
Open eVision
USER GUIDE

© EURESYS s.a. 2019 - Document D103ET-Using Open eVision-Open eVision-2.9.0.1120 built on 2019-08-16

2

Terms of Use

EURESYS s.a. shall retain all property rights, title and interest of the documentation of the hardware and the
software, and of the trademarks of EURESYS s.a.

All the names of companies and products mentioned in the documentation may be the trademarks of their
respective owners.

The licensing, use, leasing, loaning, translation, reproduction, copying or modification of the hardware or the
software, brands or documentation of EURESYS s.a. contained in this book, is not allowed without prior notice.

EURESYS s.a. may modify the product specification or change the information given in this documentation at any
time, at its discretion, and without prior notice.

EURESYS s.a. shall not be liable for any loss of or damage to revenues, profits, goodwill, data, information systems or
other special, incidental, indirect, consequential or punitive damages of any kind arising in connection with the use
of the hardware or the software of EURESYS s.a. or resulting of omissions or errors in this documentation.

This documentation is provided with Open eVision 2.9.0 (doc build 1120).
© 2019 EURESYS s.a.

Open eVision User Guide

3

Contents

PART I : GLOBAL FEATURES 7
1. Installing Open eVision 8
2. Manipulating Pixels Containers and Files 20

2.1. Pixel Container File Save 20
2.2. Pixel Container File Load 22
2.3. Memory Allocation 23
2.4. Image and Depth Map Buffer 23
2.5. Image Drawing and Overlay 27
2.6. 3D Rendering of 2D Images 27
2.7. Vector Types and Main Properties 28
2.8. ROI Main Properties 32
2.9. Arbitrarily Shaped ROI (ERegion) 34
2.10. Flexible Masks 40
2.11. Profile 44

3. Multicore Processing 46
4. EGrabberBridge - Using Images from Coaxlink 47

PART II : IMAGE PRE-PROCESSING LIBRARIES 49
1. EasyImage - Pre-Processing Grayscale Image 50

1.1. Intensity Transformation 50
1.2. Thresholding 53
1.3. Arithmetic and Logic 55
1.4. Non-Linear Filtering 57
1.5. Geometric Transforms 63
1.6. Noise Reduction and Estimation 65
1.7. Scalar Gradient 68
1.8. Vector Operations 68
1.9. Canny Edge Detector 70
1.10. Harris Corner Detector 71
1.11. Overlay 73
1.12. Operations on Interlaced Video Frames 73
1.13. Flexible Masks in EasyImage 74

2. EasyColor - Pre-processing Color Images 76
2.1. Bayer Transform 80
2.2. LUT for Gain/Offset (Color) 81
2.3. LUT for Color Calibration 82
2.4. LUT for Color Balance 82

3. EasyImage - Computing Image Statistics 85

Open eVision User Guide

4

PART III : INSPECTION TOOLS 90
1. EasyObject - Analysing Blobs 91

1.1. Image Segmenters 94
1.2. Image Encoder 98
1.3. Holes Construction 101
1.4. Normal vs. Continuous Mode 102
1.5. Selecting and Sorting Blobs 105
1.6. Advanced Features 106
Computable Features 106

Draw Coded Elements 111
Flexible Masks in EasyObject 112

2. EasyGauge - Measuring down to Sub-Pixel 115
Workflow 115
Gauge definitions 117
Find transition points using peak analysis 120
Find shapes using geometric models 125
Gauge Manipulation: Draw, Drag, Plot, Group 126
Calibration and Transformation 127
Calibration using EWorldShape 129
Advanced Features 131

3. EasyMatch - Matching Area Patterns 137
Workflow 137
Learning Process 138
Matching Process 140
Advanced Features 140

4. EasyFind - Matching Geometric Patterns 142
4.1. Workflow 142
4.2. Learning Process 145
4.3. Finding Process 147
4.4. Advanced Features 148

5. Golden Template Validation (EChecker) 150
5.1. Image Comparison 155

6. EasyDeepLearning - Classifying Images 158
6.1. What EasyDeepLearning Can Do 158
6.2. Workflow 159
6.3. EasyDeepLearning Studio 161
6.4. Managing the Dataset 163
6.5. Using Data Augmentation 167
6.6. Using the Classifier 169
6.7. Hardware Support (CPU/GPU) 175

PART IV : TEXT IDENTIFICATION TOOLS 178
1. EasyOCR - Reading Texts 179

Workflow 179
Learning Process 180
Segmenting 180

Open eVision User Guide

5

Recognition 181

2. EasyOCR2 - Reading Texts (Improved) 184
3. EasyOCV - Validating Texts 191

3.1. Learning Passes 195
Inspect and compare image with model 196
3.2. Degrees of Freedom 196
3.3. Quality Indicators 198
3.4. Advanced Features 200
3.5. Programming with EasyOCV 201

PART V : CODE IDENTIFICATION TOOLS 207
1. EasyBarCode - Reading Bar Codes 208

1.1. Reading Bar Codes 208
1.2. Reading Mail Bar Codes 212

2. EasyMatrixCode - Reading Matrix Codes 216
2.1. Specifications 216
2.2. EasyMatrixCode vs EasyMatrixCode2 217
2.3. Workflow 217
2.4. Reading a Matrix Code 218
2.5. Learning a Matrix Code 218
2.6. Computing the Print Quality 220
2.7. Using GS1 Data Matrix Codes 220

3. EasyMatrixCode2 - Reading Matrix Codes (New) 222
3.1. Specifications 222
3.2. EasyMatrixCode vs EasyMatrixCode2 223
3.3. Workflow 224
3.4. Reading a Matrix Code 224
3.5. Learning a Matrix Code 225
3.6. Computing the Print Quality 225
3.7. Using GS1 Data Matrix Codes 226
3.8. Asynchronous Processing 226
3.9. Advanced Parameters 227

4. EasyQRCode - Reading QR Codes 229
Workflow 230
QR code definition 230
Read a QR code 233
Advanced features 233

PART VI : 3D TOOLS 236
1. Understanding 3D Concepts 237

1.1. Basic Concepts 237
1.2. Laser Triangulation 240
1.3. The Laser Line 3D Acquisition Pipeline 242

2. Object-Based Calibration Guidelines 244
3. Easy3D - Using 3D Toolset 254

Open eVision User Guide

6

3.1. Laser Line Extraction 254
3.2. Calibration 258
3.3. Point Cloud 260

Coordinates Transformations 260
Reducing a Point Cloud 261
Managing Planes 262
Aligning 264

3.4. Mesh 268
3.5. ZMap 269

Generating a ZMap 269
Creating a Point Cloud from a ZMap 271
Managing the Coordinates 272
Static Methods 273

3.6. 3D Viewer 276

4. Easy3DObject - Extracting 3D Objects 279
4.1. Purpose and Workflow 279
4.2. Object Features 281
4.3. Extracting and Using Objects 286
4.4. Use Case - Inspecting a PCB 289

Open eVision User Guide

7

PART I
GLOBAL FEATURES

Open eVision User Guide PART I Global Features

8

1. Installing Open eVision

Installer Package

Open eVision comes as a single installer package "Open_eVision_Installer_2.1.0.msi". It
contains everything needed to run or develop applications using Open eVision

Installation Types

The Open eVision Installer provides the following installation types:

n Complete: Everything needed for running or developing applications is installed on the
system.

n Typical: Same as Complete, with the exception of Legacy components and VC++ 6.0 specific
components.

n Runtime: Installs all binaries needed to run applications using Open eVision on the system.
n Custom: Allows to select exactly what components will be installed on the system.

Older Versions

Open eVision will not replace other Open eVision major versions, but install alongside. If the
major version is identical, minor versions releases as well as maintenance releases will update
automatically

Command-Line Interface

To install Open eVision with the command line, use:

msiexec /i "Open_eVision_Installer_2.1.0.msi" /qn INSTALLTYPE=[install_type]"

Where [install_type] can be Complete, Typical or Runtime. By default, installation type is
'Typical'.

For the command prompt to wait for the end of the installation add 'start /wait' at the start of
the command:

start /wait msiexec /i "Open_eVision_Installer_2.1.0.msi" /qn INSTALLTYPE=[install_type]"

License Activation

Open eVision licenses are activated from the Open eVision License Manager. The License Manager
can be launched at the end of the installation, or from the Windows start menu.

Note:On Windows XP, the license Manager requires .NET 2.0.

Open eVision User Guide PART I Global Features

9

Supported platforms and requirements

W ES 2009

Windows Embedded Standard 2009 can install drivers and applications after FBA completes.

It is recommend to install Open eVision as follows:
1. Add mandatory components to the Run-Time Image using Target Designer

n .Net framework 3.0 setup component: For Open eVision license manager
n Windows Installer Service component: For Open eVision to install C/C++ run-time

libraries.
n Open eVision license manager needs either the internet support components for online

activation, or USB Flash for an offline activation:.
n Sysprep (Windows System preparation) Component or System Cloning Tool Component:

To reseal the "Master Target" before deploying the image to multiple devices.
Note: To prevent System Cloning Tool from executing FBRESEAL automatically when FBA
finishes:
Set System Cloning Tool Settings Reseal Phase to Manual, or change System Cloning
Tool Advanced Settings cmiResealPhase from 12000 to 0.

2. Install Open eVision 2.1 and newer on the "Master Target"
n Once the Pre FBA OS Image has been built, boot the "Master Target" and allow FBA to

complete.
n When the "Master Target" has been booted for the second time, install the Open eVision

libraries using the standard installer provided.
n Optionally, install your own final application based on Open eVision, include all the run-

time libraries needed by your application.
3. Reseal the master package ready for mass deployment

n Run FBRESEAL or Sysprep. Once the computer shuts down, this image is the master.
n Each time you deploy the "Master" in a new device, the Open eVision libraries need to be

activated as described in the license manager documentation.

Open eVision in C++

Include the header (Open_evVsion_2_0.h) located in the installation folder > Include subfolder.
No linker settings are required.

Microsoft Visual Studio C++ environments automatically adds the Open eVision Include folder at
installation time. This must be done manually for Borland/CodeGear C++ environments.

Open eVision in .NET

Add a reference to the Open_eVision_NetApi_2_1.dll in the development environment. No other
DLL must be copied.

Using Open eVision in ActiveX

Add a reference to the Open_eVision_ActiveXApi_2_1.dll component.

Open eVision User Guide PART I Global Features

10

Visual Studio 6.0

n If you are using the regular API (new style API with exceptions and namespaces)
1. Open your project settings, and add the following preprocessor macro definition:

DO_NOT_USE_INLINE_OPEN_EVISION_2_1

2. Add the Open_evVsion_2_0_VC6_Release.lib and Open_evVsion_2_0_VC6_Debug in the
corresponding configuration linker settings.
These files are in the Open eVision installation folder.

n If you are using the legacy support API (compatible with eVision 6.7.1):
1. Open your project settings, and add the following preprocessor macro definition:

DO_NOT_USE_INLINE_LEGACY_OPEN_EVISION_2_1

2. Add the Legacy_Open_evVsion_2_0_VC6_Release.lib and Legacy_Open_evVsion_2_0_
VC6_Debug in the corresponding configuration linker settings.
These files are in the Open eVision installation folder.

n If you are using both the regular API and the legacy support API, you must perform all steps
(and thus all the relevant libraries to your solution).

In order to use these libraries, your program must use the Multithreaded DLL (/MD) or
Multithreaded Debug DLL (/MDd) code generation flags.

Visual Basic 6.0

Add a reference to the Open_eVision_ActiveXApi_2_1.dll (menu: "Project > Add Reference"). All
objects are then directly usable in Visual Basic.

Embarcadero RAD Studio XE4/XE5

To configure projects in Embarcadero RAD Studio XE4 and XE5 to use Open eVision:

C++

1. Create a new C++ project.
2. Add the Open eVision include path to the project dependencies.

Open eVision User Guide PART I Global Features

11

3. Define DO_NOT_USE_INLINE_OPEN_EVISION_2_1 in the project settings.

4. Include "Open_evVsion_2_0.h" in the .cpp files where you want to use Open eVision.
5. Add "Open_evVsion_2_0.cpp" to the project.

Open eVision User Guide PART I Global Features

12

6. In both Debug and Release, modify the local C++ compiler options of the "Open_eVision_2_
0.cpp" file:

Open eVision User Guide PART I Global Features

13

7. In Debugging:
a. Set Debug information to False.

Open eVision User Guide PART I Global Features

14

b. Set Debug line number information to False.

Open eVision User Guide PART I Global Features

15

8. In Optimization, set Disable all optimizations to True.

Open eVision User Guide PART I Global Features

16

9. In Compatibility/General, set Global functions in segments to False.

Borland C++

An error may occur due to a limitation in the number of functions (and virtual functions) in a
single translation unit:

BCB6 Error E2491: Maximum VIRDEF count exceeded; check for recursion

Open eVision User Guide PART I Global Features

17

If this problem occurs, change the Virtual tables C++ option to Local:

When using Open eVision objects as members of Borland GUI classes, like TDialog for instance,
an unhandled exception can occur when the application is closed. To avoid this issue, create
Open eVision objects dynamically using new and delete them in the destructor of the parent
class.

Delphi

NOTE
Open eVision must be previously installed with the Legacy ActiveX option.
You must use the ActiveX DLL ("Component > Import Component... > Import
.NET Assembly").

Open eVision User Guide PART I Global Features

18

1. Create a new Delphi project.
2. In the Component menu, click on Import Component.

3. Select the Import a Type Library option, then press Next.

Open eVision User Guide PART I Global Features

19

4. Select Open_eVision_ActiveXApi_2_1 in the list, then press Next.

5. Don't change anything on the next form and press Next.
6. Select Add unit to project then press Finish.

Open eVision User Guide PART I Global Features

20

2. Manipulating Pixels Containers
and Files

2.1. Pixel Container File Save
Images and Depth Maps

The Save method of an image or the SaveImage method of a depth map or a ZMap saves the
image data of an image or of a depth map or a ZMap object into a file using two arguments:
n Path: path, filename, and file name extension.
n Image File Type. If omitted, the file name extension is used.

Images bigger than 65,536 (either width or height) must be saved in Open eVision proprietary
format.

Save throws an exception when:
n The requested image file format is incompatible with the image pixel types
n The Auto file type selection method and the file name extension is not supported

TIP
When saving a 16-bit depth map, the fixed point precision is lost and the
pixels are considered as 16-bit integers.

image file type arguments

Argument Image File Type

EImageFileType_Auto(*) Automatically determined by the filename extension. See below.

EImageFileType_Euresys Open eVision Serialization.

EImageFileType_Bmp Windows bitmap - BMP

EImageFileType_Jpeg JPEG File Interchange Format - JFIF

EImageFileType_Jpeg2000 JPEG 2000 File format/Code Stream -JPEG2000

EImageFileType_Png Portable Network Graphics - PNG

EImageFileType_Tiff Tagged Image File Format - TIFF

(*) Default value.

Open eVision User Guide PART I Global Features

21

Assigned image file type if argument is ImageFileType_Auto or missing

File name extension(*) Automatically assigned image file type

BMP Windows Bitmap Format

JPEG, JPG JPEG File Interchange Format - JFIF

JP2 JPEG 2000 file format

J2K, J2C JPEG 2000 Code Stream

PNG Portable Network Graphics

TIFF, TIF Tagged Image File Format

(*) Case-insensitive.

Saving JPEG and JPEG2000 lossy compressions

SaveJpeg and SaveJpeg2K specify the compression quality when saving compressed images.
They have two arguments:
n Path: a string of characters including the path, filename, and file name extension.
n Compression quality of the image file, an integer value in range [0: 100].

SaveJpeg saves image data using JPEG File Interchange Format – JFIF.
SaveJpeg2K saves image data using JPEG 2000 File format.

JPEG compression values

JPEG compression Description

JPEG_DEFAULT_QUALITY (-1) Default quality (*)

100 Superb image quality, lowest compression factor

75 Good image quality (*)

50 Normal image quality

25 Average image quality

10 Bad Image quality

(*) The default quality corresponds to the good image quality (75).

Representative JPEG 2000 compression quality values

JPEG 2000 compression Description

-1 Default quality (*)

1 Highest image quality, lowest compression factor

Open eVision User Guide PART I Global Features

22

JPEG 2000 compression Description

16 Good Image Quality (*) (16:1 rate)

512 Lowest image quality, highest compression factor

(*) The default quality corresponds to the good image quality (16:1 rate).

Point Clouds

● Use the Save method to save the point cloud in Open eVision proprietary file format.

● Use the SavePCD method to save the point cloud in a ASCII or a binary file compatible with
other software such as PCL (Point Cloud Library).

TIP
The PCD format is supported in ASCII and binary modes.

2.2. Pixel Container File Load
Images and Depth Maps

● Use the Load method to load image data into an image object:

□ It has one argument: the path: path, filename, and file name extension.

□ File type is determined by the file format.

□ The destination image is automatically resized according to the size of the image on disk.

● The Load method throws an exception when:

□ File type identification fails

□ File type is incompatible with pixel type of the image object

TIP
Serialized image files of Open eVision 1.1 and newer are incompatible with
serialized image files of previous Open eVision versions.

TIP
When loading a BW16 image (with integer values) in a depth map, the fixed
point precision set in the depth map (0 by default) is left unchanged and
used.

Point Clouds

● Use the Load method to save the point cloud in Open eVision proprietary file format.

Open eVision User Guide PART I Global Features

23

● Use the LoadPCD method to save the point cloud in a ASCII or a binary file compatible with
other software such as PCL (Point Cloud Library).

2.3. Memory Allocation
An image can be constructed with an internal or external memory allocation.

Internal Memory Allocation

The image object dynamically allocates and unallocates a buffer. Memory management is
transparent.
When the image size changes, re-allocation occurs.
When an image object is destroyed, the buffer is unallocated.
To declare an image with internal memory allocation:
1. Construct an image object, for instance EImageBW8, either with width and height arguments,

OR using the SetSize function.
2. Access a given pixel. There are several functions that do this. GetImagePtr returns a pointer

to the first byte of the pixel at given coordinates.

External Memory Allocation

The user controls buffer allocation, or links a third-party image in the memory buffer to an Open
eVision image.
Image size and buffer address must be specified.
When an image object is destroyed, the buffer is unaffected.
To declare an image with external memory allocation:
1. Declare an image object, for instance EImageBW8.
2. Create a suitably sized and aligned buffer (see Image Buffer).
3. Set the image size with the SetSize function.
4. Access the buffer with GetImagePtr. See also Retrieving Pixel Values.

2.4. Image and Depth Map Buffer
Image and depth map pixels are stored contiguously, from top row to bottom, from left to right,
in Windows bitmap format (top-down DIB1) into an associated buffer.

The buffer address is a pointer to the start address of the buffer, which contains the top left pixel
of the image.

1device-independent bitmap

Open eVision User Guide PART I Global Features

24

Image Buffer pitch

● Alignment must be a multiple of 4 bytes.

● Open eVision 1.2 onwards default pitch is 32 bytes for performance reasons (Open eVision
1.1.5 was 8 bytes).

Memory Layout

● EImageBW1 stores 8 pixels in one byte.

Example memory layout of the first 2 pixels of a BW1 image buffer:

● EImageBW8 and EDepthMap8 store each pixel in one byte.

Open eVision User Guide PART I Global Features

25

Example memory layout of the first pixels of a BW8 image buffer:

● EImageBW16 stores each pixel in a 16-bit word (two bytes).

Example memory layout of the first pixels of a BW16 image buffer:

● EImageC15 stores each pixel in 2 bytes. Each color component is coded with 5-bits.
The 16th bit is left unused.

Example memory layout of the first pixels of a C15 image buffer:

● EImageC16 stores each pixel in 2 bytes. The first and third color components are coded with
5-bits.
The second color component is coded with 6-bits.

Open eVision User Guide PART I Global Features

26

Example memory layout of the first pixels of a C16 image buffer:

● EDepthMap16 store each pixel in 2 bytes using a fixed point format.

● EImageC24 stores each pixel in 3 bytes. Each color component is coded with 8-bits.

Example memory layout of the first pixels of a C24 image buffer:

● EImageC24A stores each pixel in 4 bytes. Each color component is coded with 8-bits.
The alpha channel is also coded with 8-bits.

Example memory layout of the first pixels of a C24A image buffer:

● EDepthMap32f store each pixel in 4 bytes using a float format.

Open eVision User Guide PART I Global Features

27

2.5. Image Drawing and Overlay
n Drawing uses Windows GDI1 system calls.

MFC2 applications normally use OnDraw event handler to draw, where a pointer to a device
context is available.
Borland/CodeGear's OWL or VCL use a Paint event handler.

n The color palette in 256-color display mode gives optimal rendering. Gray-level images can be
improved using LUT3s (using histogram stretching techniques or pseudo-coloring).

n The zoom can be different horizontally and vertically.
n DrawFrameWithCurrentPen method draws a frame.
n Non-destructive overlaying drawing operations do not alter the image contents, such as

MoveTo/LineTo.
n Destructive overlaying drawing operations alter the image contents by drawing inside the

image such as Easy::.OpenImageGraphicContext. Gray-level [color] images can only
receive a gray-level [color] overlay.

2.6. 3D Rendering of 2D Images
These images are viewed by rotating them around the X-axis, then the Y-axis.

Gray 3D Rendering

Easy::.Render3D prepares a 3-dimensional rendering where gray-level values are altitudes.
Magnification factors in the three directions (X = width, Y = height and Z = depth) can be given.
The rendered image appears as independent dots whose size can be adjusted to make the surface
more or less opaque.

3D rendering

Color Histogram 3D Rendering

Easy::.RenderColorHistogram prepares a 3-dimensional rendering of a color image

1Graphics Device Interface
2Microsoft Foundation Class
3LookUp Tables

Open eVision User Guide PART I Global Features

28

histogram.
The pixels are drawn in the RGB space (not XY-plane) to show clustering and dispersion of RGB
values.
This function can process pixels in other color systems (using EasyColor to convert), but the raw
RGB image is required to display the pixels in their usual colors.

Magnification factors in all three directions (X = red, Y = green and Z = blue) can be given.

Color histogram rendering

2.7. Vector Types and Main Properties
A vector is a one-dimensional array of pixels (taken from an image profile or contour).

EVector is the base class for all vectors. It contains all non-type-specific methods, mainly for
counting elements and serialization.

Profile in a C24 image RGB values plot along profile
RGB values array
(EC24Vector)

A vector manages an array of elements. Memory allocation is transparent, so vectors can be
resized dynamically. Whenever a function uses a vector, the vector type, size and structure are
automatically adjusted to suit the function needs.

The use of vectors is quite straightforward:
1. Create a vector of the appropriate type, using its constructor and pre-allocate elements if

required.

Vector types

n EBW8Vector: a sequence of gray-level pixel values, often extracted from an image profile
(used by EasyImage::.Lut, EasyImage::.SetupEqualize,

Open eVision User Guide PART I Global Features

29

EasyImage::.ImageToLineSegment, EasyImage::.LineSegmentToImage,
EasyImage::.ProfileDerivative, ...).

Graphical representation of an EBW8Vector (see Draw method)

n EBW16Vector: a sequence of gray-level pixel values, using an extended range (16 bits),
mainly for intermediate computations.

Graphical representation of an EBW16Vector

n EBW32Vector: a sequence of gray-level pixel values, using an extended range (32 bits),
mainly for intermediate computations
(used in EasyImage::.ProjectOnARow, EasyImage::.ProjectOnAColumn, ...).

Graphical representation of an EBW32Vector

n EC24Vector: a sequence of color pixel values, often extracted from an image profile
(used by EasyImage::.ImageToLineSegment, EasyImage::.LineSegmentToImage,
EasyImage::.ProfileDerivative, ...).

Open eVision User Guide PART I Global Features

30

Graphical representation of an EC24Vector

n EBW8PathVector: a sequence of gray-level pixel values, extracted from an image profile or
contour, with corresponding pixel coordinates
(used by EasyImage::.ImageToPath, EasyImage::.PathToImage, ...).

Graphical representation of an EBW8PathVector (see Draw method)

n EBW16PathVector: a sequence of gray-level pixel values, extracted from an image profile
or contour, with corresponding pixel coordinates
(used by EasyImage::.ImageToPath, EasyImage::.PathToImage, ...).

Graphical representation of an EBW16PathVector (see Draw method)

n EC24PathVector: a sequence of color pixel values, extracted from an image profile or
contour, with corresponding pixel coordinates
(used by EasyImage::.ImageToPath, EasyImage::.PathToImage, ...).

Open eVision User Guide PART I Global Features

31

Graphical representation of an EC24PathVector (see Draw method)

n EBWHistogramVector: a sequence of frequency counts of pixels in a BW8 or BW16 image
(used by EasyImage::.IsodataThreshold, EasyImage::.Histogram,
EasyImage::.AnalyseHistogram, EasyImage::.SetupEqualize, ...).

Graphical representation of an EBWHistogramVector (see Draw method)

n EPathVector: a sequence of pixel coordinates. The corresponding pixels need not be
contiguous
(used by EasyImage::.PathToImage and EasyImage::.Contour).

Graphical representation of an EPathVector (see Draw method)

n EPeakVector: peaks found in an image profile
(used by EasyImage::.GetProfilePeaks).

n EColorVector: a description of colors
(used by EasyColor::.ClassAverages and EasyColor::.ClassVariances).

2. Fill a vector with values. First empty it, using the EVector::.Empty member, then add
elements one at a time by calling the EC24Vector::.AddElement member. You can access
any element by means of indexing.

Open eVision User Guide PART I Global Features

32

3. Access a vector element, either for reading or writing. Use the brackets operator, for
instance, EC24Vector::.operator[].

4. Determine the current number of elements, use member EVector::.NumElements.
5. Draw the vector.

A pixel vector is a plot of the element values as a function of the element index, so its
graphical appearance depends on its type. You can draw a vector in a window. For legibility,
the drawing should appear on a neutral background.
Drawing is done in the device context associated to the desired window. By default, curves
are drawn in blue, annotations are drawn in black. The following parameters can be defined:
graphicContext, width, height, origin, origin, color0, color1, color2.
The EC24Vector has three curves drawn instead of one, each corresponding to a color
component. By default, red, blue and green pens are used.

2.8. ROI Main Properties
ROIs are defined by a width, a height, and origin x and y coordinates.
The origins are specified with respect to the top left corner in the parent image or ROI.
The ROI must be wholly contained in its parent image.
The processing/analysis time of a BW1 ROI is faster if OrgX and Width are multiples of 8.

Save and load

You can save or load an ROI as a separate image, to be used as if it was a full image. The ROIs
perform no memory allocation at all and never duplicate parts of their parent image, the parent
image provides them with access to its image data.

The image size of the new file must match the size of the ROI being loaded into it. The image
around the ROI remains unchanged.

ROI Classes

An Open eVision ROI inherits parameters from the abstract class EBaseROI.

There are several ROI types, according to their pixel type. They have the same characteristics as
the corresponding image types.
n EROIBW1

n EROIBW8

n EROIBW16

n EROIBW32

n EROIC15

n EROIC16

n EROIC24

n EROIC24A

Open eVision User Guide PART I Global Features

33

Attachment

An ROI must be attached to a parent (image/ROI) with parameters that set the parent, position
and size, and these links are updated transparently, avoiding dangling pointers.
A normal image cannot be attached to another image or ROI.

Nesting

Set and Get functions change or query the width, height and position of the origin of an ROI,
with respect to its immediate or topmost parent image.

An image may accommodate an arbitrary number of ROIs, which can be nested in a hierarchical
way. Moving the ROI also moves the embedded ROIs accordingly. The image/ROI classes provide
several methods to traverse the hierarchy of ROIs associated with an image.

Nested ROIs: Two sub-ROIs attached to an ROI, itself attached to the parent image

Cropping

CropToImage crops an ROI which is partially out of its image. The resized ROI never grows.
An exception is thrown if a function attempts to use an ROI that has limits that extend outside of
the parents.

Note: (In Open eVision 1.0.1 and earlier, an ROI was silently resized or repositioned when placed
out of its image and sometimes grew. If ROI limits extended outside parents, they were silently
resized to remain within parent limits.)

Resizing and moving

n ROIs can easily be resized and positioned by two functions and dragging handles:
n EBaseROI::.Drag adjusts the ROI coordinates while the cursor moves.
n EBaseROI::.HitTest informs if the cursor is placed over a dragging handle. Once the

handle is known, the cursor shape can be changed by an OnSetCursor MFC event handler.
HitTest is unpredictable if called while dragging is in progress.
HitTest can be used in an OnSetCursor MFC event handler to change the cursor shape, or
before a dragging operation like OnLButtonDown,
(or EvSetCursor and EvLButtonDown in Borland/CodeGear's OWL)
(or FormMouseMove and FormMouseDown in Borland/CodeGear's VCL).
In VB6, MouseDown, MouseMove,MouseUp events return the current cursor position in
twips rather than pixels, so conversion is mandatory.

Open eVision User Guide PART I Global Features

34

2.9. Arbitrarily Shaped ROI (ERegion)

See also:example: Inspecting Pads Using Regions / code snippets: ERegion

Regions or arbitrarily shaped ROI

You define and use regions of interest (ROI) to restrict the area processed with your vision tool
and to reduce and optimize the processing time.

In Open eVision:

□ An ROI (EROIxxx class) designates a rectangular region of interest.

□ A region (ERegion class) designates an arbitrarily shaped ROI. With regions, you can
determine precisely which part of the image, down to a single pixel, is used for your
processing.

Currently, only the following Open eVision methods support ERegions:

Library Method

EasyImage

EasyImage::Threshold
EasyImage::DoubleThreshold
EasyImage::Histogram
EasyImage::Area
EasyImage::AreaDoubleThreshold
EasyImage::BinaryMoments
EasyImage::WeightedMoments
EasyImage::GravityCenter
EasyImage::PixelCount
EasyImage::PixelMax
EasyImage::PixelMin
EasyImage::PixelAverage
EasyImage::PixelStat
EasyImage::PixelVariance
EasyImage::PixelStdDev
EasyImage::PixelCompare

Easy3D

EDepthMapToMeshConverter::Convert
EDepthMapToPointCloudConverter::Convert
EStatistics::ComputePixelStatistics
EStatistics::ComputeStatistics

EasyObject EImageEncoder::Encode
EasyFind EPatternFinder::Find

Open eVision User Guide PART I Global Features

35

TIP
In the future Open eVision releases, the support of ERegions will be
gradually extended to all operators.

Creating regions

Open eVision offers multiple ways to create regions, depending on the shape you need:

The ERegion is the base class for all regions and the most versatile. It encodes a region using a
Run-Length Encoded (RLE) representation.

□ The RLE representation of a region is made of runs (horizontal, 1-pixel high slices).

□ The runs are stored in the form of their ordinate, starting abscissa and length.

Run-Length Encoding of a circle-shaped region

To create a region, either:

□ Use one of the geometry-based region classes.

□ Use the result of another tool, such as EasyFind, EasyMatch or EasyObject.

□ Combine or modify other regions.

□ Use a mask image.

□ Directly provide the list of runs.

Open eVision User Guide PART I Global Features

36

Geometry-based regions

Geometry based regions are specialized classes of regions that are encompassed in simple
geometries. Open eVision currently provides classes based on a rectangle, a circle, an ellipse or a
polygon.

Use these classes to setup geometric regions and modify them with translation, rotation and
scaling. The transformation operators return new regions, leaving the source object unchanged.

● ERectangleRegion

□ The contour of an ERectangleRegion class is a rectangle.

□ Define it using its center, width, height and angle.

□ Alternatively, use an ERectangle instance, such as one returned by an
ERectangleGauge instance.

Rectangle region separating a bar code from the background

● ECircleRegion

□ The contour of an ECircleRegion class is a circle.

□ Define it using its center and radius or 3 non-aligned points.

□ Alternatively, use an ECircle instance, such as one returned by an ECircleGauge
instance.

Circle region encompassing the useful part of an X-Ray image

Open eVision User Guide PART I Global Features

37

● EEllipseRegion

□ The contour of an EEllipseRegion class is an ellipse.

□ Define it using its center, long and short radius and angle.

Ellipse region encompassing a waffle

● EPolygonRegion

□ The contour of an EPolygonRegion class is a polygon.

□ It is constructed using the list of its vertices.

Polygon region encompassing a key

Using the result of other tools

The ERegion class provides a set of specialized constructors to create regions from the results of
another tool.

In a tool chain, these constructors restrict the processing of a tool to the area issued from the
previous tool.

Open eVision User Guide PART I Global Features

38

Open eVision provides constructors for the following tools:

□ EasyFind: EFoundPattern

□ EasyMatch: EMatchPosition

□ EasyGauge: ECircle and ERectangle

□ EasyObject: ECodedElement

TIP
When compatible, Open eVision also provides specialized constructors for
the geometry-based regions. For instance, ECircleRegion provides a
constructor using an ECircle.

Combining regions

Use the following operations to create a new region by combining existing regions:

● Union

□ The ERegion::Union(const ERegion&, const ERegion&) method returns the region
that is the addition of the two regions passed as arguments.

Union of 2 circles

● Intersection

□ The ERegion::Intersection(const ERegion&, const ERegion&) method returns
the region that is the intersection of the two regions passed as argument.

Intersection of 2 circles

Open eVision User Guide PART I Global Features

39

● Subtraction

□ The ERegion::Substraction(const ERegion&, const ERegion&) method returns
the first region passed as argument after removing the second one.

Subtraction of 2 circles

Using regions

The tools supporting regions provide methods that follow one of these conventions:

□ Method(const EImage& source, const ERegion& region)

□ Method(const EImage& source, const ERegion& region, EImage&
destination)

NOTE
The source, the region and the destination must be compatible. It means that
the region must at least partly fit in the source, and that source and
destination must have the same size.

Preparing the region

● Open eVision automatically prepares the regions when it applies them to an image, but this
preparation can take some time.

● If you do not want that your first call to a method takes longer than the next ones, you can
prepare the region in advance by using the appropriate Prepare() method.

● To manually prepare the regions, adapt the internal RLE description to your images.

Drawing regions

The ERegion classes provide several ways to display the regions:

● ERegion::Draw() draws the region area, in a semi-transparent way, in the provided device
context.

● ERegion::DrawContour() draws the region contour in the provided device context.

Open eVision User Guide PART I Global Features

40

● ERegion::ToImage() renders the region as a mask into the provided destination image.

□ You can configure the foreground and the background colors.

□ If you initialized your image with a width and a height, Open eVision renders the region
inside those bounds.

□ If not, Open eVision resizes the image to contain the whole region.

□ Use ToImage() to create masks for the Open eVision functions that support them.

ERegions and EROIs

● The older EROI classes of Open eVision are compatible with the new regions.

● Some tools allow the usage of regions with source and/or destinations that are ERoi instead
of EImage follow one of these conventions:

□ Method(const ERoi& source, const ERegion& region)

□ Method(const ERoi& source, const ERegion& region, ERoi& destination)

TIP
In that case, the coordinates used for the region are relative to the reduced
ROI space instead of the whole image space .

