
Open eVision
3D Tools

USER GUIDE

© EURESYS s.a. 2018 - Document D133ET-3D Tools C++-Open eVision-2.6.1.1110 built on 2018-11-20

2

Terms of Use

EURESYS s.a. shall retain all property rights, title and interest of the documentation of the hardware and the
software, and of the trademarks of EURESYS s.a.

All the names of companies and products mentioned in the documentation may be the trademarks of their
respective owners.

The licensing, use, leasing, loaning, translation, reproduction, copying or modification of the hardware or the
software, brands or documentation of EURESYS s.a. contained in this book, is not allowed without prior notice.

EURESYS s.a. may modify the product specification or change the information given in this documentation at any
time, at its discretion, and without prior notice.

EURESYS s.a. shall not be liable for any loss of or damage to revenues, profits, goodwill, data, information systems or
other special, incidental, indirect, consequential or punitive damages of any kind arising in connection with the use
of the hardware or the software of EURESYS s.a. or resulting of omissions or errors in this documentation.

This documentation is provided with Open eVision 2.6.1 (doc build 1110).
© 2018 EURESYS s.a.

Open eVision User Guide

3

Contents

1. Dealing with Pixel Containers and Files 4
1.1. Pixel Container Definition 4
1.2. Pixel Container Types 6
1.3. Supported Image File Types 7
1.4. Pixel and File Types Compatibility 8
1.5. Color Types 10

2. Manipulating Pixels Containers and Files 11
2.1. Pixel Container File Save 11
2.2. Pixel Container File Load 13
2.3. Memory Allocation 13
2.4. Image and Depth Map Buffer 14
2.5. Image Drawing and Overlay 17
2.6. 3D Rendering of 2D Images 18
2.7. Vector Types and Main Properties 19
2.8. ROI Main Properties 23
2.9. Flexible Masks 24
2.10. Profile 28

3. 3D Tools 30
3.1. Understanding 3D Concepts 31

Basic Concepts 31
Laser Triangulation 34
The Laser Line 3D Acquisition Pipeline 36

3.2. Easy3D - Using 3D Toolset 37
Laser Line Extraction 37
Calibration 39
Point Cloud 44
Coordinates Transformations 44
Reducing a Point Cloud 45
Managing Planes 46
Aligning 48
Mesh 52
ZMap 53
Generating a ZMap 53
Managing the Coordinates 55
Static Methods 56
3D Viewer 60

4. Code Snippets 62
4.1. Basic Types 63

Loading and Saving Images 63
Interfacing Third-Party Images 63
Retrieving Pixel Values 63
ROI Placement 64
Vector Management 64
Exception Management 65

Open eVision User Guide

4

1. Dealing with Pixel Containers
and Files

1.1. Pixel Container Definition
Images

Open eVision image objects contain image data that represents rectangular images.

Each image object has a data buffer, accessible via a pointer, where pixel values are stored
contiguously, row by row.

Image main parameters

An Open eVision image object has a rectangular array of pixels characterized by EBaseROI
parameters .
n Width is the number of columns (pixels) per row of the image.
n Height is the number of rows of the image. (Maximum width / height is 32,767 (215-1) in

Open eVision 32-bit, and 2,147,483,647 (231-1) in Open eVision 64-bit.)
n Size is the width and height.

The Plane parameter contains the number of color components. Gray-level images = 1. Color
images = 3.

Classes

Image and ROI classes derive from abstract class EBaseROI and inherit all its properties.

Open eVision User Guide

5

Depth maps

A depth map is way to represent a 3D object using a 2D grayscale image, each pixel in the
image representing a 3D point.

The pixel coordinates are the representation of the X and Y coordinates of the point while the
grayscale value of the pixel is a representation of the Z coordinate of the point.

Point clouds

A point cloud (https://en.wikipedia.org/wiki/Point_cloud) is an unstructured set of 3D points
representing discrete positions on the surface of an object.

Open eVision User Guide

6

3D point clouds are produced by various 3D scanning techniques, such as Laser Triangulation,
Time of Flight or Structured Lighting.

1.2. Pixel Container Types
Images

Several image types are supported according to their pixel types: black and white, gray levels,
color, etc.

Easy.GetBestMatchingImageType returns the best matching image type for a given file on disk.

BW1
1-bit black and white images (8 pixels
are stored in 1 byte)

EImageBW1

BW8
8-bit grayscale images (each pixel is
stored in 1 byte)

EImageBW8

BW16
16-bit grayscale images (each pixel is
stored in 2 bytes)

EImageBW16

BW32
32-bit grayscale images (each pixel is
stored in 4 bytes)

EImageBW32

C15

15-bit color images (each pixel is
stored in 2 bytes).
Compatible with Microsoft® Windows
RGB15 color images and MultiCam
RGB15 format.

EImageC15

Open eVision User Guide

7

C16

16-bit color images (each pixel is
stored in 2 bytes).
Compatible with Microsoft® Windows
RGB16 color images and MultiCam
RGB16 format.

EImageC16

C24

C24 images store 24-bit color images
(each pixel is stored in 3 bytes).
Compatible with Microsoft® Windows
RGB24 color images and MultiCam
RGB24 format.

EImageC24

C24A

C24A images store 32-bit color images
(each pixel is stored in 4 bytes).
Compatible with Microsoft® Windows
RGB32 color images and MultiCam
RGB32 format.

EImageC24A

Depth Maps

8 and 16-bit depth map values are stored in buffers compatible with the 2D Open eVision
images.

EDepth8
8-bit depth map (each pixel is stored in
1 byte as an integer)

EDepthMap8

EDepth16
16-bit depth map (each pixel is stored
in 2 bytes as a fixed point)

EDepthMap16

EDepth32f
32-bit depth map (each pixel is stored
in 4 bytes as a float)

EDepthMap32f

Point Clouds

Point Cloud
Set of points coordinates (stored as
float)

E3DPointCloud

1.3. Supported Image File Types

Type Description

BMP Uncompressed image data format (Windows Bitmap Format)

JPEG
Lossy data compression standard issued by the Joint Photographic Expert Group
registered as ISO/IEC 10918-1. Compression irretrievably looses quality.

JFIF JPEG File Interchange Format

Open eVision User Guide

8

Type Description

JPEG-
2000

Data compression standard issued by the Joint Photographic Expert Group
registered as ISO/IEC 15444-1 and ISO/IEC 15444-2. Open eVision supports only
lossy compression format, file format and code stream variants.

- code stream describes the image samples.
- file format includes meta-information such as image resolution and color
space.

PNG Lossless data compression method (Portable Network Graphics).

Serialized
Euresys proprietary image file format obtained from the serialization of Open
eVision image objects.

TIFF

Tag Image File Format is currently controlled by Adobe Systems and uses the
LibTIFF third-party library to process images written for 5.0 or 6.0 TIFF
specification.

File save operations are lossless and use CCITT 1D compression for 1-bit binary
pixel types and LZW compression for all others.

File load operations support all TIFF variants listed in the LibTIFF specification.

1.4. Pixel and File Types Compatibility
Depth map to image conversion

For a 8- and 16-bit depth maps, the AsImage() method returns a compatible image object
(respectively EImageBW8 and EImageBW16) that can be used with Open eVision’s 2D processing
features.

Pixel and file types compatibility

Pixel access

The recommended method to access pixels is to use SetImagePtr and GetImagePtr to embed
the image buffer access in your own code. See also Image Construction and Memory Allocation
and Retrieving Pixel Values.

Use of the following methods should be limited because of the overhead incurred by each
function call:

Direct access

EROIBW8::GetPixel and SetPixel methods are implemented in all image and ROI classes to
read and write a pixel value at given coordinates. To scan all pixels of an image, you could run
a double loop on the X and Y coordinates and use GetPixel or SetPixel each iteration, but
this is not recommended.

Open eVision User Guide

9

For performance reasons, these accessors should not be used when a significant number of pixel
needs to be processed. When that is the case, retrieving the internal buffer pointer using
GetBufferPtr() and iterating on the pointer is recommended.

Quick Access to BW8 Pixels

In BW8 images, a call to EBW8PixelAccessor::GetPixel or SetPixel will be faster than a
direct EROIBW8::GetPixel or SetPixel.

Supported structures

n EBW1, EBW8, EBW32
n EC15 (*), EC16 (*), EC24 (*)
n EC24A

n EDepth8, EDepth16, EDepth32f,

(*) These formats support RGB15 (5-5-5 bit packing), RGB16 (5-6-5 bit packing) and RGB32 (RGB +
alpha channel) but they must be converted to/from EC24 using EasyImage::Convert before
any processing.

Note: Transition with versions prior to eVision 6.5 should be seamless: image pixel types were
defined using typedef of integral types, pixel values were treated as unsigned numbers and
implicit conversion to/from previous types is provided.

