix code (left) and finder pattern (right)

In a single read operation, EasyMatrixCode locates, unscrambles, decodes, reads and grades the
quality of grayscale 2D data matrix codes of any size, contrast, location and orientation (even
viewed from the back on a transparent medium), providing they meet the following
specifications:

□ Minimum cell (= module) size: 3x3 pixels

□ Maximum stretching (ratio between cell width and height): 2

□ Minimum quiet zone (blank zone around the matrix code) width:
- EasyMatrixCode1: 3 pixels
- EasyMatrixCode2: 1 module

Reading a Matrix Code
Reading a matrix code

You can read matrix codes in an image automatically, using the EMatrixCodeReader::Read
() method. This method returns EMatrixCode instances, one per read data matrix code.

These instances include, among other things, for the found data matrix code:

□ Its content (decoded string) ,

□ Its position,

□ Its logical size,

□ Its encoding type,

□ Methods to draw the data matrix code on the source image.

Note:
- EasyMatrixCode1 reads a single data matrix code in the image.
- EasyMatrixCode2 reads all the data matrix codes in the image at once.

Open eVision User Guide

43

Computing the print quality

To compute print quality indicators as defined by BC11, ISO 15415, ISO/IEC TR 29158 (formerly
known as AIM DPM-1-2006) and SEMI T10-0701 standards, retrieve the grades with the
GetIso15415GradingParameters, GetIso29158GradingParameters and
GetSemiT10GradingParameters accessors of the EMatrixCode class.

Note:
- With EasyMatrixCode1, enable the grading before using the Read method.
- With EasyMatrixCode2, the grading is always enabled.

Reading GS1 data matrix codes

EasyMatrixCode is able to find and decode GS1-compliant data matrix codes.

The GS1 standard adds semantic identifiers to the contents of a data matrix code, so that they
are interpreted in an easy and consistent way.

GS1-compliant content is structured as follows:

]d2[GS1]{Id1}{Value1}[GS1]{Id2}{Value2}…

where:

□ “]d2” is the string identifying a GS1-compliant stream,

□ [GS1] is the GS1 escape character (0x1d),

□ {Id} is an application identifier,

□ {Value} is the value associated to that identifier.

Example

The string:

]d2[GS1]11180112[GS1]15190101

can be interpreted as follows:

□ It contains two GS1 parts, 11180112 and 15190101.

□ The first (11180112) is composed of the identifier 11 and the value 180112, meaning that
the product has a production date (the meaning of identifier 11) of January 12th, 2018.

□ The second (15190101) is composed of the identifier 15 and the value 190101, meaning
that the product has a best before date (the meaning of identifier 15) of January 1st, 2019.

For more information, see https://www.gs1.org/

Open eVision User Guide

https://www.gs1.org/

44

Learning a Matrix Code
Important: This topic applies to EasyMatrixCode1 only.

To search for specific features and speed up your processing, learn a Matrix code model.

Workflow

1. Load the image of the matrix code you want to learn.

2. Learn the model:

□ Use the Learn method with Contrast, Family, Flipping, Logical Size parameters.

□ If you need to learn several matrix codes, use LearnMore and pass additional sample
images.

□ Call Learn to replace EMatrixCodeReader parameters (calling Learn several times does
not accumulate results, while LearnMore does).

3. Tune search parameters to be efficient and either:

□ Read only matrix codes that match a sample matrix code,

□ Or read only matrix codes that have the same properties (Contrast, Family, Flipping,
Logical Size) as the learned one,

□ Or disregard a search parameter of the learned matrix code SetLearnMaskElement, for
example to read only unflipped matrixcodes. Just remove the default parameters, then
add new ones.

4. Ask EMatrixCodeReader to decode the supplied image.

5. Display the decoded string.

6. Save the state of the reader object using EMatrixCodeReader::Save.

Open eVision User Guide

45

Restoring the state of an EMatrixCodeReader

To restore the state of an EMatrixCodeReader and use it to read a matrix code:

1. Load an image.

2. Restore the reader state from the given file using EMatrixCodeReader::Load.

3. Read the image.

4. Display the decoded string.

3.3. EasyQRCode - Reading QR Codes

EasyQRCode detects QR (Quick Response) codes in an image, decodes them, and returns their
data.

Error detection and correction algorithms ensure that poorly-printed or distorted QR codes can
still be read correctly.

Open eVision User Guide

46

Workflow

QR code definition

A QR code is a square array of dark and light dots. One dot (or "module") represents one bit of
information.

QR codes contain various types of data and can be different models, versions, and levels. They
always contain a message, metadata about alignment, size, format, and error correction bits.
They comply with the international standard ISO/IEC 18004 (1, 2 and 2005).

QR code structure

The QR code symbol consists of an encoding region, containing data and error correction
codewords, and of function patterns, containing symbol metadata and position data.