ERegion and 3D

● The new regions are compatible with the 2.5D representations of Easy3D (EDepthMap and
EZMap).

● You can also reduce the domain of processing when using these classes.

2.10. Flexible Masks
ROIs vs flexible masks

ROIs and masks restrict processing to part of an image:
n "ROI Main Properties" on page 32 apply to all Open eVision functions. Using Regions of

Interest accelerates processing by reducing the number of pixels. Open eVision supports
hierarchically nested rectangular ROIs.

n Flexible Masks are recommended to process disconnected ROIs or non-rectangular shapes.
They are supported by some EasyObject and EasyImage library functions.

Flexible Masks

A flexible mask is a BW8 image with the same height and width as the source image. It contains
shapes of areas that must be processed and ignored areas (that will not be considered during
processing):

Open eVision User Guide PART I Global Features

41

n All pixels of the flexible mask having a value of 0 define the ignored areas.
n All pixels of the flexible mask having any other value than 0 define the areas to be processed.

Source image Associated mask Processed masked image

A flexible mask can be generated by any application that outputs BW8 images and by some
EasyObject and EasyImage functions.

Flexible Masks in EasyImage

Source image (left) and mask variable (right)

Simple steps to use flexible masks in Easyimage

1. Call the functions from EasyImage that take an input mask as an argument. For instance,
one can evaluate the average value of the pixels in the white layer and after in the black layer.

2. Display the results.

Resulting image

EasyImage Functions that support flexible masks

n EImageEncoder::.Encode has a flexible mask argument for BW1, BW8, BW16, and C24
source images.

n AutoThreshold.
n Histogram (function HistogramThreshold has no overload with mask argument).
n RmsNoise, SignalNoiseRatio.
n Overlay (no overload with mask argument for BW8 source images).
n ProjectOnAColumn, ProjectOnARow (Vector projection).

Open eVision User Guide PART I Global Features

42

n ImageToLineSegment, ImageToPath (Vector profile).

Flexible Masks in EasyObject

A flexible mask can be generated by any application that outputs BW8 images or uses the Open
eVision image processing functions.
EasyObject can use flexible masks to restrict blob analysis to complex or disconnected shaped
regions of the image.

If an object of interest has the same gray level as other regions of the image, you can define
"keep" and "ignore" areas using flexible masks and Encode functions.

A flexible mask is a BW8 image with the same height and width as the source image.
n A pixel value of 0 in the flexible mask masks the corresponding source image pixel so it

doesn't appear in the encoded image.
n Any other pixel value in the flexible mask causes the pixel to be encoded.

EasyObject functions that create flexible masks

Source image

1) ECodedImage2::.RenderMask: from a layer of an encoded image

1. To encode and extract a flexible mask, first construct a coded image from the source image.
2. Choose a segmentation method (for the image above the default method

GrayscaleSingleThreshold is suitable).
3. Select the layer(s) of the coded image that should be encoded (i.e. white and black layers

using minimum residue thresholding).
4. Make the mask image the desired size using mask.SetSize(sourceImage.GetWidth(),

sourceImage.GetHeight()).
5. Exploit the flexible mask as an argument to ECodedImage2::.RenderMask.

BW8 resulting image that can be used as a flexible mask

Open eVision User Guide PART I Global Features

43

2) ECodedElement::.RenderMask: from a blob or hole

1. Select the coded elements of interest.
2. Create a loop extracting a mask from selected coded elements of the coded image using

ECodedElement::.RenderMask.
3. Optionally, compute the feature value over each of these selected coded elements.

BW8 resulting image that can be used as a flexible mask

3) EObjectSelection::.RenderMask: from a selection of blobs

EObjectSelection::.RenderMask can, for example, discard small objects resulting from
noise.

BW8 resulting image that can be used as a flexible mask

Example: Restrict the areas encoded by EasyObject

Find four circles (left) Flexible mask can isolate the central chip (right)

1. Declare a new ECodedImage2 object.
2. Setup variables: first declare source image and flexible mask, then load them.
3. Declare an EImageEncoder object and, if applicable, select the appropriate segmenter. Setup

the segmenter and choose the appropriate layer(s) to encode.

Open eVision User Guide PART I Global Features

44

4. Encode the source image. Encoding a layer with just the area in the flexible mask is then
pretty straightforward.
We see that the circles are correctly segmented in the black layer with the grayscale single
threshold segmenter:

5. Select all objects of the coded image.
6. Select objects of interest by filtering out objects that are too small.
7. Display the blob feature by iterating over the selected objects to display the chosen feature.

2.11. Profile
Profile Sampling

A profile is a series of pixel values sampled along a line/path/contour in an image.
n EasyImage::.ImageToLineSegment copies the pixel values along a given line segment

(arbitrarily oriented and wholly contained within the image) to a vector. The vector length is
adjusted automatically. This function supports flexible mask.

n A path is a series of pixel coordinates stored in a vector.
EasyImage::.ImageToPath copies the corresponding pixel values to the vector. This
function supports flexible mask.

n A contour is a closed or not (connected) path, forming the boundary of an object.
EasyImage::.Contour follows the contour of an object, and stores its constituent pixels
values inside a profile vector.

Profile Analysis

The profile can be processed to find peaks or transitions:
n A transition corresponds to an object edge (black to white or white to black). It can be

detected by taking the first derivative of the signal (which transforms transitions (edges) into
peaks) and looking for peaks in it.
EasyImage::.ProfileDerivative computes the first derivative of a profile extracted from
a gray-level image.
The EBW8 data type only handles unsigned values, so the derivative is shifted up by 128.
Values under [above] 128 correspond to negative [positive] derivative (decreasing [increasing]
slope).

Open eVision User Guide PART I Global Features

45

n A peak is the portion of the signal that is above [or below] a given threshold - the maximum or
minimum of the signal. This may correspond to the crossing of a white or black line or thin
feature. It is defined by its:
n Amplitude: difference between the threshold value and the max [or min] signal value.
n Area: surface between the signal curve and the horizontal line at the given threshold.

EasyImage::.GetProfilePeaks detects max and min peaks in a gray-level profile. To
eliminate false peaks due to noise, two selection criteria are used. The result is stored in a
peaks vector.

Profile Insertion Into an Image

EasyImage::.LineSegmentToImage copies the pixel values from a vector or constant to the
pixels of a given line segment (arbitrarily oriented and wholly contained within the image).

EasyImage::.PathToImage copies the pixel values from a vector or a constant to the pixels of
a given path.

Open eVision User Guide PART I Global Features

46

3. Multicore Processing

Multicore processing support in Open eVision

Since release 2.7, Open eVision supports the multicore processing and some algorithms are
optimized to take advantage of modern multicore CPUs.

● By default, parallel processing is disabled.

● To enable parallel processing:

□ Use Easy::SetMaxNumberOfProcessingThreads() with a value greater than 1.

□ Set the number of threads up to the number of physical CPU cores available in your
system (without including hyper-threading).

□ Of course, you can use less threads than the maximum possible to preserve some of your
CPU power for other processes.

Multiprocessor-enabled features

Currently, only some features of Open eVision are multiprocessor-enabled.

These methods as well as the speed improvements that you can expect are:

Library Method Improvement

EasyMatrixCode2 Read (without grading) 50% per additional processor

EasyMatrixCode2 Read (with grading) 15% per additional processor

EasyImage Threshold on ERegion 75% per additional processor

EasyImage Statistics on ERegion 75% per additional processor

Open eVision User Guide PART I Global Features

47

4. EGrabberBridge - Using Images
from Coaxlink

See also:code snippets: EGrabberBridge

EGrabberBridge and EGrabber

EGrabberBridge is a user-friendly namespace of conversion classes. These classes perform the
direct conversion from a buffer originating from EGrabber, the API of Euresys Coaxlink frame
grabbers, to an Open eVision data container.

See EGrabber documentation for more information about the EGrabber library.

Prerequisites and libraries

● Prerequisites:

□ Coaxlink 11.0.3 (or newer)

□ Open eVision 2.9 (or newer)

● To use EGrabberBridge in C++, include the main EGrabber headers before the Open eVision
header.

#include "EGrabber.h"
#include "FormatConverter.h"
#include "Open_eVision_X_Y.h"

● To use EGrabberBridge in C#, reference the Coaxlink_NetApi.dll in addition to the Open
eVision .NET assembly.

Data containers

● EGrabberBridge is part of the main Open eVision header.

● The FormatConverter header is required only if you need to perform pixel format
conversion (see code snippets).

● Each EGrabberBridge class derives from a specific Open eVision data container.

The following classes are implemented:

Open eVision User Guide PART I Global Features

https://documentation.euresys.com/Products/COAXLINK/COAXLINK/en-us/Content/Using_EGrabber.htm

48

Base class EGrabberBridge class Corresponding GenAPI
pixel format

DepthMap16 EGrabberBridge::EGrabberDepthMap16 Coord3D_C16

DepthMap8 EGrabberBridge::EGrabberDepthMap8 Coord3D_C8

EImageBW16 EGrabberBridge::EGrabberImageBW16 Mono16

EImageBW8 EGrabberBridge::EGrabberImageBW8 Mono8

EImageC24 EGrabberBridge::EGrabberImageC24 BGR8

● These classes have 2 constructors:

□ 1 that requires only an EGrabber buffer descriptor (see EGrabber reference).

□ 1 that requires an EGrabber buffer descriptor and an additional FormatConverter
parameter used to perform the conversion from the pixel format of the buffer to the pixel
format of your EGrabberBridge class, if these are different (see Using EGrabberBridge with
Format Conversion code snippet).

● Scope and copy of the buffer:

□ Open eVision does not perform any copy of the buffer unless you require a pixel format
conversion.

□ The availability of the EGrabberBridge data container buffer depends on the EGrabber
buffer object or on the FormatConverter object if a copy is performed.

Examples and code snippets

● A sample (Using EGrabberBridge) illustrates the use of the EGrabberBridge classes using
callbacks. The sample is available in C++ and in C# and is present in its corresponding
samples solution under the EGrabberBridge name.

● A code snippet (Using EGrabberBridge with Format Conversion) is available to show how to
use EGrabberBridge to perform the inversion of an image acquired using EGrabber.

● Camera and GenICam parameters can be handled through the EGrabber Object setters and
getters (see EGrabber documentation).

● You can also test out parameters using the GenICam application (see GenICam
documentation).

Open eVision User Guide PART I Global Features

https://documentation.euresys.com/Products/COAXLINK/COAXLINK/en-us/Content/04_Using_EGrabber/programmers-guide/configuring-the-grabber.htm
https://documentation.euresys.com/Products/COAXLINK/COAXLINK/en-us/Content/Using_EGrabber.htm
https://documentation.euresys.com/Products/COAXLINK/COAXLINK/en-us/Content/03_Using_Coaxlink/genicam-features.htm
https://documentation.euresys.com/Products/COAXLINK/COAXLINK/en-us/Content/03_Using_Coaxlink/genicam-features.htm

49

Open eVision User Guide

PART II
IMAGE PRE-PROCESSING LIBRARIES

50

1. EasyImage - Pre-Processing
Grayscale Image

EasyImage operations prepare images so that further processing gets better results by:
n isolating defects using thresholding or intensity transformations
n compensating perspective effects (for non-flat surfaces such as a bottle label)
n processing complex or disconnected shapes using flexible masks

The main functions are:
n Intensity Transformations change the gray-level of each pixel to clarify objects (histogram

stretching).
n Thresholding transforms a binary image into a bi- or tri-level grayscale image by classifying

the pixel values.
n Arithmetic and logic functions manipulate pixels in two images, or one image and a constant.
n Non-Linear Filtering functions use non-linear combinations of neighboring pixels (using a

kernel) to highlight a shape, or to remove noise.
n Geometric transforms move selected pixels to realign, resize, rotate and warp.
n Noise Reduction and Estimation functions ensure that noise is not unacceptably enhanced by

other operations (thresholding, high-pass filtering).
n Gradient Scalar generates a gradient direction or gradient magnitude map from a gray-level

image.
n Vector operations extract 1-dimensional data from an image into a vector, for example to

detect scratches or outlines, or to clarify images.
n Harris corner detector returns a vector of points of interest in a BW8 image.
n Canny edge detector returns a BW8 image of the edges found in a BW8 image.
n Overlay overlays an image on top of a color image.
n Operations on Interlaced Video Frames eliminate interlaced image artifacts by rebuilding or

re-aligning fields.
n Flexible Masks help process irregular shapes in EasyImage.

1.1. Intensity Transformation
These EasyImage functions change the gray-levels of pixels to increase contrast.

Gain offset

Gain Offset changes each pixel to [old gray value * Gain coefficient + Offset].

Open eVision User Guide PART II Image Pre-Processing Libraries

51

n gain adjusts contrast. It should remain close to 1.
n offset adjusts intensity (brightness). It can be positive or negative.
n The resulting values are always saturated to range [0..255].

In this example, the resulting image has better contrast and is brighter than the source image.

Source and result images (with gain = 1.2 and offset = +12)

Color images have three separate gain and offset values, one per color component (red, green,
blue).

Example of gain/offset applied on a color image

Normalization

Normalize makes images of the same scene comparable, even with different lighting.

It compares the average gray level (brightness) and standard deviation (contrast) of the source
image and a reference image. Then, it normalizes the source image with gain and offset
coefficients such that the output image has the same brightness and contrast as the reference
image. This operation assumes that the camera response is reasonably linear and the image does
not saturate.

Open eVision User Guide PART II Image Pre-Processing Libraries

52

The reference image (from which the average and standard deviation are computed),
the source image (too bright),

and the normalized image (contrast and brightness are the same as the reference image)

Uniformization

Uniformize compensates for non-uniform illumination and/or camera sensitivity based on one
or two reference images. The reference image should not contain saturated pixel values and have
minimum noise.
n When one reference image is used, the transformation is similar to an adaptive (space-variant)

gain; each pixel in the reference image encodes the gain for the corresponding pixel in the
source image.

n When two reference images are used, the transformation is similar to an adaptive gain and
offset; each pixel in the reference images encodes either the gain or the offset for the
corresponding pixel in the source image.

Example of an image uniformized with two reference images

Open eVision User Guide PART II Image Pre-Processing Libraries

53

Lookup tables

Lut uses a lookup table of new pixel values to replace the current ones - efficient for BW8 and
BW16 images. If the transform function never changes, it is best to use a lookup table.

Example of a transform

1.2. Thresholding

Thresholding transforms an image by classifying the pixel values using these methods:
n "Automatic thresholding" on the next page (BW8 and BW16 images only)
n "AutoThreshold" on page 55 (BW8 and BW16 images only)
n "Manual thresholding" on the next page using one or two threshold values
n "Histogram based" on the next page (computed before using the thresholding function)

These functions also return the average gray levels of each pixel below and above the threshold.

Keys to successful thresholding

n Object and background areas should be of uniform color and illumination. Image
uniformization may be required prior to thresholding.

n The gray level range of the object and background must be sufficiently different (all
background pixels should be darker than the darkest object pixel).

Open eVision User Guide PART II Image Pre-Processing Libraries

54

n You must decide if the threshold value should be:
o constant: absolute threshold
o adapted to ambient light intensity: relative or automatic threshold

Automatic thresholding

The threshold is calculated automatically if you use one of these arguments with the
EasyImage::.Threshold function.

Min Residue: Minimizes the quadratic difference between the source and resulting image (default
if Threshold function is invoked without a argument).

Max Entropy: Maximizes the entropy (i.e. the amount of information) between object and
background of the resulting image.

Isodata: Calculates a threshold value that is an average of the gray levels: halfway between the
average gray level of pixels below the threshold, and the average gray level of pixels above the
threshold.

Manual thresholding

Manual thresholds require that the user supplies one or two threshold values:
n one value to the Threshold function to classify source image pixels (BW8/BW16/C24) into

two classes and create a bi-level image. This can be:
o relativeThreshold is the percentage of pixels below the threshold. The Threshold

function then computes the appropriate threshold value, or
o absoluteThreshold. This value must be within the range of pixel values in the source

image.
n two values to the DoubleThreshold function to classify source image pixels (BW8/BW16)

into three classes and create a tri-level image.
o LowThreshold is the lower limit of the threshold
o HighThreshold is the upper limit of the threshold

Histogram based

When a histogram of the source image is available, you can speed up the automatic thresholding
operation by computing the threshold value from the histogram (using HistogramThreshold or
HistogramThresholdBW16) and using that value in a manual thresholding operation.

These functions also return the average gray levels of each pixel below and above the threshold.

Open eVision User Guide PART II Image Pre-Processing Libraries

55

AutoThreshold

When no source image histogram is available, AutoThreshold can still calculate a threshold
value using these threshold modes: EThresholdMode_Relative, _MinResidue, _MaxEntropy and _
Isodata.

This function supports flexible masks.

1.3. Arithmetic and Logic
Reasons you may use arithmetic and logic are:
n to emphasize differences between images by subtracting the pixels (a conformity check).
n to compensate for non-uniform lighting by dividing the target image by the image of the

background alone.
n to remove unwanted areas of an image by preparing an appropriate mask, and clearing all

the pixels that belong to the mask by using logical combinations of pixels.
n to create a combined image by combining the pixels of two source images to generate a

resulting image.

Arithmetic operations are handled by the Oper function, EArithmeticLogicOperation enum
lists all supported operators.

These operations can be applied to images and constants, they have one or two source
arguments (image or integer constants) and one destination argument. If the source operands are
a color and a gray-level image, each color component combines with the gray-level component
to give a color image. Histogram equalization can improve your results.

arithmetic and logic combinations

Allowed combinations

General Copy Invert Shift Logical Overlay Set

Const BW8 -> Image BW8 x

Const C24 -> Image C24 x

Image BW8 -> Image BW8 x x

Image BW8 -> Image C24 x x x

Image C24 -> Image C24 x x

Const BW8, Image BW8 -> Image
BW8

x

Image BW8, Const BW8 -> Image
BW8

x x x

Image BW8, Image BW8 -> Image
BW8

x x x

Open eVision User Guide PART II Image Pre-Processing Libraries

56

General Copy Invert Shift Logical Overlay Set

Image BW8, Image BW8 -> Image
C24

x x

Const C24, Image C24 -> Image
C24

x

Image C24, Const C24 -> Image
C24

x x

Image C24, Image C24 -> Image
C24

x x

Image C24, Image BW8 -> Image
C24

x x x

Image BW8, Image C24 -> Image
C24

x x x

NOTE
Note: For logical operators, a pixel with value 0 is assumed FALSE, otherwise
TRUE. The result of a logical operation is 0 when FALSE and 255 otherwise.

The classification of operations in the above table are:

General

n Compare (abs. value of the difference)
n Saturated sum
n Saturated difference
n Saturated product
n Saturated quotient
n Modulo
n Overflow-free sum
n Overflow-free difference
n Overflow-free product
n Overflow-free quotient
n Bitwise AND
n Bitwise OR
n Bitwise XOR
n Minimum
n Maximum
n Equal
n Not equal
n Greater or equal
n Lesser or equal

Open eVision User Guide PART II Image Pre-Processing Libraries

57

n Greater
n Lesser

Copy

n Sheer Copy

Invert

n Invert (negative)

Shift

n Left Shift
n Right Shift

Logical

n Logical AND
n Logical OR
n Logical XOR

Overlay

n Add an overlay

Set

Operators Copy if mask = 0 and Copy if mask <> 0 are very handy to perform masking: the first
image argument serves as a mask that allows or disallows changing the pixel values in the
destination image.
n Copy if mask = 0
n Copy if mask <> 0

1.4. Non-Linear Filtering
These functions use non-linear combinations of neighboring pixels to highlight a shape, or to
remove noise.

Most can be destructive (except top-hat and median filters) i.e. the source image is overwritten
by the destination image. Destructive operations are faster.

All have a gray image and a bilevel equivalent, for example ErodeBox and BiLevelErodeBox.
1. They define the required shape by a "Kernel" on the next page (usually in a 3x3 matrix).
2. They slide this Kernel over the image to determine the value of the destination pixel when

a match is found:

Open eVision User Guide PART II Image Pre-Processing Libraries

58

n Erosion, Dilation: shrinks / grows image regions.
n Opening, Closing: removes / fills image region boundary pixels.
n Thinning, Thickening: erodes / dilates using image pattern matching.
n Top-Hat filters: retains all the tiny image details while removing everything else.
n Morphological distance: indicates how many erosions are required to make a pixel

black.
n Morphological gradient: indicates the outer and inner edges of the erosion and dilation

processes.
n Median filter: removes impulsive noise.
n Hit-and-Miss transform: detects patterns of foreground /background pixels, can create

skeletons.

Kernel

Rectangular kernel of half width = 3 and half height = 2 (left) Circular kernel of half width =
2 (right)

The morphological operators combine the pixel values in a neighborhood of given shape (square,
rectangular or circular) and replace the central pixel of the neighborhood by the result.The
combining function is non-linear, and in most cases is a rank filter: which considers the N values
in the given neighborhood, sorts them increasingly and selects the K-th largest.
Three special cases are most often used erosion, dilation andmedian filter where : K can be 1
(minimum of the set), N (maximum) or N/2 (median).

Erosion, Dilation, Opening, Closing, Top-Hat and Morphological Gradient operations all use
rectangular or circular kernels of odd size. Kernel size has an important impact on the result.

examples

HalfWidth/HalfHeight Actual width/height

0 1

1 3

2 5

3 7

Open eVision User Guide PART II Image Pre-Processing Libraries

59

Erosion, Dilation

Erosion reduces white objects and enlarges black objects, Dilation does the opposite.

Erosion Dilation

Erosion thins white objects by removing a layer of pixels along the objects edges: ErodeBox,
ErodeDisk. As the kernel size increases, white objects disappear and black ones get fatter.

Dilation thickens white objects by adding a layer of pixels along the objects edges: DilateBox,
DilateDisk. As the kernel size increases, white objects get fatter and black ones disappear.

Opening, Closing

Opening removes tiny white objects / dust. Closing removes tiny black holes / dust.

Opening Closing

An Opening is an erosion followed by a dilation using OpenBox, OpenDisk.
The global effect is to preserve the overall shape of objects, while removing white details that are
smaller than the kernel size.

A Closing is a dilation followed by an erosion using CloseBox, CloseDisk.
The global effect is to preserve the overall shape of objects, while removing the black details that
are smaller than the kernel size.

Thinning, Thickening

These functions use a 3x3 kernel to grow (Thick) or remove (Thin) pixels:
n Thinning: can help edge detectors by reducing lines to single pixel thickness.
n Thickening: can help determine approximate shape, or skeleton.

When a match is found between the kernel coefficients and the neighborhood of a pixel, the
pixel value is set to 255 if thickening, or 0 if thinning. The kernel coefficients are:
n 0: matching black pixel, value 0
n 1: matching non black pixel, value > 0
n -1: don't care

Open eVision User Guide PART II Image Pre-Processing Libraries

60

Top-Hat filters

Top-hat filters are excellent for improving non-uniform illumination.

White top-hat filter: source and destination images

They take the difference between an image and its opening (or closure). Thus, they keep the
features that an opening (or closing) would erase. The result is a perfectly flat background where
only black or white features smaller than the kernel size appear.
n White top-hat filter enhances thin white features: WhiteTopHatBox ,WhiteTopHatDisk.
n Black top-hat filter enhances thin black features:BlackTopHatBoxBlackTopHatDisk.

Morphological distance

Distance computes the morphological distance (number of erosion passes to set a pixel to
black) of a binary image (0 for black, non 0 for white) and creates a destination image, where
each pixel contains the morphological distance of the corresponding pixel in the source image.

Morphological gradient

The morphological gradient performs edge detection - it removes everything in the image but the
edges.

The morphological gradient is the difference between the dilation and the erosion of the image,
using the same structuring element.

MorphoGradientBox, MorphoGradientDisk.

Dilation – Erosion = Gradient

Median

The Median filter removes impulse noise, whilst preserving edges and image sharpness.
It replaces every pixel by the median (central value) of its neighbors in a 3x3 square kernel, thus,
outer pixels are discarded.

Open eVision User Guide PART II Image Pre-Processing Libraries

61

Median filter: source and destination images

Open eVision User Guide PART II Image Pre-Processing Libraries

62

Hit-and-Miss transform

Hit-and-miss transform operates on BW8, BW16 or C24 images or ROIs to detect a particular
pattern of foreground and background pixels in an image.

Hit-and-miss transform

The HitAndMiss function has three arguments:

n A pointer to the source image of type EROIBW8, EROIBW16, or EROIC24
n A pointer to the destination image of type corresponding to the type of the source image.

The sizes of the source and destination images must be identical.
n A kernel of type EHitAndMissKernel Two constructors are available for the kernel object:

o EHitAndMissKernel(int startX, int startY, int endX, int endY) where:
startX, startY are coordinates of the top left of the kernel, must be less than or equal to
zero.
endX, endY are coordinates of the bottom right of the kernel, must be greater than or equal
to zero.
The constructed kernel has no explicit restrictions on its size, and the following
characteristics:
kernel width = (endX – startX + 1), kernel height = (endY – startY + 1)

o EHitAndMissKernel(unsigned int halfSizeX, unsigned int halfSizeY) where:
halfSizeX is half of the kernel width – 1, must be greater than zero.
halfSizeY is half of the kernel height – 1, must be greater than zero.
The constructed kernel has the following characteristics:
kernel width = ((2 x halfSizeX) + 1), kernel height = ((2 x halfSizeY) +

1)

kernel StartX = - halfSizeX, kernel StartY = - halfSizeY

example: detecting corners in a binary image.

The hit-and-miss transform can be used to locate corners.

Open eVision User Guide PART II Image Pre-Processing Libraries

63

Binary source image

1. Define the kernel by detecting the left corner. The left corner pixel has black pixels on its
immediate left, top and bottom; and it has white pixels on its right. The following hit-and-miss
kernel will detect the left corner:

- +
- + +
- +

2. Apply the filter on the source image. Note that the resulting image should be properly sized.

Resulting image, highlighted pixel is located on left corner of rhombus

3. Locate the three remaining corners in the same way: Declare three kernels that are the rotation
of the filter above and apply them.

4. Detect the right, top and bottom corners.

1.5. Geometric Transforms
Geometric transformation moves selected pixels in an image, which is useful if a shape in an
image is too large / small / distorted, to make point-to-point comparisons possible.

Open eVision User Guide PART II Image Pre-Processing Libraries

64

The selected area may be any shape, but the resulting image is always rectangular. Pixels in the
destination image that have corresponding pixels that are outside of the selected area are
considered not relevant and are left black.

When the source coordinates for a destination pixel are not integer, an interpolation technique is
required.
The nearest neighborhood method is the quickest - it uses the closest source pixel.
The bi-linear interpolation method is more accurate but slower - it uses a weighted average of
the four neighboring source pixels.

Possible geometric transformations are:

ReAlignment

The simplest way to realign two misaligned images is to accurately locate features in both
images (landmarks or pivots, using pattern matching, point measurement or other) and realign
one of the images so that these features are superimposed.

You can register an image by realigning one, two or three pivot points to reference positions. For
best accuracy, the pivot points should be as far apart as possible.
n A single pivot point transform is a simple translation. If interpolation bits are used, sub-pixel

translation is achieved.
n Two pivot points use a combination of translation, rotation and optionally scaling. If scaling

is not allowed, the second pivot point may not be matched exactly. Scaling should not
normally be used unless it corresponds to a change of lens magnification or viewing distance.

n Three pivot points use a combination of translation, rotation, shear correction and optionally
scaling. A shear effect can arise when acquiring images with a misaligned line-scan camera.

Mirroring

This destructive feature modifies the source image to create a mirror image:
n horizontally (the columns are swapped) or
n vertically (the rows are swapped).

Translation, Scaling and Rotation

If the position or size of an object of interest changes, you can measure the change in position or
size and generate a corrected image using the ScaleRotate and Shrink functions.

EasyImage::.ScaleRotate performs:
n Image translation: you provide the position coordinates of a pivot-point in the source image

and a corresponding pivot point in the destination image.
n Image scaling: you provide scaling factor values for X- and Y-axis.
n Image rotation: you provide a rotation angle value.

For resampling, the nearest neighbor rule or bilinear interpolation with 4 or 8 bits of accuracy is
used. The size of the destination image is arbitrary.

Open eVision User Guide PART II Image Pre-Processing Libraries

65

Scale and rotate example

Shrink

EasyImage::.Shrink: resizes an image to be smaller, applying pre-filtering to avoid aliasing.

LUT-based unwarping

If the feature of interest is distorted due to its shape (anamorphosized), you can unwarp a
circular ring-wedge shape (such as text on CD labels)into a straight rectangle. A ring-wedge is
delimited by two concentric circles and two straight lines passing through the center.

EasyImage::.SetCircleWarp prepares warp images for use with function EasyImage::.Warp
which moves each pixel to locations specified in the "warp" images which are used as lookup
tables.

1.6. Noise Reduction and Estimation
Noise can degrade the visual quality of images, and certain processing operations (thresholding,
high-pass filtering) will enhance noise in a non-acceptable way. Acquired images are always
noisy (this is best observed on live images where the pixel values fluctuate around the true
intensity). When acquired with 8 bits of accuracy, the noise level typically amounts to about 3 to
5 gray-level values. One distinguishes several forms of noise:
n additive: noise amplitude is not related to image contents
n multiplicative: noise amplitude is proportional to local intensity
n uniform: noise amplitude follows a smooth distribution centered around zero
n impulse: noise amplitude is infinite.

Impulse noise produces a "salt and pepper" effect, while uniform noise blends.

Spatial noise reduction (if you only have 1 image):

Reduces uniform and impulse noise but blurs edges.
Cannot distinguish noise from actual signal changes, so always spoils part of the signal.
Uses the correlation between neighboring pixel values to perform convolution or median

Open eVision User Guide PART II Image Pre-Processing Libraries

66

filtering:
n Convolution replaces the value at each pixel by a combination of its neighbors, leading to a

localized averaging. Linear filtering is recommended to reduce uniform noise. Beware that it
tends to blur edges.

Uniform noise reduction by low-pass filtering

n Median filtering replaces each pixel by the median value in the pixel neighborhood (5-th
largest value in a 3x3 neighborhood). This reduces impulse noise and keeps sharpness.

Impulse noise reduction by median filtering

o EasyImage::.Median

o EasyImage::.BiLevelMedian

Temporal noise reduction (for several images, e.g. moving objects):

Temporal noise reduction is achieved by combining the successive values of individual pixels
across time. EasyImage implements recursive averaging and moving averaging.

EasyImage provides three ways to minimize noise by means of several images:
n Temporal average: just accumulates N images and average them; using standard arithmetic

operations, as illustrated below. Creates de-noised image after N acquisitions using average
values. Noise varies from frame to frame while the signal remains unchanged, so if several
images of the same (still) scene are available, noise can be separated from the signal.
The disadvantage of producing one de-noised image after N acquisitions only, is that fast
display refresh is not possible.

Simple average

Open eVision User Guide PART II Image Pre-Processing Libraries

67

n Temporal moving average: accumulates the last N images and updates the de-noised image
each time a new one is acquired, in such a way that the computation time does not depend
on N. The whole process is handled by EMovingAverage. The disadvantage of this method is
that it combines noisy images together.

Moving average

n Temporal recursive average: combines a noisy image with the previously de-noised image
using EasyImage::.RecursiveAverage.

Recursive average

Recursive averaging

This is a well known process for noise reduction by temporal integration. The principle is to
continuously update a noise-free image by blending it, using a linear combination, with the raw,
noisy, live image stream. Algorithmically, this amounts to the following:

DSTN=a*Sr c+(1-a)*DstN-1

where a is a mixture coefficient. The value of this coefficient can be adjusted so that a prescribed
noise reduction ratio is achieved.

This procedure is effective when applied to still images, but generates a trailing effect on moving
objects. The larger the noise reduction ratio, the heavier the trailing effect is. To work around
this, a non-linearity can be introduced in the blending process: small gray-level value variations
between successive images are usually noise, while large variations correspond to changes in the
image.

EasyImage::.RecursiveAverage uses this observation and applies stronger noise reduction
to small variations and conversely. This reduces noise in still areas and trailing in moving areas.

For optimal performance, the non-linearity must be pre-computed once for all using function
EasyImage::.SetRecursiveAverageLUT.

Note: Before the first call to the EasyImage::.RecursiveAveragemethod, the 16-bit work
image must be cleared (all pixel values set to zero).

Noise estimation (of image compared to reference image):

To estimate the amount of noise, two or more successive images are required. In the simplest

Open eVision User Guide PART II Image Pre-Processing Libraries

68

mode, two noisy images are compared. (Other modes are available: if a noise-free image is
available, it is compared to a noisy one; a noise-free image can also be built by temporal
averaging.) Calculates the root-mean-square amplitude and signal-to-noise ratio.
n EasyImage::.RmsNoise computes the root-mean-square amplitude of noise, by comparing

a given image to a reference image. This function supports flexible mask and an input mask
argument. BW8, BW16 and C24 source images are supported.
The reference image can be noiseless (obtained by suppressing the source of noise), or
affected by a noise of the same distribution as the given image.

n EasyImage::.SignalNoiseRatio computes the signal to noise ratio, in dB, by comparing a
given image to a reference image. This function supports flexible mask and an input mask
argument. BW8, BW16 and C24 source images are supported.
The reference image can be noiseless (obtained by suppressing the source of noise) or be
affected by a noise of the same distribution as the given image.

Signal amplitude is the sum of the squared pixel gray-level values.

Noise amplitude is the sum of the squared difference between the pixel gray-level values of the
given image and the reference.

1.7. Scalar Gradient
EasyImage::.GradientScalar computes the (scalar) gradient image derived from a given
source image.

The scalar value derived from the gradient depends on the preset lookup-table image.

The gradient of a grayscale image corresponds to a vector, the components of which are the
partial derivatives of the gray-level signal in the horizontal and vertical direction. A vector can be
characterized by a direction and a length, corresponding to the gradient orientation, and the
gradient magnitude.

This function generates a gradient direction or gradient magnitude map (gray-level image) from a
given gray-level image.
For efficiency, a pre-computed lookup-table is used to define the desired transformation.
This lookup-table is stored as a standard EImageBW8/EImageBW16.
Use EasyImage::.ArgumentImage or EasyImage::.ModulusImage once before calling
GradientScalar.

1.8. Vector Operations
Extracting 1-dimensional data from an image generates linear sets of data that are handled as
vectors. Subsequent operations are fast because of the reduced amount of data. The methods are
either:

Open eVision User Guide PART II Image Pre-Processing Libraries

69

Projection

Projects the sum or average of all gray color-level values in a given direction, into various vector
types (levels are added when projecting into an EBW32Vector and averaged when projecting
into an EBW8Vector, EBW16Vector or EC24Vector). These functions support flexible mask.
n EasyImage::.ProjectOnAColumn projects an image horizontally onto a column.
n EasyImage::.ProjectOnARow projects an image vertically onto a row.