Pixel and File Type compatibility during Load or Save operations

Type BMP JPEG JPEG2000 PNG TIFF Serialized

BW1 Ok N/A N/A Ok Ok Ok

BW8 Ok Ok Ok Ok Ok Ok

BW16 N/A N/A Ok Ok Ok (***) Ok

BW32 N/A N/A N/A N/A Ok (***) Ok

C15 Ok Ok (**) Ok (**) Ok (**) Ok (**) Ok

C16 Ok Ok (**) Ok (**) Ok (**) Ok (**) Ok

C24 Ok Ok Ok Ok Ok (**) Ok

C24A Ok N/A N/A Ok N/A Ok

Depth8 Ok Ok Ok Ok Ok Ok

Depth16 N/A N/A Ok Ok Ok (***) Ok

Depth32f N/A N/A N/A N/A N/A Ok

N/A: Not supported. An exception occurs if you use the combination.

Ok: Image integrity is preserved with no data loss (apart from JPEG and JPEG2000, lossy
compression).

(**) C15 and C16 formats are automatically converted into C24 during the save operation.

(***) BW16 and BW32 are not supported by Baseline TIFF readers.

Open eVision User Guide

10

1.5. Color Types
EISH: Intensity, Saturation, Hue color system.

ELAB: CIE Lightness, a*, b* color system.

ELCH: Lightness, Chroma, Hue color system.

ELSH: Lightness, Saturation, Hue color system.

ELUV: CIE Lightness, u*, v* color system.

ERGB: NTSC/PAL/SMPTE Red, Green, Blue color system.

EVSH: Value, Saturation, Hue color system.

EXYZ: CIE XYZ color system.

EYIQ: CCIR Luma, Inphase, Quadrature color system.

EYSH: CCIR Luma, Saturation, Hue color system.

EYUV: CCIR Luma, U Chroma, V Chroma color system.

Open eVision User Guide

11

2. Manipulating Pixels Containers
and Files

2.1. Pixel Container File Save
Images and Depth Maps

The Save method of an image or the SaveImage method of a depth map or a ZMap saves the
image data of an image or of a depth map or a ZMap object into a file using two arguments:
n Path: path, filename, and file name extension.
n Image File Type. If omitted, the file name extension is used.

Images bigger than 65,536 (either width or height) must be saved in Open eVision proprietary
format.

Save throws an exception when:
n The requested image file format is incompatible with the image pixel types
n The Auto file type selection method and the file name extension is not supported

When saving a 16-bit depth map, the fixed point precision is lost and the pixels are considered as 16-
bit integers.

image file type arguments

Argument Image File Type

EImageFileType_Auto(*) Automatically determined by the filename extension. See below.

EImageFileType_Euresys Open eVision Serialization.

EImageFileType_Bmp Windows bitmap - BMP

EImageFileType_Jpeg JPEG File Interchange Format - JFIF

EImageFileType_Jpeg2000 JPEG 2000 File format/Code Stream -JPEG2000

EImageFileType_Png Portable Network Graphics - PNG

EImageFileType_Tiff Tagged Image File Format - TIFF

(*) Default value.

Open eVision User Guide

12

Assigned image file type if argument is ImageFileType_Auto or missing

File name extension(*) Automatically assigned image file type

BMP Windows Bitmap Format

JPEG, JPG JPEG File Interchange Format - JFIF

JP2 JPEG 2000 file format

J2K, J2C JPEG 2000 Code Stream

PNG Portable Network Graphics

TIFF, TIF Tagged Image File Format

(*) Case-insensitive.

Saving JPEG and JPEG2000 lossy compressions

SaveJpeg and SaveJpeg2K specify the compression quality when saving compressed images.
They have two arguments:
n Path: a string of characters including the path, filename, and file name extension.
n Compression quality of the image file, an integer value in range [0: 100].

SaveJpeg saves image data using JPEG File Interchange Format – JFIF.
SaveJpeg2K saves image data using JPEG 2000 File format.

JPEG compression values

JPEG compression Description

JPEG_DEFAULT_QUALITY (-1) Default quality (*)

100 Superb image quality, lowest compression factor

75 Good image quality (*)

50 Normal image quality

25 Average image quality

10 Bad Image quality

(*) The default quality corresponds to the good image quality (75).

Representative JPEG 2000 compression quality values

JPEG 2000 compression Description

-1 Default quality (*)

1 Highest image quality, lowest compression factor

Open eVision User Guide

13

JPEG 2000 compression Description

16 Good Image Quality (*) (16:1 rate)

512 Lowest image quality, highest compression factor

(*) The default quality corresponds to the good image quality (16:1 rate).

Point Clouds

● Use the Save method to save the point cloud in Open eVision proprietary file format.

● Use the SavePCD method to save the point cloud in a file compatible with other software
such as PCL (Point Cloud Library).

2.2. Pixel Container File Load
Images and Depth Maps

● Use the Load method to load image data into an image object:

□ It has one argument: the path: path, filename, and file name extension.

□ File type is determined by the file format.

□ The destination image is automatically resized according to the size of the image on disk.

● The Load method throws an exception when:

□ File type identification fails

□ File type is incompatible with pixel type of the image object

Serialized image files of Open eVision 1.1 and newer are incompatible with serialized image files of
previous Open eVision versions.

When loading a BW16 image (with integer values) in a depth map, the fixed point precision set in the
depth map (0 by default) is left unchanged and used.

Point Clouds

● Use the Load method to save the point cloud in Open eVision proprietary file format.

● Use the LoadPCD method to save the point cloud in a file compatible with other software
such as PCL (Point Cloud Library).

2.3. Memory Allocation
An image can be constructed with an internal or external memory allocation.

Open eVision User Guide

14

Internal Memory Allocation

The image object dynamically allocates and unallocates a buffer. Memory management is
transparent.
When the image size changes, re-allocation occurs.
When an image object is destroyed, the buffer is unallocated.
To declare an image with internal memory allocation:
1. Construct an image object, for instance EImageBW8, either with width and height arguments,

OR using the SetSize function.
2. Access a given pixel. There are several functions that do this. GetImagePtr returns a pointer

to the first byte of the pixel at given coordinates.

External Memory Allocation

The user controls buffer allocation, or links a third-party image in the memory buffer to an Open
eVision image.
Image size and buffer address must be specified.
When an image object is destroyed, the buffer is unaffected.
To declare an image with external memory allocation:
1. Declare an image object, for instance EImageBW8.
2. Create a suitably sized and aligned buffer (see Image Buffer).
3. Set the image size with the SetSize function.
4. Access the buffer with GetImagePtr. See also Retrieving Pixel Values.

2.4. Image and Depth Map Buffer
Image and depth map pixels are stored contiguously, from top row to bottom, from left to right,
in Windows bitmap format (top-down DIB1) into an associated buffer.

The buffer address is a pointer to the start address of the buffer, which contains the top left
pixel of the image.

1device-independent bitmap

Open eVision User Guide

15

Image Buffer pitch

● Alignment must be a multiple of 4 bytes.

● Open eVision 1.2 onwards default pitch is 32 bytes for performance reasons (Open eVision
1.1.5 was 8 bytes).

Memory Layout

● EImageBW1 stores 8 pixels in one byte.

Example memory layout of the first 2 pixels of a BW1 image buffer:

● EImageBW8 and EDepthMap8 store each pixel in one byte.

Example memory layout of the first pixels of a BW8 image buffer:

● EImageBW16 stores each pixel in a 16-bit word (two bytes).

Open eVision User Guide

16

Example memory layout of the first pixels of a BW16 image buffer:

● EImageC15 stores each pixel in 2 bytes. Each color component is coded with 5-bits.
The 16th bit is left unused.

Example memory layout of the first pixels of a C15 image buffer:

● EImageC16 stores each pixel in 2 bytes. The first and third color components are coded with
5-bits.
The second color component is coded with 6-bits.

Example memory layout of the first pixels of a C16 image buffer:

● EDepthMap16 store each pixel in 2 bytes using a fixed point format.

● EImageC24 stores each pixel in 3 bytes. Each color component is coded with 8-bits.

Open eVision User Guide

17

Example memory layout of the first pixels of a C24 image buffer:

● EImageC24A stores each pixel in 4 bytes. Each color component is coded with 8-bits.
The alpha channel is also coded with 8-bits.

Example memory layout of the first pixels of a C24A image buffer:

● EDepthMap32f store each pixel in 4 bytes using a float format.