A QR code must be structured with the following elements:
n Quiet zone: blank margin around the QR code
n Finder patterns: recognizable zones identifying a QR code
n Extension patterns: markers for the alignment of the QR code (model 1)
n Alignment patterns: markers for the alignment of the QR code (models 2 and 2005)
n Timing Patterns: data giving the module size (in pixels)
n Format information: zones providing the QR code level

Open eVision User Guide

47

n Version information: data giving the QR code size, for instance 25 x 25 modules (models 2
and 2005)

n Data contents and error correction codewords: the primary information carried by the
symbol, with additional information for error correction

Variants of this structure exist, according to the model, format, or version of the QR code. For
instance, model 1 QR codes do not feature alignment patterns but extension patterns. Micro QR
codes include only one finder pattern, and no alignment pattern. EasyQRCode can read all of
them.

Structure of a model 1 QR code symbol

Structure of a QR code 2005 symbol

Structure of a Micro QR code symbol

Open eVision User Guide

48

Data types

The QR code data can be any mix of these types:
n Numeric data (0-9)
n Alphanumeric data (0-9, A-Z, /, $, %, etc.)
n Byte data
n Kanji characters

Models (Standards)

n Model 1: original QR code international standard, with versions ranging from 1 to 14.
Note that the "version" of a QR code is the symbol size (in number of modules). It does not
relate to the version of the standard, which is called the "model".

n Model 2: improvement of model 1. It provides versions from 1 to 40. It defines alignment
patterns to improve reading of distorted QR codes, or QR codes printed on curved surfaces.

n Model 2005: improvement of model 2, including white-on-black QR codes, and mirror
symbol orientation.

n Micro QR codes: (not yet supported) smaller QR codes, from version M1 to version M4. They
have been introduced to save printing space.

Versions (Symbol Size)

n QR codes: from version 1 (21 x 21 modules) to version 40 (177 x 177 modules), with an
increment of +4 x +4 modules (version 2: 25 x 25 modules, version 3: 29 x 29 modules, ...,
version 39: 173 x 173 modules).

n Micro QR codes: (not yet supported) version M1 (11 x 11 modules), version M2 (13 x
13 modules), version M3 (15 x 15 modules), version M4 (17 x 17 modules).

Examples of QR codes
From left to right:

Micro QR code, version M3, 15 x 15 modules,
Model 2 QR code, version 4, 33 x 33 modules, 67-114 characters,

Model 2 QR code, version 40, 177 x 177 modules, 1852-4296 characters

Levels (Error Correction)

QR codes contain error correction data. The standard offers the following levels of error
correction:

Open eVision User Guide

49

n L: (low) about 7% of codewords can be restored
n M: (medium) 15%
n Q: (quality) 25%
n H: (high) 30% (not available for Micro QR codes)

QR code geometry

When the QR code reader finds an array of dots that could match a QR code, it returns the
"geometry" of this QR code candidate.

A QR code geometry is a set of points. It contains the coordinates of the corners of the QR code
quadrilateral (bottom left, top left, top right, bottom right), and the coordinates of the finder
pattern centers (bottom left, top left, top right).

QR code geometry

Read a QR code

Reading a QR code returns information about QR codes for which detection and decoding were
successful.

This is equivalent to detecting and decoding all QR codes in the given search field (see
advanced features).

Advanced features

Detect a QR code

1. Set a search field on an EROIBW8 image or tune the parameters to restrict the numbers of
operations to process.

2. The QR code reader scans the image and searches for 3 finder patterns that could match a
QR code, with the following requirements:
n Minimum quiet zone (blank zone around the QR code) width: 3 pixels.
n Minimum module size: 3 x 3 pixels.
n Minimum isotropy: 0.5.
n Maximum corner deformation: 15° (corner angles can range from 75° to 105°).

Open eVision User Guide

50

3. The reader returns QR code candidates, or the result of a detection, as a vector of
geometries.

decode a QR code

1. The QR code reader decodes a QR candidate and returns the QR code: model, version, level,
geometry and decoded stream of data.

The decoded stream class consists of a coding mode (basic, FNC1/GS1, or FNC1/AIM), and an
application indicator (if the coding mode is FNC1/AIM, otherwise 0). The decoded data can
be accessed from each part of the decoded stream, according to its encoding (numeric,
alphanumeric, byte, or Kanji). You can also get the raw bit stream (the bit data after
unmasking and error correction, but before decoding as a vector of bytes).

2. The reader can report the amount of unused error correction.
n Close to 1, very few errors were corrected when decoding the data. The decoding is highly

reliable, and the QR code is of good quality.
n Close to 0, many errors were corrected when decoding the data. The decoding is reliable,

but the QR code quality is poor.
n -1, error correction failed. Decoding was not performed.

Tuning parameters

Scan precision: You can change the scan precision to scan the search field with a fine
(recommended for small QR codes), or coarse (recommended on medium to large QR codes)
precision.

Minimum score: The QR code reader searches for this QR code finder pattern:

A perfect match returns a pattern finder score of 1.
Less accurate matches return lower scores.
The minimum score allowed by default is 0.65 - you can tune this.

Minimum isotropy: The isotropy of a QR code represents its rectangular deformation.
Perfectly square QR codes have an isotropy of 1 (short side divided by long side, whether the
rectangle is vertical or horizontal).
EasyQRCode can detect rectangle QR codes with an isotropy down to 0.5. The default minimum
isotropy is 0.8, it can be tuned from 0 to 1.