Profile

Samples a series of pixel values along a given segment, path or contour, then analyze and modify
their Peaks and Transitions to make images clearer:
1. Obtain the profile of a line segment /path /contour.

EasyImage::.ImageToLineSegment copies the pixel values along a given line segment
(arbitrarily oriented) to a vector. The line segment must be entirely contained within the
image. The vector length is adjusted automatically. This function supports flexible mask.
EasyImage::.ImageToPath copies the corresponding pixel values to the vector. The
function supports flexible mask. A path is a series of pixel coordinates stored in a vector.
EasyImage::.Contour follows the contour of an object, and stores its constituent pixels
values inside a profile vector. A contour is a closed or not (connected) path, forming the
boundary of an object.

Open eVision User Guide PART II Image Pre-Processing Libraries

70

2. Analyse the profile to find peaks or transitions.

EasyImage::.GetProfilePeaks detects max and min peaks in a gray-level profile. To
eliminate false peaks due to noise, two selection criteria are used. The result is stored in a
peaks vector.
A peak is a maximum or minimum of the signal which may correspond to the crossing of a
white or black line or thin feature. It is defined by its:
n Amplitude: difference between the threshold value and the max [or min] signal value.
n Area: surface between the signal curve and the horizontal line at the given threshold.
A transition corresponds to an object edge (black to white, or white to black). It can be
detected by taking the first derivative of the signal and looking for peaks in it.
EasyImage::.ProfileDerivative computes the first derivative of a profile extracted from
a gray-level image. This derivative transforms transitions (edges) into peaks.
EBW8 data type only handles unsigned values, so the derivative is shifted up by 128. Values
under 128 correspond to negative derivative (decreasing slope), values above 128 correspond
to positive derivative (increasing slope).

3. Insert the profile into an image.

EasyImage::.LineSegmentToImage copies the pixel values from a vector or a constant to
the pixels of a given line segment (arbitrarily oriented). The line segment must be wholly
contained within the image.

EasyImage::.PathToImage copies pixel values from a vector or a constant to the pixels of
a given path.

1.9. Canny Edge Detector
The Canny edge detector facilitates:
n Good detection: finds all edges
n Good localization: the found edges are as close as possible to the "real" edges in the image
n Minimal response: one edge response is accepted for each position, i.e. avoiding multiple

close or intersecting edge responses

Source image and the result after a Canny edge detection

Open eVision User Guide PART II Image Pre-Processing Libraries

71

The EasyImage Canny edge detector operates on a grayscale BW8 image and delivers a black-and-
white BW8 image where pixels have only 2 possible values: 0 and 255. Pixels corresponding to
edges in the source image are set to 255; all others are set to 0. It can adjust the scale analysis, it
doesn't allow sub-pixel interpolation and it delivers a binary image after thresholding.

Canny edge detector example

The Canny edge detector requires only two parameters:
n Characteristic scale of the features of interest: the standard deviation of the Gaussian filter

used to smooth the source image.
n Gradient threshold with hysteresis: maximum magnitude of the gradient of the source image

expressed as a fraction ranging from 0 to 1 (two values).

The API of the Canny edge detector is a single class, ECannyEdgeDetector, with the following
methods:
n Apply: applies the Canny edge detector on an image/ROI.
n GetHighThreshold: returns the high hysteresis threshold for a pixel to be considered as an

edge.
n GetLowThreshold: returns the low hysteresis threshold for a pixel to be considered as an

edge.
n GetSmoothingScale: returns the scale of the features of interest.
n GetThresholdingMode: returns the mode of the hysteresis thresholding.
n ResetSmoothingScale: prevents the smoothing of the source image by a Gaussian filter.
n SetHighThreshold: sets the high hysteresis threshold for a pixel to be considered as an

edge.
n SetLowThreshold: sets the low hysteresis threshold for a pixel to be considered as an edge.
n SetSmoothingScale: sets the scale of the features of interest.
n SetThresholdingMode: sets the mode of the hysteresis thresholding.

The result image must have the same dimensions as the input image.

1.10. Harris Corner Detector
The Harris corner detector is invariant to rotation, illumination variation and image noise. It
operates on a grayscale BW8 image and delivers a vector of points of interest.

Open eVision User Guide PART II Image Pre-Processing Libraries

72

Harris corner detector example

The EasyImage Harris corner detector requires three parameters:
n The integration scale σi: the standard deviation of the Gaussian Filter used for scale analysis.

σd = 0,7 x σi, where σd is the differentiation scale: the standard deviation of the Gaussian
Filter used for noise reduction during computation of the gradient.

n A corner threshold: a fraction ranging from 0 to 1 of the maximum value of the cornerness of
the source image.

n A Boolean that toggles sub-pixel detection.

The following characteristics are available for every point of interest:

n Corner position (pixel coordinates with sub-pixel accuracy if enabled).
n Cornerness measurement.
n Gradient magnitude with regards to the differentiation scale σd.
n Gradient value along the X-axis with regards to the differentiation scale σd.
n Gradient value along the Y-axis with regards to the differentiation scale σd

The API of the Harris corner detector is a single class named
EHarrisCornerDetector and these methods:

n Apply: applies the Harris corner detector on an image/ROI.
n EHarrisCornerDetector: constructs a EHarrisCornerDetector object initialized to its

default values.
n GetDerivationScale: returns the current derivation scale.
n GetScale: returns the integration scale.
n GetThreshold: returns the current threshold.
n GetThresholdingMode: returns the current thresholding mode for the cornerness measure.
n IsGradientNormalizationEnabled: returns whether the gradient is normalized before the

computation of the cornerness measure.
n IsSubpixelPrecisionEnabled: returns whether the sub-pixel interpolation is enabled.
n SetDerivationScale: sets the derivation scale.
n SetGradientNormalizationEnabled: sets whether the gradient is normalized before the

computation of the cornerness measure.
n SetScale: sets the integration scale.

Open eVision User Guide PART II Image Pre-Processing Libraries

73

n SetSubpixelPrecisionEnabled: sets whether the sub-pixel interpolation is enabled.
n SetThreshold: sets the threshold on the cornerness measure for a pixel to be considered as

a corner.
n SetThresholdingMode: sets the thresholding mode for the cornerness measure.

Basic usage of Harris Corner Detector

An object of the EHarrisCornerDetector class can be reused across Harris detector
applications, in order to reduce the setup time.
1. Create an instance of the detector and set the appropriate method, for instance, the

integration scale, SetScale, with the structures of interest that could have a spatial extent of
2 pixels.

2. Apply the detector with two arguments to the new image : the input image and the interest
points in the input image EHarrisInterestPoints.

3. Access the individual elements of the output vector.

1.11. Overlay
EasyImage::.Overlay overlays an image on the top of a color image, at a given position.

If a color image is provided as the source image, all the pixels of this image are copied to the
destination image, except the ones that equal the reference color. When a C24 image is used as
overlay source image, the color of the overlay in destination image is the same as the one in the
overlay source image, thus allowing multicolored overlays.

If a BW8 image is provided as the source image, all the overlay image pixels are copied to the
destination image, apart from those that are the reference color which are replaced by the source
images.

This function supports flexible mask and an input mask argument. C24, C15 and C16 source
images are supported.

1.12. Operations on Interlaced Video
Frames
When an image is interlaced, the two frames (even and odd lines) are not recorded at the same
time. If there is movement in the scene, a visible artifact can result (the edges of objects exhibit a
"comb" effect).

EasyImage::.RealignFrame cures this problem if the movement is uniform and horizontal
(objects on a conveyor belt), by shifting one of the frames horizontally. The amplitude of the shift
can be estimated automatically.

Open eVision User Guide PART II Image Pre-Processing Libraries

74

EasyImage::.GetFrame extracts the frame of given parity from an image while
EasyImage::.SetFrame replaces the frame of given parity in an image.

EasyImage::.MatchFrames determines the optimal shift amplitude by comparing two
successive lines of the image. These lines should be chosen such that they cross some edges or
non-uniform areas.

EasyImage::.RebuildFrame rebuilds one frame of the image by interpolation between the
lines of the other frame.

EasyImage::.SwapFrames: interchanges the even and odd rows of an image. This is helpful
when acquisition of an interlaced image has confused even and odd frames.

The same image should be used as source and destination because only the shifted rows are
copied. To use a different destination image, the source image must be copied first in the
destination image object.

The size of the destination image is determined as follows:

dstImage_Width = sr cImage_Width
dstImage_Height = (sr cImage_Height + 1 - odd) / 2

1.13. Flexible Masks in EasyImage

Source image (left) and mask variable (right)

Simple steps to use flexible masks in Easyimage

1. Call the functions from EasyImage that take an input mask as an argument. For instance,
one can evaluate the average value of the pixels in the white layer and after in the black layer.

2. Display the results.

Resulting image

Open eVision User Guide PART II Image Pre-Processing Libraries

75

EasyImage Functions that support flexible masks

n EImageEncoder::.Encode has a flexible mask argument for BW1, BW8, BW16, and C24
source images.

n AutoThreshold.
n Histogram (function HistogramThreshold has no overload with mask argument).
n RmsNoise, SignalNoiseRatio.
n Overlay (no overload with mask argument for BW8 source images).
n ProjectOnAColumn, ProjectOnARow (Vector projection).
n ImageToLineSegment, ImageToPath (Vector profile).

Open eVision User Guide PART II Image Pre-Processing Libraries

76

2. EasyColor - Pre-processing
Color Images

EasyColor makes color image processing as efficient as possible by detecting, classifying and
analyzing objects. Several conversion functions mean that any color system can be processed.

Color definition and supported systems

What Is Color?

The human eye is sensitive to light:
n Intensity, or achromatic sensation, captured by grayscale images.
n Wavelength, or chromatic sensation, described in red, green and blue primary colors.

True color digital images (24 bits per pixel; 8 bits per RGB channel) represent as many colors
as the eye can distinguish.

Visible color gamut in the XYZ color space

There are three color systems:
n Mixture systems (RGB/XYZ) give the proportions of the three primaries to be combined.
n YUV Luma/chroma systems (XYZ/YUV) separate the achromatic (Y) and chromatic sensations

(U & V). Used when a black and white image is required as well (television).
n Intensity/saturation/hue systems (RGB/XYZ/YUV) separate achromatic (black and white

Intensity) from enhanced chromatic (color Saturation and Hue) sensations. Used to eliminate
lighting effects, or to convert RGB images to another color system. More saturated colors are
more vivid, less saturated ones are grayer.

In general:

Open eVision User Guide PART II Image Pre-Processing Libraries

77

n RGB is used by monitors, cameras and other display devices.
n YUV is used for efficient transmission of color images by compressing the chrominance

information.
n XYZ is used for device-independent color representation.

All image processing operations can use quantized coordinates: discrete values in the [0..255]
interval, which use a byte representation to store images in a frame buffer.

Color system conversion operations can also use simpler unquantized coordinates: continuous
values, often normalized to the [0..1] interval.

Color Image Processing

A color image is a vector field with three components per pixel. All three RGB components
reflected by an object have amplitude proportional to the intensity of the light source. By
considering the ratio of two color components, one obtains an illumination-independent image.
With a clever combination of three pieces of information per pixel, one can extract better
features.

There are 3 ways to process a color image:
n Component extraction: you can extract the most relevant feature from the triple color

information, to reduce the amount of data. For instance, objects may be distinguished by
their hue, a pre-processing step could transform the image to a gray-level image containing
only hue values.

n De-coupled transformation: you can perform operations separately on each color
component. For instance, adding two images together adds the red, green and blue
components and stores the result, component by component, in a resulting color image.

n Coupled transformation: you can combine all three color components to produce three
derived components. For example, converting YIQ to RGB.

Supported color systems

Easycolor supports color systems RGB, XYZ, L*a*b*, L*u*v*, YUV, YIQ, LCH, ISH/LSH, VSH and
YSH.

RGB is the preferred internal representation as it is compatible with 24-bit Windows Bitmaps.

RGB-based XYZ-based YUV-based

Mixture RGB XYZ —

Luma/Chroma —
L*a*b*
L*u*v*

YUV
YIQ

Intensity/Saturation/Hue
ISH
LSH
VSH

LCH YSH

Transform using LUTs (LookUp Tables)

EasyColors Lookup tables provide an array of values that define what output corresponds to a
given input, so an image can be changed by a user-defined transformation.

Open eVision User Guide PART II Image Pre-Processing Libraries

78

A color pixel can take 16,777,216 (224) values, a full color LUT with these entries would occupy
50 MB of memory and transforms would be prohibitively time-consuming. Pre-computed LUTs
make color transforms feasible.

To transform a color image, you initialize a color LUT using one of the following functions:

"LUT for Gain/Offset (Color) " on page 81: EasyImage::.GainOffset,

"LUT for Color Calibration" on page 82: Calibrate,

"LUT for Color Balance" on page 82: WhiteBalance,

ConvertFromRGB, ConvertToRGB.

This color LUT is then used in a transform operation such as EasyColor::.Transform or you
can create a custom transform using EColorLookup which takes unquantized values
(continuous, normalized to [0..1] intervals), and specifies the source and destination color
systems. Some operations use the LUT on-the-fly thus avoid storing the transformed image, for
example to alter the U (of YUV) component while the image is in RGB format.

The optimum combination of accuracy and speed is determined by the choice of IndexBits
and Interpolation - the accuracy of the transformed values roughly corresponds to the
number of index bits.
n Fewer table entries mean smaller storage requirements, but less accuracy.
n No interpolation gives quicker running time, but less accuracy. Interpolation can recover

8 bits of accuracy per component. When the involved transform is linear (such as YUV to RGB),
interpolation always gives exact results, regardless of the number of table entries.

Index Bits Number of entries Table size (bytes)

4 2(3*4) = 4,096 14,739

5 2(3*5) = 32,768 107,811

6 2(3*6) = 262,144 823,875

Discrete Quantized vs. Continuous Unquantized

Color coordinates in the classical systems are normally continuous values, often normalized to
the [0..1] interval. Computations on such values, termed unquantized, are simpler.

However, storage of images in a frame buffer imposes a byte representation, corresponding to
discrete values, in the [0..255] interval. Such values are termed quantized.

All image processing operations apply to quantized values, but conversion operations can also be
specified using unquantized coordinates.

Open eVision User Guide PART II Image Pre-Processing Libraries

79

Bayer transform

Bayer pattern encoded image

A Bayer encoded image is not compatible with a true color image (EC24), but white balance and
gamma correction can be applied to it using EColorLookup parameter in
EasyColor::.BayerToC24.
A Bayer image is three times smaller, so processes much faster.

Easyobject can use the Bayer pattern to create a color image.

Transform YUV444 /YUV422

YUV images can be minimized without degrading visual quality using function Format444To422
to convert from 4:4:4 to 4:2:2 format (or you can convert Format 422 To 444).
n 4:4:4 uses 3 bytes of information per pixel.
n 4:2:2 uses 2 bytes of information per pixel.

It stores the even pixels of U and V chroma with the even and odd pixels of Y luma as
follows:

Y[even] U[even] Y[odd] V[even]

Merge, extract and color

A color image contains three color planes of continuous tone images.
A gray-level image can be a component of a color system.

Merge and extract components

EasyColor can change or extract one plane at a time, or all three together. See Compose,
Decompose, GetComponent, SetComponent.

These operations can use a color LUT to transform on the fly, they could build an RGB image
from lightness, saturation and hue planes.

Open eVision User Guide PART II Image Pre-Processing Libraries

80

NOTE
EasyColor functions perform the necessary interleaving / un-interleaving
operations to support Windows bitmap format of interleaved color planes
(blue, green and red pixels follow each other).

Pseudo-color to transform gray-level images to color

The trick is to define a regular gamut of 256 colors and each color will be assigned to pixels with
a corresponding gray-level value.
To define pseudo-color shades, you specify a trajectory in the color space of an arbitrary system.
You can then pseudo-color using the drawing functions color palette (see Image and Vector
Drawing) then save and/or transform it like any other color image.

Gray-level and pseudo-colored image

Separate color objects

This EasyColor process takes a set of distinct colors and associates each pixel with the closest
color, using a layer index that can then be used in EasyObject with the labeled image segmenter
to improve blob creation.

Raw image and segmented image (3 colors)

2.1. Bayer Transform
The Bayer pattern is a color image encoding format for capturing color information from a single
sensor.
A color filter with a specific layout is placed in front of the sensor so that some of the pixels
receive red light only, while others receive green or blue only.
An image encoded by the Bayer pattern has the same format as a gray-level image and conveys
three times less information. The true horizontal and vertical resolutions are smaller than those
of a true color image.

Open eVision User Guide PART II Image Pre-Processing Libraries

81

Bayer vs. true color format

Note: The Bayer pattern normally starts with a GB/RG block in the upper left corner. If the
image is cropped, this parity rule can be lost, but parity adjustment is unnecessary when
working on a Open eVision ROI.

The Bayer conversion method EasyColor::.BayerToC24 transforms an image captured using
the Bayer pattern and stored as a gray-level image, into a true color image. There are three ways
to reconstruct the missing pixels. The more complex the interpolation, the slower the
conversion. However, it is highly recommended to use interpolation.
n Non-interpolated mode: duplicates the nearest pixel to above and/or to the left of the

current pixel.
n Standard interpolated mode: averages relevant neighboring pixels.
n Improved interpolated mode (recommended): interpolates the unknown component

values. This mode reduces visible artifacts along object edges.

Converted images with no (top), standard (left) and improved interpolation method (right)

2.2. LUT for Gain/Offset (Color)
Separate gains and offsets can be applied to each of the three components of an image (contrast
enhancement transform). The RGB image must be transformed to the targeted color space, gains
and offsets applied, then transformed back to RGB.

Open eVision User Guide PART II Image Pre-Processing Libraries

82

n When applied to a mixture representation, all three gains and offset should vary in a similar
way.

n When applied to luma/chroma representations, the gain and offset of the chromatic
components should vary in a similar way.

n When applied to intensity/saturation/hue representation, it makes no sense to apply gain and
offset to the hue component.

Enhanced saturation / Uniform lightness

Note: The contrast enhancement function can be used to uniformize a given component: setting
the gain to 0 for some component has the same result as setting all pixels to the value of the
offset for this component.

2.3. LUT for Color Calibration
Color distortions introduced by the image acquisition chain can be corrected by comparing
sample colors from the image with their true values. A calibrated color chart, such as the IT8, is
required.
n Sample colors are the average color in a suitable ROI using PixelAverage.
n True color values are specified in the XYZ color system. Even though the reference colors are

described by their XYZ coordinates, the image to be calibrated must contain RGB information.

The calibration transform can be based on one, three or four reference colors. In the first case,
calibration is a gain adjustment for the three color components. In the second and third case, a
linear or affine transform is used.

2.4. LUT for Color Balance
A color image can be improved by changing gamma correction and white balance.

These effects can be corrected efficiently by setting up a lookup table using WhiteBalance and
applying it on a series of images by means of Transform.The LUT need only prepared once (it
implements a de-coupled color transformation).

Open eVision User Guide PART II Image Pre-Processing Libraries

83

Gamma Pre-Compensation

Many color cameras use a gamma pre-compensation process that deals with the non-linear
response of the display device (such as a TV monitor).

Gamma pre-compensation should be used after processing because using it before would change
the result because of the non-linearity introduced.

The pre-compensation process applies the inverse transform to the signal, so that the image
renders correctly on the display. Three pre-defined gamma values are available, depending on
the video standard at hand:

Video standard Gamma value EasyColor property

NTSC 1/2.2 CompensateNtscGamma

PAL 1/2.8 CompensatePalGamma

SMPTE 0.45 CompensateSmpteGamma

Note: Pre-compensation cancellation and pure pre-compensation correspond to exponents that
are inverse of each other.

Gamma Pre-Compensation Cancellation

Many color cameras have a built-in gamma pre-compensation feature that can be turned off. If
this feature cannot be turned off and is not desired, its effect can be canceled by applying the
direct gamma transform. The following pre-defined gamma values are available for this purpose:

Video standard Gamma value EasyColor property

NTSC 2.2 NtscGamma

PAL 2.8 PalGamma

SMPTE 1/0.45 SmpteGamma

White Balance

A camera may exhibit color imbalance, i.e. the three color channels having mismatched gains, or
the illuminant (the light sources) not being perfectly white. When this occurs, the white areas
appear as an unsaturated color. The white balance correction automatically adjusts three
independent gains so that the components of a white pixel become equal. This means that a
white balance calibration step is required, during which a white surface must be shown to the
camera and the corresponding color component are measured. PixelAverage can be used for
this purpose.

Open eVision User Guide PART II Image Pre-Processing Libraries

84

Raw image, and image with white balance and gamma pre-compensation

Open eVision User Guide PART II Image Pre-Processing Libraries

85

3. EasyImage - Computing Image
Statistics

EasyObject statistics are related to the objects in an image.

EasyImage statistics are related to whole images (global illumination / contrast, saturation,
presence or absence of an object).

Sliding window (creates new image of avg or std deviation of gray-level
values)

The average and standard deviation of gray-level values can be computed in a sliding window,
i.e., computed for every position of a rectangular window centered on every pixel. The window
size is arbitrary.

NOTE
The computing time of these functions does not depend on the window size.

The result of the operation is another image.

The local average, EasyImage::.LocalAverage, corresponds to a strong low-pass filtering.

Sliding window average

The local standard deviation, EasyImage::.LocalDeviation enhances the regions with a
high frequency contents, such as noisy or textured areas.

Open eVision User Guide PART II Image Pre-Processing Libraries

86

Sliding window standard deviation

Histogram computation and analysis(and LUT creation)

A histogram is a statistical summary of an image: it shows the number of occurrences of every
gray-level value in an image, and it's shape reveals characteristics of the image. For instance,
peaks in the histogram curve correspond to dominant colors in the image. If the histogram is bi-
modal, a large peak for the dark values corresponding to the background, and smaller peaks in
the light values.

Typical image histogram

Histogram Computation

EasyImage::.Histogram computes the histogram of an image. It has an input mask argument.
It supports flexible mask.
BW8, BW16 and BW32 source images are supported.

You can compute the cumulative histogram of an image, i.e. the count of pixels below a given
threshold value, by calling EasyImage::.CumulateHistogram after
EasyImage::.Histogram.

Histogram Analysis

EasyImage::.AnalyseHistogram and
EasyImage::.AnalyseHistogramBW16 provide statistics and thresholding values:
n Total number of pixels.
n Smallest and largest pixel value (gray-level range).

Open eVision User Guide PART II Image Pre-Processing Libraries

87

n Average and standard deviation of the pixel values.
n Value and frequency of the most frequent pixel.
n Value and frequency of the least frequent pixel.

Histogram equalization

EasyImage::.Equalize re-maps the gray levels so that the histogram fills in the whole
dynamic range as uniformly as possible.

This may be useful to maximize image contrast, or reveal a lot of image details in dark areas.

Equalized image and histogram

Setup a lookup table

EasyImage::.SetupEqualize creates a LUT so you can work explicitly with the histogram and
LUT vectors. It can be more efficient to keep the image histogram for other purposes (i.e
statistics) and keep the equalization LUT to apply to other images.

Equalization lookup table

Image focus

Sharp focusing can be achieved if the EasyImage::.Focusing quantity is maximum for a given
image. This function must be called multiple times with multiple images with a different focus
for the basis of an "auto-focus" system.

EasyImage::.Focusing computes the total gradient energy of the image. You can then use this
gradient as a measure of the focusing of an image.

The gradients of the image show the edges of the structures present in the image, with strong
values if the image is well-focused and weaker values otherwise.

To compute the total gradient energy of the image, Open eVision:

a. Squares the pixel values of the horizontal and vertical gradient images.

Open eVision User Guide PART II Image Pre-Processing Libraries

88

b. Averages the squared pixel values over both images.

c. Sums the averages.

d. Takes the square root of the resulting value.

TIP
The resulting value is maximum if the image is well-focused.

A well-focused image, with its (absolute-valued) horizontal and vertical gradients.
The gradients show the edges of the structures with strong values. The total gradient

energy for this image is 17.9.

A badly focused image, with its (absolute-valued) horizontal and vertical gradients.
The gradients show the edges of the structures with weak values. The total gradient energy

for this image is 7.9.

EasyImage statistics functions

Area (number of pixels with values above/on/between thresholds)

n EasyImage::.Area counts pixels with values above (or on) a threshold.
n EasyImage::.AreaDoubleThreshold counts pixels whose values are comprised between

(or on) two thresholds.

Binary and weighted moments (object position and extent)

n EasyImage::.BinaryMoments computes the 0th, 1st or 2nd order moments on a binarized
image, i.e. with a unit weight for those pixels with a value above or equal to the threshold,
and zero otherwise. It provides information such as object position and extent.

n EasyImage::.WeightedMoments computes the 0th, 1st, 2nd, 3rd or 4th order weighted
moments on a gray-level image. The weight of a pixel is its gray-level value. It provides
information such as object position and extent.

Open eVision User Guide PART II Image Pre-Processing Libraries

89

Gravity center (average pixel coordinates above/on threshold)

n EasyImage::.GravityCenter computes the coordinates of the gravity center of an image,
i.e. the average coordinates of the pixels above (or on) the threshold.

Pixel count (between 2 thresholds)

n EasyImage::.PixelCount counts the pixels in the three value classes separated by two
thresholds.

Minimum, maximum and average gray-level value

n EasyImage::.PixelMax computes the maximum gray-level value in an image.
n EasyImage::.PixelMin computes the minimum gray-level value in an image.
n EasyImage::.PixelAverage computes the average pixel value in a gray-level or color

image. For a color image, it computes the means of the three pixel color components, the
variances of the components and the covariances between pairs of components.

Average, variance and standard deviation

n EasyImage::.PixelStat computes min, max and average gray-level values.
n EasyImage::.PixelVariance computes average and variance of pixel values.
n EasyImage::.PixelStdDev computes average and standard deviation of pixel values. For a

color image, it computes the standard deviations and correlation coefficients (covariance over
the product of standard deviations) of the pairs of pixel component values.

Number of different pixels by comparing 2 images

n EasyImage::.PixelCompare counts the number of different pixels between two images.

Open eVision User Guide PART II Image Pre-Processing Libraries

90

Open eVision User Guide

PART III
INSPECTION TOOLS

91

1. EasyObject - Analysing Blobs

The EasyObject library picks out features in an image by creating and processing blobs (objects
or holes that have the same gray level range).

This library can be used for BW1, BW8, BW16 and C24 source images and is accessible from the
ECodedImage2 class which has improved execution time, especially for large images with
many objects.

Open eVision User Guide PART III Inspection Tools

92

W orkflow

Blob Definition

A blob is a grouping of neighboring pixels of the same gray level range.
Blobs may be objects or holes in objects. EasyObject functions analyze both objects and holes.

Open eVision User Guide PART III Inspection Tools

93

When blobs are built, the inclusion relationship between holes and objects is computed.

Even though holes may be the actual objects of interest, it is easier to find an object of interest,
then detect its holes (with EasyObject) and measure their characteristics (with EasyGauge or
EasyObject).

Blobs are handled as independent entities:
n They can be selected by means of the layer they belong to, their position, a rectangular ROI or

their computed features. The selection criteria can be combined (select the small objects;
among these, select those close to the right edge...).

n They can be listed and sorted by their geometric characteristics: such as area, width, or
ellipse of inertia.

Blob analysis can be restricted to rectangular and nested ROIs, and to complex or disconnected-
shape regions using flexible masks.

Build Blobs

EasyObject chooses objects of interest and constructs blobs/holes in two steps:
1. Segment: classifies the source image pixels, creates layers, and constructs the runs (a run is a

sequence of adjacent pixels in a row, that share the same property).
2. Encode: assembles runs, to build blobs for each layer.

You select which objects or holes are kept.
EImageEncoder::.Encode analyzes the blobs and stores the result into a coded image
which has a set of superimposed, mutually exclusive image layers, where the pixels of each
layer have properties in common, such as being above a threshold.
Flexible masks can restrict encoding to an arbitrary shaped area.

There is no need to build holes, they are constructed on-the-fly when required.

Functions

n Segmentation GetSegmentationMethod and SetSegmentationMethod

n Grayscale single threshold EGrayscaleSingleThresholdSegmenter

n Grayscale double threshold EGrayscaleDoubleThresholdSegmenter

n Color single threshold EColorSingleThresholdSegmenter

n Color range threshold EColorRangeThresholdSegmenter

n Reference image EReferenceImageSegmenter

n Image range EImageRangeSegmenter

n Labeled image ELabeledImageSegmenter

n Binary images EBinaryImageSegmenter

Pixel aggregation (encoder)
n Layer selection
n Object construction: run aggregation into objects
n Hole construction: run aggregation into holes

Open eVision User Guide PART III Inspection Tools

94

Extract objects (using geometric parameters)

Once an image has been encoded, the coded elements (objects or holes) are accessible through
the abstract class ECodedElement which provides a large set of methods applicable to a
particular coded element:

Features computation and display

The objects, holes and their features can be efficiently accessed randomly (in an index-based
fashion).

1.1. Image Segmenters
There are several ways to segment pixels. The method is chosen with GetSegmentationMethod
and SetSegmentationMethod.

1. Grayscale Single Threshold (default)

EGrayscaleSingleThresholdSegmenter is applicable to BW8 and BW16 grayscale images and
produces coded images with two layers:
n The black layer (usually Layer 0) contains unmasked pixels with a gray value below the

Threshold value.
n The white layer (usually Layer 1) contains the remaining unmasked pixels, i.e. unmasked

pixels having a gray value greater or equal to the Threshold value.

EasyObject provides 5 thresholding methods:
n Absolute (integer value): represents the first gray value of the white layer. Set with

SetAbsoluteThreshold method and got with GetAbsoluteThreshold method.
n Relative (%): represents the fraction of image pixels that belong to the Black layer, it is a

user-defined float value in range 0 to 1. Set with SetRelativeThreshold method and got
with GetRelativeThreshold method.

n Minimum Residue (default): The threshold is an automatically computed value such that the
quadratic difference between the source and thresholded image is minimized.

n Maximum Entropy: automatically computed value such that the entropy (i.e. the amount of
information) of the resulting thresholded image is maximized.

Open eVision User Guide PART III Inspection Tools

95

n IsoData: automatically computed value that lies halfway between the average dark gray value
(gray levels below the threshold) and average light gray values (gray levels above the
threshold).

Grayscale Single Threshold with a minimum residue thresholding method is the default. Only
objects whose pixels have a value that is above this threshold are encoded.

2. Grayscale Double Threshold

EGrayscaleDoubleThresholdSegmenter is applicable to BW8 and BW16 grayscale images and
produces coded images with three layers:
n The black layer (usually Layer 0) contains unmasked pixels having a gray value below the Low

Threshold value.
n The white layer (usually Layer 2) contains unmasked pixels having a gray value above or

equal the High Threshold value.
n The neutral layer (usually Layer 1) contains the remaining unmasked pixels.

The Low Threshold and High Threshold are user-defined integer values, set with
SetLowThreshold and SetHighThreshold methods, and got with GetLowThreshold and
GetHighThreshold methods.

3. Color Single Threshold

EColorSingleThresholdSegmenter is applicable to C24 color images; it produces coded
images with two layers:
n The white layer (usually Layer 1) contains unmasked pixels that belong to the cube of the

color space defined by the threshold point and the white point (255,255,255).
n The black layer(usually Layer 0) contains the remaining unmasked pixels.

The Color Threshold is a set of three user-defined integer values designating a color in the color
space, set with SetThreshold method and got with GetThreshold method.

4. Color Range Threshold

EColorRangeThresholdSegmenter is applicable to C24 color images; it produces coded
images with two layers:
n The white layer(usually Layer 1) contains unmasked pixels that belong to the cube of the

color space defined by the Low Threshold point and the High Threshold point.
n The black layer (usually Layer 0) contains the remaining unmasked pixels.

The Low Threshold and High Threshold are each a set of three user-defined integer values
designating a color in the color space, set with SetLowThreshold and SetHighThreshold
methods and got with GetLowThreshold and GetHighThreshold methods.

5. Image Range

The following cases need a segmentation using pixel-by-pixel thresholding which gives an
allowed range of values for each pixel:

Open eVision User Guide PART III Inspection Tools

96

n when the background is not uniform enough,
n when the illumination is not uniform across the image,
n when only differences between the image and a reference image (ideal) are to be enhanced,

The allowed range for each pixel is specified using two images: a low reference image with the
minimum values allowed for each pixel, a high reference image with the maximum values. The
reference images are thus the source image minus (or plus) a fixed value all over the image
(assuming noise distribution is uniform and additive).
The difficulty is preparing suitable high and low reference images.

Preparing high and low reference images

You can start from an image of the scene without defects and add security margins before
comparison.

Source image

Gray-level tolerance must be provided for noise and illumination variations.

Gray-level tolerance margins

The image may have a slight shift in some direction which can be corrected by enlarging the
light and dark areas using dilate and erode morphological operations. This geometric tolerance
margin is roughly as large as the morphological filter size.

Geometric tolerance margins

Combining both kinds of tolerance margins gives the best results.

Open eVision User Guide PART III Inspection Tools

97

Combined margins

Image Segmenter

EImageRangeSegmenter and EReferenceImageSegmenter are applicable to BW8, BW16, and C24
images; and produce coded images with two layers.

The low threshold and the high threshold are defined for each pixel individually by means of two
reference images of the same type as the source image: the Low Image and the High Image. The
Reference Image defines the reference threshold of each pixel is individually.
n For grayscale images, the white layer (usually Layer 1) contains unmasked pixels having a

gray value in a range defined by the gray value of the corresponding unmasked pixels in the
Low, High or Reference Image.

n For color images, the white layer (usually Layer 1) contains unmasked pixels having a color
inside the cube of the color space defined by the colors of the corresponding unmasked pixels
in the Low, High or Reference Image.

n The black layer (usually Layer 0) contains the remaining unmasked pixels.

Pointers to the Low Image can be set or got using the functions associated with the type of the
source image:
n BW8: SetLowImageBW8 GetLowImageBW8

n BW16: SetLowImageBW16GetLowImageBW16
n C24: SetLowImageC24GetLowImageC24

Pointers to the High Image can be set or got using the functions associated with the type of the
source image:
n BW8: SetHighImageBW8GetHighImageBW8
n BW16 SetHighImageBW16GetHighImageBW16

n C24 SetHighImageC24GetHighImageC24

Pointers to the Reference Image can be set or got using the functions associated with the type
of the source image:
n BW8: SetReferenceImageBW8, GetReferenceImageBW8
n BW16: SetReferenceImageBW16, GetReferenceImageBW16
n C24: SetReferenceImageC24 , GetReferenceImageC24

6. Labeled Image

ELabeledImageSegmenter is applicable to is applicable to BW8 and BW16 grayscale images; it
produces coded images with a number of layers equal to the maximum number of gray values:
256 for BW8 images or 65536 for BW16 images. The layer n contains all the unmasked pixels

Open eVision User Guide PART III Inspection Tools

98

having a gray value equal to n.