2.5. Image Drawing and Overlay
n Drawing uses Windows GDI1 system calls.

MFC2 applications normally use OnDraw event handler to draw, where a pointer to a device
context is available.
Borland/CodeGear's OWL or VCL use a Paint event handler.

n The color palette in 256-color display mode gives optimal rendering. Gray-level images can
be improved using LUT3s (using histogram stretching techniques or pseudo-coloring).

n The zoom can be different horizontally and vertically.
n DrawFrameWithCurrentPen method draws a frame.
n Non-destructive overlaying drawing operations do not alter the image contents, such as

MoveTo/LineTo.

1Graphics Device Interface
2Microsoft Foundation Class
3LookUp Tables

Open eVision User Guide

18

n Destructive overlaying drawing operations alter the image contents by drawing inside the
image such as Easy::OpenImageGraphicContext. Gray-level [color] images can only
receive a gray-level [color] overlay.

2.6. 3D Rendering of 2D Images
These images are viewed by rotating them around the X-axis, then the Y-axis.

Gray 3D Rendering

Easy::Render3D prepares a 3-dimensional rendering where gray-level values are altitudes.
Magnification factors in the three directions (X = width, Y = height and Z = depth) can be given.
The rendered image appears as independent dots whose size can be adjusted to make the
surface more or less opaque.

3D rendering

Color Histogram 3D Rendering

Easy::RenderColorHistogram prepares a 3-dimensional rendering of a color image
histogram.
The pixels are drawn in the RGB space (not XY-plane) to show clustering and dispersion of RGB
values.
This function can process pixels in other color systems (using EasyColor to convert), but the raw
RGB image is required to display the pixels in their usual colors.

Magnification factors in all three directions (X = red, Y = green and Z = blue) can be given.

Color histogram rendering

Open eVision User Guide

19

2.7. Vector Types and Main Properties
A vector is a one-dimensional array of pixels (taken from an image profile or contour).

EVector is the base class for all vectors. It contains all non-type-specific methods, mainly for
counting elements and serialization.

Profile in a C24 image RGB values plot along profile
RGB values array
(EC24Vector)

A vector manages an array of elements. Memory allocation is transparent, so vectors can be
resized dynamically. Whenever a function uses a vector, the vector type, size and structure are
automatically adjusted to suit the function needs.

The use of vectors is quite straightforward:
1. Create a vector of the appropriate type, using its constructor and pre-allocate elements if

required.

Vector types

n EBW8Vector: a sequence of gray-level pixel values, often extracted from an image profile
(used by EasyImage::Lut, EasyImage::SetupEqualize,
EasyImage::ImageToLineSegment, EasyImage::LineSegmentToImage,
EasyImage::ProfileDerivative, ...).

Graphical representation of an EBW8Vector (see Draw method)

n EBW16Vector: a sequence of gray-level pixel values, using an extended range (16 bits),
mainly for intermediate computations.

Open eVision User Guide

20

Graphical representation of an EBW16Vector

n EBW32Vector: a sequence of gray-level pixel values, using an extended range (32 bits),
mainly for intermediate computations
(used in EasyImage::ProjectOnARow, EasyImage::ProjectOnAColumn, ...).

Graphical representation of an EBW32Vector

n EC24Vector: a sequence of color pixel values, often extracted from an image profile
(used by EasyImage::ImageToLineSegment, EasyImage::LineSegmentToImage,
EasyImage::ProfileDerivative, ...).

Graphical representation of an EC24Vector

n EBW8PathVector: a sequence of gray-level pixel values, extracted from an image profile
or contour, with corresponding pixel coordinates
(used by EasyImage::ImageToPath, EasyImage::PathToImage, ...).

Open eVision User Guide

21

Graphical representation of an EBW8PathVector (see Draw method)

n EBW16PathVector: a sequence of gray-level pixel values, extracted from an image profile
or contour, with corresponding pixel coordinates
(used by EasyImage::ImageToPath, EasyImage::PathToImage, ...).

Graphical representation of an EBW16PathVector (see Draw method)

n EC24PathVector: a sequence of color pixel values, extracted from an image profile or
contour, with corresponding pixel coordinates
(used by EasyImage::ImageToPath, EasyImage::PathToImage, ...).

Graphical representation of an EC24PathVector (see Draw method)

n EBWHistogramVector: a sequence of frequency counts of pixels in a BW8 or BW16 image
(used by EasyImage::IsodataThreshold, EasyImage::Histogram,
EasyImage::AnalyseHistogram, EasyImage::SetupEqualize, ...).

Open eVision User Guide

22

Graphical representation of an EBWHistogramVector (see Draw method)

n EPathVector: a sequence of pixel coordinates. The corresponding pixels need not be
contiguous
(used by EasyImage::PathToImage and EasyImage::Contour).

Graphical representation of an EPathVector (see Draw method)

n EPeakVector: peaks found in an image profile
(used by EasyImage::GetProfilePeaks).

n EColorVector: a description of colors
(used by EasyColor::ClassAverages and EasyColor::ClassVariances).

2. Fill a vector with values. First empty it, using the EVector::Empty member, then add
elements one at a time by calling the EC24Vector::AddElement member. You can access
any element by means of indexing.

3. Access a vector element, either for reading or writing. Use the brackets operator, for
instance, EC24Vector::operator[].

4. Determine the current number of elements, use member EVector::NumElements.
5. Draw the vector.

A pixel vector is a plot of the element values as a function of the element index, so its
graphical appearance depends on its type. You can draw a vector in a window. For legibility,
the drawing should appear on a neutral background.
Drawing is done in the device context associated to the desired window. By default, curves
are drawn in blue, annotations are drawn in black. The following parameters can be defined:
graphicContext, width, height, origin, origin, color0, color1, color2.
The EC24Vector has three curves drawn instead of one, each corresponding to a color
component. By default, red, blue and green pens are used.

Open eVision User Guide

23

2.8. ROI Main Properties
ROIs are defined by a width, a height, and origin x and y coordinates.
The origins are specified with respect to the top left corner in the parent image or ROI.
The ROI must be wholly contained in its parent image.
The processing/analysis time of a BW1 ROI is faster if OrgX and Width are multiples of 8.

Save and load

You can save or load an ROI as a separate image, to be used as if it was a full image. The ROIs
perform no memory allocation at all and never duplicate parts of their parent image, the
parent image provides them with access to its image data.

The image size of the new file must match the size of the ROI being loaded into it. The image
around the ROI remains unchanged.

ROI Classes

An Open eVision ROI inherits parameters from the abstract class EBaseROI.

There are several ROI types, according to their pixel type. They have the same characteristics as
the corresponding image types.
n EROIBW1

n EROIBW8

n EROIBW16

n EROIBW32

n EROIC15

n EROIC16

n EROIC24

n EROIC24A

Attachment

An ROI must be attached to a parent (image/ROI) with parameters that set the parent, position
and size, and these links are updated transparently, avoiding dangling pointers.
A normal image cannot be attached to another image or ROI.

Nesting

Set and Get functions change or query the width, height and position of the origin of an ROI,
with respect to its immediate or topmost parent image.

An image may accommodate an arbitrary number of ROIs, which can be nested in a
hierarchical way. Moving the ROI also moves the embedded ROIs accordingly. The image/ROI
classes provide several methods to traverse the hierarchy of ROIs associated with an image.

Open eVision User Guide

24

Nested ROIs: Two sub-ROIs attached to an ROI, itself attached to the parent image

Cropping

CropToImage crops an ROI which is partially out of its image. The resized ROI never grows.
An exception is thrown if a function attempts to use an ROI that has limits that extend outside
of the parents.

Note: (In Open eVision 1.0.1 and earlier, an ROI was silently resized or repositioned when placed
out of its image and sometimes grew. If ROI limits extended outside parents, they were silently
resized to remain within parent limits.)

Resizing and moving

n ROIs can easily be resized and positioned by two functions and dragging handles:
n EBaseROI::Drag adjusts the ROI coordinates while the cursor moves.
n EBaseROI::HitTest informs if the cursor is placed over a dragging handle. Once the

handle is known, the cursor shape can be changed by an OnSetCursor MFC event
handler. HitTest is unpredictable if called while dragging is in progress.
HitTest can be used in an OnSetCursor MFC event handler to change the cursor shape, or
before a dragging operation like OnLButtonDown,
(or EvSetCursor and EvLButtonDown in Borland/CodeGear's OWL)
(or FormMouseMove and FormMouseDown in Borland/CodeGear's VCL).
In VB6, MouseDown, MouseMove,MouseUp events return the current cursor position in
twips rather than pixels, so conversion is mandatory.

2.9. Flexible Masks
ROIs vs flexible masks

ROIs and masks restrict processing to part of an image:
n "ROI Main Properties" on the previous page apply to all Open eVision functions. Using

Regions of Interest accelerates processing by reducing the number of pixels. Open eVision
supports hierarchically nested rectangular ROIs.

n Flexible Masks are recommended to process disconnected ROIs or non-rectangular shapes.
They are supported by some EasyObject and EasyImage library functions.