Square and rectangular QR codes (isotropy = 1, 0.5, and 0.5 from left to right)

Open eVision User Guide

51

Model and version: The QR code reader searches for QR codes of all models, and all versions.
You can shorten the process by specifying the QR code model(s) and a range of versions (from 1
to 40) to be searched for.

Open eVision User Guide

52

4. Using Open eVision Studio

Open eVision User Guide

53

4.1. Selecting your Programming
Language
When you start Open eVision Studio for the first time, the following welcome screen is
displayed:

1. Select your programming language.

Your selection is saved and your programming language will be automatically selected next time
you start Open eVision Studio.

Note: When you change your programming language, any script present in the scripting
window is automatically deleted and the window content is reset.

2. Click on one of the Load buttons to already load one or several images for later processing.

3. Check the Do not show at startup box to hide this welcome screen next time you start Open
eVision Studio.

To access this welcome screen at any time, and change this setting, go to the Help >Welcome
Screen menu.

Open eVision User Guide

54

4.2. Navigating the Interface

Open eVision Studio graphical user interface (GUI) is organized as follows:

1. The main menu bar gives you access to the functions and tools of all libraries.

Open eVision Studio does not require any license and allows you to test all libraries. Of course, if you
copy code from Open eVision Studio in your own application but you do not have the required
license, you will receive a "missing license" error at run-time.

2. The main toolbar gives you a quick access to main Open eVision objects such as images,
shapes, gauges, bar codes, matrix codes...

3. The script window displays the code, in the programming language you selected,
corresponding to the actions you perform in Open eVision Studio. You can save or copy this
code in your own application at any time.

4. The image windows display the open images that you can process using the libraries and
tools.

5. The tool windows enable you to easily configure all the available tools. The corresponding
settings are automatically added in the script window for easy reuse.

Most tool windows are floating and you can easily move them outside the Open eVision Studio main
window to make a better use of your screen size.

6. The execution time bar displays the precise time taken for the execution of the selected
functions (measured in milliseconds or microseconds) on your computer. This accurate
measurement helps you to evaluate the performance of your application.

7. The color toolbar displays current information such as the X and Y coordinates of the cursor
on an image and the corresponding pixel value.

8. The status bar displays general information about the application such as the active image
file path...

Open eVision User Guide

55

4.3. Running Tools on Images

Step 1: Selecting a Tool
Usually the first step, when using Open eVision Studio, is to select the library and the tool you
want to use on your image.

To do so:

1. In the main menu bar, click on the library you want to use.

2. Click on the tool you want to use.

All libraries (except EasyImage, EasyColor and EasyGauge) expose only one tool named New Xxx
Tool. Some of these libraries also expose additional functions.

3. In the dialog box, enter a Variable name for the variable that is automatically created and
that will contain the result of the processing.

Example of variable creation dialog box for EasyQRCode

4. Click OK.

The selected tool dialog box opens.

Example of variable creation dialog box for EasyQRCode

Open eVision User Guide

56

The next step is "Step 2: Opening an Image" below.

Step 2: Opening an Image
Once you have selected your library and your tool, you need to open an image to apply this
tool.

In the Source Image area of the selected tool dialog box:

1. Open an image:

□ Click on the Open an Image button and select one or several (using SHIFT and CTRL)
images on your computer.

□ Or select one of the images (or one of the ROIs, if any) already open in the drop-down list.

Note: You can select only images with an appropriate file format (JPG, PNG, TIFF or BMP) and in
8- and/or 24-bit depending on the library.

2. If you selected several images, activate one with the Load Previous or Load Next
buttons.

The tool is automatically applied on any loaded image and, at this stage, the result is displayed
based on the tool default settings.

The next step is "Step 3: Managing ROIs" below.

Step 3: Managing ROIs
In some cases, most often to decrease the processing time or to single-out the object you want
to read, you do not want to process the whole image but only one or several well defined
rectangular parts of this image, or ROIs (Regions Of Interest).

In Open eVision, ROIs are attached to an image and exist only as long as the parent image is
available.

Creating a ROI

1. Open the image:

□ If the image is already open, activate the corresponding image window.

□ If the image is not open yet, go to the main menu: Image > Open... to open one.

2. To create an ROI, go to the main menu: Image > ROI Management....

Open eVision User Guide

57

The ROI Management window is displayed as illustrated below.

3. Select the image in the tree.

4. Click on the New button.

5. In the dialog box, enter a Variable name for the new ROI.

The ROI is represented as a color rectangle on your image as illustrated below.

6. Drag the ROI corner and side handles to move it to the required position.

7. Click on the Close button to close the ROI Management window .

The next step is "Step 4: Configuring the Tool" on the next page.

Managing ROIs

You can add, change and remove ROIs.

An image can have several ROIs. Each ROI can be attached directly to the image (meaning that its
position is relative to the image) or to another ROI (meaning that its position is relative to this
'parent' ROI).