By default, all layers are encoded. However, it is possible to restrict the encoding to a single
range of layers with SetMinLayer and SetMaxLayer functions which return the lowest and the
highest values of the index range respectively.

7. Binary Image

EBinaryImageSegmenter is applicable to BW1 binary images; it produces coded images with
two layers:
n Black layer (usually index 0) contains unmasked pixels with a binary value equal to zero.
n White layer (usually index 1) contains the remaining unmasked pixels, i.e. unmasked pixels

with a binary value equal to one.

1.2. Image Encoder
The class representing the objects (EObject) derives from an abstract class ECodedElement.

Object building

Selecting the Layers to Encode

The segmentation methods (see Image Segmenters) determine which layer(s) to encode by
default, and do not encode pixels from the other layers.

Function GetMaxLayerIndex returns the highest Layer Index value . It is available for all
segmenters.

Enabling/disabling layer encoding for each layer individually

The following tables list, for each layer, the Set/Get function and the default enable/disable
value.

Two-layer segmenters

Layer Set LayerEncoded function Get LayerEncoded function Default value

Black layer SetBlackLayerEncoded IsBlackLayerEncoded FALSE

White layer SetWhiteLayerEncoded IsWhiteLayerEncoded TRUE

Open eVision User Guide PART III Inspection Tools

99

Three-layer segmenters

Layer
Set LayerEncoded function
name

Get LayerEncoded function
name

Default
value

Black layer SetBlackLayerEncoded IsBlackLayerEncoded FALSE

White
layer

SetWhiteLayerEncoded IsWhiteLayerEncoded FALSE

Neutral
layer

SetNeutralLayerEncoded IsNeutralLayerEncoded TRUE

Manually Assigning a Layer Index to Each Layer Individually

The following tables list, for each layer, the Set/Get function and the default value.

Two-layer segmenters

Layer
Set LayerEncoded function
name

Get LayerEncoded function
name

Default
value

Black
layer

SetBlackLayerIndex IsBlackLayerIndex 0

White
layer

SetWhiteLayerIndex IsWhiteLayerIndex 1

Three-layer segmenters

Layer
Set LayerEncoded function
name

Get LayerEncoded function
name

Default
value

Black layer SetBlackLayerIndex IsBlackLayerIndex 0

Neutral
layer

SetNeutralLayerIndex IsNeutralLayerIndex 1

White
layer

SetWhiteLayerIndex IsWhiteLayerIndex 2

Runs

For the sake of computational efficiency, the objects are described as lists of runs. A run is a
sequence of adjacent pixels that share homogeneous properties (such as being above a given
threshold). These runs are merged in objects by the image encoder.

Open eVision User Guide PART III Inspection Tools

100

A single object with five enhanced runs

EasyObject can work at object level, and at run level which allows faster processing in critical
cases. This is useful to compute custom features on objects then list all runs belonging to a given
object as shown in this example of working at run level, with colored runs in the output image.

1. Declare a new ECodedImage2 object.
2. Declare an EImageEncoder and, if applicable, select the appropriate segmenter. Setup

the segmenter and choose appropriate layer(s) to encode.
3. Setup an output image.
4. Encode the image.
5. Color the runs in the output image. Iterate over the objects of a specific layer by

constructing a loop and then a RunsIterator object. This iterator allows to browse runs
of the considered object. Once the iterator has finished a run of the considered object, the
inner loop processes the pixels spanned by this run in the output image.

6. Select a specific layer.

Source image (left) with the white layer rendered (right)

Connexity

Pixels can touch each other along an edge or by a corner. In Four Connexity only pixels touching
by an edge are considered neighbors. In Eight Connexity (the default) pixels touching by a corner
are also considered neighbors.

Multiple images can be encoded in continuous mode.

Open eVision User Guide PART III Inspection Tools

101

1.3. Holes Construction
A hole is a set of connected pixels that are entirely surrounded by a parent object (4 or 8 pixels
depending on the connexity mode).

A hole has no child. Objects inside a hole are considered as separate objects.

EObject and EHole classes both derive from ECodedElement, so objects and holes are
managed in the same way and share the same functions.

Encoding the white layer (3 objects and 3 holes)

Encoding the black layer (4 objects and 3 holes)

How to Color holes

1. Declare a new ECodedImage2 object.
2. Declare an EImageEncoder and, if applicable, select and setup the appropriate segmenter,

and choose the appropriate layer(s) to encode.
3. Setup an output image.
4. Encode the image.

Open eVision User Guide PART III Inspection Tools

102

5. Declare a helper function to draw the runs. A helper function (see also section Object
Construction/Working at the Run Level) draws the runs in an output image, using, for
example, a given color. This function can be shared for objects and holes.

6. Draw the objects and their holes in the output image. It is necessary to iterate over the
objects of the chosen layer.
a. The helper function draws the runs of each object (DrawRuns) using a specific color.
b. The holes are iterated over the current object, and their runs are drawn.
c. Each hole of an object is drawn with a different color computed in the global function

(GetFadedColor) which returns a color that depends upon the hole index, for example a
gradation of red to green colors.

Raw image (left) Building of objects and all holes (right)

1.4. Normal vs. Continuous Mode
Normal Mode (default)

In normal mode, the image encoder does not track blobs across several successive images.
EasyObject works with one image, without keeping blobs in memory. All the blobs are returned
as objects.

Continuous Mode

In continuous mode EasyObject can process an image whose height is unknown or infinite (e.g.
coming from a line-scan camera). The image is split into a several chunks that are fed into an
image encoder. Objects that straddle several successive image chunks can be detected.

The image encoder encodes only the objects that contain no run touching the last row of the
source image. Objects that touch the inferior border of the image are not written in the coded
image because they are expected to continue in subsequent image chunks, but they are kept in
memory and are processed when subsequent images are analyzed.

A large image is assumed to be divided in several chunks that are stored in the array EImageBW8
chunk[x].

Open eVision User Guide PART III Inspection Tools

103

In this example, we generate a sequence of color images that exhibit
objects encoded over successive chunks

Original image

Three chunks of the image

1. Draw the objects encoded in a layer of a coded image. This code is essentially the same as
in "Browsing Runs" code snippet. The only difference is that an offset can be applied along
the Y-axis.

2. Define a function to draw the objects of a layer. If a coded image contains objects that
were started in a previous image: the runs of this object from the previous image are assigned
with a negative Y-coordinate.
The zero Y-coordinate is the first row of the most recently encoded image. The convention is
to assign the lowest Y-coordinate to the oldest run in the encoded objects.
The method EImageEncoder::.GetStartY obtains the Y-coordinate of this oldest run. It is
necessary to define a function that displays the content of a layer of a coded image.
Each object can be displayed with a different color(computed by GetFadedColor). This
function closely follows the function DrawRuns, but is adapted to continuous mode by taking
GetStartY into account.

3. Enable continuous mode in property EImageEncoder::.SetContinuousModeEnabled.
Additional variables can be declared, for example to store the successive encoded image, or
to hold the output images.

4. Analyze the successive chunks. To encode successive chunks use Encode(chunk[count],
codedImage) and then DrawLayer. Note: The variable count spans integers 0, 1 and 2.
When an object from a chunk is not complete it is kept in the internal memory of the image
encoder.

Open eVision User Guide PART III Inspection Tools

104

Content of layerImage when count equals 0, after the application of DrawLayer.
Chunk of the large image that is under consideration.

Note that two objects in the lower-left of the image chunk are not encoded,
because they touch the border of the chunk.

When count reaches 1, one of these two objects becomes completed,
which leads to the encoding of the following image.
Two other objects are not encoded yet at this time.

Here is the result of the encoding of the last chunk (count = 2).

Three objects from the previous chunks have been closed, and have thus been encoded.

Flushing Continuous Mode

After encoding the three image chunks, there remains one object to be completed (in the
bottom-right corner of the large image). However, as there are no more chunks, it is necessary to
explicitly close this object and encode the remaining object using the flushing of the image
encoder. The internal memory of the image encoder is then empty.

Open eVision User Guide PART III Inspection Tools

105

Result of the flush

1.5. Selecting and Sorting Blobs
The object segmentation process considers any blob as an object, including noise pixels which
appear as tiny objects. You can select which blobs to keep using the EObjectSelection class.

Create /Modify Selection

You can use the EObjectSelection Add and Remove methods to:
n Add or remove a single object , a hole or a whole layer to/from a selection.
n Add or remove objects or holes based on some specified feature (see the feature list in

Computing the Coded Element Features).
n Add or remove objects or holes based on their specific position, or whether they lie within a

specified ROI rectangle.

These actions can be cascaded and combined at will in a single selection.

Clear selection

You can clear a previous selection using EObjectSelection::.Clear.

Sort selection

You can sort the elements of a selection according to any of their features.

Example

In this example, we select objects in the middle band of an image, with a surface >100 pixels.

Source image, and selection of objects

Open eVision User Guide PART III Inspection Tools

106

1. Declare a new ECodedImage2 object.
2. Declare an EImageEncoder object and, if applicable, select and setup the appropriate

segmenter and choose the appropriate layer(s) to encode.
3. Encode the source image.
4. Create a selection of objects. Create an instance of the EObjectSelection class and add

objects to this selection, for instance through EObjectSelection::.AddObjects.
5. Remove objects based on the value of one feature at a time. The objects in a selection

can be unselected by calling one of the EObjectSelection::.Remove methods.
6. Remove the objects based on their position using

EObjectSelection::.RemoveUsingFloatFeature. For details, see also "Working at the
Run Level".

7. Sort the selected objects using EObjectSelection::.Sort.
8. Access the selected objects.

1.6. Advanced Features

Computable Features

Methods prefixed with Get indicate a lazy evaluation: the result is computed on the first
invocation of the method and cached.

Methods prefixed with Compute indicate that the function is reevaluated at every invocation
and the result is never cached.

Position

Limit
(top, bottom, left, right)

ECodedElement::.GetTopLimit

ECodedElement::.GetBottomLimit

ECodedElement::.GetLeftLimit

ECodedElement::.GetRightLimit

Gravity center
(X and Y)

ECodedElement::.GetGravityCenter

ECodedElement::.GetGravityCenterX

ECodedElement::.GetGravityCenterY

Weight gravity center
(X and Y)

ECodedElement::.ComputeWeightedGravityCenter

Open eVision User Guide PART III Inspection Tools

107

Gravity center and weight gravity center

The gravity center returns the abscissa of the gravity center of the coded element.

The weight gravity center computes the gravity center of a given image over a coded element.

Extents

Area (pixel count) ECodedElement::.Area

Feret box
(center X and Y, height, width
with distinct orientation angles
at 22, 45, 68 degrees)

ECodedElement::.ComputeFeretBox

ECodedElement::.GetFeretBox22Box

ECodedElement::.GetFeretBox22Center

ECodedElement::.GetFeretBox22CenterX

ECodedElement::.GetFeretBox22CenterY

ECodedElement::.GetFeretBox22Height

ECodedElement::.GetFeretBox22Width

ECodedElement::.GetFeretBox45Box

ECodedElement::.GetFeretBox45Center

ECodedElement::.GetFeretBox45CenterX

ECodedElement::.GetFeretBox45CenterY

ECodedElement::.GetFeretBox45Height

ECodedElement::.GetFeretBox45Width

ECodedElement::.GetFeretBox68Box

ECodedElement::.GetFeretBox68Center

ECodedElement::.GetFeretBox68CenterX

ECodedElement::.GetFeretBox68CenterY

ECodedElement::.GetFeretBox68Height

ECodedElement::.GetFeretBox68Width

Bounding box
(center X and Y, height, width)

ECodedElement::.GetBoundingBox

ECodedElement::.GetBoundingBoxCenter

ECodedElement::.GetBoundingBoxCenterX

Open eVision User Guide PART III Inspection Tools

108

ECodedElement::.GetBoundingBoxCenterY

ECodedElement::.GetBoundingBoxHeight

ECodedElement::.GetBoundingBoxWidth

Min. enclosing rectangle
(angle, center X and Y,
heath, width)

ECodedElement::.MinimumEnclosingRectangle

ECodedElement::.MinimumEnclosingRectangleAngle

ECodedElement::.MinimumEnclosingRectangleCenter

ECodedElement::.MinimumEnclosingRectangleCenterX

ECodedElement::.MinimumEnclosingRectangleCenterY

ECodedElement::.MinimumEnclosingRectangleHeight

ECodedElement::.MinimumEnclosingRectangleWidth

Feret box

A feret box is a rectangle with the minimum surface rotated at a specified angle that contains all
the pixels center points of an object.
n Bounding box is the Feret box at 0°.
n Minimum enclosing rectangle is the Feret box with the minimum surface across all the

possible angles.
n Width of a FeretBox rectangle is the length of the rectangle side that exhibits the smallest

angle with the X-axis. This is NOT necessarily the smallest side!
n The height of a Feret box rectangle is the length of the other side of the rectangle.

Miscellaneous

Starting point of the object contour
(X and Y)

ECodedElement::.GetContour

ECodedElement::.GetContourX

ECodedElement::.GetContourY

Largest run ECodedElement::.GetLargestRun

Run count ECodedElement::.GetRunCount

Object number
(index)

ECodedElement::.GetLayerIndex

ECodedElement::.GetElementIndex

Pixel gray-level value
(average, deviation, variance)

ECodedElement::.ComputePixelGrayAverage

ECodedElement::.ComputePixelGrayDeviation

ECodedElement::.ComputePixelGrayVariance

Pixel gray-level value
(min and max)

ECodedElement::.ComputePixelMax

ECodedElement::.ComputePixelMin

Open eVision User Guide PART III Inspection Tools

109

Ellipse of inertia

Eccentricity of the ellipse of inertia ECodedElement::.Eccentricity

Moment

ECodedElement::.GetCentralMoment

ECodedElement::.GetMoment

ECodedElement::.GetNormalizedCentralMoment

Ellipse
(angle, height, width)

ECodedElement::.GetEllipseAngle

ECodedElement::.GetEllipseHeight

ECodedElement::.GetEllipseWidth

Second order geometric moments
(Sigma: X, XX, XY, Y, YY)

ECodedElement::.GetSigmaX

ECodedElement::.GetSigmaXX

ECodedElement::.GetSigmaXY

ECodedElement::.GetSigmaY

ECodedElement::.GetSigmaYY

NOTE
The object perimeter can be measured indirectly by tracing the object
contour with contouring methods and counting the pixels.

From the standard geometric features, others can be derived. For instance, object elongation is
computed as the ratio of large to short ellipse axis or max height over max width. Object
circularity is defined as the ratio of the squared perimeter divided by four times pi multiplied by
the object area.

NOTE
Note. Formulas (N = area):

Open eVision User Guide PART III Inspection Tools

110

Convex Hull

The convex hull of a shape is the convex polygon of minimum area that completely surrounds an
object. The convex hull can be used to characterize the object footprint, as well as to observe
concavities. Given that the number of vertices of the convex hull is variable, they are stored in a
EPathVector container.

The corresponding function is ECodedElement::.ComputeConvexHull.

Graphic Representation

The objects can be drawn onto the source image by means of ECodedImage2::.Draw. The
following features also have a graphical representation that can be drawn by the means of
ECodedImage2::.DrawFeature.

Objects Graphic

Bounding box

Convex hull

Ellipse

Feret box

Open eVision User Guide PART III Inspection Tools

111

Feret box with an angle of 22°

Feret box with an angle of 45°

Feret box with an angle of 68°

Gravity center

Minimum enclosing rectangle

Weighted gravity center

Coordinate System and Conventions

Coordinate system

EasyObject uses a pixel coordinate system where the origin is conventionally at the top left
corner of the top left pixel of an image. Consequently, the fractional part of the coordinates of
the center of a pixel is ".5". This convention is best suited for the representation of sub-pixel
coordinates.

Angles

Accordingly to the mathematical conventions, the angles are now counted inversely: A positive
angle brings the X axis on the Y axis.

Evaluating the features

There is one property per feature, removing the need to access the feature through an enum.

Draw Coded Elements
Once an image has been encoded, the coded elements (object or hole) are accessible through the
abstract class ECodedElement and a large set of methods:

To draw coded elements

1. Declare a new ECodedImage2 object.
2. Declare an EImageEncoder object and, if applicable, select and setup the appropriate

segmenter and choose the appropriate layer(s) to encode.

Open eVision User Guide PART III Inspection Tools

112

3. Create an output image: copy, pixel by pixel, the (grayscale) source image into a (color)
output image if the drawing of the resulting features has to be colored.

4. Encode the source image.
5. Draw the features for each object in a layer.
6. Read the result, which can be rounded down. A specific drawing can be created to mark

the feature (for example, draw a target for a gravity center).

To render flexible masks use ECodedElement::.RenderMask.

The objects, holes and their features can be efficiently accessed randomly (in an index-based
fashion).

Flexible Masks in EasyObject
A flexible mask can be generated by any application that outputs BW8 images or uses the Open
eVision image processing functions.
EasyObject can use flexible masks to restrict blob analysis to complex or disconnected shaped
regions of the image.

If an object of interest has the same gray level as other regions of the image, you can define
"keep" and "ignore" areas using flexible masks and Encode functions.

A flexible mask is a BW8 image with the same height and width as the source image.
n A pixel value of 0 in the flexible mask masks the corresponding source image pixel so it

doesn't appear in the encoded image.
n Any other pixel value in the flexible mask causes the pixel to be encoded.

EasyObject functions that create flexible masks

Source image

1) ECodedImage2::.RenderMask: from a layer of an encoded image

1. To encode and extract a flexible mask, first construct a coded image from the source image.
2. Choose a segmentation method (for the image above the default method

GrayscaleSingleThreshold is suitable).
3. Select the layer(s) of the coded image that should be encoded (i.e. white and black layers

using minimum residue thresholding).
4. Make the mask image the desired size using mask.SetSize(sourceImage.GetWidth(),

sourceImage.GetHeight()).
5. Exploit the flexible mask as an argument to ECodedImage2::.RenderMask.

Open eVision User Guide PART III Inspection Tools

113

BW8 resulting image that can be used as a flexible mask

2) ECodedElement::.RenderMask: from a blob or hole

1. Select the coded elements of interest.
2. Create a loop extracting a mask from selected coded elements of the coded image using

ECodedElement::.RenderMask.
3. Optionally, compute the feature value over each of these selected coded elements.

BW8 resulting image that can be used as a flexible mask

3) EObjectSelection::.RenderMask: from a selection of blobs

EObjectSelection::.RenderMask can, for example, discard small objects resulting from
noise.

BW8 resulting image that can be used as a flexible mask

Open eVision User Guide PART III Inspection Tools

114

Example: Restrict the areas encoded by EasyObject

Find four circles (left) Flexible mask can isolate the central chip (right)

1. Declare a new ECodedImage2 object.
2. Setup variables: first declare source image and flexible mask, then load them.
3. Declare an EImageEncoder object and, if applicable, select the appropriate segmenter. Setup

the segmenter and choose the appropriate layer(s) to encode.
4. Encode the source image. Encoding a layer with just the area in the flexible mask is then

pretty straightforward.
We see that the circles are correctly segmented in the black layer with the grayscale single
threshold segmenter:

5. Select all objects of the coded image.
6. Select objects of interest by filtering out objects that are too small.
7. Display the blob feature by iterating over the selected objects to display the chosen feature.

Open eVision User Guide PART III Inspection Tools

115

2. EasyGauge - Measuring down
to Sub-Pixel

EasyGauge library controls dimensions. It accurately determines position, orientation, curvature
and size of parts. It can interact graphically to place and size gauges, combine them in grouped
hierarchies, and store and retrieve them with all their parameters.

W orkflow

The gauge model can be built programatically or in a graphical editor, then "played" in the final
application.
Chose the workflow that matches the complexity of your model and the accuracy required:
uncalibrated, calibrated or grouped.

Uncalibrated Gauging: for a simple model

EasyGauge basic use is straightforward.
1. Create a gauge object that corresponds to the required measurement.
2. Change the parameters whose default values are not appropriate.
3. Invoke the desired measurement function.
4. Read the resulting position parameters.

Uncalibrated gauging is easy to implement but has several drawbacks:
n measurements are performed in pixels, not millimeters.
n measurement models are not portable: gauge positions and sizes must be reworked if viewing

conditions change.
n optical distortion or perspective causes inaccurate measurements.

Calibrated gauging: for one or two simple measurement sites

Calibrated gauging is more accurate, and measures the inspected parts independently of the
viewing conditions.
All measurements are taken in the calibrated units, with any distortion implicitly compensated.

Open eVision User Guide PART III Inspection Tools

116

Refer to Calibration to learn how to master field-of-view calibration.
1. Create a calibrator object.
2. Place it on the inspected scene.
3. Adjust calibration parameters.
4. Attach a gauge.

Complex Gauging

Gauges can be grouped (see Gauge Manipulation Processes) and attached to another item:
n Attaching gauges to an EFrameShape object moves the gauges with the frame (translation

and/or rotation), the application program must adjust the frame position to track the
inspected part.

n Attaching gauges to another gauge moves them according to the measured position of the
supporting gauge. For example, if gauges are attached to a common rectangle gauge that is
detecting the outline of a part, all gauges automatically track the part when the rectangle
outline is fitted.

If using several measurement sites, you can save the complete model, with calibration modes,
coefficients, and attached gauges, in a single file.

Open eVision User Guide PART III Inspection Tools

117

Gauge definitions

Point gauge

You can select the most relevant transition points along a line segment probe that crosses one or
several objects edges. Crosswise and lengthwise filtering can be activated for noise reduction.

Point location. Contrast-based selection

Rectangle Gauge

The placement of a rectangle gauge is defined by its nominal position (given by the coordinates
of its center), its nominal size and its rotation angle.

Each side of a rectangle can have its own transition detection parameters, and can be set to
active or inactive with the ActiveEdges property. When a side is active:

Open eVision User Guide PART III Inspection Tools

118

n setting the value of a parameter only applies to the currently active sides1.
n getting the value of a parameter yields a result only when the value of this property is the

same for all active sides.
n only active sides are used for measurement and model fitting.

These rules allow to set different parameters for different sides, and measure parallel sides or a
corner point instead of the whole rectangle. The four sides are denoted by letters "x", "y", "XX"
and "YY" respectively.

Naming conventions for the sides of a rectangle gauge

Usage

Define and position the gauge, then use Measure to fit the lines.
To obtain the rectangle properties, set ActualShape to TRUEto return the fitted line (TRUE
value) (default is FALSE).

Alternatively, MeasuredRectangle provides the results as an ERectangle object.

For instance, you can accurately locate the four corners (landmarks) of a rectangle using a
rectangle fitting gauge.

Locating a rectangle's corners

Wedge gauge

The placement of a wedge gauge is defined by its nominal position (given by the coordinates of
its center), its nominal inner and outer radius (inner and outer diameter), its breadth (difference
between radii), the angular position from where it extents and its angular amplitude.

Open eVision User Guide PART III Inspection Tools

119

The Set member can distinguish between a full ring, a sector of a ring and a disk.

Each side of a wedge can have its own transition detection parameters and can be set to active
or inactive with the ActiveEdges property. When a side is active, this means that:
n setting the value of a parameter only applies to the currently active sides;
n getting the value of a parameter yields a result only when the value of this parameter is the

same for all active sides;
n only active sides are used for measurement and model fitting.

So different sides can have different parameters, and you can measure parallel arcs or oblique
sides, or a corner point, instead of the whole wedge. The four sides are denoted by letters "a",
"r", "AA" and "RR" respectively.

Naming conventions for the sides of a wedge gauge

Usage

Define and position the gauge, then use Measure to fit the lines.
To obtain the wedge properties, set the ActualShape property to TRUE to return the fitted line
(instead of the nominal line position FALSE, default).

Alternatively,MeasuredWedge provides the results as an EWedge object.

Line gauge

The placement of a line gauge is defined by its center coordinates, its length and its angle with
respect to the X-axis. To constrain the line slope value, set Angle and KnownAngle.

Line fitting

Open eVision User Guide PART III Inspection Tools

120

Usage

Define and position the gauge, then use Measure to fit the lines. To obtain the line properties,
set the ActualShape property to TRUEto return the fitted line (TRUE value) (instead of the
nominal line position FALSE value, default).

Alternatively, MeasuredLine provides the results as an ELine object.

Circle gauge

The placement of a circle gauge is defined by its nominal position (given by the coordinates of its
center), its nominal diameter (or radius), the angular position from where it extents and its
angular amplitude.

The Set member can distinguish between a full circle and an arc (the arc amplitude must be
specified).

Circle fitting

Usage

Once the gauge has been defined and positioned, use Measure to trigger the circle fitting
operation. To obtain the measurement results, set the ActualShape mode to TRUE. The
ActualShape mode determines whether an inquiry returns the fitted circle (TRUE value) or the
nominal circle position (FALSE value, default). The requested information is then retrieved by
means of the circle properties.

Alternatively, MeasuredCircle provides the results as an ECircle object.

Find transition points using peak analysis

Finds the position of all transition points along a line segment probe that crosses one or several
objects edges, and allows selecting the most relevant ones. Crosswise and lengthwise filtering
can be activated for noise reduction.

Open eVision User Guide PART III Inspection Tools

121

Point location. Contrast-based selection

Point Location principle

Point location principle (left) and S-shaped curve and its derivative (right)

On a linear profile extracted from an image, an edge appears as a transition from dark to light (or
vice versa). When plotting pixel values along the gauge, this transition appears as an S-shaped
curve. The first derivative of this curve exhibits a peak around the transition point. The better the
contrast, the sharper the transition and the higher the peak.

EasyGauge extracts the pixel values along a profile (red curve) then uses peak analysis to
determine the transition location. All the pixel values in the peak area1 are used to compute the
transition location.
n Sub-pixel accuracy is only possible if the transition is surrounded by almost uniform regions

of at least 2 pixels wide.
n BWB2 transitions have an increasing profile curve and the peak takes positive values.

Otherwise, the curve decreases and the peak extends negatively.
n You cannot normally detect peaks using the default threshold value (20) as BWB or WBW

transitions base the peak analysis on the gray level profile along the EPointGauge (or sample
path) and not its first derivative.

EPointGauge contains all point measurement parameters, with default values that detect
reasonably contrasted edges.

EPointGauge parameters

Center: Nominal point position (will normally be different before and after measurement).
Tolerance: Tolerance value and gauge orientations.
TransitionType, TransitionChoice, TransitionIndex: Peak selection strategies.

1Area between the derivative curve and a horizontal user-defined threshold level
2Black / White / Black

Open eVision User Guide PART III Inspection Tools

122

Threshold: Noise immunity.
MinAmplitude, MinArea: Peak strength.
Thickness, Smoothing: Local filter widths.
RectangularSamplingArea Sets sampling area (rectangular by default) to transverse filtering
mode.
Measure: Measures the object.
- In single transition mode, Valid returns True when an appropriate point was found. To obtain

measurement results, set ActualShape to True so that Center returns the located point. (False
default value returns nominal point position).
- In multiple transition mode, NumMeasuredPoints returns the number of points found,
GetMeasuredPoint returns an EPoint object which contains located point information.
An integer index between 0 and GetNumMeasuredPoints-1 must be passed.
GetMeasuredPeak: Returns EPeak containing the peak's Area and Amplitude, and the
delimiting coordinates along the probe segment (Start, Length and Center values).

Select Peaks to improve edge precision

The threshold level is very important:
n Too high can cause significant peaks to be missed, and insufficient pixel values to achieve

good precision.
n Too low can cause false peaks because of noise.

To resolve this dilemma, the EasyGauge peak selection mechanism can reject low contrast or
false edges: transition strength is measured by peak amplitude and area. Every edge
measurement determines peak amplitude and area. If either value falls below the minimum
amplitude or minimum area, the peak is disregarded and no point is assumed at that location.

Threshold level selection (left) and Peak amplitude and area (right)

Multiple versus single transition

EasyGauge can measure several edge points in a single go and retrieve all results afterwards
while in multiple transition mode.

Multiple transition (left) versus single transition (right)

Open eVision User Guide PART III Inspection Tools

123

You can select the single most relevant transition based on 4 criteria: the highest peak, the peak
with the largest area, the peak closest to the gauge center, or the N-th peak encountered starting
from one tip of the gauge.

Best area (first image) and best amplitude choices (2nd image), closest (3rd image) and 3rd
from the start (4th image)

Positive or negative peak selection

Peak selection can also be refined by choosing the transition polarity: White to Black or Black to
White (i.e. positive or negative peak), or indifferent.

Black to white, white to black or indifferent polarities

Pre-filtering

Pre-filtering the image locally can reduce noise effects.
Transverse (lengthwise) filtering averages several parallel lines when sampling the image.
Longitudinal (crosswise) uniform filtering can also be applied to the resulting profile curve.

Thick point gauge for filtering

Transverse Filtering

Transverse filtering places parallel line segments in either a parallelogram or a rectangle (default).
This behavior can be toggled.
Parallelogram mode is faster than rectangular if the angle is close to 0° or 90°, or thickness is less
than 5. If thickness=1, no difference exists between the two modes.
thickness determines the number of parallel lines.

Open eVision User Guide PART III Inspection Tools

124

sampling area is the smallest region containing all the parallel line segments.

Rectangular sampling area (left) and Parallelogram sampling area (right)

Point Probe Position

The expected nominal position of a point gauge is specified by its center, orientation angle
with respect to the X-axis, and length tolerancethat the point position can vary.

The results are the coordinates of the located points (the actual location) and the strength of the
transition (amplitude and area).
Low values indicate a weak edge, possibly corresponding to an unreliable or inaccurate
measurement.

Tuning Point Measurement Parameters for unclear edges

The EasyGauge default parameters and working modes are good for clear edges. More complex
situations may need parameter tuning.

1. Set the gauge point location and tolerance.
The center position and orientation are easy to decide based on a sample image
or on coordinate considerations. The tolerance depends on the edge position
variations. A larger tolerance increases the likelihood of hitting an edge, but it
may be a false edge or extraneous feature.
2. Decide whether noise reduction is required. Lay the gauge over the desired
location and observe the profile curve and its derivative (play with the filtering
parameters while looking at the plotted curve). The curve regularity gives an
indication of the spread of the gray-level values.
When these coefficients are set, the gray-level profile will not change anymore.

3. Set the threshold value to be low enough for useful parts of the peaks to
cover enough pixels (to achieve better sub-pixel accuracy), but not lower than
the ambient image noise.

4. Remove weak or false edges using the list of peak amplitudes and areas.
Plotting these values along with good and extraneous peaks can help find
appropriate peak rejection limits.

5. Choose whether all transition points are needed or just the most
relevant. If all are required, they can be queried one after another. Otherwise, a
point selection strategy should be chosen based on strength, order or transition
polarity (black to white and/or conversely).

Open eVision User Guide PART III Inspection Tools

125

Find shapes using geometric models

ELineGauge, ECircleGauge, ERectangleGauge, or EWedgeGauge predefined geometric
models can be fit over the edges of an object. The targeted edge must be defined, and points
sampled along it at regularly spaced point measurement gauges. Model fitting in the least square
sense can be applied.

Line: Measures position and orientation of
straight edges.

Circle: Measures position and curvature of a
circle or arc.

Rectangle: Measures position, orientation
and size of a rectangle.

Wedge: Measures position, orientation and
size of a ring/ disk sector / curvilinear
rectangle.

All gauge types share these common features:

Point sampling
Point gauges are placed along the edges and point measurement
carried out at regularly spaced spots, which can be adjusted
differently per side in rectangle and wedge gauges. All point
measurement parameters and operating modes are available.

SamplingStep sets the spacing of point location gauges along
the model.

Sampling paths and
sampled points

Open eVision User Guide PART III Inspection Tools

126

NumSamples returns the number of points sampled during the
model fitting operation.

Model fitting
The model is adjusted to minimize error residue and provide the
best edge parameter estimates. Rectangles and wedges have
parallelism and concentricity constraints. Image shows sampled
points and fitted line.

Outlier rejection
After model fitting, some points will be too far away from the
fitted model and may harm location accuracy. EasyGauge can tag
them as outliers to be ignored using the FilteringThreshold
property.

The outlier elimination process can be repeated several times
using NumFilteringPasses.
The number of valid sample points remaining after a model fitting
operation is kept in NumValidSamples.
The average distance of these points to the fitted model is
returned by AverageDistance.

Gauge Manipulation: Draw, Drag, Plot, Group

EasyGauge provides means to graphically interact with gauges to place and size them, combine
them as a hierarchy of grouped items, and store/retrieve them and all working parameters
to/from model files.

Draw

Draw gives a graphical representation of a gauge. Drawing is done with the current pen in the
device context associated to the desired window. Depending on the operation, handles may be
displayed.

Drag

An operator can drag a gauge interactively over an image. Several dragging handles are available.
n HitTest determines when the mouse cursor is over a handle. When it is, the cursor shape

should be changed for feedback, and a drag can take place.
n Drag moves the handle and the corresponding gauge accordingly.

Plot

EasyGauge can Plot gray-level values along the sampled paths and/or its derivative - useful for
parameter tuning.
Point measurement gauges can plot after calling Measure.
Model fitting gauges can plot after calling MeasureSample with an index argument that lies
between 0 and GetNumSamples-1 (included).
To view the corresponding sampling path, use method Draw with mode EDrawingMode_
SampledPath.

Open eVision User Guide PART III Inspection Tools

127

Group

Measurement gauges can be grouped (their relative placement remains fixed) to form a dedicated
tool that can be moved (translated and rotated) to follow the movement of inspected items /
probes before computing measurements.

Attach associates a gauge to a mother gauge or EFrameShape object.

NumDaughters, GetDaughter, or Mother retrieves information relative to attached daughters
or mother.

Detach, DetachDaughters dissociates the gauge or daughters from the mother.

Calibration and Transformation

Field-of-view calibration

Calibration establishes the relationship between real-world point
coordinates and image pixels. A simple calibration model computes
faster, a repeatable part position is easier to locate.

The Raw sensor coordinate system starts from upper left and
extends rightwards and downwards.
The range of abscissae is 0 to width-1 and the range of ordinates is 0
to height-1 where integer coordinate values correspond to pixel
centers.

The Centered sensor coordinate system starts at the center ([width-
1]/2, [height-1]/2 in the Raw system) and extends rightwards and
upwards.

The real world 3D coordinates are defined in a 2D reference frame
tied to a reference plane. The origin and direction of the axis are
normally aligned with major features of the inspected parts.

Before World-to-Sensor Transform
Before converting from world to sensor coordinates, sources of
distortion should be eliminated:
n adjust sweep frequency or scanning speed to avoid non-square

pixels.
n adjust optical alignment to minimize perspective effect. The field

of view should be parallel to the sensor plane.

Open eVision User Guide PART III Inspection Tools

128

n use long focal distances and good quality lenses to minimize
Optical distortion.

n use appropriate scale factor based on lens magnification,
observation distance and focusing.

n minimize skew and translation effects by secure fixtures, and part-
movement / acquisition-triggering synchronization.