Open eVision User Guide

25

Flexible Masks

A flexible mask is a BW8 image with the same height and width as the source image. It contains
shapes of areas that must be processed and ignored areas (that will not be considered during
processing):
n All pixels of the flexible mask having a value of 0 define the ignored areas.
n All pixels of the flexible mask having any other value than 0 define the areas to be processed.

Source image Associated mask Processed masked image

A flexible mask can be generated by any application that outputs BW8 images and by some
EasyObject and EasyImage functions.

Flexible Masks in EasyImage

Source image (left) and mask variable (right)

Simple steps to use flexible masks in Easyimage

1. Call the functions from EasyImage that take an input mask as an argument. For instance,
one can evaluate the average value of the pixels in the white layer and after in the black
layer.

2. Display the results.

Resulting image

EasyImage Functions that support flexible masks

n EImageEncoder::Encode has a flexible mask argument for BW1, BW8, BW16, and C24
source images.

Open eVision User Guide

26

n AutoThreshold.
n Histogram (function HistogramThreshold has no overload with mask argument).
n RmsNoise, SignalNoiseRatio.
n Overlay (no overload with mask argument for BW8 source images).
n ProjectOnAColumn, ProjectOnARow (Vector projection).
n ImageToLineSegment, ImageToPath (Vector profile).

Flexible Masks in EasyObject

A flexible mask can be generated by any application that outputs BW8 images or uses the Open
eVision image processing functions.
EasyObject can use flexible masks to restrict blob analysis to complex or disconnected shaped
regions of the image.

If an object of interest has the same gray level as other regions of the image, you can define
"keep" and "ignore" areas using flexible masks and Encode functions.

A flexible mask is a BW8 image with the same height and width as the source image.
n A pixel value of 0 in the flexible mask masks the corresponding source image pixel so it

doesn't appear in the encoded image.
n Any other pixel value in the flexible mask causes the pixel to be encoded.

EasyObject functions that create flexible masks

Source image

1) ECodedImage2::RenderMask: from a layer of an encoded image

1. To encode and extract a flexible mask, first construct a coded image from the source image.
2. Choose a segmentation method (for the image above the default method

GrayscaleSingleThreshold is suitable).
3. Select the layer(s) of the coded image that should be encoded (i.e. white and black layers

using minimum residue thresholding).
4. Make the mask image the desired size using mask.SetSize(sourceImage.GetWidth(),

sourceImage.GetHeight()).
5. Exploit the flexible mask as an argument to ECodedImage2::RenderMask.

Open eVision User Guide

27

BW8 resulting image that can be used as a flexible mask

2) ECodedElement::RenderMask: from a blob or hole

1. Select the coded elements of interest.
2. Create a loop extracting a mask from selected coded elements of the coded image using

ECodedElement::RenderMask.
3. Optionally, compute the feature value over each of these selected coded elements.

BW8 resulting image that can be used as a flexible mask

3) EObjectSelection::RenderMask: from a selection of blobs

EObjectSelection::RenderMask can, for example, discard small objects resulting from
noise.

BW8 resulting image that can be used as a flexible mask

Open eVision User Guide

28

Example: Restrict the areas encoded by EasyObject

Find four circles (left) Flexible mask can isolate the central chip (right)

1. Declare a new ECodedImage2 object.
2. Setup variables: first declare source image and flexible mask, then load them.
3. Declare an EImageEncoder object and, if applicable, select the appropriate segmenter.

Setup the segmenter and choose the appropriate layer(s) to encode.
4. Encode the source image. Encoding a layer with just the area in the flexible mask is then

pretty straightforward.
We see that the circles are correctly segmented in the black layer with the grayscale single
threshold segmenter:

5. Select all objects of the coded image.
6. Select objects of interest by filtering out objects that are too small.
7. Display the blob feature by iterating over the selected objects to display the chosen feature.

2.10. Profile
Profile Sampling

A profile is a series of pixel values sampled along a line/path/contour in an image.
n EasyImage::ImageToLineSegment copies the pixel values along a given line segment

(arbitrarily oriented and wholly contained within the image) to a vector. The vector length is
adjusted automatically. This function supports flexible mask.

n A path is a series of pixel coordinates stored in a vector.
EasyImage::ImageToPath copies the corresponding pixel values to the vector. This
function supports flexible mask.

Open eVision User Guide

29

n A contour is a closed or not (connected) path, forming the boundary of an object.
EasyImage::Contour follows the contour of an object, and stores its constituent pixels
values inside a profile vector.

Profile Analysis

The profile can be processed to find peaks or transitions:
n A transition corresponds to an object edge (black to white or white to black). It can be

detected by taking the first derivative of the signal (which transforms transitions (edges) into
peaks) and looking for peaks in it.
EasyImage::ProfileDerivative computes the first derivative of a profile extracted from a
gray-level image.
The EBW8 data type only handles unsigned values, so the derivative is shifted up by 128.
Values under [above] 128 correspond to negative [positive] derivative (decreasing [increasing]
slope).

n A peak is the portion of the signal that is above [or below] a given threshold - the maximum
or minimum of the signal. This may correspond to the crossing of a white or black line or
thin feature. It is defined by its:
n Amplitude: difference between the threshold value and the max [or min] signal value.
n Area: surface between the signal curve and the horizontal line at the given threshold.

EasyImage::GetProfilePeaks detects max and min peaks in a gray-level profile. To
eliminate false peaks due to noise, two selection criteria are used. The result is stored in a
peaks vector.

Profile Insertion Into an Image

EasyImage::LineSegmentToImage copies the pixel values from a vector or constant to the
pixels of a given line segment (arbitrarily oriented and wholly contained within the image).

EasyImage::PathToImage copies the pixel values from a vector or a constant to the pixels of
a given path.

Open eVision User Guide

30

3. 3D Tools

Open eVision User Guide

31

3.1. Understanding 3D Concepts

Basic Concepts

Easy3D

Easy3D is a set of tools for solving computer vision problem using 3D acquisition and
processing. Easy3D supports laser line triangulation for fast and precise acquisition of depth
maps.

Depth maps are gray scale images where each pixel represents a displacement in the third
dimension. Because of the acquisition procedure, they are usually not dimensionally correct. So,
while Open eVision 2D image operators are compatible with depth maps, you should not use them
for processes requiring precise measurements.

Easy3D provides a calibration tool to generate corrected, metric point clouds and meshes from
depth maps. Most 3D operators work on point clouds or meshes. The included export functions
to the standard PCD file format allows integration with other 3D tools.

Easy3D also allows the computation of ZMaps. A ZMap is the projection of a point cloud on a
given reference plane. Like depth maps, ZMaps are gray scale images, but are also
dimensionally correct. As such, they can be used with all Open eVision 2D functions.

All the Easy3D tools are placed in the Easy3D namespace.

3D representation

Open eVision uses a right-handed cartesian 3D coordinate system. In this system, each 3D point
is represented by its 3 coordinates X, Y and Z.

Open eVision User Guide

32

Open eVision provides different containers to store 3D objects :

□ Depth maps

□ Point clouds

□ Meshes

□ ZMaps

Depth map

A depth map is a way to represent a 3D object using a 2D grayscale image where each pixel
(u, v) in the image contains a third coordinate as its gray value.

The grayscale values of a depth map do not necessarily represent a Z metric coordinate. In the
context of a laser triangulation setup, these values represent the displacement of the laser line
profile, which is not the physical height of the 3D surface.

A depth map contains a gray scale image coded on 8 or 16 bits. One specific gray value, called
the undefined value, is reserved for the representation of invalid pixels. By default, this value is
0 for all depth map types.

The calibration process aims to convert the depth map representation to real, metric 3D
representations such as point clouds or meshes.

Point cloud

A point cloud is a set of 3D points (x, y and z coordinates) representing the scanned object in the
world metric space.

Open eVision User Guide

33

In addition to the calibration process included in Easy3D, point clouds can be produced using
various 3D acquisition techniques, like stereo reconstruction or time of flight cameras.

Mesh

A Mesh is a geometric representation of a 3D surface, a set of connected 3D points.

In an EMesh object, 3 points are connected to define a triangle.

This kind of 3D representation is also called a "triangle mesh".

A point cloud and the corresponding mesh (displayed with Open eVision E3DViewer)

An EMesh object contains a point cloud and the indexes of the vertices of all mesh triangles.

EMesh uses a metric space representation that can be generated from a depth map and that
can be used to produce a ZMap.

ZMap

ZMaps are another representation for 3D data.

□ They are grayscale images like depth maps but represent metric and corrected 3D points.

□ They are convenient representations for measurement and matching.

□ They are compatible with most of the 2D processing functions.