1. To manage ROIs, go to the main menu: Image > ROI Management....

The ROI Management window is displayed with the ROI relation tree as illustrated below.

Open eVision User Guide

58

If the Draw Rois box is checked, all ROIs are displayed on the image with a different color.

2. Select an ROI in the ROI relation tree.

3. Drag the ROI corner and side handles to change the position and size of the selected ROI (as
well as the position of all ROIs attached to it if any).

4. Click on the New button to add a new ROI attached to the selected ROI.

Select the image at the top of the ROI relation tree to attach the ROI directly to the image.

5. Click on the Remove button to delete the selected ROI (and all ROIs attached to it if any).

6. Click on the Close button to close the ROI Management window.

Step 4: Configuring the Tool
Once your image, including its ROIs if you created some, is ready, you need to configure your
tool.

In the tool window:

1. Open the various tabs.

When you create a new tool, all parameters are set with their default value.

Open eVision User Guide

59

Example of the parameter tab of an EasyQRCode tool

2. In each tab, set the value of the parameters as desired.

Please refer to the "Functional Guide" and to the "Reference Manual" for detailed information
about the parameters, their function and their default value.

For specific actions such as learning or using gauges, please refer to the "Functional Guide".

3. Run the tool and analyze the results as described in the next step "Step 5: Running the Tool
and Checking Execution Time" below.

Step 5: Running the Tool and Checking Execution
Time
Once your tool parameters are set, run your tool and, if desired, check the execution time on
your computer.

In the tool window:

1. Click on the Read, Detect, Results or Execute button (depending on the library function), to
run the tool on the selected image.

2. Check the results on the image and in the Results field or area as illustrated below.

Open eVision User Guide

60

Example of results after reading a QRCode

3. If you do not have the expected results:

□ Try to change your parameters (start with default values then change one parameter at a
time).

□ If you image is not good enough, try to enhance it as described in .

4. Check the execution time in the execution time bar at the bottom left of the main Open
eVision Studio window.

The execution time

The execution time is the actual time that the processing took as measured on your computer. It
depends your computer processor, memory, operating system... and, of course, on the processor
load at the time of execution. Thus this execution time slightly varies from execution to execution.

5. To get a more representative execution time, click on the Read, Detect, Results or Execute
button several times and calculate the mean execution time.

6. If your application requires that you reduce the execution time, try:

□ To change the tool parameters,

□ To add one or several ROIs on your image,

□ To enhance your image.

The next step is "Step 6: Using the Generated Code" on the next page.

Open eVision User Guide

61

Step 6: Using the Generated Code
By default, Open eVision Studio translates all the operations you perform in the interface into
code in the language you selected as illustrated below.

Once your tool results suit you, you can save or copy this generated code to use it in your own
application.

Copy and paste the code in your application

In the script window:

1. Select the code section you want to copy.

2. Right click on this code and click Copy in the menu.

3. Go to you development environment tool and paste the code in place.

Save the code

1. Go to the Script menu.

2. Click on Save Script As....

3. Enter a file name and path to save the code as a text file.

Manage the generated code

In the Script menu, you can:

□ Select the programming language (please note that if you change the language, the script
window content is automatically deleted).

□ Activate or deactivate the Script Code Generation. Deactivate this option if you want to
perform some operations without saving them as code.

Open eVision User Guide

62

4.4. Pre-Processing and Saving Images
When should you pre-process your images?

Of course, the best situation is to set up your image acquisition system to have good and easy
to process images so the Open eVision tools run smoothly and efficiently.

If this is not possible or easy to achieve, you can pre-process your images or your ROIs to
enhance and prepare them for the Open eVision tool you want to run.

Using the various available functions, you can adjust the gain and offset of your image, apply a
convolution, threshold, scale, rotate and white balance your image, enhance contours... using
EasyImage and EasyColor functions.

Pre-processing images

The difference between pre-processing an image and running tools is that the pre-processing
generates a new image while the tools mainly extract and retrieve information from the image
without changing it.

To pre-process an image or an ROI:

1. In the main menu bar, click on the library you want to use (EasyImage or EasyColor).

2. Click on the function you want to use.

Most function dialog boxes are similar to the one illustrated below with 2 image selection areas
and a parameter setting area.

Example of a pre-processing dialog box (Threshold with EasyImage)

3. If there are multiple versions for your selected function, open the corresponding tab.

4. In the Source Image area, open the source image (as described in "Step 2: Opening an
Image" on page 56).

5. In the Destination Image area, open or create a new destination image.

6. Set your parameters.

7. Click on the Execute button.

The pre-processed image is available in the destination image as illustrated below.

Open eVision User Guide

63

Source and destinations images (Threshold with EasyImage)

8. If you want to use the destination image outside of Open eVision Studio, save it as described
below.

Saving an image

1. Click in the image you want to save to activate it.

2. To open the save menu either:

□ Right-click in the image

□ Or open the main menu > Image

3. Click on Save as....

4. Select the file format (JPEG, JPEG2000, PNG, TIFF or Bitmap).

5. Enter a name and select a path.

6. Click on the Save button.

Open eVision User Guide

64

5. Tutorials

5.1. EasyBarCode

Reading Bar Codes Automatically
"Reading a Bar Code" on page 73

Objective

Following this tutorial, you will learn how to perform automatic reading of multiple bar codes.