Effects of World-to-Sensor Transform

n No calibration. World and sensor coordinates are identical.

n Translated calibration: The coordinate origin can be moved.
World coordinates correspond to pixel units.

n Isotropic scaling (square pixels). A scale factor converts pixel
values to physical measurements.

n Anisotropic scaling (non-square pixels). Uses two scale factors
with pixel aspect ratio (X /Y) in the range [-4/3, -3/4] (or [3/4, 4/3]).
Pixels are always displayed as square, so the image appears
stretched.

n Scaled and skewed (square pixels). Real-world axis aligns with
rotated inspected part using translation, rotation and scaling.

n Scaled and skewed (non-square pixels). Distortion is apparent.
Occurs when camera scan speed does not match pixel spacing.

n Perspective distortion causes further away objects to look
smaller; lines remain straight but angles are not preserved.

n Optical distortion causes cushion or barrel appearance of
rectangles.

n Combined distortions result in a complex, non linear, transform
from real-world to sensor spaces.

Open eVision User Guide PART III Inspection Tools

129

Calibration using EW orldShape

The EWorldShape object can calibrate the whole field of view (in given imaging conditions with
fixed camera placement and lens magnification), if the optical setup is modified.
EWorldShape computes appropriate calibration coefficients and transforms measurement
gauges that are tied to it.
It can set world-to-sensor transform parameters, perform conversions from and to either
coordinate system, determine unknown calibration parameters, and save the parameters of a
given transform for later reuse.

After calibration EWorldShape can perform coordinate transform for arbitrary points using
SensorToWorld and WorldToSensor to:
n measure non-square pixels and rotated coordinate axis.
n correct perspective and optical distortion, with no performance loss.

There are several ways to obtain the calibration coefficients:

Estimate (feasible if no distortion correction is required and accuracy requirements are
low)

To estimate the calibration coefficients either locate the limits of the field of view and divide the
image resolution by the field of view size, or use the following procedure:
1. Take a picture of the part to be inspected or a calibration target (e.g. rectangle).
2. Locate feature points such as corners in the image (by the eye) and determine their

coordinates in pixel units —let (i,j).

3. Use the Euclidean distance formula to derive the calibration coefficient:
where C is a calibration coefficient, in pixels per unit, and D is the world distance between
the corresponding points, in units.

4. For non-square pixels repeat this operation for pairs of horizontal and vertical points.

To estimate a skew angle, apply this formula to two points on the X-axis in the world system:

Estimating scale factors and skew angle

When the calibration coefficients are available, use SetSensor to adjust them and set the
calibration mode, or set them individually using: SetSensorSize, SetFieldSize,
SetResolution, SetCenter, SetAngle.

Open eVision User Guide PART III Inspection Tools

130

Pass a set of reference points (landmarks) to a calibration function

Locate at least 4 landmarks and obtain their coordinates in sensor (using image processing) and
world coordinate systems (actual measurements). More landmarks give more accurate
calibration.

The resulting pixels aspect ratio (X resolution/Y resolution) must be in the range [-4/3, -3/4] (or
[3/4, 4/3]).

Analyze a Calibration target

A calibration target can be automatically analyzed to get an appropriate set of landmarks. It is an
easy way to achieve automatic calibration, provided an appropriate procedure is available to
extract the desired landmark point coordinates.

Open eVision relies on the use of a specific target holding a rectangular grid of symmetrical dots
(of any shape)with no other object on the grid.

Dot Grid based calibration example

1. Grab an image of the calibration target in such a way that it covers the whole field of view (or
restrict the image of view to an ROI where only dots are visible).

2. Apply blob analysis to extract the coordinates of the centers of the dots, as can be done by
EasyObject.

3. Pass all points detected to AddPoint (sensor coordinates only).
4. Call RebuildGrid to reconstruct a grid to calibrate a field of view using an iterative algorithm

which computes the world coordinates of each dot.
a. The grid points nearest to the gravity center (g) of grid points are selected (g1 and g2) to

form the first reference oriented segment, of length A.

b. Starting from the extremity of the reference segment (g2), the algorithm determines
3 tolerance areas (white squares in the figure), in perpendicular directions. The tolerance
areas are centered at a distance A (length of the reference segment) from (g2). They are
square, with a side-length of A.
The algorithm searches for 1 neighboring point, in each of the 3 tolerance areas.
The grid will be correctly calibrated if each tolerance area contains a neighboring point.

Open eVision User Guide PART III Inspection Tools

131

c. The 3 perpendicular segments are the references of the next iterative searches. The
algorithm goes back to step 2.

5. Call Calibratethe landmark approach.

If the grid exhibits too much distortion, grid reconstruction does not work as expected. The
following errors could happen:
1. A tolerance area does not contain a neighboring point (red square in the figure).
2. A tolerance area contains more than one neighboring point.
3. The point in the tolerance area is not the correct one. For instance, the point might be

diagonally connected (red point in the figure).

Advanced Features

The field-of-view calibration model can be tuned using these parameters:

Sensor Width and Height

The sensor width and sensor height give the logical image size, in pixels (always integers).

Field-of-View Width and Height

The field-of-view (f-o-v) width and height give the actual image size, in length units, i.e. the size
of the rectangle corresponding to the image edges in the world space. These values are related to
the pixel resolution by the following equations:

f -o-v width = pixel width * sensor width
f -o-v height = pixel height * sensor height

or

sensor width = f -o-v width * hor izontal r esolution
sensor height = f -o-v height * ver ti cal r esolution

By default pixel height is not specified, the pixels are assumed to be square (pixel width = pixel
height).

Open eVision User Guide PART III Inspection Tools

132

Scale

Ratio

Anisotropic aspect ratio

Center Abscissa and Ordinate

The center abscissa (x) and ordinate (y) indicate the image origin point (world coordinates (0,0).
Default is the image center.

Skew Angle

The skew angle is the angle formed by the real-world reference frame (X-axis) and the image edge
(horizontal). The default is no skew.

Skew angle

NOTE
When the pixels are not square, the EWorldShape object can convert the
angle between the world and sensor spaces.

X and Y Tilt Angles

The X and Y tilt angles describe the viewing plane direction. They correspond to the required
rotations around X and Y axis that bring the Z axis parallel to the optical axis.

Open eVision User Guide PART III Inspection Tools

133

Tilt X and tilt Y angles

Perspective Strength

The perspective strength gives a relative measure of the perspective effect. The shorter the focal
length, the larger the value.

Weak and strong perspective

Distortion Strength

Distortion strength and GetDistortionStrength2 give a relative measure of radial distortion
in the image corners, i.e. the ratio of image diagonal length with and without distortion.

Positive and negative distortion

Calibration mode, expressed as a combination of options, can be accessed via
CalibrationModes.

Open eVision User Guide PART III Inspection Tools

134

Effect of the Calibration Coefficients

No calibration coefficient: All coefficients combined.

Unwarp an image

An EWorldShape object manages a field-of-view calibration context. Such an object is able to
represent the relationship between world coordinates (physical units) and sensor coordinates
(pixels), and account for the distortions inherent in the image formation process.

Image calibration is an important process in quantitative measurement applications. It
establishes the relation between the location of points in an image (pixel indices) and the actual
positions of those points in the real world, on the inspected item.

Calibration can be setup by providing explicit calibration parameters of the calibration model, or
a set of known points (landmarks), or a calibration target.

The goal of calibration is twofold:
n To gain independence with respect to the viewing conditions (part placement in the field of

view, lens magnification, sensor resolution, ...), letting you describe the inspected item once
for all using absolute measurements.

Single model versus multiple viewing conditions

n To correct some distortion related to the imaging process (perspective effect, optical
aberrations, ...).

Open eVision User Guide PART III Inspection Tools

135

Removal of image distortion

The pixel indices in an image are usually integer numbers, but fractional values can occur when
using sub-pixel methods. They are normally obtained by processing an image and locating
known feature points. These values are called sensor coordinates.

Feature point in sensor space

The world coordinates describe the location of points on the inspected item are expressed in an
appropriate length measurement unit.
The world coordinates are actual dimensions, usually gathered from design drawings or by
mechanical measurements.
They require a reference frame to be defined.

Open eVision User Guide PART III Inspection Tools

136

Reference frame in world space

Unwarp

Unwarp an image using Unwarp, SetupUnwarp and UnwarpAfterSetup.
Using a lookup table before unwarping may speed up the process.

Distorted vs. Unwarped image

Open eVision User Guide PART III Inspection Tools

137

3. EasyMatch - Matching Area
Patterns

EasyMatch learns a pattern and finds exact matches:

1. The pattern is learned by defining an ROI that contains the object to be matched.
This ROI is created after iteratively learning from several images which contain the object.

2. The parameters are tuned to ensure the pattern is found reliably.

3. Images can now be searched for one or more occurrences of the pattern, which may be
translated, rotated or scaled.

Learning and Matching a pattern

W orkflow

Learning workflow

Open eVision User Guide PART III Inspection Tools

138

Matching workflow

Learning Process

Select an image containing the pattern/ROI to be searched for and call LearnPattern.

The resulting pattern can be saved as a model for later use. You can repeat this process to search
for and save multiple patterns.

Open eVision User Guide PART III Inspection Tools

139

Best pattern characteristics

● repeatable, you need to know if it can translate or rotate or scale.

● represent the object to be located.

It should:

□ Keep the same appearance whatever the lighting conditions.

□ Remain at a fixed location with respect to the part.

□ Be rigid and not change shape.

● exhibit good contrast in small and large scale. It should be distinctly visible from a
distance, and on a reduced image.

● not be invariant under the degrees of freedom to be measured. For instance, a pattern of
black and white horizontal stripes cannot detect horizontal translation; a cog wheel cannot
help measure large rotations.

● have a neutral background. If objects around the pattern in the ROI may change, this area
should be neutralized by means of "don't care" pixels or a mask.

● have contrasted margin around the objects so that foreground and background intensities
are seen.

Customize Parameters

Parameters can be tuned to minimize processing time, but it still takes longer than EasyFind as
the entire selected area is matched.

● DontCareThreshold: If don't care areas are required, the corresponding pixels must hold a
value below the DontCareThreshold.
If all the background can be ignored, merely adjusting the DontCareThreshold to the right
thresholding value can do.
Otherwise, when the don't care area is unrelated to the threshold pattern image, the
DontCareThreshold should be set to 1 and all pixels belonging to the don't care area
should be set to black (value 0).

● MinReducedArea: To improve time performance, EasyMatch sub-samples the pattern. This
parameter stipulates the minimum size of the pattern (as its area in pixels) during sub-
sampling. The smaller the value, the faster the matching process, but, set too low, it
decreases the matching process reliability.
The value of MinReducedArea is computed automatically if AdvancedLearning is enabled
(default behavior). Setting explicitly MinReducedArea will disable AdvancedLearning. A value
of 64 is usually a good compromise.

● AdvancedLearning: If the pattern is defined as a ROI of an image, AdvancedLearning
optimizes learning parameters, such as MinReducedArea, by using the whole image context.
AdvancedLearning is enabled by default, as it leads to better results in case of tiled or
periodic images. If MinReducedArea is set explicitly, AdvancedLearning is disabled. Please
note that as AdvancedLearning changes the number of pixels in the pattern, it can have a
significant impact on the matching process duration.

Open eVision User Guide PART III Inspection Tools

140

● FilteringMode: If the image has sharp gray-level transitions, it is better to choose a low-
pass kernel instead of the usual uniform kernel.

Learning a pattern

Matching Process

For each new image, one or more occurrences of the pattern is searched for, allowing it to
translate, rotate or scale, using a single function call:

□ Match: receives the target image/ROI as its argument and locates the desired occurrences
of the pattern.

You can set these parameters:

□ Rotation range: MinAngle, MaxAngle.

□ Scaling range: MinScale, MaxScale.

□ Anisotropic scaling range: MinScaleX, MaxScaleX, MinScaleY, MaxScaleY.

The following functions return the result of the matching:

□ NumPositions returns the number of good matches found. A good match is defined as
having a score higher than prescribed value (the MinScore threshold value).

□ GetPosition returns the coordinates of the N-th good match. The positions are sorted by
decreasing score.

If you want to match several patterns against the same image, create an EMatcher object for
each pattern.

Matching a pattern

Advanced Features

The best way to speed up this process is to minimize rotation and scaling, and limit the number

Open eVision User Guide PART III Inspection Tools

141

of occurrences searched for.

● Learning time:

□ Optimize number of searches: Searching all positions takes too long, so a sequence of
searches is performed at various scales (reductions). The coarsest reduction is quick and
approximate. Subsequent reductions work in a close neighborhood to improve location,
drastically reducing the number of positions to be tried. The location accuracy is given by
2K, where K is the reduction number.

□ MinReducedArea. Indicates how small the pattern can be made for rough location.

● Matching time:

□ Correlation mode (way to compare the pattern and the image): CorrelationMode. Can
be standard, offset-normalized, gain-normalized and fully normalized: the correlation
is computed on continuous tone values. Normalization copes with variable light
conditions, automatically adjusting the contrast and/or intensity of the pattern before
comparison.

□ Contrast mode (way to deal with contrast inversions): ContrastMode. Lighting effects can
cause an object to appear with inverted contrast, you can choose whether to keep
inverted instances or not, and whether to match positive occurrences only, negative
occurrences only or both.

□ Maximum positions (expected number of matches): MaxPositions,
MaxInitialPositions. You can compel EasyMatch to consider more instances than
needed at the coarse stage using the MaxInitialPositions parameter (this number is
progressively reduced to reach MaxPositions in the final stage).

□ Minimum score (under which match is considered as false and is discarded): MinScore,
InitialMinScore.

□ Sub-pixel accuracy: Interpolate. The accuracy with which the pattern is measured can
be chosen (the less accurate, the faster). By default, the position parameters for each
degree of freedom are computed with a precision of a pixel. Lower precision can be
enforced. One tenth-of-a-pixel accuracy can be achieved.

□ Number of reduction steps: FinalReduction. Can speed up matching when coarse
location is sufficient, range [0...NumReductions-1].

□ Non-square pixels: GetPixelDimensions, SetPixelDimensions. When images are
acquired with non-square pixels, rotated objects appear skewed. Taking the pixel aspect
ratio into account can compensate for this effect.

□ "Don't care" pixels (ignored for correlation score) below the DontCareThreshold value.
When the pattern is inscribed in a rectangular ROI, some parts of the ROI can be ignored
by setting the pixels values below a threshold level. The same feature can be used if parts
of the template change from sample to sample.

Open eVision User Guide PART III Inspection Tools

142

4. EasyFind - Matching Geometric
Patterns

4.1. Workflow
EasyFind learns a reference model from a pattern, which is used to find similar patterns in other
images and retieve information about these instances.
It is quick and robust, and very tolerant of noise, blur, occlusion, missing parts and changes in
illumination.

Open eVision User Guide PART III Inspection Tools

143

W orkflow

Open eVision User Guide PART III Inspection Tools

144

Feature points definition

A feature point is a pair of coordinates (X, Y) and a type (Edge, Transition or Region).

EasyFind uses feature points to find instances in a search field.

● Edge feature points: an abrupt change of gray level between two regions indicates an edge
at this location in the search fields.

● Transition feature points: a smooth change of gray level between two regions indicates a
transition area in their neighborhood (represented by dots in the blue area of the example
above). The size of the neighborhood can be modified.

● Region feature points: identify 2 regions of roughly uniform gray levels:

□ dark region (represented by a family of dots in the red area of the example above),

□ bright region (represented by a family of dots in the green area).

Open eVision User Guide PART III Inspection Tools

145

4.2. Learning Process
EasyFind supports various pattern types (Consistent edges, Thin structures, or Contrasting
regions).
During the learning process, EasyFind computes for itself a feature model which is a set of all
extracted feature points from a bitmap representation of the pattern.

EasyFind only needs this feature model to start the finding function, but you can create your
own optimal model.

The optimal model depends on the type of pattern being searched for.

Consistent Edges

Models must be well contrasted with sharp edges. They should be substantially different from
the rest of the expected search fields. Can be scaled or rotated, very robust to: blurring, noise,
occlusion, illumination variation (point-by-point scores improves robustness and computation
time of the finding phase).

Good for models with consistent edges, sharp contrast transitions, regions delineated by well
defined edges that are in approximately the same place for each instance in all search fields.

Choose the similar points with EPatternFinder::.ContrastMode property:

□ PointByPointNormal: if points share the same contrast polarity.

□ PointbyPointInverse: if points exhibit opposite contrast polarity.

□ PointByPointAny: regardless of their respective contrast polarity.

Contrasting Regions (defined by region feature points and transition
feature points)

Ideally, models should be 50% bright area and 50% dark area. There can be more than one dark
and/or bright region.

Open eVision User Guide PART III Inspection Tools

146

Cannot be scaled or rotated, robust to: blurring, noise, illumination variation (but not occlusion).

Good for models with inconsistent transitions or edges, or with several regions delimited by
transitions or edges.

Thin Structures (defined by edge feature points)

Can be scaled or rotated, robust to: blurring, noise, occlusion, illumination variation. Edges must
be consistent between thin elements and regions, and the contrast should be the same for each
thin element.

Good for models containing thin elements.

Check the Learned model is correct

EasyFind can draw the extracted feature points on the model using the DrawModel method of
the PatternFinder object.

On the examples, edge feature points appear as green points for Consistent Edges and Thin
Structures, and crosses for Contrasting Regions.

Open eVision User Guide PART III Inspection Tools

147

4.3. Finding Process
You can optimize the finding process by setting and saving some parameters in a configuration
file. You simply load this file and run to see what EasyFind has found in the reported
information.

Maximum number of expected instances

Set the maximum number of instances that EasyFind should return. In this example the number
was three.

Angles and scales (thin structure and consistent edges pattern types)

Ranges have a bias and a tolerance. For instance, for an angle bias of 20° and an angle tolerance
of 5°, EasyFind returns instances with an angle between 15° and 25° with respect to the learned
model (20° ± 5°).

Open eVision User Guide PART III Inspection Tools

148

4.4. Advanced Features
Find partial patterns

EasyFind can locate instances of thin structures and consistent edges that are partially out of the
search field, if the extension of search field is set to > 0 pixels.

Tune Parameters

These parameters can be tuned for all models:

□ Adjust the Light Balance using model drawing to preview the model so that it fits the
useful parts of the pattern, then learn the model again.

Bad extract (left) - Adjust light balance (center) - Good extract (right)

□ Set the gray-level threshold (this overrides light balancing) and learn the model again.

□ Move the pivot to a specific place in the model like a corner or a hole. The pivot is the
location returned by EasyFind when it finds an instance (the center by default).

● Thin Structures may benefit from tuning these parameters:

□ Automatic (thin elements with the same contrast between them and their neighboring
regions)

□ Thin elements darker than the neighborhood

Open eVision User Guide PART III Inspection Tools

149

□ Thin elements brighter than the neighborhood

● Contrasting regions may benefit from tuning these parameters:

□ Transition Thickness: Transition feature points lie in the transition band (blue area in the
examples below) which is where the transition occurs. The transition thickness parameter
should allow the borders of different instances to stay within the transition band, so it is
recommended to make it equal to the biggest variation among instances. Two examples of
thickness, and the recommended thickness are below:

□ Ignored areas. Zero values indicate ignored areas. 255 values indicate areas taken into
account. For example: If the text in the center of the model differs from the instance, you
can indicate that EasyFind must not extract feature points from this part of the model.

Open eVision User Guide PART III Inspection Tools

150

5. Golden Template Validation
(EChecker)

EChecker requires two processing steps, Training and Inspection. These two operations are
totally independent and can be programmed in separate applications.

Training involves pre-processing the set of reference images to compute the acceptance ranges
at each pixel and to store them in two threshold images for use with EasyObject. You can test
that the Golden Template is good and tune the learning process parameters if necessary. The
training can be done once for all and the results archived in a Golden template file for later use.

Inspection involves processing an image, realigning and normalizing, detecting pixels that fall
out of the acceptance intervals, checking the quality,and then tuning the inspection parameters
if necessary.

The following sections present the relevant API functions for use in the training and inspection
steps.

Training

Reference images are preprocessed to compute the pixel acceptance ranges, and store them in
two threshold images for use with EasyObject (legacy). The training results are archived in a
model file for later use.

Two modes of operation are provided, depending on whether reference images are stored on disk
or are acquired and processed on the fly.

These operations cannot be used during on-line operation.

To define a model, several operations are performed, in this order:
1. On the first reference image, one or two ROIs are placed to define the location patterns

(fiducial marks or landmarks).
These ROIs are surrounded by two others to define the possible movement freedom, and are
used as search areas for pattern matching. ROIs can be placed interactively using dragging
handles.
EChecker manages the dragging operations.
- Draw graphically renders the ROIs and handles.
- HitTest detects the presence of the cursor over one of the handles.
- Drag moves a handle.
These functions operate on all three ROIs (pattern, search and inspected). You will quickly
notice that:

n Dragging a pattern ROI causes the corresponding search ROI to adjust automatically so
tolerances remain constant.

Open eVision User Guide PART III Inspection Tools

151

n Dragging a search ROI causes its size to adjust symmetrically with respect to the pattern.
n Adjusting a search area also sets the inspected ROI to the largest available space in the image.

Pattern ROIs and search ROIs

n If the training images are on disk, the list of file names can be registered and used later to
execute learning in a single command (batch learning, as opposed to on-the-fly learning).

n Another ROI is defined to delimit the area to be inspected. This area must only include pixels
of the rigid part (that moves with the fiducial marks), and not the background.

Inspected ROI

n All images are processed and are averaged using Statistical training. It uses realignment to
deal with displacement of the inspected part in the field of view, and gray-level normalization
to deal with global illumination changes.

n Ideally at least 16 images should be used in learning passes to create the low and high
threshold images. The user can strengthen or loosen the acceptance intervals using a global
tolerance parameter. Call Learn(ELearningMode_Ready). Property RelativeTolerance
adjusts the acceptance ranges.

n The model can be saved to a single file including all relevant information, i.e. placement of
the various ROIs, fiducial pattern images, gray-level normalization parameters and the
threshold images.

Components of an EChecker model

Open eVision User Guide PART III Inspection Tools

152

Check the reference images for reliability.

After the alignment ROIs have been set, they should be checked for reliability of fiducial location.
The best way is to load the training images, display them and locate the patterns in them, by
means of member function Register. If location fails, different corrective actions can be taken,
depending on the problem:
n The choice of pattern is poor. Define other ROIs with more stable contents.
n The search areas are too tight, so that occurrences of the pattern are found along edges.

Enlarge the search area.
n The image is insufficiently representative (it has defects). It is better to withdraw it from the

learning set.

Note: The first call to member Register invokes the Learnmembers of the alignment
EasyMatch contexts, i.e. training on the patterns is achieved. Unless member Learn
(ELearningMode_Reset) is called, these patterns will be used for all subsequent alignment
operations. The first image to be used serves both as a reference for defining the alignment
pattern and contrast measurement. It is called the mother image.

If the learning images are saved on disk: Every time a file is successfully loaded and is accepted
as a reference image, the EChecker object can add the file path name to a list. Later, all files can
be processed in a single command.

Open eVision User Guide PART III Inspection Tools

153

More learning

After the ROI placement and pattern learning have been performed (Register operations),
training still requires two passes:

n The "average" pass is needed to compute an ideal, noise-free, image that reveals the central
tendency of the part image.
For each image, realign and normalize (Register). If the operation is successful (good pattern
location), call Learn(ELearningMode_Average) for immediate processing (on-the-fly learning),
or
AddPathName for deferred processing (batch learning).

n The "deviation" pass measures variations around the average image.
For each image, realign and normalize (Register). If the operation was successful, call
Learn(ELearningMode_RmsDeviation) (enhances the large deviations), or
Learn(ELearningMode_AbsDeviation) for immediate processing (more robust and is
recommended in most circumstances).

In principle, the images shown during those two passes should be the same.
If you do not want to archive them, two distinct sets of images can be used (on-the-fly learning).
These sets need not even be of the same size.

A learning set size of at least 16 images is recommended.

Alternatively, calling BatchLearn will perform the two required passes for all images added to
the file list.

Adjust thresholding

Learn(ELearningMode_Ready). Property RelativeTolerance can be adjusted to adjust the
acceptance ranges.

Inspection

Inspection is straightforward: the sample image is realigned with the model file and gray-level
normalized.

Note: The inspected ROI must be positioned on the mother image. It can be interactively
positioned in the same way the pattern and search areas are. This ROI can be set at the same
time as the others. Changing the search tolerance will reset the inspected ROI to the largest
available area.
EChecker can tune the global RelativeTolerance property at inspection time, thus
changing lower and upper threshold images used by EasyObject (legacy).
This is the only EChecker parameter that can be changed after learning.

Inspected image, high and low threshold images, and detected blobs.

Open eVision User Guide PART III Inspection Tools

154

The resulting image is passed to an ECodedImage object for blob analysis; which groups
neighboring pixels to form blobs, discards the smaller blobs (usually noise), measures geometric
characteristics (location, size, orientation, ...) and others, see EasyObject.

This image is then compared to the lower and upper reference images (a comparison is made
pixel by pixel between the sample and the template to detect pixels that fall out of acceptance
intervals). Defective pixels are handled by standard EasyObject functions.

Compare using EChecker

EChecker finds visible differences between templates and samples, and reports them in a defect
map which highlights significant differences. EasyObject blob analysis tools can then locate the
defects and qualify them in terms of extent, orientation, lightness and so on. It is ideally suited
when inspected items are rigid (shape does not vary) and illumination is uniform, ensuring
repeatable visual appearance of the image, so that point to point image comparison makes
sense.

Reference image vs. sample image with defects

Statistical training

Grabbing several reference images optimizes assessment of normal gray-level variations and
acceptance intervals:
n consecutive images of the same part without any change (static test) gives a gray-level

distribution that corresponds to noise distribution.
n consecutive images of different defect-free parts reveals variations due to the parts.

Open eVision User Guide PART III Inspection Tools

155

Accepted gray-level ranges

5.1. Image Comparison
The best way to compare images is using EChecker to combine a set of images and determine
the range of acceptable values at each pixel.

Images can also be compared by subtracting 2 images (using Arithmetic and Logic functions) to
get an absolute value, then thresholding this difference to highlight the non-zero pixels where
the images differ.

EChecker performs:

alignment

Pattern matching measures movement of the inspected part in terms of translation, rotation
and/or scaling (as described in the EasyMatch chapter).
When the patterns have been located, the image is realigned so that the inspected part is
brought to the same position as in the reference images.
A single matching pattern easily handles translation.
Two matching patterns provide better accuracy for rotation measurement.

When fiducial marks are available, they can be used as landmarks for accurate and repeatable
location.
EChecker hosts one or two matching contexts internally.

Open eVision User Guide PART III Inspection Tools

156

Realignment using fiducial marks

The alignment method has three shortcomings:

1) Unavoidable variations

Tolerance must be introduced as noise can make identical images have slight variations in color
or shape.

Comparing two noisy images for strict equality.
Black pixels of the result image are non equal pixels.

2) Placement of inspected parts is rarely repeatable

Slight misplacement means the compared pixels no longer correspond, the resulting effect is
especially noticeable around edges.

Comparing misaligned images

Open eVision User Guide PART III Inspection Tools

157

3) Lighting cannot be separated from parts

Comparing images in different lighting conditions

Open eVision User Guide PART III Inspection Tools

158

6. EasyDeepLearning - Classifying
Images

6.1. What EasyDeepLearning Can Do
EasyDeepLearning is a library that classifies images using deep convolutional neural networks
(CNNs). You can use it, for example, to identify a product in an image or to detect if the product
is good or defective.

By opposition to traditional machine vision techniques, EasyDeepLearning does not require an
explicit model of what to recognize inside an image. Instead, it learns this model from a set of
example images. Thus it is able to solve machine vision problems where an explicit model is too
complex to build.

TIP
To accelerate computations, we strongly recommend running the
EasyDeepLearning library on a recent NVIDIA GPU. Refer to the section
"Hardware Support (CPU/GPU)" on page 175 for installing the required NVIDIA
CUDA and deep learning library.

NOTE
The EasyDeepLearning library runs only on x64 platforms.

Open eVision User Guide PART III Inspection Tools

159

6.2. Workflow

To create an application based on EasyDeepLearning:

1. Capture a dataset of images representative of the problem you want to solve.

□ The capture conditions must be as close as possible of the production conditions.

□ Preferably, all images should have the same resolution.

□ The number of images needed to obtain a good classification performance depends on the
complexity of the classification task.
However, EasyDeepLearning can solve some classification task steps with as few as 100
images per class.

2. Manually label the images in the dataset with the different categories you want to recognize.

3. Train a deep learning classifier on the labeled dataset.

a. Create an EClassificationDataset object.

b. Use the EClassificationDataset::AddImage method to add the manually labeled images to
the object.

c. Use the EClassificationDataset::SplitDataset method to split the dataset into 2 parts called
the training and the validation datasets,

Or manually create a new EClassificationDataset object for the validation dataset.

d. Create an EClassifier object.

e. Call the EClassifier::Train method with the EClassificationDataset objects as argument.

f. Use the EClassifier::GetValidationMetrics method to analyze the performance of the trained
classifier by retrieving performance metrics computed on the validation dataset.

Open eVision User Guide PART III Inspection Tools

160

4. Use the EClassifier::Classify method to use the trained EClassifier object in production and
classify new images.

The method returns an EClassificationResult object that contains a probability for each. Use
the EClassificationResult::GetBestLabel method to get the label with the highest probability.

Overtfitting

It is important to use at least 2 separate datasets of images:

□ A training dataset to train the classifier.

□ A validation dataset to automatically select the best classifier during the training.

□ An optional test dataset to evaluate the final performance of your classifier.

WARNING
These datasets MAY NOT contain:
- Images of the other datasets.
- Images of an object of interest extracted from images of the other datasets.

EasyDeepLearning Studio automatically and randomly splits the dataset into a training and a
validation dataset. Add images to the test dataset in the tab Classify images.

Deep learning techniques can suffer from overfitting; this means that the trained classifier is too
focused on the specific images present in the training dataset and it is not able to learn a general
model for the different labels. Such a classifier performs poorly in production.

Overfitting can happen when there is no validation dataset or when the training and/or
validation datasets are not representative enough of the problem you want to solve.

To prevent overfitting, you can use a larger validation dataset to capture additional images or, in
some cases, you can use data augmentation.

TIP
Data augmentation generates random transformations of the images in the
training dataset to make the classifier robust to rotations, reflections or
scaling that are not present in the original training dataset.

Open eVision User Guide PART III Inspection Tools

161

6.3. EasyDeepLearning Studio

EasyDeepLearning Studio

EasyDeepLearning Studio is a graphical user interface that:

□ Creates datasets and labeling images,

□ Configures and visualizes the data augmentation transformations,

□ Trains a classifier,

□ Analyzes the performance of the classifier,

□ Classifies new images.

TIP
The EasyDeepLearning Studio is available in the installation folder of Open
eVision.

Resources and code snippets

● The sample dataset called “MiniWaffle” illustrated below is available in the folder Sample
Images/EasyDeepLearning/MiniWaffle of the installation folder. This dataset
contains images of good and bad mini waffles.

● Some code snippets are also provided for illustration and reference.

Open eVision User Guide PART III Inspection Tools

162

Workflow illustration with EasyDeepLearning Studio

You can use EasyDeepLearning Studio to perform steps 2 and 3 of the process described in
section "Workflow" on page 159.

Manual labeling of images (step 2) and creating the dataset (steps 3a and 3b)

Splitting the dataset (step 3c) and starting the training (steps 3d and 3e)

Open eVision User Guide PART III Inspection Tools

163

Analyzing the performance (step 3f)

Classifying images (step 4)

6.4. Managing the Dataset
● In the API, a dataset is represented by an object of the EClassificationDataset type.

Open eVision User Guide PART III Inspection Tools

164

● The supported image file types are PNG, TIFF, JPEG, BMP and J2K.

● The supported Open eVision image object types are EImageType_BW8, EImageType_BW16 and
EImageType_C24.

Adding images

● In EasyDeepLearning Studio, add image files (png, tiff, jpeg and j2k types) to your datasets in
one of the following ways:

□ Right-click on a label and click Add images to label.

□ Drag and drop your files directly on a label.

□ Select a label and click on the Add Images button.

● Add a single image and its label to a EClassificationDataset, in one of the following ways:

□ EClassificationDataset::AddImage(path, label) for an image file,

□ EClassificationDataset::AddImage(img, label) for an Open eVision image object.

Open eVision User Guide PART III Inspection Tools

165

● Add several image files that share the same label, with the method
EClassificationDataset::AddImages(filter, label).

filter is a glob pattern with the wildcard characters:

□ * means "zero or more character",

□ ? means "a single character".

For example, EClassificationDataset::AddImages("*good*.png", "good") adds all PNG image
files that contain “good” in their filename.

TIP
EasyDeepLearning automatically generates the set of labels from the labels
of the images that you add to the dataset.

NOTE
The labels are case sensitive.

Changing the labels

In EasyDeepLearning Studio:

● To change the label of a single image, select or type the label directly on the image
thumbnail.

● To change the label of a group of images:

a. Select the images (keep the CTRL key pressed and click on the images).

b. Right click on one of the selected images.

c. Selecting the new label.

Open eVision User Guide PART III Inspection Tools

166

Setting the label weights

The label weights represent the relative importance that the classifier gives to each class during
the training.

TIP
Increase the weight of a label to improve the accuracy of this label. Keep in
mind that this also means a lowering of the accuracy of the other labels.

By default, all labels are given the same weight of 1.

● In EasyDeepLearning Studio, set the label weights directly in the label list of the first tab:

● In the API, set the weight of a label with EClassificationDataset::SetLabelWeight(labelId,
weight).

Splitting the dataset

To create your training and validation datasets:

● In EasyDeepLearning Studio:

□ Create a single dataset in the Images and labels tab.

□ Set the splitting percentages in the Training tab.

□ During the training, the dataset automatically splits into a training and a validation dataset
according to this splitting percentage.

● In the API:

□ Create directly 2 EClassificationDataset objects containing 2 different sets of images.

□ Or randomly split an EClassificationDataset dataset into 2 parts with the method
EClassificationDataset::SplitDataset(trainingDataset, validationDataset, trainingProportion).

Open eVision User Guide PART III Inspection Tools

167

6.5. Using Data Augmentation
Data augmentation performs random transformations on images given to a EClassifier object
during the training.

● Experiment different settings to choose the best parameters for your data augmentation.

● Check that the transformations do not change the label of an image (for example a defect that
disappears because of a rotation or a contrast change).

In EasyDeepLearning Studio

● Configure the data augmentation in the second tab (Image properties and augmentation).

● Display and review the data augmented images with the minimum settings (Lower limits
augmentation), the maximum settings (Upper limits augmentation) or the random settings
(Random augmentation).

In the API

Use EClassificationDataset::SetEnableDataAugmentation(true/false) to enable or disable these
transformations.