Open eVision User Guide

34

ZMaps are generated by the projection of a point cloud or a mesh onto an arbitrary 3D plane.

A depth map and the corresponding ZMap

A ZMap contains an image in which each pixel value represents a positive distance from the
reference plane.

Use the method AsEImage() to obtain a reference to the contained image.

A ZMap also contains the following information:

□ The transformation from the World coordinates to the ZMap coordinates.

□ The size of a pixel, called the "resolution".

Like in a depth map, a specific pixel value is reserved to represent invalid pixels. To get this pixel
value, use the method GetUndefinedValue().

Laser Triangulation
In a laser-line triangulation system, a laser line is projected on the object to measure. A camera
is looking at the laser line from a different point of view. The line deformation observed by the
camera contains the shape information of the measured object.

The scanning of the object consists in moving it under the laser line and recording multiple
images.

From the scanning you can reconstruct its 3D shape.

Open eVision User Guide

35

Occlusions

Using the laser triangulation method, the laser may be unable to reach some parts of the object
or the camera may be unable to view them. This is called occlusion.

□ On the left illustration, the camera does not see the bottom of the hole, inducing camera
occlusion.

□ On the right illustration, the laser does not reach the bottom of the hole, inducing laser
occlusion.

You can limit or avoid occlusions by using advanced scanning methods, for example by using two
cameras or two lasers.

Open eVision User Guide

36

The Laser Line 3D Acquisition Pipeline
The 3D acquisition pipeline starts with the acquisition of a laser line profile and ends up with
the point cloud, mesh or ZMap.

The source material for 3D processing is the depth map, coming from a Coaxlink Quad 3D-LLE or
generated from a list of images. Two types of depth map are available, one for each different
pixel coding scheme (8- or 16-bit).

The generation of a depth map, from a hardware or a software source

Some processing methods can use the depth map directly, but most measurement and
matching processes need metric, distortion-free representations. Calibration of the laser
triangulation setup is therefore required. Calibration is used to turn the depth map into a point
cloud or mesh expressed in a metric space that we call “world space”.

The generation of an object based calibration model, from a scan of the reference object

A point cloud is a list of 3D points, expressed in a world space coordinate system. The point
cloud can be projected on a plane, producing a ZMap, which is a convenient and effective
representation for 2D processing with a metric scale.

The workflow from the depth map to the ZMap

The following sections describe the classes and methods useful for a 3D workflow. The Use Case
- Measuring a Remote Controller goes through this processing pipeline.

Open eVision User Guide

37

3.2. Easy3D - Using 3D Toolset

Laser Line Extraction
A Laser Line Extraction (LLE) algorithm is required to create a depth map from a sequence of
profiles of the object captured by the camera sensor.

The objective of an LLE algorithm is to measure the line position along a vertical profile in every
column of a sensor frame, within a user-defined region of interest (ROI).

For every step of the object position, the detection analyzes each column of a frame individually
and produces a row of output positions, stored as gray values.

The figure below illustrates a depth map generation.

The ELaserLineExtractor class provides the laser line extraction functionality in Open
eVision. It implements several algorithms to extract the laser line:

□ Maximum detection returns the position of the pixel of maximum intensity. It’s the
fastest method but it doesn’t support sub-pixel precision.

□ Peak detection approach detects local maxima. If several maxima are detected, the one
with the highest intensity is returned. The position is returned with sub-pixel precision.

□ Center of gravity algorithm is suitable when the laser line is spread over several pixels.
The position is returned with sub-pixel precision.

You can also set a threshold to exclude pixels with low intensity.

Open eVision User Guide

38

The line position returned by the laser line extraction algorithms is relative to the bottom of the
region of interest. So, values in the depth map range from 0 (bottom of the ROI) to the height of
the ROI.

Low-pass linear filter

Optionally, you can apply a low-pass linear filter in front of the line extraction in order to
reduce noise and high frequencies in the image.

The low-pass filter applies a convolution operator on a 1 x 3 sliding window. The 3 elements of
the convolution kernel (A, B and C) are configurable, accepting any positive integer. The figure
below illustrates the positioning of the convolution kernel elements within a given ROI.

You can activate the low-pass filter for any of the laser line extraction methods with the method
ELaserLineExtractor::SetEnableSmoothing(true/false). Parameters A, B and C are set
with ELaserLineExtractor::SetSmoothingParameters(A, B, C).

Open eVision User Guide

39

Calibration
The calibration is used to apply the transformation between a depth map and a point cloud or
a mesh.

There are 3 ways to setup this conversion:

□ Apply a simple scale on the pixel coordinates of the depth map
(EScaleCalibrationModel class)

□ Use the explicit geometric model (EExplicitGeometricCalibrationModel class)

□ Use the object-based calibration approach (EObjectBasedCalibrationModel class)

These models share the same base class ECalibrationModel and exposes the method Apply

(), which is used to apply the conversion between a depth map pixel and a 3D point. It takes as
input the coordinates of one point in a depth map and it returns the coordinates of the
corresponding point in the 3D space.

The method Apply is not aware of the possible mirroring of the corresponding depth map and
cannot make use of EDepthMap::EAxisSystemType (see below). If necessary (when the
corresponding depth map is vertically mirrored) the y coordinates should be flipped before
calling the Apply method.

□ The class EDepthMapToPointCloudConverter generates a point cloud from a depth
map, using one of the calibration models.

□ The class EDepthMapToMeshConverter generates a mesh from a depth map, using one
of the calibration models.

By convention:

□ The origin of the referential is the lower-left corner of the depth map.

□ The center of the first pixel at the lower-left corner is at x = 0.5 and y = 0.5.

□ The center of the pixel at the upper-right corner is at x = width - 0.5 and y = height - 0.5
where width is the width of the depth map and height is its height.

Mirrored depth maps

By default, Easy3D considers that the origin of the 3D axis of the depth map is the bottom left of
the internal image buffer, and the Y axis is pointing up. This means that the depth map image is
not seen as vertically mirrored compared to the real world image of the scanned object.

Nevertheless, depending on your acquisition setup this mirroring can happen (for example if the
direction of the scan is inverted).

If this is your case, you can set the EDepthMap::EAxisSystemType to EAxisSystem_

UpperLeftCorned, meaning that the origin of the 3D axis is on the upper left corner and the Y
axis is pointing down.

This value changes the behavior of the methods :

□ EObjectBasedCalibrationGenerator.Compute

□ EDepthMapToPointCloudConverter.Convert

Open eVision User Guide

40

□ EDepthMapToMeshConverter.Convert

Scale calibration

The scale model (EScaleCalibrationModel) only applies a simple factor on the X, Y and Z
axis. These factors are the only parameters of EScaleCalibrationModel.

For depth maps coming from laser triangulation setup, this transformation does not produce
corrected, metric points. It’s main use is to display depth maps as 3D data with the E3DViewer
class.

Explicit geometric calibration

The explicit geometric model (EExplicitGeometricCalibrationModel) defines a simple and
ideal laser triangulation setup. The explicit calibration makes some strong assumptions on the
setup geometry and can only be used when a minimum set of parameters are known:

□ The angles of the camera and the laser plane, in the counter clockwise direction. The
camera angle must be positive.

□ The height of the camera above the scanned object.

□ The field of view of the camera defined by the sensor size (mm) and the optical focal
length (mm).

□ The physical distance between two line scans of the depth map (depends on acquisition
rate and motion speed).

□ The size of the image and the ROI origin used in laser line extraction (between the top (0)
and the bottom (height) of the image).

Use the "Easy3D_Setup_Configuration.xlsx" spreadsheet to compute and check your setup
configuration and parameters.

Explicit calibration setup with camera angle, laser angle and camera height

Open eVision User Guide

41

The setup of an explicit geometric calibration uses the constructor of the
EExplicitGeometricCalibration class.

Object-based calibration

Object-based calibration gives real world, metric, coordinates from an arbitrary laser
triangulation setup. From the scan of a reference object, the calibration process tries to
calculate all the parameters required for the transformation to the world space (position and
attributes of the camera, position of the laser plane, relative motion of the object, optical
distortion…).

In the current version of Open eVision, 2 types of reference objects are supported, the double
pyramid and the truncated pyramids. The calibration process operates only from acquisitions of
such objects only.

Open eVision User Guide

42

Depending on the target object size, a calibration object must be manufactured as a scaled
version of one of the reference objects described below.

CAD files in various standard formats are available on request.

First reference object: the double pyramid

Open eVision User Guide

43

Second reference object: the truncated pyramids

● The class EObjectBasedCalibrationModel is the container for the object based
calibration model.

● The class EObjectBasedCalibrationGenerator performs the computation of such a
model.

□ Its Compute() method takes a depth map as input and returns a calibration model.

□ The computation of the calibration model may take some time.

□ Use the Save() method to store the calibration model for later use.