You'll need first to load multiple source images (step 1). The reading is then automatically
performed on each image (step 2).

Each bar code is automatically detected and decoded

Open eVision User Guide

65

Step 1: Load the source images

1. From the main menu, click EasyBarCode, then New BarCode Tool.

2. Keep the default variable name, and click OK.

3. In the AutoRead tab, click the Open icon of the Source Image area, and load the image files
EasyBarCode\Barcode 01.tif to Barcode 10.tif. Use the shift key to select
multiple files.

4. Keep the default variable name, and click OK. The last image appears.

Step 2: Read the bar codes automatically

1. The bar code is automatically detected and decoded. The graphic result appears on the
image, while the data content and the corresponding symbology are displayed in the
Decoded Symbology area. It is not necessary to click Read once a new image appears.
However, clicking Read will insert the corresponding code into the script window.

2. In the Results tab, find more information about the bar code. As a bar code might have a
meaning under different symbologies, all possible contents are listed by decreasing likeliness.

3. In the AutoRead tab, click the Load Next and Load Previous icons to browse through images
01 to 06.

The image files appear, and each bar code is automatically detected and decoded. The bar
code properties are updated.

4. To decode the remaining bar codes, we have to enable the additional symbologies.

5. In the Symbologies tab, click the Toggle All button of the Additional area.

6. In the AutoRead tab, click the Load Next and Load Previous icons and browse the remaining
images.

5.2. EasyMatrixCode

Reading Data Matrix Codes Automatically
"Automatic Reading" on page 76

Objective

Following this tutorial, you will learn how to use EasyMatrixCode to detect and decode
automatically Data Matrix codes in multiple files.

You'll need first to load multiple source images (step 1). The reading is then automatically
performed on each image (step 2). You can also grade the printing quality of each matrix code
(step 3).

Open eVision User Guide

66

Each Data Matrix code is automatically detected and decoded

Step 1: Load the source images

1. From the main menu, click EasyMatrixCode, then New MatrixCode Tool.

2. Keep the default variable name for the new matrix code reader, and click OK.

3. In the Read tab, click the Open icon of the Source Image area, and load the image files
EasyMatrixCode\AutoRead\AutoRead 01.tif to AutoRead 04.tif. Use the
shift key to select multiple files.

4. Keep the default variable name for the new image, and click OK. The last image appears.

Step 2: Read the Data Matrix codes automatically

1. The Data Matrix code is automatically detected and decoded. The matrix code reference
corner is highlighted with a bold cross mark. It is not necessary to click Read once a new
image appears. However, clicking Read will insert the corresponding code into the script
window.

2. In the Results area, find more information about the matrix code, such as the decoded
string.

3. In the Read tab, click the Load Next and Load Previous icons. The image files appear, and
each Data Matrix code is automatically detected and decoded. The matrix code properties
are updated. If no Data Matrix code could been located in the image, an error message is
displayed in the Message field.

Step 3: Grade Data Matrix code printing quality

1. In the Print Quality tab, select the Compute Grading check-box.

2. Click Apply.

For each printing quality parameter, the corresponding value and its grade equivalent appear.
An A grade means a good quality, while an F grade indicates a poor one.

Learning a Data Matrix Code and Creating an
EasyMatrixCode Model File
"Reading with Prior Learning" on page 76

Open eVision User Guide

67

Objective

Following this tutorial, you will learn how to use EasyMatrixCode to learn a Data Matrix code,
and save it as an EasyMatrixCode model file.

You'll need first to load a source image (step 1), and learn the matrix code (step 2). Then you'll
save the learned matrix code as a new model file (step 3). You can also add new learned matrix
codes to an existing model if needed (step 4).

The Data Matrix code has been learned

Step 1: Load the source image

1. From the main menu, click EasyMatrixCode, then New MatrixCode Tool.

2. Keep the default variable name for the new matrix code reader object, and click OK.

3. In the Learn tab, click the Open icon of the Source Image area, and load the image file
EasyMatrixCode\Label\Label 4.tif.

4. Keep the default variable name for the new image object, and click OK.

Step 2: Learn the Data Matrix code

● In the Learn tab, click Learn.

The Data Matrix code is detected and decoded without error.

The graphical result appears on the image.

The properties of the learned matrix code are updated in the dialog box.

Step 3: Save the model file

1. In the Learn tab, click the Save As... button.

2. Type a file name for the new EasyMatrixCode model file. Its extension will be .mx2.

3. Click Save.

Step 4: Learning more Data Matrix codes

1. In the Read tab, click the Open icon of the source image area, and load the image file
EasyMatrixCode\PCB Code\PCB Code 3.jpg.

2. Keep the default variable name for the new image object, and click OK.

Open eVision User Guide

68

3. An error message is displayed in the Message area of the Read tab. The matrix code can not
be read, since the reader uses the model from the "Label 4" image. You need to learn the
"PCB Code 3" matrix code, and add it to the model.