The possible transformations are:

Geometric transformations

● Horizontal and vertical flips (enabled with EClassificationDataset::SetEnableHorizontalFlip and
EClassificationDataset::SetEnableVerticalFlip)

Open eVision User Guide PART III Inspection Tools

168

● Scaling (between a minimum and maximum value defined with
EClassificationDataset::SetMinScale and EClassificationDataset::SetMaxScale)

● Horizontal and vertical shifts (between –maxValue and maxValue defined with
EClassificationDataset::SetMaxHorizontalShift(maxValue) and
EClassificationDataset::SetMaxVerticalShift(maxValue))

● Rotations (between 0 and a maximum value defined with
EClassificationDataset::SetMaxRotationAngle)

● Horizontal and vertical shear (between –maxValue and maxValue defined with
EClassificationDataset::SetMaxHorizontalShear and EClassificationDataset::SetMaxVerticalShear)

Color and luminosity transformations

● Brightness offset (between –maxValue and maxValue defined with
EClassificationDataset::SetMaxBrightnessOffset)

● Contrast gain (between a minimum and maximum value defined with
EClassificationDataset::SetMinContrastGain and EClassificationDataset::SetMaxContrastGain)

● Gamma corrections (between a minimum and maximum value defined with
EClassificationDataset::SetMinGamma and EClassificationDataset::SetMaxGamma)

● Hue offset (between –maxValue and maxValue defined with
EClassificationDataset::SetMaxHueOffset)

● Saturation gain (between a minimum and maximum value defined with
EClassificationDataset::SetMinSaturationGain and
EClassificationDataset::SetMaxSaturationGain)

Open eVision User Guide PART III Inspection Tools

169

Noise transformations

TIP
The standard deviation is expressed as a percentage of the maximum pixel
value.

● Gaussian noise, also called additive white noise, generated with a standard deviation
(between a minimum and maximum value defined with
EClassificationDataset::SetGaussianNoiseMinimumStandardDeviation and
EClassificationDataset::SetGaussianNoiseMaximumStandardDeviation)

● Speckle noise, a multiplicative noise, generated from a Gamma distribution with a mean of 1
and a standard deviation (between a minimum and a maximum value defined with
EClassificationDataset::SetSpeckleNoiseMinimumStandardDeviation and
EClassificationDataset::GetSpeckleNoiseMinimumStandardDeviation).

● Salt and pepper noise generated from a pixel density (between a minimum and a maximum
value defined with EClassificationDataset:: SetSaltAndPepperNoiseMinimumDensity and
EClassificationDataset::SetSaltAndPepperNoiseMaximumDensity).

6.6. Using the Classifier
Input image format and normalization

● The input image format must have the width, height and number of channels corresponding
to the input of the neural network.

● By default, a classifier uses the image format of the first image inserted in the training dataset:

□ All other images are automatically reformatted (anisotropic rescaling and conversion
between color and grayscale).

□ If EClassifier::SetEnableAutomaticImageReformat(false) is called, the classifier
throws an exception when attempting to train or classify an image that does not have the
correct image format.

● In EasyDeepLearning Studio, you can set the input image format in the Image properties
and augmentation tab.

Open eVision User Guide PART III Inspection Tools

170

● In the API, you can also set manually the input image format with the methods SetWidth,
SetHeight and SetChannels (1 channel for grayscale images and 3 channels for color
images).

● The input image format must have a resolution between 128 x 128 and 1024 x 1024.
For the best processing speed, use the lowest resolution at which your "objects of interest"
are still recognizable.

□ If your original images are smaller than the minimum resolution, upscale them to a
resolution higher or equal to 128 x 128.

□ If your original images are larger than the maximum resolution, lower the resolution:
- If the "objects of interest" are still recognizable, explicitly set the input image format of
the classifier to this lower resolution.
- If the "objects of interest" are not recognizable, divide your original images into sub-
windows and use these sub-windows to train the classifier and make prediction. This
presents the additional advantage of localizing the "object of interest" inside the original
image.

Open eVision User Guide PART III Inspection Tools

171

Histogram equalization

The classifier can also apply an histogram equalization to every input image:

□ In EasyDeepLearning Studio, activate it in the image format controls in the Image
properties and augmentation tab.

□ In the API, use EClassifier::SetEnableHistogramEqualization(true) to activate
it.

Training the classifier

In the API, to train a classifier, call the method EClassifier::Train(trainingDataset,
validationDataset, numberOfIterations).

● Iteration:

□ An iteration corresponds to going through all the images in the training dataset once.

□ The training process requires a large number of iterations to obtain good results.

□ The default number of iterations is 50.

□ The larger the number of iterations, the longer the training is and the better the results
you obtain.

TIP
Calling the EClassifier::Train() method several times with the same
training and validation dataset is equivalent to calling EClassifier::Train()

once but with a larger number of iterations. The total number of iterations
used to train the classifier is accessible through
EClassifier::GetNumTrainedIterations().

● The training process is asynchronous:

□ A call to EClassifier::Train launches a new thread that does the training in
background.

□ The method EClassifier::WaitForTrainingCompletion suspends the program until the
whole training is completed.

□ The method EClassifier::WaitForIterationCompletion suspends the program until
the current iteration is completed.

□ During the training, use EClassifier::GetTrainingProgression() to follow the
progression of the training.

Open eVision User Guide PART III Inspection Tools

172

● Batch size:

The batch size corresponds to the number of images that are processed together.

□ The training is influenced by the batch size.

□ A large batch size increases the processing speed of a single iteration on a GPU but
requires more memory.

□ The training process is not able to learn a good model with too small batch sizes.

□ By default, the batch size is determined automatically during training to optimize the
training speed with respect to the available memory.
- Use EClassifier::SetOptimizeBatchSize(false) to disable this behavior.
- Use EClassifier::SetBatchSize to change the size of your batch.

□ Use EClassifier::GetBatchSizeForMaximumClassificationSpeed() to get the
batch size that maximizes the (batch) classification speed on a GPU with respect to the
available memory.

□ It is common to choose powers of 2 as batch size for performance reasons.

Validating the results

In EasyDeepLearning Studio:

● In the Training tab, the metrics Best validation error and Best validation accuracy are
computed during the training using the data augmented images and the label weights.

● The metrics displayed or computed using EClassifier::Evaluate are computed without
using the data augmentation and the label weights.

TIP
So the error and the accuracy displayed the Training and in the Dataset
result tabs can differ.

In the API:

● After the completion of each iteration, EasyDeepLearning automatically computes several
performance metrics about the training and validation dataset:

□ Call the methods EClassifier::GetTrainingMetrics(iteration) and
EClassifier::GetValidationMetrics(iteration) to read these metrics.

□ The iterations are indexed between 0 and EClassifier::GetNumTrainedIterations()-1.

□ Call EClassifier::GetBestIteration() to retrieve the iteration that produced the
best performance.

□ After the training, the classifier is back in the state corresponding to this best iteration.

Open eVision User Guide PART III Inspection Tools

173

● The metrics are represented by an EClassificationMetrics object that contains the
following performance metrics:

□ The classification error (EClassificationMetrics::GetError()), also called the cross-
entropy loss: the quantity that is minimized during the training. It is computed from the
probabilities computed by the classifier.
- The error for a single image is the negative of the logarithm of the probability
corresponding to the true label of the image. So, if this probability is low, the error for the
image is high.
- The error of the dataset is the average of the errors of each image in the dataset.

□ The classification accuracy (EClassificationMetrics::GetAccuracy()): the number
of images correctly classified divided by the total number of images in the dataset.

□ The confusion matrix (EClassificationMetrics::GetConfusion
(groundtruthLabel, predictedLabel)): the number of images labeled as
groundtruthLabel that are classified as predictedLabel.

TIP
Call EClassifier::Evaluate to evaluate a dataset independently of the
training.

Classifying new images

● In EasyDeepLearning Studio, open Classify images tab to:

□ Classify new images.

□ Display detailed results for each image of the main dataset.

● Once the classifier is trained, call EClassifier::Classify to classify an Open eVision
image.

This method returns a EClassificationResult object:

□ EClassificationResult::GetBestLabel() returns the most probable label for the image.

□ EClassificationResult::GetBestProbability() returns the probability associated with
the most probable label.

□ EClassificationResult::GetProbability(label) returns the probability associated with
the given label.

□ EClassificationResult::GetRanking(label) returns the ranking of the given label.
The ranking goes from 1 (most probable) to EClassifier::GetNumLabels() (least
probable).

Open eVision User Guide PART III Inspection Tools

174

● You can also do batch classification or directly classify a vector of Open eVision images:

□ Images are processed together in groups determined by the batch size.

□ On a GPU, it is usually much faster to classify a group of images than a single image.

□ On a CPU, implement a multithread approach to accelerate the classification. In that case,
each thread must have its own instance of EClassifier (see code snippets).

TIP
The batch classification has a tradeoff between the throughput (the number
of images classified per second) and the latency (the time needed to obtain
the result of an image): on a GPU, the higher the batch size, the higher the
throughput and the latency. So, use batch classification to improve the
classification speed at the cost of a longer time before obtaining the
classification result of an image.

● Use EClassifier::GetHeatmap(img, label) to obtain an heat map highlighting the
pixels that contribute the most to a label. In some cases, this heat map can provide a rough
localization of the object corresponding to the label.

Memory requirements

● In addition to the properties of the classifier object and the weights of the neural network, an
EClassifier object dynamically allocates memory for intermediate results during the
training and the classification of new images.

● The size of the intermediate results depends on the width (W), height (H), batch size (B), and
whether the operations are performed on a GPU or a CPU.

● For training, these intermediate results need about the following amount of memory:

Tr ainingMemor yCPU = 0.000453 × W × H × B –292 (MB)
Tr ainingMemor yGPU = 0.000440 × W × H × B + 25 (MB)

● For classification, these intermediate results need up to the following memory:

Classi f i cationMemor yCPU = 0.000232 × W × H × B –97 (MB)
Classi f i cationMemor yGPU = 0.000226 × W × H × B + 13 (MB)

● For example, training a classifier or making classifications with 256 x 256 images and a batch
size of 32 on a GPU will take around respectively 950 MB or 500 MB.

TIP
Since large memory allocations take a lot of time, a classification does not
released this memory and the next classifications can reuse it as long as the
width, height, batch size and computation device remain the same. As such,
the first classification is always be slower due to the memory allocations.

Open eVision User Guide PART III Inspection Tools

175

6.7. Hardware Support (CPU/GPU)
Using a CPU

● Deep learning algorithms perform a lot of computations and can be very slow to train on a
CPU.

For example, on a high-end Intel Core i9-7900X CPU with a single thread, with no data
augmentation:

□ The training can process up to 0.5 MegaPixels/seconds.

□ The validation and classification can process up to 1.5 MegaPixels/seconds.

● Use the EClassifier::SetEnableGPU(false) method to use the CPU with the EasyDeepLearning
library.

TIP
EasyDeepLearning supports CPU processing for both 32-bit and 64-bit
applications. However, the memory of a 32-bit application is limited to 2 GB
and this can be slow the training or the classification of large images.

Using an NVIDIA CUDA® GPU

● Using a recent NVIDIA GPU greatly accelerates the processing speeds.

On a NVIDIA GeForce 1080Ti, with no data augmentation:

□ The training can process up to 50 MegaPixels/seconds.

□ The validation can process up to 160 MegaPixels/seconds.

□ The classification of a single image can process up to 55 MegaPixels/seconds (equivalent to
more than 800 256 x 256 grayscale images/second).

TIP
Please be aware that the actual speed varies with the input image format, the
data augmentation, the batch size and the GPU model.

1. To use an NVIDIA GPU with the EasyDeepLearning library, install the following NVIDIA
libraries on your computer:

□ NVIDIA CUDA® Toolkit version v10.0 (https://developer.nvidia.com/cuda-toolkit)

□ NVIDIA CUDA® Deep Neural Network library (cuDNN) v7
(https://developer.nvidia.com/cudnn)

Open eVision User Guide PART III Inspection Tools

https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cudnn

176

2. According to the installation location:

□ If you install the NVIDIA CUDA® Toolkit in its default location (C:\Program
Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0), the EasyDeepLearning
library automatically finds what it needs.

□ Otherwise, the DLLs cusolver64_100.dll, curand64_100.dll, cufft64_100.dll and
cublas64_100.dll should be copied in the Open eVision DLL folder (its default location
is C:\Program Files (x86)\Euresys\Open eVision X.X\Bin64\).

3. Install the NVIDIA CUDA ® Deep Neural Network library (cuDNN) that comes as a zip archive:

a. Unzip the files.

b. Copy the unzipped files to the NVIDIA CUDA® Toolkit installation directory as indicated in
https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installwindows.

c. If the NVIDIA CUDA® Toolkit is not installed in its default location, copy the DLL file
cudnn64_7.dll in the Open eVision DLL folder (its default location is C:\Program
Files (x86)\Euresys\Open eVision X.X\Bin64\).

4. Use the method EClassifier::SetEnableGPU(true) to use the GPU with the EasyDeepLearning
library.

Using multiple GPUs

You can use multiple GPUs for the training and the batch classification.

● In the API, to set the list of GPUs, use the EClassifier::SetGPUIndexes method.

NOTE
Using multiple GPUs increases the training and batch classification speed
only if these GPUs are Quadro or Tesla models with the TCC driver model (see
https://docs.nvidia.com/gameworks/content/developertools/desktop/nsight/t
esla_compute_cluster.htm).
Using multiple GeForce GPUs is slower than using a single one. If there are
more than one GPU installed on your computer, set the index of the GPU to
use with the EClassifier::SetGPUIndex method.

● In EasyDeepLearning Studio, to choose the processing devices, select an execution profile.

You can configure these execution profiles to match your needs.

● GPU processing is not possible with 32-bit applications.

Open eVision User Guide PART III Inspection Tools

https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installwindows
https://docs.nvidia.com/gameworks/content/developertools/desktop/nsight/tesla_compute_cluster.htm
https://docs.nvidia.com/gameworks/content/developertools/desktop/nsight/tesla_compute_cluster.htm

177

Image cache

The image cache is the part of the memory reserved for storing images during training.

● The default size is 1 GB.

● With large dataset, increasing the image cache size may improve the training speed.

To specify the cache size in bytes:

● In the API, use the EClassifier::SetImageCacheSize method.

● In EasyDeepLearning Studio, click on the Configure button below the Execution profile
control and select Image cache in the menu.

Open eVision User Guide PART III Inspection Tools

178

Open eVision User Guide

PART IV
TEXT IDENTIFICATION TOOLS

179

1. EasyOCR - Reading Texts

EasyOCR optical character recognition library reads short texts (such as serial numbers, part
numbers and dates).

It uses font files (pre-defined OCR-A, OCR-B and Semi standard fonts, or other learned fonts)
with a template matching algorithm that can recognize even badly printed, broken or connected
characters of any size.

There are 4 steps to recognizing characters:

1. Raw image 2. Object segmentation 3. Character isolation 4. Character recognition

W orkflow

Open eVision User Guide PART IV Text Identification Tools

180

Learning Process

You can learn characters to create font file if required.
Characters are presented one by one to EasyOCR which analyzes them and builds a database of
characters called a font. Each character has a numeric code (usually its ASCII code) and belongs
to a character class (which may be used in the recognition process).

Font files are created as follows:
1. NewFont clears the current font.
2. LearnPattern or LearnPatterns adds the patterns from the source image to the font.

Patterns are ordered by their index value, as assigned by the FindAllChars process.
The patterns in a font are stored as a small array of pixels, by default 5 pixels wide and 9
pixels high. This size can be changed before learning, using parameters PatternWidthand
PatternHeight.

3. RemovePattern removes unwanted patterns (optional).
4. Save writes the contents of the font to a disk file with parameter values: NoiseArea,

MaxCharWidth, MaxCharHeight, MinCharWidth, MinCharHeight, CharSpacing,
TextColor.

Segmenting

For learning as well as recognition, EasyOCR segments the characters, i.e. locates the characters
and determines their bounding box. This is done by means of blob analysis (thresholding
followed by a grouping of pixels of the same color, as is done by EasyObject). After blobs have
been found, they can be filtered to remove unwanted features (small blobs of noise, large
extraneous objects, ...).
1. EasyOCR analyses the blobs to locate the characters and their bounding box, using one of two

segmentation modes:

n keep objects mode: one blob corresponds to one character.
n repaste objects mode: the blobs are grouped into characters of a nominal size. This is useful

when characters are broken or made up of several parts. When a blob is too large to be
considered a single character, it can be split automatically using CutLargeChars.

Character segmentation by blob grouping

2. Filters remove very large and very small unwanted features.

Open eVision User Guide PART IV Text Identification Tools

181

3. EasyOCR processes the character image to normalize the size into a bounding box, extracts
relevant features, and stores them in the font file. The patterns in a font are stored as arrays of
pixels defined by PatternWidth and PatternHeight (by default 5 pixels wide and 9 pixels
high).

Segmentation parameters

Segmentation parameters must be the same during learning and recognition. Good segmentation
improves recognition.
n The Threshold parameter helps separate the text from the background.

A too high value thickens black characters on white background and may cause merging, a
too small value makes parts disappear.
If the lighting conditions are very variable, automatic thresholding is a good choice.

Too high threshold value (left), Threshold adjustment (middle), Too low threshold value
(right)

n NoiseArea: Blob areas smaller than this value are discarded. Make sure small character
features are preserved (i.e., the dot over an "i" letter).

n MaxCharWidth, MaxCharHeight: Maximum character size. If a blob does not fit in a
rectangle with these dimensions, it is discarded or split into several parts using vertical
cutting lines. If several blobs fit in a rectangle with these dimensions, they are grouped
together.

n MinCharWidth, MinCharHeight: Minimum character size. If a blob or a group of blobs fits in
a rectangle with these dimensions, it is discarded.

n CharSpacing: The width of the smallest gap between adjacent letters. If it is larger than
MaxCharWidth it has no effect.
If the gap between two characters is wider than this, they are treated as different characters.
This stops thin characters being incorrectly grouped together.

n RemoveBorder: Blobs near image/ROI edges cannot normally be exploited for character
recognition. By default, they are discarded.

Recognition

The characters are compared to a set of patterns, called a font. A character is recognized by
finding the best match between a character and a pattern in the font. After the character has
been located, it is normalized in size (stretched to fit in a predefined rectangle) for matching. The
normalized character is compared to each normalized template in the font database and the best
matches are returned.

Open eVision User Guide PART IV Text Identification Tools

182

1. Load: reads a pre-recorded font from a disk file.
2. BuildObjects: The image is segmented into objects or blobs (connected components)

which help find the characters. This step can be bypassed if the exact position of the
characters is known. If the character isolation process is bypassed, you must specify the
known locations of the characters: AddChar and EmptyChars.

3. FindAllChars: selects the objects considered as characters and sorts them from top to
bottom then left to right.

4. ReadText: performs the matching and filters characters if the marking structure is fixed or a
character set filter was provided.
Character recognition: The characters are compared to a set of patterns, called a font.
The best match is stretched to fit in a predefined rectangle and compared to each normalized

template in the font database.
A Character set filter can improve recognition reliability and run time by restricting the
range of characters to be compared. For instance, if a marking always consists of two
uppercase letters followed by five digits, the last of which is always even, it is possible to
assign each character a class (maximum 32 classes) then set the character filter to allow the
following classes at recognition time: two uppercase, four even or odd digits, one even digit.

Steps 2 to 4 can be repeated at will to process other images or ROIs. The Recognize method can
be used as well.

Additional information, such as geometric position of the detected characters, can be obtained
using: CharGetOrgX, CharGetOrgY, CharGetWidth, CharGetHeight, ...

CompareAspectRatio makes character and font comparison sensitive to the difference between
narrow and wide characters. It improves recognition when characters look like each other after
size normalization.

Recognition parameters

n MaxCharWidth, MaxCharHeight: if a blob does not fit within a rectangle with these
dimensions, it is not considered as a possible character (too large) and is discarded.
Furthermore, if several blobs fit in a rectangle with these dimensions, they are grouped
together, forming a single character. The outer rectangle size should be chosen such that it
can contain the largest character from the font, enlarged by a small safety margin.

n MinCharWidth, MinCharHeight: if a blob or a group of blobs does fit in a rectangle with
these dimensions, it is not considered as a possible character (too small) and is discarded. The
inner rectangle size should be chosen such that it is contained in the smallest character from
the font, shrunk by a small safety margin.

n RemoveNarrowOrFlat: Small characters are discarded if they are narrow or flat. By default
they are discarded when they are both narrow and flat.

n CharSpacing: if two blobs are separated by a vertical gap wider than this value, they are
considered to belong to different characters. This feature is useful to avoid the grouping of
thin characters that would fit in the outer rectangle. Its value should be set to the width of
the smallest gap between adjacent letters. If it is set to a large value (larger than
MaxCharWidth), it has no effect.

Open eVision User Guide PART IV Text Identification Tools

183

n CutLargeChars: when a blob or grouping of blobs is larger than MaxCharWidth, it is
discarded. When enabled, the blob is split into as many parts as necessary to fit and the
amount of white space to be inserted between the split blobs is set by RelativeSpacing.
This is an attempt to separate touching characters.

n RelativeSpacing: when the CutLargeChars mode is enabled, setting this value allows
specifying the amount of white space that should be inserted between the split parts of the
blobs.

Invalid recognition settings

Advanced tuning

These recognition parameters can be tuned to optimize recognition:

CompareAspectRatio: when this setting is on, EasyOCR is less tolerant of size and takes into
account the measured aspect ratio. Using this mode improves the recognition when characters
look similar after size normalization as it enforces the difference between narrow and wide
characters.
Filtering the characters (in the ReadText method), can be used if the marking structure is fixed.
When objects are larger than the MaxCharWidth property, they can be split into as many parts
as needed, using vertical cutting lines.
ESegmentationMode, character isolation mode defines how characters are isolated:
n Keep objects mode: a character is a blob; no attempt is made to group blobs, thus damaged

characters cannot be handled and small features such as accents and dots may be discarded
by the minimum character size criterion.

n Repaste objects mode: blobs are grouped to form distinct characters if they fit in the
maximum character size and are not separated by a vertical gap, thus preserving accents and
dots.

Open eVision User Guide PART IV Text Identification Tools

184

2. EasyOCR2 - Reading Texts
(Improved)

Reference | Code Snippets

EasyOCR2 is an optical recognition library designed to read short texts such as serial numbers,
expiry dates or lot codes printed on labels or on parts.

It uses an innovative segmentation method to detect blobs in the image, and then places
textboxes over the detected blobs following a user-defined topology (number of lines, words and
characters in the text). These methods support text rotation up to 360 degrees, can handle non-
uniform illumination, textured backgrounds, as well as dot-printed or fragmented characters.

A character type (letter / digit / symbol) can be specified for each character in the text, improving
recognition rate and speed. The character database that is used for recognition can be learned
from sample images or read from a TrueType font (.ttf) file.

Text recognition with EasyOCR2 follows four phases:

Input image (left) and image segmentation (right)

Fitting textboxes (left) and recognition (right)

EasyOCR2 vs EasyOCR

EasyOCR2 will give better results than EasyOCR when dealing with:

□ Unknown text rotation

Open eVision User Guide PART IV Text Identification Tools

185

□ Dotted or fragmented characters
□ Non-uniform illumination or textured backgrounds

● When TrueType font files are available that match the text to be read, EasyOCR2 allows the
user to use those font files directly for recognition, while EasyOCR does not.

● When none of the above are relevant to the application, the user may prefer to use EasyOCR
to EasyOCR2 due to its superior computational speed.

W orkflow

Detection

EasyOCR2 finds characters in an image as follows:

1. EasyOCR2 segments the image, finding blobs that represent (parts of) the characters.

2. Blobs that are too large or too small to be considered part of a character are filtered out.

3. EasyOCR2 fits character boxes to the detected blobs according to a given topology and
detectionMethod.

The topology describes the structure of the text in the image, defining the number of lines,
the number of words per line and the number of characters per word.

4. EasyOCR2 extracts the pixels inside each character box from the image.

Open eVision User Guide PART IV Text Identification Tools

186

The resulting character-images can be used to learn or recognize the characters.

A workflow detecting text in an image could be as follows:

a. Set the required detection parameters.

b. Alternatively, call Load to read a pre-made model (.o2m) file containing detection
parameters from disk.

c. Call Detect to extract the text from the image.

The method Detect will return an EOCR2Text structure that contains a textbox and a bitmap
image for each character, hierarchically stored in EOCR2Line -> EOCR2Word -> EOCR2Char
structures.

See example in code snippet: Detecting Characters

An example of a fixed-width font, processed with the detectionMethod
‘EOCR2DetectionMethod_FixedWidth’

An example of a proportional font, processed with the detectionMethod
‘EOCR2DetectionMethod_Proportional’

The text angle estimate for this image is slightly off when NumDetectionPasses=1

The text angle estimate is better when NumDetectionPasses=2

Open eVision User Guide PART IV Text Identification Tools

187

For this dotted text, setting CharsMaxFragmentation to 0.1 leads to incomplete
segmentation results

Setting CharsMaxFragmentation to 0.01 gives better segmentation results

Detection parameters

Required parameters

□ The parameter Topology tells the box-fitting method how to structure the textboxes it fits
to the detected blobs. Using a modified version of Regex expressions, the topology
determines the number of lines in the text, the number of words per line and the number
of characters per word. The section Recognition Parameters contains an extensive
explanation of the syntax for the Topology.

□ The parameter CharsWidthRange tells the segmentation and detection methods how
wide the characters in the image can be.

□ The parameter CharsHeight tells the segmentation and detection methods how high the
characters in the image can be.

□ The parameter TextPolarity tells the segmentation method whether it should look for
light characters on a dark background or vice versa.

Advanced parameters for segmentation (optional):

□ The CharsMaxFragmentation parameter tells the segmentation algorithm how small
blobs can be to be considered (part of) a character. The minimum allowed area of a blob is
given by:

minAr ea = Char sMaxFr agmentation * Char sHeight * min(Char sWidthRange)

Open eVision User Guide PART IV Text Identification Tools

188

This parameter should be set between 0 and 1, the default setting is 0.1.
□ The MaxVariation parameter determines how stable a blob in the image should be in

order to be considered a potential character.
A region with clearly defined edges is generally considered stable while a blurry region is
not. A high setting allows detection of blobs that are more unstable, a low setting allows
only very stable blobs.
This parameter should be set between 0 and 1, the default setting is 0.25.

□ The DetectionDelta parameter determines the range of grayscale values used to
determine the stability of a blob.
A low setting will make the algorithm more sensitive to noise; a high setting will make the
algorithm insensitive to blobs with low contrast to the background.
This parameter should be set between 1 and 127, the default setting is 12.

Advanced parameters for detection (optional)

□ The parameter DetectionMethod selects the algorithm used for fitting. The setting
EOCR2DetectionMethod_FixedWidth (default) is optimized for texts with fixed width
fonts (including dotted text), the setting EOCR2DetectionMethod_Proportional is
optimized for texts with proportional fonts.

□ The TextAngleRange parameter tells the box-fitting method how the text in the image is
oriented. It will test the following range of rotation angles:

min(TextAngleRange) ≤ angle ≤ max(TextAngleRange)

where angles are defined with respect to the horizontal. The unit for the angles
(degrees/radians/revolutions/grades) can be set using easy::SetAngleUnit().

The default setting for this parameter is [-20, 20] degrees.
□ The parameter NumDetectionPasses determines how many passes are made to fit

textboxes to the detected blobs. The initial pass will fit textboxes to all detected blobs.
Subsequent passes will select only those blobs that are covered by the textboxes from the
previous pass and fit textboxes to that subset of blobs, potentially resulting in a more
optimal fit.
This parameter should be set to either 1 or 2, the default setting is 1.

Advanced parameters, specific for the setting EOCR2DetectionMethod_FixedWidth

□ The RelativeSpacesWidthRange parameter tells the box-fitting method how wide the
spaces between words may be. It will test the following range of spaces:

min(SpacesWidthRange) * char Width ≤ space ≤ max(SpacesWidthRange) * char Width

□ The parameter CharsWidthBias biases the optimization toward wider of narrower
character boxes.

□ The parameter CharsSpacingBias biases the optimization toward smaller or larger
spacing between characters boxes.

Open eVision User Guide PART IV Text Identification Tools

189

Additional remarks

□ When the setting EOCR2DetectionMethod_FixedWidth is selected, all character boxes
will have the same width and they do not necessarily have to fit tightly around the
characters.

□ When the setting EOCR2DetectionMethod_Proportional is selected, the character
boxes will fit tightly around the characters, if any character falls outside the range of
allowed character widths, the detection will fail.

Learning

In order to recognize characters, EasyOCR2 requires a database of known reference characters.
We may generate this character database from images and/or from TrueType system fonts.

A workflow to build a character database could be as follows:

a. Set the required detection parameters or call Load to read the model (.o2m) file from disk.

b. Optionally, call ClearCharacterDatabase to clear the current character database.

c. Call Detect to extract the text from the image.

d. Call SetText in the extracted text structure to set the correct value for each character.

e. Call Learn to add the detected characters and their correct value to the current character
database.

f. Call SaveCharacterDatabase to save the current character database to disk.

g. Alternatively, call Save to save the model file to disk, including the detection parameters
and the created character database.

See example in code snippet: Learning Characters

Recognition

EasyOCR2 recognizes characters using a classifier that is trained on the character database. For
each input character, the classifier will calculate a score for all candidate outputs, the candidate
with the highest score will be returned as the recognition result. Through the Topology
parameter, prior information about each character can be passed to the classifier, reducing the
number of candidates and improving the recognition rate.

The production workflow for recognizing text from images could be as follows:

□ Call Load to read the model (.o2m) file from disk. The model file contains all detection
parameters, as well as the topology and the reference character database.

□ Load or acquire the image.

□ Call Read to detect and recognize the characters.

□ Alternatively, call Detect to extract the text from the image, followed by Recognize to
recognize the extracted text. This allows the user to modify elements of the detected text
before recognition if so desired.

Open eVision User Guide PART IV Text Identification Tools

190

The methods Read and Recognize will return a string with the recognition results. To access
more in-depth information about the results, one may call ReadText. This returns an
EOCR2Text structure that contains the coordinates and sizes of each textbox as well as a bitmap
image and a list of recognition scores for each character.

See example in code snippet: Reading Characters

Recognition parameters

The Topology parameter specifies the structure of the text (number of lines/words/characters) as
well as the type of characters in the text. The recognition method will limit the number of
candidates for each character based on the given topology.

It uses modified regular expression wildcards:

□ “.” (dot) represents any character (not including a space).

□ “L” represents an alphabetic character.
 - “Lu” represents an uppercase alphabetic character.
 - “Ll” represents a lowercase alphabetic character.

□ “N” represents a digit.
□ “P” represents the punctuation characters: ! “ # % & ‘ () * , - . / : ; < > ? @ [\] _ { | } ~
□ “S” represents the symbols: $ + - < = > | ~
□ “\n” represents a line break.
□ “ ” (space) represents a space between two words.

Combinations can be made, for example: [LN] represents an alpha-numeric character. To specify
multiple characters, simply add {n} at the end for n characters. If the amount of characters is
uncertain, specify {n,m} for a minimum of n characters and a maximum of m characters.

The topology “[LuN]{3,5}PN{4} \n .{5} LL” represents a text comprised of 2 lines:

□ The first line has 1 word composed of 3 to 5 uppercase alpha-numeric characters, followed
by a punctuation character and 4 digits.

□ The second line has 2 words. The first word comprises of 5 wildcard characters, the
second word has 2 letters (upper- or lowercase).

The topology “L{3}P N{6} \n L{3}P NNPN{4}” represents a text with 2 lines:

□ The first line has 2 words. The first word has 3 uppercase letters followed by a punctuation
mark, the second word has 6 digits.

□ The second line also has two words. The first word has 3 uppercase letters followed by a
punctuation mark. The second word has 2 digits, followed by a punctuation mark and 4
additional digits.

The topology “.{10} \n .{7} \n .{5} .{5} \n .{5} .{7}” represents a text with 4 lines:

□ The first line contains a single word of 10 (ASCII) characters

□ The second line contains a single word of 7 characters

□ The third line contains two words, each of 5 characters.

□ The fourth line contains two words of 5 and 7 characters respectively.

Open eVision User Guide PART IV Text Identification Tools

191

3. EasyOCV - Validating Texts

Optical Character Verification compares a geometric pattern, a sample, with a predefined model,
a template, while taking into account relative displacement of the constituent parts. For
example, a printed part number may be checked for: correct placement with respect to the
component body, sufficient contrast, good character shapes, or absence of inking defects.

W orkflow

From the raw image to the final model, the model definition follows a logical sequence of steps.

Raw image
Thresholded

image
Free blobs

Free
characters

Single text Final model

1. Threshold the image to separate the foreground (marking) from the background.
2. Free blobs: Blob analysis is performed and the detected objects may be selected depending

on their size to generate a set of candidates. (Blobs can be selected or unselected manually,
to add features of unusual size or delete spurious objects.)

3. Free characters: The blobs are aggregated into boxes corresponding to the characters. (Manual
correction is possible.)

4. Create single text: The characters are aggregated into boxes corresponding to the texts.
(Manual correction is possible.)

5. Create final model: The system will analyze the shape of the template and generate the
required data structures that represent it and allow fast inspection. It will also perform some
quality measurement on the template for later comparison with the sample. At this stage,
only texts and their constituent characters are stored. The free characters and free objects are
discarded.

6. Before the template can be saved, the inspection parameters must be defined . These include:
n the allowed ranges for the location parameters of the texts with respect to their nominal

position in the inspected ROI. These parameters correspond to translation and rotation
(scaling in both horizontal and vertical directions, and shearing).

n the allowed ranges of character location with respect to their nominal position in the texts
(during translation).

n the allowed ranges of the quality ratings with respect to their nominal values. These
parameters can be chosen among the area of the character background and foreground,
the accumulated gray level of these areas, and a similarity coefficient.

Learning Process

Model structure

Open eVision User Guide PART IV Text Identification Tools

192

Inspection takes place in a rectangular ROI. The marking is a set of texts, made of characters,
which are made of blobs. Typically there is only one text, and each character is a blob.

Texts are sets of
characters

Characters are sets of
blobs

Blobs are "atomic" constituents of
markings

In a simple application, a ready-made template (Open eVision Studio provides a comprehensive
template editor) is used in the inspection phase.

EasyOCV requires training on correctly printed marks to create a good quality template. Using a
single image to create a template has drawbacks:
n the chosen image may itself have small, unnoticed defects and not be fully representative of

the whole population.
n a single image gives no insight on the random variations between acceptable samples, and

gives no way to adjust quality indicator tolerances.
n the default quality tolerances may not give the sharpness you would like to detect.

Statistics will help you define acceptance criteria. Quality indicator reference values are
computed from the template image.

template design considerations

n Should marking be one piece of text or several? This depends on the possible movements;
marks that move together should be considered a single text. During inspection, texts can
move independently of each other.

n How much can the text position vary in terms of translation, rotation [and possibly
scaling and/or shearing]?

n Can the text be decomposed into characters ? A character is the smallest part of a marking
that can be inspected in isolation. A small displacement from its nominal position can be
allowed and measured.

n Can individual characters move with respect to their containing text ?