● The real size of the calibration object is set relatively to the dimensions of the figure above,
by the SetCalibrationObjectScale() method.

□ The dimensions of the figures above are expressed in millimeters.

□ For example, if the double pyramid calibration object has a physical width of 100 mm,
the method should be called with a factor of 10 (10 x 10 = 100 mm).

● The calibration object model must be set with the method SetCalibrationObjectType().
The possible values are DoublePyramid and TruncatedDoublePyramid.

If possible, prefer the truncated pyramids model as it does not show symmetry and thus prevents
possible orientation confusion.

A manufactured double pyramid under the laser triangulation device
and the corresponding captured depth map

Open eVision User Guide

44

Truncated pyramids of different sizes

Recommendations for the acquisition of the calibration object

To ensure a reliable and precise calibration, the following conditions must be satisfied during
the acquisition of the calibration object:

□ All the calibration object faces must be visible on the depth map (that is a constraint on
the camera and laser orientation)

□ The calibration object must be horizontal (relative to the motion axis)

□ There must be no other object higher than the calibration object in the depth map

□ The depth map must have at least 200 x 200 pixels resolution

□ The calibration object must cover at least 50% of the defined pixel of the depth map

Point Cloud

Coordinates Transformations

Affine Transforms

Affine transforms allow you to reposition the point cloud inside the 3D space.

Open eVision provides you with the following basic transformations:

□ Rotation around the X, Y or Z axis

□ Translation along the X, Y and/or Z axis

□ Scaling, around the origin, and either isotropic (the same in all directions) or anisotropic
(different along the different axis)

It also provides you with projection transformations, both orthographic and perspective:

□ An orthographic projection transforms a volume of space in the shape of a rectangular
parallelepiped (and the points it contains) into the canonical view (a cubic space of size 2
and centered on the origin).

Open eVision User Guide

45

□ A perspective projection transforms a volume of space in the shape of a frustum (basically
a truncated pyramid) into the canonical view. This projection allow you to simulate the
perspective effect given by an eye or a camera.

Reducing a Point Cloud

Cropping

Cropping allows you to exclude points from the point cloud based on geometrical
considerations.

Open eVision provides the following cropping functions:

□ ESimpleCropper: simple cropping on the X, Y and/or Z coordinates (aligned rectangle 3D
region)

□ ERectangularCropper: cropping the points outside (or inside) an oriented rectangular
parallelepiped

□ ESphericalCropper: cropping the points outside (or inside) a sphere.

□ EPlaneCropper: cropping the points depending on their position with respect to a plane

These classes produces a new point cloud with the selected points.

Decimation

The random decimator, ERandomDecimator, decimates a point cloud by copying a specified
number of points, randomly selected, to a new point cloud.

Specify the number of points to keep as parameter of the constructor.

EPointCloud pc;
pc.LoadPCD("c:\\images\\data.pcd");
// Explicitely decimate the point cloud
ERandomDecimator decimator(5000);
EPointCloud pcDecimated;
decimator.Decimate(pc, pcDecimated);
pcDecimated.SavePCD("c:\\images\\decimatedData.pcd");

Open eVision User Guide

46

Managing Planes

E3DPlane

A plane can be represented as an E3DPlane object.

This plane is characterized by:

□ Its normal which is a vector of norm 1, perpendicular to the plane.

□ Its signed distance from the origin, which is the smallest distance from the origin to the
plane. The signed distance is positive when the vector binding the origin to the closest
point on the plane has the same direction as the normal and is negative when it has the
opposite direction.

Once a plane is defined, you can measure the signed distance between this plane and any point
in the space (using the method DistanceTo()):

□ A positive distance means that the vector connecting the plane to the point has the same
direction as the normal.

□ A negative distance means that the vector has the opposite direction.

EPlaneFinder

You can search for a plane in a point cloud using the object EPlaneFinder object.

The main parameters of this object are:

Open eVision User Guide

47

□ The maximum distance between the searched plane and a point that belongs to this
plane.

□ The expected ratio between the numbers of inliers and the total number of points in the
point cloud.
- An inlier is point that belongs to a plane (closer than this maximum distance).
- An outlier is a point that is not an inlier.

The picture below illustrates how points of the space are classified as inliers (in green) and
outliers (in red) according to their distance to the searched plane.

A EPlaneFinder object produces a E3DPlane object. The algorithm searches for a plane
containing as many inliers as possible. This plane is the biggest plane if the samples are evenly
distributed.

The maximum distance between the plane and the inliers is a mandatory parameter: it should
include the deviation due to the noise but also take warpage into account.

The parameter that specifies the ratio of inliers with respect to the total number of points has a
default value of 0.3, meaning that we estimate that about 30% of the points belong to the
plane. This parameter is not as critical as the maximum distance but it affects the maximum
time the algorithm will spend in searching a plane as well as its robustness.

Optionally, you can specify the expected normal vector to the plane to search. In that case, you
should also specify an angular tolerance with respect to this expected direction.

Open eVision User Guide

48

When an expected normal is specified, the algorithm only searches for a plane that satisfies the
condition. Setting this condition might speed up the plane search.

Finally, it is important to note that, by default, the EPlaneFinder decimates the input point cloud
to accelerate the search. The default decimator reduces the input point cloud to 10000 points.
Alternatively, you can disable this decimation, or you can decimate a point cloud explicitly, by using
an ERandomDecimator object and use the decimated point cloud as input for the EPlaneFinder.
In this case you should disable the default decimator.

Once the main plane is found, a fit is done on all the inliers points and the result is returned
(see EPlaneFitter below).

EPlaneFitter

The EPlaneFitter operator computes a fit on all the points of a point cloud and returns a
E3DPlane object.

Aligning

EPrincipalAxisExtractor

The EPrincipalAxisExtractor computes the “principal axis” of an object from a point cloud
(EPointCloud) and returns a E3DTranformMatrix containing a solid transformation that
defines a new orthogonal basis.

This new orthogonal basis has the following characteristics:

□ The center is the center of gravity of the point cloud.

□ The axis are oriented along the “principal axis” of the object. This is the result of the
“PCA” calculation (principal axis analysis).

□ The directions of the axis are selected so that the new basis is as close as possible of the
basis defined by the reference transformation.

Open eVision User Guide

49

The next figure illustrates the orientation of the principal axis of an object.

The principal axis extraction is done using the Extract() method that takes a EPointCloud

as input and returns an E3DTransformMatrix. Optionally, you can pass 3 other output
parameters by reference to retrieve the value of the standard deviation along the 3 principal
axis.

You can use the returned E3DTranformMatrix object to transform the 3D coordinates of a
point. For example, apply the transformation matrix to the origin (0, 0, 0) to return the center of
gravity of the object.

Specification of a reference transformation

The reference transformation is an optional parameter of the EPrincipalAxisExtractor
object. It defines a reference basis used to select an orthogonal basis out of the principal axis.
The selected basis will be the closest to the reference basis.

If no reference transformation was supplied, the default reference basis is ((0, 0, 1), (0, 1, 0), (0, 0, 1)),
that corresponds to the identity transformation. On the figure below, the default reference basis
determines the direction of the axis ex, ey and ez.

Open eVision User Guide

50

EFeaturesAligner

A EFeaturesAligner object finds the best transformation that maps a list of points to another
list of points.

● The first list of points is called the "model". It is stored in the EFeaturesAligner object.

● The second list of points is called "measured points". It is passed as a parameter to the
Compute() method. If successful, the result of this method is a E3DTransformMatrix

object.

● The 2 lists should form matching pairs. In other words, the first point of the first list matches
the first point of the second list, the second point of the first list matches the second point of
the second list, and so on…

With the Polarity parameter, you can define which transformation is returned. It can be either:

□ The one that moves one point from the first list (the model) to the second list of points
(the measured points) if the polarity parameter is set to EAlignmentPolarity_

ModelToMeasured (default).

□ The one that moves a point from the second list (the measured points) to the first list (the
model) if the polarity parameter is set to EAlignmentPolarity_MeasuredToModel.

Open eVision User Guide

51

The figure below illustrates the computation of the alignment transformation. In this example a
model is aligned to an object using the coordinates of their corners.

Once the transformation is computed, use the method GetOrthoBasis of the
E3DTransformMatrix object to get the basis (ex, ey, ez) and the center point t that defines
the new basis.

You can also apply the computed transformation on any 3D point as illustrated in the code
below.