4. In the Learn tab, click Learn More. The Data Matrix code is detected and decoded without
error. The graphical result appears on the image. The properties of the learned matrix code
are updated in the dialog box.

5. Using Learn More rather than Learn involves that the "Label 4" model is not replaced by the
"PCB Code 3" model, but both are now included in the same model. In the Read tab, the
"PCB Code 3" matrix code is correctly read. Select the "Label 4" image in the drop-down list
of the source image area. The "Label 4" matrix code is still read without error, which means
that both learned matrix codes have been kept.

6. Finally, save the model again (refer to step 3). The new matrix code has been added.

Open eVision User Guide

69

6. Code Snippets

Open eVision User Guide

70

6.1. Basic Types

Loading and Saving Images
//
// This code snippet shows how to load and save an image. //
//

// Images constructor
EImageBW8 srcImage= new EImageBW8();
EImageBW8 dstImage= new EImageBW8();

// Load an image file
srcImage.Load("mySourceImage.bmp");

// ...

// Save the destination image into a file
dstImage.Save("myDestImage.bmp");

// Save the destination image into a jpeg file
// The default compression quality is 75
dstImage.Save("myDestImage.jpg");

// Save the destination image into a jpeg file
// set the compression quality to 50
dstImage.SaveJpeg("myDestImage50.jpg", 50);

Interfacing Third-Party Images
///
// This code snippet shows how to link an Open eVision image //
// to an externally allocated buffer. //
///

// Images constructor
EImageBW8 srcImage= new EImageBW8();

// Size of the third-party image
int sizeX = bufferSizeX;
int sizeY = bufferSizeY;

//Pointer to the third-party image buffer
IntPtr imgPtr = bufferPointer;

// ...

// Link the Open eVision image to the third-party image
// Assuming the corresponding buffer is aligned on 4 bytes
srcImage.SetImagePtr(sizeX, sizeY, imgPtr);

Retrieving Pixel Values
///

Open eVision User Guide

71

// This code snippet shows the recommended method to access //
// the pixel values in a BW8 image. //
///

using System.RunTime.InteropServices;

IntPtr pixAddr;
byte pix;

//...

for(int y = 0; y < height; ++y)
pixAddr = bw8Image.GetImagePtr(0,y)
for(int x = 0; x < width; ++x)

pix = Marshal.ReadByte(pixAddr,x)

ROI Placement
///
// This code snippet shows how to attach an ROI to an image //
// and set its placement. //
///

// Image constructor
EImageBW8 parentImage= new EImageBW8();

// ROI constructor
EROIBW8 myROI= new EROIBW8();

// Attach the ROI to the image
myROI.Attach(parentImage);

//Set the ROI position
myROI.SetPlacement(50, 50, 200, 100);

Vector Management
///
// This code snippet shows how to create a vector, fill it //
// and retrieve the value of a given element. //
///

// EBW8Vector constructor
EBW8Vector ramp= new EBW8Vector();
EBW8 bw8 = new EBW8();

// Clear the vector
ramp.Empty();

// Fill the vector with increasing values
for(int i= 0; i < 128; i++)
{

bw8.Value = (byte)i;
ramp.AddElement(bw8);

}

// Retrieve the 10th element value
EBW8 value = ramp.GetElement(9);

Open eVision User Guide

72

Exception Management
//
// This code snippet shows how to manage //
// Open eVision exceptions. //
//

try
{

// Image constructor
EImageC24 srcImage= new EImageC24();

// ...

// Retrieve the pixel value at coordinates (56, 73)
EC24 value= srcImage.GetPixel(56, 73);

}

catch(EException exc)
{

// Retrieve the exception description
string error = exc.What();

}

Open eVision User Guide

73

6.2. EasyBarCode

Reading a Bar Code
///
// This code snippet shows how to read a bar code //
///

// Image constructor
EImageBW8 srcImage= new EImageBW8();

// Bar code reader constructor
EBarCode reader= new EBarCode();

// String for the decoded bar code
string result;

// ...

// Read the source image
result = reader.Read(srcImage);

Reading a Bar Code Following a Given Symbology
///
// This code snippet shows how to enable a given symbology, //
// enable the checksum verification, perform the bar code //
// detection and retrieve the decoded string. //
///

// Image constructor
EImageBW8 srcImage= new EImageBW8();

// Bar code reader constructor
EBarCode reader= new EBarCode();

// String for the decoded bar code
string result;

// ...

// Disable all standard symbologies
reader.StandardSymbologies= 0;

// Enable the Code32 symbology only
reader.AdditionalSymbologies= (int)ESymbologies.Code32;

// Enable checksum verification
reader.VerifyChecksum= true;

// Detect all possible meanings of the bar code
reader.Detect(srcImage);

// Retrieve the number of symbologies for
// which the decoding process was successful
int numDecoded = reader.NumDecodedSymbologies;

Open eVision User Guide

74

if(numDecoded > 0)
{

// Decode the bar code according to the Code32 symbology
result = reader.Decode(ESymbologies.Code32);

}

Reading a Bar Code of Known Location
//
// This code snippet shows how to specify the bar code //
// position and perform the bar code reading. //
//

// Image constructor
EImageBW8 srcImage= new EImageBW8();

// Bar code reader constructor
EBarCode reader= new EBarCode();

// String for the decoded bar code
string result;

// ...