Open eVision User Guide PART IV Text Identification Tools

193

n What movement may occur ? Placement repeatability must be evaluated. If the part travels
along a guide, sometimes only translation occurs which can be handled by a single alignment
pattern (fiducial). If rotation or scaling can occur, two alignment patterns are preferable.

Bad: rotation not handled

n Are the alignment patterns fixed, well-contrasted features, not subject to
degradation, that move rigidly with the inspected part ?
When two are used, they should be located as far apart as possible for optimal accuracy.
The pattern ROIs should not contain extraneous features likely to change from sample to
sample. The patterns should be small so that rotation and scaling has little impact, but
large enough to contain information at different scales.

Bad: the location pattern is not repeatable

n Is the search area as small as possible to reduce search time and avoid false matches, but
big enough to contain the match?
Check on a representative set of images that location by pattern matching never fails by
touching the search area edges.

Bad: too tight search areas

n Does the inspected ROI on the mother image surround all areas where defects may be
detected, but not raise false alarms?

Open eVision User Guide PART IV Text Identification Tools

194

Bad: undue inspection of the background

Open eVision User Guide PART IV Text Identification Tools

195

Access the template components

The OCV context contains a list of texts. Each text contains a list of characters.

To access a specific text, you provide its index, traversing the hierarchy from the OCV context.
To address a particular character, you provide the indexes of both the text and the character.

Access by index (second character of first text)

You can access and modify several components collectively. Every text and every character has a
boolean selected property, so that in a single operation, you can read/write the value of a
property for all currently selected elements. When reading a property, a value is only returned if
it is identical for all selected elements.

Access a group of selected components

Scattering operations over selected components is very handy for interactive editors that list and
modify parameters for single items or groups of items.

3.1. Learning Passes
After ROI placement and pattern learning (Register operations), training still requires two
passes:
n To compute an average ideal, noise-free, image that reveals the central tendency of the part

image.
For each image, realign and normalize (Register).

Open eVision User Guide PART IV Text Identification Tools

196

If the operation is successful (good pattern location), call
Learn(ELearningMode_Average) for immediate processing (on-the-fly learning), or
AddPathName for deferred processing (batch learning).

n To measure devations around the average image.
For each image, realign and normalize (Register).
If the operation is successful, call
Learn(ELearningMode_AbsDeviation) for immediate processing and recommended method,
or
Learn(ELearningMode_RmsDeviation)for enhancing large deviations.

The images used can be the same for both passes, or two distinct sets of images of different sizes
can be used (on-the-fly learning). BatchLearn performs both passes for all images in the file list.
A learning set size of at least 16 images is recommended.

Inspect and compare image with model

Normally when you inspect the sample image and compare with the model, text-level inspection
is sufficient.
Character-level inspection is more detailed and complex.
The inspection process involves two operations.
n Locate: A region of interest is scanned and the best match is found between it and the

template, using all desired "Degrees of Freedom" below.
n Score: Every sample character is compared to the corresponding template character.

Character quality indicators are computed, collated into "Quality Indicators" on page 198
quality indicators of the text, and compared to acceptance intervals. Unacceptable values
have their corresponding characters flagged, a diagnostic code is generated, and global
diagnostics summarizing all text and character defects are issued.

3.2. Degrees of Freedom
Degrees of freedom can compensate for misalignment and distortion. Each degree of freedom
increases the running time, so use them sparingly. In many cases, text and character translation
are sufficient. When large amplitude skewing is possible, text translation + skewing can be used.
Care must be exercised when combining the other degrees of freedom.

Text translation

All texts can be moved horizontally (ShiftX) and vertically (ShiftY) in a specified range.

Open eVision User Guide PART IV Text Identification Tools

197

Text translation

Text skewing

All texts can be rotated about the center of their bounding box using the angle defined by Skew.

Text skewing

Character translation

All characters can be moved individually horizontally (ShiftX) and vertically (ShiftY) with
respect to their nominal position.

Character translation

Text X/Y-scaling (Advanced - only use if necessary)

All texts can be re-scaled horizontally ScaleX and vertically ScaleY, while the center of their
bounding box remains fixed. Re-scaling can be isotropic (both scale factors are identical) or
anisotropic.

Anisotropic text scaling

Open eVision User Guide PART IV Text Identification Tools

198

Note: By default, text scaling is supposed to be isotropic. If you think your application might
generate anisotropic scaling for a text, you must set the IsotropicScaling parameters of the
EOCVText corresponding object to FALSE before inspecting. Working with isotropic scaling
results in an effective time saving during inspection.

Text shearing (Advanced - only use if necessary)

All texts can be sheared using the angle parameter Shear, i.e. become italic, while the center of
their bounding box remains fixed.

Text shearing

Degrees of Freedom parameters

The degrees of freedom for location are specified with respect to the position at learning time
nominal position. The characters are remembered relative to the corresponding text center. The
text centers are remembered relative to the template image/ROI center. The default skew and
shear angles are 0 and scale factors are 1.

The parameters must vary within a range of Bias ± Tolerance. If bias is 0, the range is
centered around the nominal value.

The number of positions tried for each degree of freedom is specified as follows:
n Translation: Every integer value in the ranges ShiftXBias ± ShiftXTolerance and

ShiftYBias ± ShiftYTolerance is tried. However, for efficiency reasons, the
ShiftXStride and ShiftYStride parameters can be set to a value larger than 1, so that a
gross location pass with the specified stride is followed by a finer one with unit stride. (The
expected speed-up is on the order of the square of the Stride parameter.) Anyway, choosing
too large a value may cause mismatches when local maxima are present. (A value on the order
of a fraction of the character size is recommended.)

n Skewing, scaling and shearing: the SkewCount, ScaleXCount, ScaleYCount and
ShearCount parameters indicate the number of values tried for each degree of freedom. The
execution time increases as the product of these counts.
When a degree of freedom is not used, its count must be left as 1.
When SkewCount is set to 0, EasyOCV automatically chooses an appropriate count value.

3.3. Quality Indicators
After locating the model, the inspection process compares the sample with the template, and
rates the resemblance at a character level.

Open eVision User Guide PART IV Text Identification Tools

199

The parameters computed for the template serve as a reference and are compared to those
computed on the sample.

When the template image is binarized, the marking appears as white foreground on black
background in the character's bounding box. The bounding box is the tightest rectangle that
wholly contains an item, with a safety margin.

Template image, foreground and background
(white pixels)

Sample image, foreground and background
(white pixels)

Area-Based Quality Indicators

When the sample image is rated, thresholding also separates white and black pixels. The
foreground (or background) sample areas are defined as the count of the white(or black) sample
pixels in the foreground (or background) region of a characte. This is not the same as the total
count of white and black pixels in the sample.

The difference between the template and sample areas is the area of defects in the character
foreground [or background].

Foreground and background areas (white pixels)

Note: The area-based indicators rely on thresholding of the sample image. If necessary, the
threshold level must be compensated for a change in intensity (automatic thresholding).

Gray Sum-Based Quality Indicators

A different measure of the amount of light reflected by the marking is given by sums rather than
counts: the foreground [background] sample sum is defined as the sum of the gray-level values of
all pixels of the foreground [background] region of the sample image. The foreground
[background] template sum is the same feature computed on the template image to provide a
reference value. Optionally, the sums are normalized with respect to the reference foreground
and background average gray-levels to compensate for possible changes in gain (contrast) and
offset (intensity).

Open eVision User Guide PART IV Text Identification Tools

200

Foreground and background sums

Note: The sum-based indicators do not rely on thresholding of the sample image, but the
reference foreground and background gray-levels may take into account changes in gain and
offset. Characters are accepted or rejected by comparing the indicator values of the sample and
template: if the difference is larger than the specified tolerance, a defect is reported.
A smaller foreground value indicates under-printing or missing character parts. A larger
background value indicates over-printing or spurious character parts. Character mismatches
provoke both kinds of anomalies.

Correlation-Based Quality Indicators

Normalized correlation rates mismatches between two images. The correlation parameter is a
global score in range 0 to 1, which is implicitly corrected for a change in gain and offset.

Note: The correlation-based quality indicator should be as close as possible to 1. It is not
sensitive to changes in gain or offset.

Reporting

Defects are reported in three ways:
n explanatory diagnostics are given for each inspected character and text;
n the items for which diagnostics are reported are highlighted on the display;
n the relevant items are drawn as a box crossed by its main diagonal.

3.4. Advanced Features
EasyOCV can accumulate the results of a series of consecutive inspections: quality indicators
average values and standard deviations. EasyOCV functions can use these statistics to define
acceptance criteria and automatically adjust position and quality tolerance parameters, so you
can better control the manufacturing process.

□ Average values show the long-term trend behavior of the system and detect marking drifts.

□ Standard deviations show process repeatability and detect appearance of slack.
It is customary to select a tolerance value that is a small multiple of the observed standard
deviation (±2 sigma or ±3 sigma criterion).

Open eVision User Guide PART IV Text Identification Tools

201

3.5. Programming with EasyOCV
Introduction

Writing an inspection application for the production line can be simple if no operator
intervention is required to adjust parameters, and if no in-situ learning phase is necessary:
n A model can be loaded once for all.
n Every acquired image is inspected.
n The inspection results are graphically displayed on top of the image.
n A diagnostics report of quality indicators and statistics can be generated.

A more advanced inspection application may allow the operator to modify parameters:
n Dialog boxes must be provided to edit parameters.
n Parameters may be changed globally (same value everywhere), or the operator may select the

texts and characters on which to work.

In a complex application, model edition before learning must be made possible which leads to
more complex programming:
n select and unselect items.
n display and modify parameters.
n load and save to a model file.

The required steps to create an inspection application, from simplest to advanced are:

1. Set ROI for inspection

The ROI should be placed center on the marking, in a position that is repeatable with respect to
the marking substrate. This is achieved either when the position of the inspected object is
known and stable, or when the object has been located by pattern matching or edge
measurement. .

The ROI :
n Defines the effective search area for text using their centers and location parameters (ShiftX,

ShiftY, ...). This way, inspection is not confined to the inspected ROI.
n Locates the marking, then evaluates global contrast in this ROI (centered on the marking with

the learning time dimensions). The ROI is not used to evaluate global contrast of the marking.

2. Inspect

Uses a threshold level to determine the global contrast of the marking. Automatic thresholding
can be used.

3. Draw inspected items

The inspected texts and characters can be represented by their bounding box, at the position
determined by the location process.

Open eVision User Guide PART IV Text Identification Tools

202

Selected and unselected items can be drawn in different colors.

Items with detected defects appear crossed by their main diagonal.

4. Retrieve Diagnostics and Quality Indicators

Global inspection diagnostics summarize all defects found on the marking and raise alarms.

Detailed diagnostic reports are available for each text and character, and all measured quality
indicators can be retrieved.
n Retrieving text diagnostics and parameters involves a loop where all texts are visited.
n Retrieving character diagnostics and parameters involves a double loop where all texts and all

characters of all texts are visited.

5. Set Inspection Parameters

During operation working parameters can be adjusted in various ways:
n Global change: a parameter value may be set for all texts and/or all characters. This is

straightforward and requires a single call to ScatterTextsParameters,
ScatterTextsCharsParameters, but before calling, make sure that the parameters you
don't want to change are set to an undefined value.

n Custom change: the values can be adjusted individually using a user-defined rule. This
approach is similar to the retrieval of parameters using indexed access.

n Selective change: parameter values can be set for texts or characters in a selected state by
interactively selecting the text or characters.

Selecting Items Interactively

To retrieve or modify parameters, individually or grouped, the operator must have the ability to
select them using a mouse. EasyOCV provides a general selection/de-selection mechanism:
several functions can toggle the state of all/selected/unselected items in a given rectangle.

Note: The rectangle is usually obtained by a dragging operation. A degenerate rectangle
(reduced to a single point) can be used to handle point clicking.

Since the toggling mechanism combined with the possible rectangle extent and current selection
mode is tricky, let us give a few examples.

Assume a model of three texts in the following states: Selected, Selected, Unselected.
n Using a rectangle that contains all three of them will set them to states Unselected,

Unselected, Selected (SSU -> UUS).
n Using a rectangle that touches the first of them will set the states to Unselected, Selected,

Unselected (SSU -> USU).

Now consider the same operations applied to the selected texts only.
n Using a rectangle that contains all three texts will set them to states Unselected,

Unselected, Unselected (SSU -> UUU).

Open eVision User Guide PART IV Text Identification Tools

203

n Using a rectangle that touches the first of them will set the states to Unselected, Selected,
Unselected (SSU -> USU).

Now consider the same operations applied to the unselected texts only.
n Using a rectangle that contains all three texts will set them to states Selected, Selected,

Selected (SSU -> SSS).
n Using a rectangle touches the first of them will leave their states unchanged (SSU -> SSU).

Note: This selection mechanism applies to texts and characters at inspection time
(SelectSample...). It also applies to free objects, free characters and texts during the model
edition phases (SelectTemplate...).

Compute Inspection Statistics

Using EasyOCV, gathering statistical information on the process is possible. For each measured
parameter (location parameters and quality indicators), the average and standard deviation can
be estimated from a number of samples.

The procedure is straightforward: after an image has been inspected, one can request that the
measured parameters be taken into account as valid samples by calling UpdateStatistics. (If,
for any reason, the sample is to be rejected, just do not call UpdateStatistics.) After at least
two sample images have been processed, the average and standard deviations can be obtained.
The standard mechanisms for text and character parameters retrieval can be used.

To compute the statistics afresh on new samples, start by calling ClearStatistics. The
number of samples accumulated so far is given by StatisticsCount.

Adjust Inspection Parameters from Statistics

Statistics may be used to adjust location and quality indicators. When making adjustments to
individual texts or characters, the selection mechanism described above is applicable.

To adjustquality ranges indicators, call AdjustTextsQualityRanges,
AdjustCharsQualityRanges. If you do not want to adjust the quality range of a particular
indicator, you should de-activate it by setting UsedQualityIndicators.
n the bias value of each indicator is assigned the average value of the inspected samples

(provided they had been added to statistics).
n the indicator tolerance is assigned s times the standard deviation, where s is a security factor

to provide.

To adjust location parameters, call AdjustTextsLocationRanges,
AdjustCharsLocationRanges. When adjusting location parameters, you must specifyminimum
and maximum values and a security factor may also be specified.

Interactively Edit a Model

Writing an OCV model editor requires a good understanding of windowed applications design. In
particular, it is important to know how to manage the mouse cursor movements, when and how
to refresh the display, handle dragging of selection rectangles and the like. It is out of the scope
of this documentation to explain these features which are deeply related to Windows

Open eVision User Guide PART IV Text Identification Tools

204

programming. Also note that the level of functionality, from blind -no operator intervention- to
full fledged editing is a matter of taste and of programming skill.

Recall the steps in defining the model structure:
1. An ECodedImage object is used to segment the image into blobs (BuildObjects method).
2. Possibly, blob selection by all means provided in EasyObject (legacy), is performed

(SelectObjectsUsingFeature or SelectObjectsUsingPosition). In particular, small
blobs generated by noise should be unselected.

3. The selected blobs are passed to the OCV object and enter the free objects list (EasyObject
(legacy)'s blobs become OCV's free objects, or TemplateObjects).

4. At this point, the objects in the free list can be selected/unselected interactively.
5. The (selected) free objects are then used to generate free characters, using one of the

available grouping policy (free objects become free characters, or TemplateChars).
6. At this point, the free characters can be selected/unselected interactively.
7. The (selected) free characters are then used to generate texts. The default policy is to group

all free characters in a single piece of text (free characters become texts, or TemplateTexts;
these texts now contain embedded characters, or TemplateTextChars).

In the simplest form of a model editor, steps 4 and 6 can be skipped, meaning that all free
objects and all free characters will enter the model. A better editor will allow withdrawal of
unwanted items and explicit grouping (steps 4 and 6). An even more powerful editor should
allow grouping as well as ungrouping (backwards from 3 to 2, from 5 to 4, from 7 to 6).

At any time, the following operations can be handled:
n The model components can be selected/unselected interactively (using

SelectTemplateObjects, SelectTemplateChars, SelectTemplateTexts).
n New items can be grouped to form new higher level items (using CreateTemplateObjects,

CreateTemplateChars, CreateTemplateTexts).
n Items can be ungrouped by destroying the higher level item (using DeleteTemplateTexts,

DeleteTemplateChars, DeleteTemplateObjects).

A clean way to organize the editor is to define a sequence of separate phases dealing with
objects, free objects, free characters and texts.

Advanced Features: Change contrast, location mode, Quality indicators
and resample characters

Contrast Parameters

Image contrast is an important factor during both learning and inspection.

The background and foreground information must be separated using an appropriate threshold,
that may be determined automatically. After a threshold is given, the average gray level of the
background and foreground are computed separately, and become the reference gray
levels. These are used to measure the image contrast and normalize the gray level quality
indicators if needed.

Open eVision User Guide PART IV Text Identification Tools

205

The background and foreground reference gray levels are computed for both the template and
sample images. See the EOCVChar properties. The sample contrast may then be compared to the
templates contrast reference value, to diagnose an over-contrasted or under-contrasted image
before further analysis.

Note: The template threshold directly influences the thickness of the blobs in the model.

Note: The sample threshold influences the reference gray levels of the sample image.

Note: When gray level normalization is used, it influences location score,gray-level sums, and
blob thickness in the sample image, which has immediate consequences on the sample areas.

Location Modes

For location of the model components, a search process is used during which EasyOCV tries to
find the character edges in the sample image, possibly transformed. Four location modes are
provided: raw, binarized, gradient and Laplacian. See enumeration constants ELocationMode.

Experience reveals that binarized and gradient modes are the most reliable at locating
components.. Additionally, the gradient mode is not sensitive to the threshold level. Use of the
Laplacian mode is not recommended.

In case you experience location problems, you should try another location mode.

Location Score

It is highly recommended to keep the default reduction of location scores option turned on.
Reduction consists of dividing a raw location score by the number of points its computation
required. Thus, the calculated scores do not depend on the number of used points any longer;
the number of used points may be decreased without degrading localization to save potential
time, if necessary.

Location scores may also be normalized. This option is useful if the lighting conditions of sample
images are not the same, or when template and sample images have obviously different reference
gray levels. The action of this option is equivalent to performing a global contrast correction on
the sample image (or ROI). Location scores do not depend on reference gray levels, so are more
reliable.

Finally, AccurateTextsLocationScores provides an alternative way to compute text location
score. During the location process, EasyOCV tries first to locate texts using their contours, which
are sets of fixed points one from each other. This rigid definition of text contour has the
drawback of making the library return poor location score values if the sample characters have
moved from their nominal positions, and may result in a false alarm.

If the AccurateTextLocationScores property is turned on, a text location score will be
computed as sum or average of the characters location scores that form the text (depending on
the state of the ReduceLocationScore property). This way, texts location scores become
independent from the position of the characters they contain.

Used Quality Indicators

For a given inspection case, not all quality indicators are relevant. For instance, it sometimes
suffices to use the location scores alone to detect absence of a given marking.

Open eVision User Guide PART IV Text Identification Tools

206

To avoid false alarms raised by unused quality indicators for which the tolerances have not been
adjusted, and to avoid unnecessary processing, it is important to activate only the quality
indicators in use through the UsedQualityIndicators property.

Character Resampling

Normally, when text is inspected with rotation, scaling and/or shearing, some resampling must
be performed to compute the quality indicators on the separate characters. If the angles remain
small and the scale factors remain very close to unity, this resampling can be avoided by setting
the ResampleChars parameter to FALSE.

Open eVision User Guide PART IV Text Identification Tools

207

Open eVision User Guide

PART V
CODE IDENTIFICATION TOOLS

208

1. EasyBarCode - Reading Bar
Codes

1.1. Reading Bar Codes

Bar code (EAN 13 symbology)

EasyBarCode can locate and read bar codes automatically.
Location can be performed manually for prototyping or when automatic mode results are
unsatisfactory.

Open eVision User Guide PART V Code Identification Tools

209

W orkflow

Bar code definition

A bar code is a 2D pattern of parallel bars and spaces of varying thickness that represents a
character string. It is arranged according to an encoding convention (symbology) that specifies
the character set and encoding rules.
n The bar code may be black ink on white background or inverted (white ink on black

background).
n The bar code should be preceded and followed by a quiet zone of at least ten times the

module width (smallest bar or space thickness).
n Bars should be surrounded below and above by a quiet zone of a few pixels.
n Bar and space widths must be greater than or equal to 2 pixels.

Open eVision User Guide PART V Code Identification Tools

210

symbologies

A symbology defines the way a bar code is encoded.

Symbologies can be enabled in StandardSymbologies or AdditionalSymbologies
parameters.

The standard symbologies are enabled by default:
n Code 39
n Code 128
n Code 2/5 5 Interleaved
n Codabar
n EAN 13*
n EAN 128
n MSI
n UPC A*
n UPC E

NOTE
* EAN 13 and UPC A only differ by the layout of surrounding digits.

Additional symbologies that are supported:
n ADS Anker
n Binary code
n Code 11
n Code 13
n Code 32
n Code 39 Extended (a super-set of Code 39)
n Code 39 Reduced (a subset of Code 39)
n Code 93
n Code 93 Extended
n Code 412 SEMI
n Code 2/5 3 Bars Datalogic
n Code 2/5 3 Bars Matrix
n Code 2/5 5 Bars IATA
n Code 2/5 5 Bars Industry
n Code 2/5 5 Compressed
n Code 2/5 5 Inverted
n Code BCD Matrix
n Code C.I.P
n Code STK

Open eVision User Guide PART V Code Identification Tools

211

n EAN 8
n IBM Delta Distance A
n Plessey
n Telepen

Checksum

A checksum character enables the reader to check the barcode validity depending on the
symbology:
n The checksum may be mandatory and must be checked by the reader.
n The checksum may be mandatory but may not need to be checked.
n The checksum and its verification may both be optional.

VerifyChecksum enables or disables (default) checksum verification.

Bar code structure (Code 39)

Read a bar code

The Automatic mode reading algorithm locates a bar code in the field of view and Reads it.
If several bar codes are present, only one is located, like a straightforward hand-held bar code
reader.

Before reading, the decoding symbologies must be specified in the StandardSymbologies, or
AdditionalSymbologies properties.

Mono-symbology mode reads the bar code using the expected symbology type(s) and reports the
encoded information (if readable) or the reason for failure (if not readable). There is only one
interpretation for the character string.

Decoded bar code

Open eVision User Guide PART V Code Identification Tools

212

Note: When the bar code contains \0x00 characters, the std::.string::.c_str method
should not be used (since C-strings are terminated by the \0x00 character). An iterator over the
characters should be used instead of a C-string.

Advanced features

Locate and Read bar code manually

If automatic localization fails or for prototyping purposes, the user can provide the bar code
position and reading area to manually locate the code.
n Bar code position can be provided graphically by a bounding box around the bar code or by

its parameters. If several symbols appear in the image, they can be processed one after the
other.

n The reading area of the bar code is the area that is read. It should be wider than the bar code
bounding box width, and less high than the bar code bounding box height. It may also be
rotated relatively to the bar code bounding box, to take into account slanting bars (Advanced
mode!).

Bounding box — graphical appearance
(manual location)

Reading area — graphical appearance (manual
location)

Read all interpretations (multi-symbology mode)

Use Detect to report the number of possible symbologies in the NumEnabledSymbologies
property, and list the data contents by decreasing likeliness.

Then call the Decode method in a loop, using GetDecodedSymbology to walk through the list
of successful symbologies in decreasing order of likelihood.

1.2. Reading Mail Bar Codes

Mail bar code example

Open eVision User Guide PART V Code Identification Tools

213

Specifications

The Mail Bar code Reader:

● Detects and decodes postal 4-state bar codes.

● Supports multiple mail bar codes in an image.

● Supports various symbologies.

● Supports the 4 main bar code orientations, with a tolerance of 3°.

● Detects bars that are at least 3 pixels wide.

W orkflow

4-state bar codes

A 4-state bar code is a special kind of bar code where data is encoded on the height and position
of the bars rather than their width.

Each bar can have one of 4 possible states:

□ Short and centered

□ Medium and elevated

□ Medium and lowered

□ Full height

Mail bar code symbologies

The symbology of a mail bar code specifies how to decode the bar code and how to interpret its
contents.

Open eVision User Guide PART V Code Identification Tools

214

Every country uses its own flavor of mail bar code, or symbology. Some countries, like the US,
even use multiple symbologies.

As of now, the Open eVision Mail Bar code Reader supports the following symbologies:

□ US: PLANET, POSTNET and Intelligent Mail

□ Japan: Japan Post

Mail bar code orientation

The Open eVision Mail Bar code Reader is designed to be used in mail-handling machines. As
such it is optimized to handle the 4 main orientations you encounter in such machines:

□ No Rotation: The mail barcode is horizontal and read from left to right

□ Rotated 90° to the right: The mail barcode is vertical and read from top to bottom

□ Rotated 90° to the left: The mail barcode is vertical and read from bottom to top

□ Rotated 180°: The mail barcode is upside down, horizontal, and read from right to left.

For each of these orientations, an additional rotation of -3 to 3 degrees is allowed.

Checksum

Some symbologies specify the presence of a checksum in the bar code data.

This checksum is an additional character computed from all others encoded characters. It
enables the reader to check the decoded character string coherence.

● The Mail Bar code Reader allows the user to verify or not the checksum for all enabled
symbologies.

● By default, checksum is not controlled.

● To enable or disable checksum verification for all enabled symbologies, set the
ValidateChecksum property.

Reading the mail bar codes in an image

To read all the mail barcodes in a given image:

1. Create an EMailBarcodeReader object.

2. Optionally, select the relevant symbologies using the ExpectedSymbologies property.

By default, Mail Bar code Reader will consider all supported symbologies.

3. Optionally, select the relevant orientations using the ExpectedOrientations property.

By default, Mail Bar code Reader will test all supported orientations.

4. Call Read on the source image or ROI.

Each mail bar code detected is returned as an EMailBarcode object.

5. Each EMailBarcode objects contains the following information:

□ The decoded string, using the Text property.

Open eVision User Guide PART V Code Identification Tools

215

□ The decoded string, split up in semantic parts, using the ComponentStrings property.
□ The bar code orientation, using the Orientation property.
□ The bar code position, using the Position property.

US Intelligent Mail bar code with highlighted position and decoded information

Advanced parameters

The advanced parameters of the EMailBarcodeReader object are:

● EnableDottedBarcodes activates the support for dotted barcodes (barcodes whose bars are
printed with dots).

By default, this property is set to false.

Dotted Mail Barcode

● EnableClutteredBarcodes activates the support for cluttered barcodes (barcodes in which
some bars are connected).

By default, this property is set to true.

Cluttered Mail Barcode

● ValidateChecksum activates the validation of the bar codes checksums, if present.

By default, this property is set to false.

Open eVision User Guide PART V Code Identification Tools

216

2. EasyMatrixCode - Reading
Matrix Codes

2.1. Specifications
Reference | Code Snippets

ECC 200, 26x26 cells data matrix code (left) and finder pattern (right)

In a single read operation, EasyMatrixCode locates, unscrambles, decodes, reads and grades the
quality of grayscale 2D data matrix codes of any size, contrast, location and orientation (even
viewed from the back on a transparent medium), providing they meet the following
specifications:

□ Minimum cell (= module) size: 3x3 pixels

□ Maximum stretching ratio (ratio between cell width and height): 2

□ Minimum quiet zone (blank zone around the matrix code) width: 3 pixels

Data Matrix Code Definition

● A data matrix code is a two-dimensional rectangular array of black and white cells which
conveys a string of characters (digits, letters and special characters).

□ It is encoded to achieve maximum packing.

□ Each cell corresponds to a bit of information.

□ Additional redundant bits allow error correction for robust reading of degraded symbols.

Open eVision User Guide PART V Code Identification Tools

217

● A data matrix code is located using the Finder pattern:

□ The bottom and left edges of a Data Matrix code contain only black cells.

□ The top and right edges have alternating cells.

● A data matrix code is characterized by:

□ Its logical size (number of cells).

□ Its encoding type: ECC 000 (odd symbol sizes, deprecated) or ECC 200 (even symbol sizes)..

NOTE
The data matrix code definition is provided by ISO/IEC and approved as
standard ISO/IEC 16022.

2.2. EasyMatrixCode vs EasyMatrixCode2
Starting with release 2.5, Open eVision introduces a new data matrix code reading library, named
EasyMatrixCode2.

Compared to EasyMatrixCode, it offers the following benefits:

□ Ability to read multiple data matrix codes in an image.

□ Support for asynchronous processing.

□ Improved consistency of reading and grading results.

□ Improved consistency of processing time.

□ Improved handling of deformed data matrix codes.

2.3. Workflow
Reference | Code Snippets

Open eVision User Guide PART V Code Identification Tools

218

2.4. Reading a Matrix Code
Reference | Code Snippets

You can read the matrix code in an image automatically, using the Read method.

This method returns an EMatrixCode instance that contains the following information about
the found data matrix code:

□ Its decoded string,

□ Its position in the image,

□ Its logical size,

□ Its encoding type,

□ Its grading results,

□ Methods to draw the data matrix code on the source image.

2.5. Learning a Matrix Code
Reference | Code Snippets

Open eVision User Guide PART V Code Identification Tools

219

To search for specific features and speed up your processing, learn a Matrix code model.

Workflow

1. Load the image of the matrix code you want to learn.

2. Learn the model:

□ Use the Learn method with Contrast, Family, Flipping, Logical Size parameters.

□ If you need to learn several matrix codes, use LearnMore and pass additional sample
images.

□ Call Learn to replace EMatrixCodeReader parameters (calling Learn several times does
not accumulate results, while LearnMore does).

3. Tune search parameters to be efficient and either:

□ Read only matrix codes that match a sample matrix code,

□ Or read only matrix codes that have the same properties (Contrast, Family, Flipping,
Logical Size) as the learned one,

□ Or disregard a search parameter of the learned matrix code SetLearnMaskElement, for
example to read only unflipped matrix codes. Just remove the default parameters, then
add new ones.

4. Ask EMatrixCodeReader to decode the supplied image.

5. Display the decoded string.

6. Save the state of the reader object using Save.

Open eVision User Guide PART V Code Identification Tools

220

Restoring the state of an EMatrixCodeReader

To restore the state of an EMatrixCodeReader and use it to read a matrix code:

1. Load an image.

2. Restore the reader state from the given file using Load.

3. Read the image.

4. Display the decoded string.

2.6. Computing the Print Quality
Reference | Code Snippets

To compute the print quality indicators as defined by BC11, ISO 15415, ISO/IEC TR 29158
(formerly known as AIM DPM-1-2006) and SEMI T10-0701 standards, retrieve the grades with the
GetIso15415GradingParameters, GetIso29158GradingParameters and
GetSemiT10GradingParameters accessors of the EMatrixCode class.

NOTE
The print quality of the matrix codes is computed during the Read operation,
only if the ComputeGrading parameter is set to true.

2.7. Using GS1 Data Matrix Codes
Reference | Code Snippets

EasyMatrixCode is able to find and decode GS1-compliant data matrix codes.

The GS1 standard adds semantic identifiers to the contents of a data matrix code. These
identifiers are interpreted in an easy and consistent way.

The structure of GS1-compliant content is as follows:

]d2[GS1]{Id1}{Value1}[GS1]{Id2}{Value2}…

where:

□ “]d2” is the string identifying a GS1-compliant stream,

□ [GS1] is the GS1 escape character (0x1d),

□ {Id} is an application identifier,

□ {Value} is the value associated to that identifier.

Open eVision User Guide PART V Code Identification Tools

221

Example

The string:

]d2[GS1]11180112[GS1]15190101

is interpreted as follows:

□ It contains two GS1 parts: 11180112 and 15190101.

□ The first (11180112) is composed of the identifier 11 and the value 180112, meaning that
the product has a production date (the meaning of identifier 11) of January 12th, 2018.

□ The second (15190101) is composed of the identifier 15 and the value 190101, meaning that
the product has a best before date (the meaning of identifier 15) of January 1st, 2019.

TIP
For more information, see https://www.gs1.org/

Open eVision User Guide PART V Code Identification Tools

https://www.gs1.org/

222

3. EasyMatrixCode2 - Reading
Matrix Codes (New)

3.1. Specifications
Reference | Code Snippets

ECC 200, 26x26 cells data matrix code (left) and finder pattern (right)

In a single read operation, EasyMatrixCode2 locates, unscrambles, decodes, reads and grades
the quality of grayscale 2D data matrix codes of any size, contrast, location and orientation (even
viewed from the back on a transparent medium), providing they meet the following
specifications:

□ Minimum cell (= module) size: 3x3 pixels

□ Minimum quiet zone (blank zone around the matrix code) width: 1 pixel

All the functionality of EasyMatrixCode2 is available for testing in Open eVision Studio, except
for the StopProcess method (for asynchronous processing).

NOTE
The relevant classes of the EasyMatrixCode2 library are stored in the name
space “EasyMatrixCode2”.

Open eVision User Guide PART V Code Identification Tools

223

Data Matrix Code Definition

● A data matrix code is a two-dimensional rectangular array of black and white cells which
conveys a string of characters (digits, letters and special characters).

□ It is encoded to achieve maximum packing.

□ Each cell corresponds to a bit of information.

□ Additional redundant bits allow error correction for robust reading of degraded symbols.

● A data matrix code is located using the Finder pattern:

□ The bottom and left edges of a Data Matrix code contain only black cells.

□ The top and right edges have alternating cells.

● A data matrix code is characterized by:

□ Its logical size (number of cells).

□ Its encoding type: ECC 000 (odd symbol sizes, deprecated) or ECC 200 (even symbol sizes)..

NOTE
The data matrix code definition is provided by ISO/IEC and approved as
standard ISO/IEC 16022.

3.2. EasyMatrixCode vs EasyMatrixCode2
Starting with release 2.5, Open eVision introduces a new data matrix code reading library, named
EasyMatrixCode2.

Compared to EasyMatrixCode, it offers the following benefits:

□ Ability to read multiple data matrix codes in an image.

□ Support for asynchronous processing.

□ Improved consistency of reading and grading results.

□ Improved consistency of processing time.

□ Improved handling of deformed data matrix codes.

Open eVision User Guide PART V Code Identification Tools

224

3.3. Workflow
Reference | Code Snippets

1. Load the image.

2. Read the data matrix codes in the image using EMatrixCodeReader.Read().

3. Loop on found data matrix codes.

4. Display the decoded text.

3.4. Reading a Matrix Code
Reference | Code Snippets | dedicated code snippet: Reading Matrix Codes from an Image

You can read the matrix code in an image automatically as follows:

a. Create an EMatrixCodeReader object.

b. Call the Read method to detect and decode the matrix codes in the image.

c. Call the GetReadResults accessor to retrieve the decoded EMatrixCode instances.