EFeaturesAligner alignTool;
E3DTransformMatrix alignBase;
E3DPoint ex, ey, ez, t;
std::vector<E3DPoint> model3d;
std::vector<E3DPoint> points3d;
// add points to model3d and points3d
// ...
alignTool.SetModelPoints(model3d);
alignBase = alignTool.Compute(points3d);
// Get the orthogonal basis and store it in ex, ey, ez and t
alignBase.GetOrthoBasis(ex, ey, ez, t);
// Applying the transformation on point P1, results in point P1b
E3DPoint P1 = E3DPoint(...) ;
E3DPoint P1b = alignBase*P1;

As you can see, the application of the transformation on a point is simply done by multiplying
the transformation matrix by the point (as done in the example above).

On the other hand, if you need to transform a point cloud or a list of points, it is more efficient
to use the ApplyTransform() method of an EAffineTransformer object.

Open eVision User Guide

52

Mesh
A mesh is a geometric representation of a 3D surface. The surface is defined by a triangle mesh
connecting the 3D points. Like a point cloud, a mesh is expressed in the metric space.

Like a point cloud, you can generate a mesh from a depth map and use it to produce a ZMap.

Generation

An EMesh object is generated from a depth map using the EDepthMapToMeshConverter class.

Like EDepthMapToPointCloudConverter, this class uses a calibration model to transform the
depth map pixels to 3D world positions. In addition, the depth map pixel connectivity is used to
build the triangle mesh. Adjacent pixels produce surface triangles.

Use SetCalibrationModel() to select a calibration model and the method Convert() to
generate an EMesh from an 8 bits or 16 bits depth map.

Access and usage

In an EMesh object the 3D world positions are stored as an EPointCloud (accessible through
the method GetPointCloud()). The triangle mesh is stored as an array of point indexes, where
3 consecutive indexes define a triangle. The method GetTriangleIndexes() provides a read-
only access to the triangle mesh.

You can use either the Open eVision proprietary format to save and load EMesh objects using
the Save() and Load() methods, or use the STL standard file format
(https://en.wikipedia.org/wiki/STL_(file_format)) using the SaveSTL() and LoadSTL() methods
which respectively write to and read from ASCII STL files.

You can use an EMesh to produce a ZMap (see "Generating a ZMap" on the next page). Because
an EMesh represents a surface, the so generated ZMap can show better continuity and less
undefined pixels.

Open eVision User Guide

53

ZMap

Generating a ZMap

A ZMap is the projection of a point cloud or a mesh on a reference plane, with the distance
coded as gray scale values:

□ They are grayscale images, compatible with all Open eVision 2D libraries.

□ They are distortion free, with affine transformation from/to metric coordinate system.

A depth map (left) and the corresponding ZMap (right),
with default generation parameters and undefined pixel filling enabled

All Open eVision 2D processing are available on ZMaps: filtering, thresholding, blob extraction,
measuring with EasyGauge, model matching with EasyFind or EasyMatch…

The EZMapGenerator class implements the conversion from a point cloud or a mesh to a
ZMap. With all parameters at default value, the Convert() method automatically chooses the
projection plane, the orientation, the map size and the resolution.

Several methods are available to further control the conversion:

● SetReferencePlane() defines a world space projection plane. The values of the ZMap
pixels are the distance of the point cloud to that reference plane.

By default, the reference plane crosses the origin and is perpendicular to the world Z axis.
The plane is defined as a E3DPlane object.

● SetOrientationVector() sets a world space vector representing the expected direction of
the X (width) axis of the ZMap.

The orientation vector allows to “rotate” the object around the normal of the reference
plane.

● SetOrigin() specifies the world position that is on the ZMap lower left pixel (0, 0).

● SetMapSize() defines the resolution (number of pixels in X and Y axis) of the generated
ZMap.

Open eVision User Guide

54

● SetMapXYResolution() adjusts the X and Y resolution of the ZMap pixels, in world space
unit per pixel (for example mm/pixel). This value is used to compute the ZMap size (width
and height), depending on the projected size of the point cloud on the reference plane.

● SetMapZResolution() sets the Z resolution, in world space unit per pixel unit (gray value).
The Z resolution is used to compute the transformation of the distance to the reference plan
to the integer 8, 16 or 32 bits pixel value.

● EnableFillMode() and SetFillMode() control the options used to fill the "hole" in the
ZMap. A hole exists when no 3D point is projected in the ZMap at a pixel position.

The methods SetReferencePlane(), SetOrientationVector() and SetOrigin() are used
to setup the transformation between the world space and the ZMap space. This transformation
is rigid (distances are kept).

Alternatively, it is possible to directly set that transformation with the method
SetWorldToZMapTransform() using a rigid matrix as parameter. In that case, the reference
plane, the orientation vector and the origin parameters are ignored.

The projection of a point cloud on a ZMap,
showing 3 coordinate systems: the world space, the ZMap space and the pixel space.

Open eVision User Guide

55

The method Convert() performs the effective projection of a point cloud (EPointCloud) or a
3D object (EMesh) to the 8 bits and 16 bits ZMap.

When generating a ZMap from a point cloud, only individual points are projected on the ZMap.
Depending on the point cloud density and the ZMap resolution, some regions of the ZMap may
remain “undefined”. To get around this problem, adjust the resolution of the ZMap
(SetMapXYResolution method) to remove “holes” on the ZMap.

By default, the point cloud to ZMap converter performs a filling algorithm. This process tries to
replace undefined pixels with locally interpolated values.

Left: high resolution ZMap, the pixel scale exceeds the point cloud density
Center: the same generator parameters with the filling enabled

Right: a reduced ZMap scale/resolution, without filling

As a mesh defines a surface, its triangles are projected onto the ZMap plane. Thus, the
generated image shows better continuity and less undefined pixels. However, the generation of
a ZMap from an EMesh is slower than from an EPointCloud.

Managing the Coordinates

Coordinate systems on a ZMap

A ZMap has multiple coordinate systems:

□ The world space system is the original, metric space from which the ZMap has been
generated. Point clouds and meshes are expressed in the world coordinate system.

□ The ZMap space is defined by a rigid transformation of the world space. The basis linked
to this transformation is attached to the lower left corner of the ZMap.

□ The image space is the system attached to the image representation of the ZMap. Its
origin is the upper left corner of the ZMap and its unit length is one pixel along the X and
Y axis.

The transformations between:

□ The image space and the ZMap space include a scale factor.

□ The ZMap space and the world space are solid transformations.

Open eVision User Guide

56

EZMap

The EZMap object exposes a set a methods to convert coordinates between world, ZMap and
image spaces:

□ ImageToZMap converts a 2D position in the image to ZMap coordinates.

□ ZMapToImage is the reciprocal operation and converts a ZMap position to an image
position.

□ ZMapToWorld is a method to transform positions from the 3D ZMap space to the 3D
world space. The world space is the original point cloud or mesh space.

□ WorldToZMap is the reciprocal operation, converting from world space to ZMap.

□ ImageToWorld and WorldToImage combine the functions above to transform directly
from image space to world space (or the other way).

These methods only perform geometric transformations between the various coordinate systems
and do not access the actual ZMap gray scale values.

The functions that accesses the pixel values are:

□ GetWorldPositionFromPixelPosition() is a method transforming the actual pixel
value at integer position (u, v) to the original world space. This method queries the ZMap
internal representation to get the pixel value w and transform the pixel space (u, v, w)
coordinates to a world space position.

□ GetPixelPositionFromWorldPosition() is a method to get a pixel value from a
world position. The world position is projected on the ZMap and the pixel value is
returned. If the world position is outside the ZMap domain, the method returns FALSE.

Static Methods

EFilters class

The EFilters class contains static methods used to apply filters to ZMaps or depth maps.

Open eVision User Guide

57

RemoveNoise

The RemoveNoise() method removes outliers from a depth map or a ZMap.

● It takes a depth map or a ZMap as input and generates a depth map or a ZMap respectively.

The undefined points are not taken into account.

● It is based on a square moving kernel. The size of the kernel is (2 x halfKernelSize + 1)
where halfKernelSize is a parameter of the method.

● The threshold parameter is scaled with regard to the Z resolution of the filtered depth map
or ZMap.

● There are 3 variations of this filter, depending on the method parameter:

□ ENoiseRemovalMethod_AbsoluteDifferenceFromMean removes a point when it
deviates from the average in the neighborhood, including itself. The threshold is an
absolute difference.

□ ENoiseRemovalMethod_RelativeDifferenceFromMean removes a point when it
deviates from the average in the neighborhood, including itself. The threshold is a
multiple of the standard deviation.

□ ENoiseRemovalMethod_HighStandardDeviation removes a point when the standard
deviation in the neighborhood, including itself, is higher than a defined threshold.

Example: Removing points showing a high standard deviation

The code below removes pixels with a standard deviation higher than a defined threshold.