// Disable automatic bar code detection
reader.KnownLocation = true;

// Set the bar code position
reader.SetCenterXY(450.0f, 400.0f);
reader.SetSize(250.0f, 110.0f);
reader.SetReadingSize(1.15f, 0.5f);

// Read the bar code at the specified location
result = reader.Read(srcImage);

Reading a Mail Bar Code
//
// This code snippet shows how to read Mail Barcodes //
// and retrieve the decoded data. //
//

// Image constructor
EImageBW8 srcImage = new EImageBW8();

// Mail barcode reader constructor
EMailBarcodeReader reader = new EMailBarcodeReader();

// Select expected symbologies and orientations (optional)
reader.ExpectedSymbologies = ...;
reader.ExpectedOrientations = ...;

// ...

// Read
EMailBarcode [] codes = reader.Read(srcImage);

// Retrieve the data included in found mail barcodes
for (int index= 0; index < codes.Length; index++)

Open eVision User Guide

75

{
string text = codes[index].Text;
EStringPair [] components = codes[index]. ComponentStrings;

}

Open eVision User Guide

76

6.3. EasyMatrixCode

Automatic Reading
///
// This code snippet shows how to read a data matrix code //
// and retrieve the decoded string. //
///

// Image constructor
EImageBW8 srcImage= new EImageBW8();

// Matrix code reader constructor
EMatrixCodeReader reader= new EMatrixCodeReader();

// Matrix code constructor
EMatrixCode mxCode= new EMatrixCode();

// String for the decoded information
string result;

// ...

// Read the source image
mxCode = reader.Read(srcImage);

// Retrieve the decoded string
result = mxCode.DecodedString;

Reading with Prior Learning
//
// This code snippet shows how to learn a given data matrix //
// code type (except its flipping status), perform the //
// reading and retrieve the decoded string. //
//

// Images constructor
EImageBW8 model= new EImageBW8();
EImageBW8 srcImage= new EImageBW8();

// Matrix code reader constructor
EMatrixCodeReader reader= new EMatrixCodeReader();

// Matrix code constructor
EMatrixCode mxCode= new EMatrixCode();

// String for the decoded information
string result;

// ...

// Tell the reader not to take the flipping into account when learning
reader.SetLearnMaskElement(ELearnParam.Flipping, false);

// Learn the model
reader.Learn(model);

Open eVision User Guide

77

// Read the source image
mxCode = reader.Read(srcImage);

// Retrieve the decoded string
result = mxCode.DecodedString;

Advanced Tuning of the Search Parameters
'//
'// This code snippet shows how to explicitly specify the data //
'// matrix code logical size and family, perform the reading //
'// and retrieve the decoded string. //
'//

' Image constructor
Dim srcImage As New EImageBW8

' Matrix code reader constructor
Dim reader As New EMatrixCodeReader

' Matrix code constructor
Dim mxCode As New EMatrixCode

' String for the decoded information
Dim result As String

' ...

' Remove the default logical sizes
reader.SearchParams.ClearLogicalSize

' Add the 15x15 and 17x17 logical sizes
reader.SearchParams.AddLogicalSize ELogicalSize__15x15
reader.SearchParams.AddLogicalSize ELogicalSize__17x17

' Remove the default families
reader.SearchParams.ClearFamily

' Add the ECC050 family
reader.SearchParams.AddFamily EFamily_ECC050

' Read the source image
Set mxCode = reader.Read(srcImage)

' Retrieve the decoded string
result = mxCode.DecodedString

Retrieving Print Quality Grading
//
// This code snippet shows how to read a data matrix code //
// and retrieve its print quality grading. //
//

// Image constructor
EImageBW8 srcImage= new EImageBW8();

// Matrix code reader constructor
EMatrixCodeReader reader= new EMatrixCodeReader();

Open eVision User Guide

78

// Matrix code constructor
EMatrixCode mxCode= new EMatrixCode();

// ...

// Enable grading computation
reader.ComputeGrading= true;

// Read the source image
mxCode = reader.Read(srcImage);

// Retrieve the print quality grading
int axialNonUniformityGrade= mxCode.AxialNonUniformityGrade;
int contrastGrade= mxCode.ContrastGrade;
int printGrowthGrade= mxCode.PrintGrowthGrade;
int unusedErrorCorrectionGrade= mxCode.UnusedErrorCorrectionGrade;

Open eVision User Guide

79

6.4. EasyQRCode

Automatic Reading of a QR Code
//
// This code snippet shows how to read a QR code //
// and retrieve the decoded data. //
//

// Image constructor
EImageBW8 srcImage= new EImageBW8();

// QR code reader constructor
EQRCodeReader reader= new EQRCodeReader ();

// ...

// Set the source image
reader.SearchField = srcImage;

// Read
EQRCode [] qrCodes = reader.Read();

// Retrieve the data of the first QR code found if
// one was found and decoding went ok
if ((qrCodes.Length() > 0) &&

(qrCodes[0].UnusedErrorCorrection >= 0))
{
 EQRCodeDecodedStream stream = qrCodes[0].DecodedStream;
}

Retrieving Information of a QR Code
//
// This code snippet shows how to read a QR code //
// and retrieve the associated information. //
//

// Image constructor
EImageBW8 srcImage= new EImageBW8();

// QR code reader constructor
EQRCodeReader reader= new EQRCodeReader ();

// ...

// Set the source image
reader.SearchField = srcImage;

// Read
EQRCode [] qrCodes = reader.Read();

// Retrieve version, model and position information
// of the first QR code found, if one was found
if (qrCodes.Length() > 0)
{

int version = qrCodes[0].Version;

Open eVision User Guide

80

 EQRCodeModel model = qrCodes[0].Model;
 EQRCodeGeometry geometry = qrCodes[0].Geometry;
}

Decoding the First QR Code Detected
///
// This code snippet shows how to decode a QR code //
// from a list of detected ones. //
///

// Image constructor
EImageBW8 srcImage= new EImageBW8();

// QR code reader constructor
EQRCodeReader reader= new EQRCodeReader ();

// ...

// Set the source image
reader.SearchField = srcImage;

// Detect QR Codes
EQRCodeGeometry [] qrCodeGeometries = reader.Detect();

// Decode first detected QR Code
EQRCode qrCode = reader.Decode(qrCodeGeometries[0]);

// Retrieve the data from the QR Code
EQRCodeDecodedStream stream = qrCode.DecodedStream;

Tuning the Search Parameters
//
// This code snippet shows how to read a QR code //
// and retrieve the decoded data after setting a //
// number of search parameters. //
//

// Image constructor
EImageBW8 srcImage= new EImageBW8();

// QR code reader constructor
EQRCodeReader reader= new EQRCodeReader ();

// ...

// Set the source image
reader.SearchField = srcImage;

// Set the search parameters
reader.MaximumVersion = 7;
reader.MinimumIsotropy = 0.9f;

// Set the searched models
reader.SearchedModels = {EQRCodeModel.Model2};

// Read
EQRCode [] qrCodes = reader.Read();

Open eVision User Guide

81

// Retrieve the data of the first QR code found
EQRCodeDecodedStream stream = qrCodes[0].DecodedStream;

Open eVision User Guide

	1. Dealing with Pixel Containers and Files
	1.1. Pixel Container Definition
	1.2. Pixel Container Types
	1.3. Supported Image File Types
	1.4. Pixel and File Types Compatibility
	1.5. Color Types

	2. Manipulating Pixels Containers and Files
	2.1. Pixel Container File Save
	2.2. Pixel Container File Load
	2.3. Memory Allocation
	2.4. Image and Depth Map Buffer
	2.5. Image Drawing and Overlay
	2.6. 3D Rendering of 2D Images
	2.7. Vector Types and Main Properties
	2.8. ROI Main Properties
	2.9. Flexible Masks
	2.10. Profile

	3. Code Identification Tools
	3.1. EasyBarCode - Reading Bar Codes
	Reading Bar Codes
	Reading Mail Bar Codes

	3.2. EasyMatrixCode - Reading Matrix Codes
	EasyMatrixCode vs EasyMatrixCode2
	Specifications
	Reading a Matrix Code
	Learning a Matrix Code

	3.3. EasyQRCode - Reading QR Codes
	Workflow
	QR code definition
	Read a QR code
	Advanced features

	4. Using Open eVision Studio
	4.1. Selecting your Programming Language
	4.2. Navigating the Interface
	4.3. Running Tools on Images
	Step 1: Selecting a Tool
	Step 2: Opening an Image
	Step 3: Managing ROIs
	Step 4: Configuring the Tool
	Step 5: Running the Tool and Checking Execution Time
	Step 6: Using the Generated Code

	4.4. Pre-Processing and Saving Images

	5. Tutorials
	5.1. EasyBarCode
	Reading Bar Codes Automatically

	5.2. EasyMatrixCode
	Reading Data Matrix Codes Automatically
	Learning a Data Matrix Code and Creating an EasyMatrixCode Model File

	6. Code Snippets
	6.1. Basic Types
	Loading and Saving Images
	Interfacing Third-Party Images
	Retrieving Pixel Values
	ROI Placement
	Vector Management
	Exception Management

	6.2. EasyBarCode
	Reading a Bar Code
	Reading a Bar Code Following a Given Symbology
	Reading a Bar Code of Known Location
	Reading a Mail Bar Code

	6.3. EasyMatrixCode
	Automatic Reading
	Reading with Prior Learning
	Advanced Tuning of the Search Parameters
	Retrieving Print Quality Grading

	6.4. EasyQRCode
	Automatic Reading of a QR Code
	Retrieving Information of a QR Code
	Decoding the First QR Code Detected
	Tuning the Search Parameters