// Load the ZMap data
EZMap16 zmap;
zmap.Load(...);
// Compute the filtered ZMap. The new ZMap is called filteredZmap
// The size of the kernel is 7x7, the threshold is 30.0
EZMap16 filteredZmap;
filteredZmap.SetSize(zmap);
EFilters::RemoveNoise(zmap, filteredZmap, ENoiseRemovalMethod_HighStandardDeviation, 3, 30.0, 0.0);

Open eVision User Guide

58

EStatistics class

The EStatistics class contains static methods used to compute statistics on ZMaps or depth
maps.

ComputeAverageMap

The ComputeAverageMap() method computes the local average map.

● You can use this method as a low-pass filter.

● Undefined points are not taken into account.

● This method is based on a square moving kernel. The size of the kernel is (2 x
halfKernelSize + 1) where halfKernelSize is a parameter of the method.

ComputeStandardDeviationMap

The ComputeStandardDeviationMap() method computes a map of the local standard
deviation.

● You can use this method to determine visually the threshold value to use with the
RemoveNoise() method when using the ENoiseRemovalMethod_
HighStandardDeviation setting.

Note: Be aware, however, that in the generated map, a pixel with the value 0 can either be
undefined or have a standard deviation equal to zero.

Example: Using a low pass filter on a ZMap, then removing points showing a
deviation larger than a defined threshold

Open eVision User Guide

59

The code below first applies an low pass filter, then removes from the result the pixels showing
a deviation from the neighborhood larger than the defined threshold.

// Load the ZMap data
EZMap16 zmap;
zmap.Load(...);
// Compute the filtered ZMap. The new ZMap is called averagedZMap
// The size of the kernel is 7x7, the threshold is 30.0
EZMap16 averagedZMap;
averagedZMap.SetSize(zmap);
EStatistics::ComputeAverageMap(zmap, averagedZMap, 3, 0.2);
// Compute the filtered ZMap. From averagedZMap, compute filteredZMap
// The size of the kernel is 31x31, the threshold is 20.0
EZMap16 filteredZMap;
filteredZMap.SetSize(zmap);
EFilters::RemoveNoise(averagedZMap, filteredZMap, ENoiseRemovalMethod_AbsoluteDifferenceFromMean,
15, 20.0, 0.2);

ComputePixelStatistics

The ComputePixelStatistics() method returns basic statistical information about pixel
values:

□ Minimum

□ Maximum

□ Average

□ Standard deviation

□ Number of valid (not undefined) pixels).

Use an ERegion object to specify the region of the ZMap or depth map used to compute the
statistics.

ComputeStatistics

The ComputeStatistics() method returns the same information as the
ComputePixelStatistics() method, but scaled with respect of the Z resolution.

Use an ERegion object to specify the region of the ZMap or depth map used to compute the
statistics.

Open eVision User Guide

60

3D Viewer
Use the E3DViewer class to easily create an interactive 3D display. The viewer displays point
clouds, meshes and ZMaps.

You can create E3DViewer as a child of an existing window or without a parent. In that last
case, a new window is created.

Note: As E3DViewer uses OpenGL interface, it requires a compatible display device.

Call the ConfigureRenderSource()method with a valid 3D geometry to display it. At each
call, ConfigureRenderSource() replaces the current displayed object. The supported classes
are EPointCloud, EMesh and EZMap8/EZMap16.

When you configure a new render source with ConfigureRenderSource(), the view point is
automatically adapted to display the whole object.

E3DViewer in action: point cloud display (left) and 3D object display (right)

To display the geometry in false colors:

□ Use the GenerateColors()method that computes RGB colors from the position of the
vertices.

□ It supports various predefined color ramps.

□ Use the SetColors()method to use custom colors (one EC24 entry is requested for each
render source vertex).

Use the methods SetPointSize(), SetWireframeMode() and SetRenderDecimationLevel

() to adjust the rendering attributes.

E3DViewer in action: wire frame enable (left) and HueFromZ color ramp (right)

Open eVision User Guide

61

In the 3D navigation window, use the mouse as follows:

□ Press the left button to rotate the image horizontally and vertically.

□ Press the right button to translate the image horizontally and vertically.

□ Use the wheel to zoom in and out.

In addition, use the following keys:

□ Press R to reset the viewer.

□ Press W to show or hide the triangle edges (in wire frame mode).

□ Press + and – to increase or decrease the point size.

Use methods SetViewTarget(), SetViewingAngle() and SetViewingDistance() to
change the view point programmatically.

Open eVision User Guide

62

4. Code Snippets

Open eVision User Guide

63

4.1. Basic Types

Loading and Saving Images
//
// This code snippet shows how to load and save an image. //
//

// Images constructor
EImageBW8 srcImage;
EImageBW8 dstImage;

// Load an image file
srcImage.Load("mySourceImage.bmp");

// ...

// Save the destination image into a file
dstImage.Save("myDestImage.bmp");

// Save the destination image into a jpeg file
// The default compression quality is 75
dstImage.Save("myDestImage.jpg");

// Save the destination image into a jpeg file
// set the compression quality to 50
dstImage.SaveJpeg("myDestImage50.jpg", 50);

Interfacing Third-Party Images
///
// This code snippet shows how to link an Open eVision image //
// to an externally allocated buffer. //
///

// Images constructor
EImageBW8 srcImage;

// Size of the third-party image
int sizeX;
int sizeY;

//Pointer to the third-party image buffer
EBW8* imgPtr;

// ...

// Link the Open eVision image to the third-party image
// Assuming the corresponding buffer is aligned on 4 bytes
srcImage.SetImagePtr(sizeX, sizeY, imgPtr);

Retrieving Pixel Values
///

Open eVision User Guide

64

// This code snippet shows the recommended method (fastest) //
// to access the pixel values in a BW8 image //
///

EImageBW8 img;

OEV_UINT8* pixelPtr;
OEV_UINT8* rowPtr;
OEV_UINT8 pixelValue;
OEV_UINT32 rowPitch;
OEV_UINT32 x, y;

rowPtr = reinterpret_cast <OEV_UINT8*>(img.GetImagePtr());
rowPitch = img.GetRowPitch();

for (y = 0; y < height; y++)
{
 pixelPtr = rowPtr;

for (x = 0; x < width; x++)
{

 pixelValue = *pixelPtr;

// Add your pixel computation code here

 *pixelPtr = pixelValue;
 pixelPtr++;
 }

 rowPtr += rowPitch;
}

ROI Placement
///
// This code snippet shows how to attach an ROI to an image //
// and set its placement. //
///

// Image constructor
EImageBW8 parentImage;

// ROI constructor
EROIBW8 myROI;

// ...

// Attach the ROI to the image
myROI.Attach(&parentImage);

//Set the ROI position
myROI.SetPlacement(50, 50, 200, 100);

Vector Management
///
// This code snippet shows how to create a vector, fill it //
// and retrieve the value of a given element. //
///

Open eVision User Guide

65

// EBW8Vector constructor
EBW8Vector ramp;

// Clear the vector
ramp.Empty();

// Fill the vector with increasing values
for(int i= 0; i < 128; i++)
{

ramp.AddElement((EBW8)i);
}

// Retrieve the 10th element value
EBW8 value= ramp[9];

Exception Management
//
// This code snippet shows how to manage //
// Open eVision exceptions. //
//

try
{

// Image constructor
EImageC24 srcImage;

// ...

// Retrieve the pixel value at coordinates (56, 73)
EC24 value= srcImage.GetPixel(56, 730);

}

catch(Euresys::Open_eVision_1_1::EException exc)
{

// Retrieve the exception description
std::string error = exc.What();

}

Open eVision User Guide

	1. Dealing with Pixel Containers and Files
	1.1. Pixel Container Definition
	1.2. Pixel Container Types
	1.3. Supported Image File Types
	1.4. Pixel and File Types Compatibility
	1.5. Color Types

	2. Manipulating Pixels Containers and Files
	2.1. Pixel Container File Save
	2.2. Pixel Container File Load
	2.3. Memory Allocation
	2.4. Image and Depth Map Buffer
	2.5. Image Drawing and Overlay
	2.6. 3D Rendering of 2D Images
	2.7. Vector Types and Main Properties
	2.8. ROI Main Properties
	2.9. Flexible Masks
	2.10. Profile

	3. 3D Tools
	3.1. Understanding 3D Concepts
	Basic Concepts
	Laser Triangulation
	The Laser Line 3D Acquisition Pipeline

	3.2. Easy3D - Using 3D Toolset
	Laser Line Extraction
	Calibration
	Point Cloud
	Coordinates Transformations
	Reducing a Point Cloud
	Managing Planes
	Aligning
	Mesh
	ZMap
	Generating a ZMap
	Managing the Coordinates
	Static Methods
	3D Viewer

	4. Code Snippets
	4.1. Basic Types
	Loading and Saving Images
	Interfacing Third-Party Images
	Retrieving Pixel Values
	ROI Placement
	Vector Management
	Exception Management