The EMatrixCode instances contain the following information for each found data matrix code:

□ Its decoded string,

□ Its position in the image,

□ Its logical size,

□ Its encoding type,

□ Its grading results,

□ Methods to draw the data matrix code on the source image.

Open eVision User Guide PART V Code Identification Tools

225

3.5. Learning a Matrix Code
Reference | Code Snippets | dedicated code snippet: Reading with Prior Learning

To improve the processing times of the Read method, learn a matrix code model from
representative images as follows:

1. Load the image of the matrix code you want to learn from.

2. Call the Learn method to learn from the image.

3. Repeat with additional images if necessary.

4. Save the EMatrixCodeReader state to the disk with the Save method.

The Learn method re-orders the internal processing structure used to detect and decode the
matrix codes in such a way that the learned codes are found faster.

TIP
The user-defined advanced parameters (MaxNumCodes, Timeout, ReadMode
and ComputeGrading) are not affected by the Learn method .

If the Learn method is not able to detect any code in the image, it throws an exception.

TIP
The internal processing structure is not affected in this situation.

Restoring the state of an EMatrixCodeReader

● To restore a previously saved EMatrixCodeReader state , call the Load method.

● To restore the default state of an EMatrixCodeReader instance, call the ResetLearning
method.

3.6. Computing the Print Quality
Reference | Code Snippets | dedicated code snippet: Inspecting Print Quality Grades

To compute the print quality indicators as defined by BC11, ISO 15415, ISO/IEC TR 29158
(formerly known as AIM DPM-1-2006) and SEMI T10-0701 standards, retrieve the grades with the
GetIso15415GradingParameters, GetIso29158GradingParameters and
GetSemiT10GradingParameters accessors of the EMatrixCode class.

NOTE
The print quality of the matrix codes is computed during the Read operation,
only if the ComputeGrading parameter is set to true.

Open eVision User Guide PART V Code Identification Tools

226

3.7. Using GS1 Data Matrix Codes
Reference | Code Snippets

EasyMatrixCode2 is able to find and decode GS1-compliant data matrix codes.

The GS1 standard adds semantic identifiers to the contents of a data matrix code. These
identifiers are interpreted in an easy and consistent way.

The structure of GS1-compliant content is as follows:

]d2[GS1]{Id1}{Value1}[GS1]{Id2}{Value2}…

where:

□ “]d2” is the string identifying a GS1-compliant stream,

□ [GS1] is the GS1 escape character (0x1d),

□ {Id} is an application identifier,

□ {Value} is the value associated to that identifier.

Example

The string:

]d2[GS1]11180112[GS1]15190101

is interpreted as follows:

□ It contains two GS1 parts: 11180112 and 15190101.

□ The first (11180112) is composed of the identifier 11 and the value 180112, meaning that
the product has a production date (the meaning of identifier 11) of January 12th, 2018.

□ The second (15190101) is composed of the identifier 15 and the value 190101, meaning that
the product has a best before date (the meaning of identifier 15) of January 1st, 2019.

TIP
For more information, see https://www.gs1.org/

3.8. Asynchronous Processing
Reference | Code Snippets

Open eVision User Guide PART V Code Identification Tools

https://www.gs1.org/

227

EasyMatrixCode2 supports asynchronous processing. This means that you can launch multiple
processing threads in parallel, each reading the matrix codes in its own image.

From the main thread, to manually stop the Read method in any of these processing threads at
any time, use the StopProcess method.

When you manually stop the Read method:

□ The search for matrix codes stops immediately, whether it has found matrix codes in the
image or not.

□ To retrieve all matrix codes found before the manual stop, use the GetReadResults
accessor.

3.9. Advanced Parameters
Reference | Code Snippets

Tune the following parameters to optimize the performance of EasyMatrixCode2.

● The MaxNumCodes parameter:

□ Tells the EMatrixCode2Reader the number of codes that can be in the image.

□ Affects the computational time of the Read method.

□ Is set to 1 by default. This means that the EMatrixCodeReader only detects a single
matrix code per image.

□ If set to 0, tells the EMatrixCodeReader to find as many codes as possible in the image.

● The Timeout parameter:

□ Limits the amount of time that the Read and Learn methods may take to process a single
image.

□ Is defined in microseconds.

□ Is set, by default, to a value that exceeds one hour.

● The ReadMode parameter affects the behavior of the Read method:

□ The setting EReadMode_Speed results in the shortest processing times and the Read
method stops as soon as one of the following is true:
- The method has found MaxNumCodes codes.
- The method reaches the Timeout time limit.
- The Read process is completely finished.

□ The setting EReadMode_Quality results in the best grading results and the Read method
keeps trying to improve its detection until one of the following is true:
- The method reaches the Timeout time limit.
- The Read process is completely finished.

Open eVision User Guide PART V Code Identification Tools

228

● The ComputeGrading parameter:

□ Determines if the Read method computes the grading properties of the EMatrixCode
object.

□ Is set to False by default.

After the tuning:

□ Use the Save method to store the state of the EMatrixCodeReader on the disk.

□ Use the Load method, at any time, to restore the saved state.

TIP
The Save and Load methods also store the effects of Learning.

Open eVision User Guide PART V Code Identification Tools

229

4. EasyQRCode - Reading QR
Codes

EasyQRCode detects QR (Quick Response) codes in an image, decodes them, and returns their
data.

Error detection and correction algorithms ensure that poorly-printed or distorted QR codes can
still be read correctly.

Open eVision User Guide PART V Code Identification Tools

230

W orkflow

QR code definition

A QR code is a square array of dark and light dots. One dot (or "module") represents one bit of
information.

QR codes contain various types of data and can be different models, versions, and levels. They
always contain a message, metadata about alignment, size, format, and error correction bits.
They comply with the international standard ISO/IEC 18004 (1, 2 and 2005).

QR code structure

The QR code symbol consists of an encoding region, containing data and error correction
codewords, and of function patterns, containing symbol metadata and position data.

A QR code must be structured with the following elements:
n Quiet zone: blank margin around the QR code
n Finder patterns: recognizable zones identifying a QR code
n Extension patterns: markers for the alignment of the QR code (model 1)
n Alignment patterns: markers for the alignment of the QR code (models 2 and 2005)
n Timing Patterns: data giving the module size (in pixels)
n Format information: zones providing the QR code level

Open eVision User Guide PART V Code Identification Tools

231

n Version information: data giving the QR code size, for instance 25 x 25 modules (models 2
and 2005)

n Data contents and error correction codewords: the primary information carried by the
symbol, with additional information for error correction

Variants of this structure exist, according to the model, format, or version of the QR code. For
instance, model 1 QR codes do not feature alignment patterns but extension patterns. Micro QR
codes include only one finder pattern, and no alignment pattern. EasyQRCode can read all of
them.

Structure of a model 1 QR code symbol

Structure of a QR code 2005 symbol

Structure of a Micro QR code symbol

Open eVision User Guide PART V Code Identification Tools

232

Data types

The QR code data can be any mix of these types:
n Numeric data (0-9)
n Alphanumeric data (0-9, A-Z, /, $, %, etc.)
n Byte data
n Kanji characters

Models (Standards)

n Model 1: original QR code international standard, with versions ranging from 1 to 14.
Note that the "version" of a QR code is the symbol size (in number of modules). It does not
relate to the version of the standard, which is called the "model".

n Model 2: improvement of model 1. It provides versions from 1 to 40. It defines alignment
patterns to improve reading of distorted QR codes, or QR codes printed on curved surfaces.

n Model 2005: improvement of model 2, including white-on-black QR codes, and mirror symbol
orientation.

n Micro QR codes: (not yet supported) smaller QR codes, from version M1 to version M4. They
have been introduced to save printing space.

Versions (Symbol Size)

n QR codes: from version 1 (21 x 21 modules) to version 40 (177 x 177 modules), with an
increment of +4 x +4 modules (version 2: 25 x 25 modules, version 3: 29 x 29 modules, ...,
version 39: 173 x 173 modules).

n Micro QR codes: (not yet supported) version M1 (11 x 11 modules), version M2 (13 x
13 modules), version M3 (15 x 15 modules), version M4 (17 x 17 modules).

Examples of QR codes
From left to right:

Micro QR code, version M3, 15 x 15 modules,
Model 2 QR code, version 4, 33 x 33 modules, 67-114 characters,

Model 2 QR code, version 40, 177 x 177 modules, 1852-4296 characters

Levels (Error Correction)

QR codes contain error correction data. The standard offers the following levels of error
correction:

Open eVision User Guide PART V Code Identification Tools

233

n L: (low) about 7% of codewords can be restored
n M: (medium) 15%
n Q: (quality) 25%
n H: (high) 30% (not available for Micro QR codes)

QR code geometry

When the QR code reader finds an array of dots that could match a QR code, it returns the
"geometry" of this QR code candidate.

A QR code geometry is a set of points. It contains the coordinates of the corners of the QR code
quadrilateral (bottom left, top left, top right, bottom right), and the coordinates of the finder
pattern centers (bottom left, top left, top right).

QR code geometry

Read a QR code

Reading a QR code returns information about QR codes for which detection and decoding were
successful.

This is equivalent to detecting and decoding all QR codes in the given search field (see advanced
features).

Advanced features

Detect a QR code

1. Set a search field on an EROIBW8 image or tune the parameters to restrict the numbers of
operations to process.

2. The QR code reader scans the image and searches for 3 finder patterns that could match a QR
code, with the following requirements:
n Minimum quiet zone (blank zone around the QR code) width: 3 pixels.
n Minimum module size: 3 x 3 pixels.

Open eVision User Guide PART V Code Identification Tools

234

n Minimum isotropy: 0.5.
n Maximum corner deformation: 15° (corner angles can range from 75° to 105°).

3. The reader returns QR code candidates, or the result of a detection, as a vector of geometries.

decode a QR code

1. The QR code reader decodes a QR candidate and returns the QR code: model, version, level,
geometry and decoded stream of data.

The decoded stream class consists of a coding mode (basic, FNC1/GS1, or FNC1/AIM), and an
application indicator (if the coding mode is FNC1/AIM, otherwise 0). The decoded data can be
accessed from each part of the decoded stream, according to its encoding (numeric,
alphanumeric, byte, or Kanji). You can also get the raw bit stream (the bit data after
unmasking and error correction, but before decoding as a vector of bytes).

2. The reader can report the amount of unused error correction.
n Close to 1, very few errors were corrected when decoding the data. The decoding is highly

reliable, and the QR code is of good quality.
n Close to 0, many errors were corrected when decoding the data. The decoding is reliable,

but the QR code quality is poor.
n -1, error correction failed. Decoding was not performed.

Tuning parameters

Scan precision: You can change the scan precision to scan the search field with a fine
(recommended for small QR codes), or coarse (recommended on medium to large QR codes)
precision.

Minimum score: The QR code reader searches for this QR code finder pattern:

A perfect match returns a pattern finder score of 1.
Less accurate matches return lower scores.
The minimum score allowed by default is 0.65 - you can tune this.

Minimum isotropy: The isotropy of a QR code represents its rectangular deformation.
Perfectly square QR codes have an isotropy of 1 (short side divided by long side, whether the
rectangle is vertical or horizontal).
EasyQRCode can detect rectangle QR codes with an isotropy down to 0.5. The default minimum
isotropy is 0.8, it can be tuned from 0 to 1.

Square and rectangular QR codes (isotropy = 1, 0.5, and 0.5 from left to right)

Open eVision User Guide PART V Code Identification Tools

235

Model and version: The QR code reader searches for QR codes of all models, and all versions.
You can shorten the process by specifying the QR code model(s) and a range of versions (from 1
to 40) to be searched for.

Open eVision User Guide PART V Code Identification Tools

236

Open eVision User Guide

PART VI
3D TOOLS

237

1. Understanding 3D Concepts

1.1. Basic Concepts
Easy3D

Easy3D is a set of tools for solving computer vision problem using 3D acquisition and processing.
Easy3D supports laser line triangulation for fast and precise acquisition of depth maps.

TIP
Depth maps are gray scale images where each pixel represents a
displacement in the third dimension. Because of the acquisition procedure,
they are usually not dimensionally correct. So, while Open eVision 2D image
operators are compatible with depth maps, you should not use them for
processes requiring precise measurements.

Easy3D provides a calibration tool to generate corrected, metric point clouds and meshes from
depth maps. Most 3D operators work on point clouds or meshes. The included export functions
to the standard PCD file format allows integration with other 3D tools.

Easy3D also allows the computation of ZMaps. A ZMap is the projection of a point cloud on a
given reference plane. Like depth maps, ZMaps are gray scale images, but are also dimensionally
correct. As such, they can be used with all Open eVision 2D functions.

All the Easy3D tools are placed in the Easy3D namespace.

3D representation

Open eVision uses a right-handed cartesian 3D coordinate system. In this system, each 3D point
is represented by its 3 coordinates X, Y and Z.

Open eVision User Guide PART VI 3D Tools

238

Open eVision provides different containers to store 3D objects :

□ Depth maps

□ Point clouds

□ Meshes

□ ZMaps

Depth map

A depth map is a way to represent a 3D object using a 2D grayscale image where each pixel (u, v)
in the image contains a third coordinate as its gray value.

The grayscale values of a depth map do not necessarily represent a Z metric coordinate. In the
context of a laser triangulation setup, these values represent the displacement of the laser line
profile, which is not the physical height of the 3D surface.

A depth map contains a gray scale image coded on 8, 16 or 32 bits per pixel.

□ One specific gray value, called the undefined value, is reserved for the representation of
invalid pixels.

□ By default, this value is 0 for integer depth map types (EDepthMap8 and EDepthMap16).

□ By default, this value is the lowest float value (-3.402823 e+38) for the 32 bits floating point
depth map types (EDepthMap32f).

The calibration process aims to convert the depth map representation to real, metric 3D
representations such as point clouds or meshes.

Point cloud

A point cloud is a set of 3D points (x, y and z coordinates) representing the scanned object in the
world metric space.

Open eVision User Guide PART VI 3D Tools

239

In addition to the calibration process included in Easy3D, point clouds can be produced using
various 3D acquisition techniques, like stereo reconstruction or time of flight cameras.

Mesh

A Mesh is a geometric representation of a 3D surface, a set of connected 3D points.

In an EMesh object, 3 points are connected to define a triangle.

TIP
This kind of 3D representation is also called a "triangle mesh".

A point cloud and the corresponding mesh (displayed with Open eVision E3DViewer)

An EMesh object contains a point cloud and the indexes of the vertices of all mesh triangles.

EMesh uses a metric space representation that can be generated from a depth map and that can
be used to produce a ZMap.

ZMap

ZMaps are another representation for 3D data.

□ They are grayscale images like depth maps but represent metric and corrected 3D points.

□ They are convenient representations for measurement and matching.

Open eVision User Guide PART VI 3D Tools

240

□ They are compatible with most of the 2D processing functions.

ZMaps are generated by the projection of a point cloud or a mesh onto an arbitrary 3D plane.

A depth map and the corresponding ZMap

A ZMap contains an image in which each pixel value represents a positive distance from the
reference plane.

TIP
Use the method AsEImage() to obtain a reference to the contained image.

A ZMap also contains the following information:

□ The transformation from the World coordinates to the ZMap coordinates.

□ The size of a pixel, called the "resolution".

TIP
Like in a depth map, a specific pixel value is reserved to represent undefined
pixels. To get this pixel value, use the method GetUndefinedValue().

1.2. Laser Triangulation
In a laser-line triangulation system, a laser line is projected on the object to measure. A camera
is looking at the laser line from a different point of view. The line deformation observed by the
camera contains the shape information of the measured object.

Open eVision User Guide PART VI 3D Tools

241

The scanning of the object consists in moving it under the laser line and recording multiple
images.

From the scanning you can reconstruct its 3D shape.

Occlusions

Using the laser triangulation method, the laser may be unable to reach some parts of the object
or the camera may be unable to view them. This is called occlusion.

□ On the left illustration, the camera does not see the bottom of the hole, inducing camera
occlusion.

□ On the right illustration, the laser does not reach the bottom of the hole, inducing laser
occlusion.

TIP
You can limit or avoid occlusions by using advanced scanning methods, for
example by using two cameras or two lasers.

Open eVision User Guide PART VI 3D Tools

242

1.3. The Laser Line 3D Acquisition
Pipeline
The 3D acquisition pipeline starts with the acquisition of a laser line profile and ends up with the
point cloud, mesh or ZMap.

The source material for 3D processing is the depth map, coming from a Coaxlink Quad 3D-LLE or
generated from a list of images.

3 types of depth map are available, one for each different pixel coding scheme (8, 16 or 32 bits).

The generation of a depth map, from a hardware or a software source

Some processing methods can use the depth map directly, but most measurement and matching
processes need metric, distortion-free representations. Calibration of the laser triangulation
setup is therefore required. Calibration is used to turn the depth map into a point cloud or mesh
expressed in a metric space that we call “world space”.

The generation of an object based calibration model, from a scan of the reference object

Open eVision User Guide PART VI 3D Tools

243

A point cloud is a list of 3D points, expressed in a world space coordinate system. The point
cloud can be projected on a plane, producing a ZMap, which is a convenient and effective
representation for 2D processing with a metric scale.

The workflow from the depth map to the ZMap

The following sections describe the classes and methods useful for a 3D workflow. The Use Case -
Measuring a Remote Controller goes through this processing pipeline.

Open eVision User Guide PART VI 3D Tools

244

2. Object-Based Calibration
Guidelines

Easy3D calibration is a powerful process that uses a single scan of a calibration object to
calibrate a laser triangulation setup.

1. The calibration process generates a calibration model.

2. Easy3D uses this calibration model to transform the laser profile scans (or depth maps) into
metric, distortion free point clouds.

● The calibration model includes all the geometric parameters required for this transformation:

□ The relative position of the laser and the camera.

□ The projection and the distortion model of the camera.

□ The relative motion of the object.

This document explains all the steps involved in the calibration process, from the design of the
calibration object to the Open eVision API.

Open eVision User Guide PART VI 3D Tools

245

The calibration object

The general principle of Easy3D calibration is to match a scan of a known calibration object to
its true geometric dimensions.

The double pyramid

TIP
In Open eVision 2.7 the “double truncated pyramid” calibration object is
recommended over the "double pyramid" model.

The dimensions of the “double pyramid” calibration object along the X-, Y- and Z-axes are named
A, B and C respectively.

The "double pyramid" calibration model

Open eVision User Guide PART VI 3D Tools

246

The truncated double pyramid

● The dimensions of the “double truncated pyramid” calibration object the X-, Y- and Z-axes are
named A, B and C respectively.

● The design of the double truncated pyramid must follow the ratios given in the illustration
below.

The "double truncated pyramid" calibration model (recommended)

● For example, the provided CAD files of the calibration object use A = 4 cm, B = 6 cm and
C = 1 cm. The Calibration Object Size, required for the calibration process, are the values A, B
and C.

The "double truncated pyramid" calibration model with A = 4, B = 6 and C = 1

Open eVision User Guide PART VI 3D Tools

247

Building a calibration object

Overall dimensions

● Manufacture a calibration object that fits the working area of the project.

● For example, if the project targets the inspection of a PCB (a printed circuit board as
illustrated), design your calibration object with:

a. The dimension A or B (it does not matter) similar to the width of the PCB.

b. The height (C) of only several millimeters.

TIP
This is not a strict requirement, if the scanned object is slightly larger or
smaller than the calibration object, the calibration process is still valid.

A PCB scanning setup with the associated calibration object
The calibration object dimensions (A, B and C) match the width and the height of the PCB

TIP
There is no constraint on the orientation of the calibration object during the
scan:
- The X-axis can be aligned with the motion direction or with the laser line.
- After the calibration process, the origin and axes of the 3D calibrated point
cloud follow the conventions of the reference design.

A calibrated point cloud with the origin and the axis of the coordinates system
The 3D origin is located at the external corner of the higher pyramid

Open eVision User Guide PART VI 3D Tools

248

Precision and tolerance

The relevant dimensions of the calibration object are the width, the length and the height of the
pyramids (called A, B and C in the illustrations).

□ The relative dimensions to A, B and C (B/2, A/4…) are important and you must execute
them with the same precision.

□ The dimensional tolerances are related to the overall expected precision.
If you want to achieve measurements on the point cloud with a precision of 0.01 mm, the
manufacturing of the calibration object must have the same precision.

□ These tolerances only apply to the pyramids geometry, the calibration process does not
use the dimensions of the support.

□ The planar surfaces must be flat between 2 parallel planes separated by the target
tolerance, as illustrated.

The tolerance of the pyramids sides is defined as the smallest distance between two
parallel planes that contain the entire surface

Open eVision User Guide PART VI 3D Tools

249

Material and surface finishing

TIP
The goal is to obtain the laser profile as thinnest as possible over the whole
object surface with the largest reflected energy.

The build material and the surface finishing are also important and must have:

□ A good reflectance, with diffuse reflection (no specular reflections).

□ No transmission and limited diffusion inside the material.

TIP
You can obtain a good surface finishing using aluminum material and
blasting. Blasting gives the surfaces a satin gray finish.

2 aluminum machined calibration objects with a micro-abrasive blasting surface treatment

3D CAD models

The calibration object models are available in various 3D CAD format like STEP, OBJ and STL.

Download these files from the Open eVision download area in the Additional Resources section
(www.euresys.com/Support).

Download the calibration object models

Open eVision User Guide PART VI 3D Tools

https://www.euresys.com/Support/Software,-drivers-and-documentation?Series=f97da39d-3c25-404c-aee7-73de1d1867fc

250

Scanning the calibration object

● The scan of the calibration object produces a depth map.

● To ensure a correct detection of the calibration object and a precise calibration model, you
must fulfill the following criteria:

□ All faces of the calibration object must be visible on the depth map (this affects the
orientation of both the camera and the laser).

□ No other object can be higher than the calibration object in the depth map.

□ The depth map must have at least 200 x 200 pixels.

□ The calibration object must cover at least 50% of the defined pixels of the depth map.

● Examples of bad scans:

Missing pixels on the side faces

Not enough lines

The calibration object is too small on the depth map

Open eVision User Guide PART VI 3D Tools

251

Calibration with Easy3D Studio

Easy3D Studio is a free application that helps you to set up a laser triangulation scanner. You
can easily set the acquisition parameters of the Coaxlink Quad 3D LLE frame grabber and
perform the calibration.

The DepthMap panel

This panel displays:

□ The scanned image.

□ The acquisition parameters on the right side.

Open eVision User Guide PART VI 3D Tools

252

The PointCloud panel

This panel displays:

□ The depth map of the scanned image.

□ The object-based calibration parameters on the right side.

□ The Calibrate button computes the calibration model using the last scanned depth map.

□ When the calibration model is ready, the depth map is transformed into a point cloud.

□ You can export the calibration model for later use.

Required parameters

The calibration based on a calibration object requires several parameters:

● Set the Object Type as DoublePyramid or TruncatedDoublePyramid.

□ The DoublePyramid object type is deprecated and not recommended.

● Set the Object Size to represent the real size of the calibration object.

□ If your calibration object has a base of 20 mm by 30 mm and a height of 5 mm, set these
values in the Object Size A/B/C parameters.

□ The point cloud after the calibration uses coordinates in millimeters.

● Set the parameter Precision Vs Speed Trade Off to define the time spent on the calibration
process.

□ The 3 possible values are Fast, Balanced and Precise.

Open eVision User Guide PART VI 3D Tools

253

● Set the parameter Passes count to define the number of iterations used to refine the
calibration model.

□ Use 1 for the fastest processing.

□ Use up to 3 for slower but potentially better calibration model.

Using the calibration with Open eVision

● The class EObjectBasedCalibrationModel is the container for the object based calibration
model.

● The class EObjectBasedCalibrationGenerator performs the computation of such a
model using an EDepthMap8/16/32f as input.

The following code snippet illustrates the calculation of a calibration model:

// Initialize a depth map from an image of a double truncated pyramid
EDepthMap16 depth_map;
depth_map.LoadImage("ctx1 calibration object.png"); // from Easy3D sample images
depth_map.SetZResolution(1.f / (1 << 5)); // 11.5 fixed point pixel format

// Initialize the calibration generator
EObjectBasedCalibrationGenerator calib_generator;
calib_generator.SetCalibrationObjectType(EObjectBasedCalibrationType_
TruncatedDoublePyramid);
calib_generator.SetCalibrationObjectSize(40.f, 60.f, 10.f); // Size of the calibration
object

// Compute the calibration model
EObjectBasedCalibrationModel calib_model;
calib_model = calib_generator.Compute(depth_map);
float error = calib_model.GetCalibrationError();

// Save the calibration model
calib_model.Save("calib.model");

The following code snippet illustrates the use of a saved calibration model:

// Load the calibration model
EObjectBasedCalibrationModel calib_model;
calib_model.Load("calib.model");

// Load a depth map (captured in the same context)
EDepthMap16 depth_map;
depth_map.LoadImage("ctx1 shapes.png");
depth_map.SetZResolution(1.f / (1 << 5));

// Initialize a converter, use the loaded model
EDepthMapToPointCloudConverter converter;
converter.SetCalibrationModel(calib_model);

// Convert the depth map to a metric point cloud and save it
EPointCloud point_cloud;
converter.Convert(depth_map, point_cloud);
point_cloud.SavePCD("point_cloud.pcd");

To experiment and learn about the Easy3D calibration, a C++ sample called 3DCalibration is
provided with the source code in the Open eVision distribution.

Open eVision User Guide PART VI 3D Tools

254

3. Easy3D - Using 3D Toolset

3.1. Laser Line Extraction
A Laser Line Extraction (LLE) algorithm is required to create a depth map from a sequence of
profiles of the object captured by the camera sensor.

The objective of an LLE algorithm is to measure the line position along a vertical profile in every
column of a sensor frame, within a user-defined region of interest (ROI).

For every step of the object position, the detection analyzes each column of a frame individually
and produces a row of output positions, stored as gray values.

The figure below illustrates a depth map generation.

Open eVision User Guide PART VI 3D Tools

255

The ELaserLineExtractor class provides the laser line extraction functionality in Open
eVision. It implements several algorithms to extract the laser line (see below for more details):

□ Maximum detection returns the position of the pixel of maximum intensity. It’s the
fastest method but it doesn’t support sub-pixel precision.

□ Peak detection approach detects local maxima. If several maxima are detected, the one
with the highest intensity is returned. The position is returned with sub-pixel precision.

□ Center of gravity algorithm is suitable when the laser line is spread over several pixels.
The position is returned with sub-pixel precision.

TIP
You can also set a threshold to exclude pixels with low intensity.

The line position returned by the laser line extraction algorithms is relative to the bottom of the
region of interest. So, values in the depth map range from 0 (bottom of the ROI) to the height of
the ROI.

Laser line extraction methods

Maximum detection

The maximum detection algorithm analyzes all the pixels in a ROI column to determine the one
with the maximum intensity. The figure below shows the laser line position on a given ROI
column.

Maximum detection on a ROI profile

Open eVision User Guide PART VI 3D Tools

256

We also recommend to include in the processing chain:

□ A low-pass filter to reduce the high frequency variations in the image.

□ A threshold to eliminate the background noise from the sensor.

Peak detection

The peak detection algorithm relies on a discrete simplification of the first derivative function.

The f '(x) outputs the slope of a given f (x) along the x.

f (x) and f '(x) plots

We compute the line position by detecting where f ’(x) changes its signal based on the two-
point form line equation:

where (x1, y1) and (x2, y2) are two points on the line with x2≠x1, we obtain the following
equation for y = 0:

Open eVision User Guide PART VI 3D Tools

257

Center of gravity

The center of gravity (CoG) method uses an algorithm that calculates the center of mass of an
image object. Also know as "centroid of plane figures", the CoG is obtained by the following
equations:

where and are the coordinates of the CoG and a is the pixel intensity along the x and y
axes.

Center of gravity on a ROI profile

Low-pass linear filter

Optionally, you can apply a low-pass linear filter in front of the line extraction in order to reduce
noise and high frequencies in the image.

The low-pass filter applies a convolution operator on a 1 x 3 sliding window. The 3 elements of
the convolution kernel (A, B and C) are configurable, accepting any positive integer. The figure
below illustrates the positioning of the convolution kernel elements within a given ROI.

You can activate the low-pass filter for any of the laser line extraction methods with the method
ELaserLineExtractor::SetEnableSmoothing(true/false). Parameters A, B and C are set
with ELaserLineExtractor::SetSmoothingParameters(A, B, C).

Open eVision User Guide PART VI 3D Tools

258

3.2. Calibration
The calibration is used to apply the transformation between a depth map and a point cloud or a
mesh.

There are 3 ways to setup this conversion:

□ Apply a simple scale on the pixel coordinates of the depth map
(EScaleCalibrationModel class)

□ Use the explicit geometric model (EExplicitGeometricCalibrationModel class)

□ Use the object-based calibration approach (EObjectBasedCalibrationModel class)

These models share the same base class ECalibrationModel and exposes the method Apply
(), which is used to apply the conversion between a depth map pixel and a 3D point. It takes as
input the coordinates of one point in a depth map and it returns the coordinates of the
corresponding point in the 3D space.

The method Apply is not aware of the possible mirroring of the corresponding depth map and
cannot make use of EDepthMap::AxisSystemType (see below). If necessary (when the
corresponding depth map is vertically mirrored) the y coordinates should be flipped before
calling the Apply method.

□ The class EDepthMapToPointCloudConverter generates a point cloud from a depth
map, using one of the calibration models.

□ The class EDepthMapToMeshConverter generates a mesh from a depth map, using one of
the calibration models.

By convention:

□ The origin of the referential is the lower-left corner of the depth map.

□ The center of the first pixel at the lower-left corner is at x = 0.5 and y = 0.5.

□ The center of the pixel at the upper-right corner is at x = width - 0.5 and y = height - 0.5
where width is the width of the depth map and height is its height.

Mirrored depth maps

By default, Easy3D considers that the origin of the 3D axis of the depth map is the bottom left of
the internal image buffer, and the Y axis is pointing up. This means that the depth map image is
not seen as vertically mirrored compared to the real world image of the scanned object.

Nevertheless, depending on your acquisition setup this mirroring can happen (for example if the
direction of the scan is inverted).

If this is your case, you can set the EDepthMap::SetAxisSystemType to EAxisSystem_
UpperLeftCorner, meaning that the origin of the 3D axis is on the upper left corner and the Y
axis is pointing down.

This value changes the behavior of the methods :

□ EObjectBasedCalibrationGenerator.Compute

Open eVision User Guide PART VI 3D Tools

259

□ EDepthMapToPointCloudConverter.Convert
□ EDepthMapToMeshConverter.Convert

Scale calibration

The scale model (EScaleCalibrationModel) only applies a simple factor on the X, Y and Z
axis. These factors are the only parameters of EScaleCalibrationModel.

For depth maps coming from laser triangulation setup, this transformation does not produce
corrected, metric points. It’s main use is to display depth maps as 3D data with the E3DViewer
class.

Explicit geometric calibration

The explicit geometric model (EExplicitGeometricCalibrationModel) defines a simple and
ideal laser triangulation setup. The explicit calibration makes some strong assumptions on the
setup geometry and can only be used when a minimum set of parameters are known:

□ The angles of the camera and the laser plane, in the counter clockwise direction. The
camera angle must be positive.

□ The height of the camera above the scanned object.

□ The field of view of the camera defined by the sensor size (mm) and the optical focal
length (mm).

□ The physical distance between two line scans of the depth map (depends on acquisition
rate and motion speed).

□ The size of the image and the ROI origin used in laser line extraction (between the top (0)
and the bottom (height) of the image).

TIP
Use the "Easy3D_Setup_Configuration.xlsx" spreadsheet to compute and
check your setup configuration and parameters.

Explicit calibration setup with camera angle, laser angle and camera height

Open eVision User Guide PART VI 3D Tools

260

The setup of an explicit geometric calibration uses the constructor of the
EExplicitGeometricCalibrationModel class.

Object-based calibration

Object-based calibration gives real world, metric, coordinates from an arbitrary laser
triangulation setup. From the scan of a reference object, the calibration process tries to calculate
all the parameters required for the transformation to the world space (position and attributes of
the camera, position of the laser plane, relative motion of the object, optical distortion…).

For more details, please refer to the "Object-Based Calibration Guidelines" on page 244 section.

3.3. Point Cloud

Coordinates Transformations
Affine Transforms

Affine transforms allow you to reposition the point cloud inside the 3D space.

Open eVision provides you with the following basic transformations:

□ Rotation around the X, Y or Z axis

□ Translation along the X, Y and/or Z axis

□ Scaling, around the origin, and either isotropic (the same in all directions) or anisotropic
(different along the different axis)

It also provides you with projection transformations, both orthographic and perspective:

□ An orthographic projection transforms a volume of space in the shape of a rectangular
parallelepiped (and the points it contains) into the canonical view (a cubic space of size 2
and centered on the origin).

Open eVision User Guide PART VI 3D Tools

261

□ A perspective projection transforms a volume of space in the shape of a frustum (basically
a truncated pyramid) into the canonical view. This projection allow you to simulate the
perspective effect given by an eye or a camera.

Reducing a Point Cloud
Cropping

Cropping allows you to exclude points from the point cloud based on geometrical
considerations.

Open eVision provides the following cropping functions:

□ ESimpleCropper: simple cropping on the X, Y and/or Z coordinates (aligned rectangle 3D
region)

□ ERectangularCropper: cropping the points outside (or inside) an oriented rectangular
parallelepiped

□ ESphericalCropper: cropping the points outside (or inside) a sphere.

□ EPlaneCropper: cropping the points depending on their position with respect to a plane

These classes produces a new point cloud with the selected points.

Decimation

The random decimator, ERandomDecimator, decimates a point cloud by copying a specified
number of points, randomly selected, to a new point cloud.

Specify the number of points to keep as parameter of the constructor.

EPointCloud pc;
pc.LoadPCD("c:\\images\\data.pcd");
// Explicitely decimate the point cloud
ERandomDecimator decimator(5000);
EPointCloud pcDecimated;
decimator.Decimate(pc, pcDecimated);
pcDecimated.SavePCD("c:\\images\\decimatedData.pcd");

Open eVision User Guide PART VI 3D Tools

262

Managing Planes

E3DPlane

A plane can be represented as an E3DPlane object.

This plane is characterized by:

□ Its normal which is a vector of norm 1, perpendicular to the plane.

□ Its signed distance from the origin, which is the smallest distance from the origin to the
plane. The signed distance is positive when the vector binding the origin to the closest
point on the plane has the same direction as the normal and is negative when it has the
opposite direction.

Once a plane is defined, you can measure the signed distance between this plane and any point
in the space (using the method DistanceTo()):

□ A positive distance means that the vector connecting the plane to the point has the same
direction as the normal.

□ A negative distance means that the vector has the opposite direction.

EPlaneFinder

You can search for a plane in a point cloud using the object EPlaneFinder object.

The main parameters of this object are:

Open eVision User Guide PART VI 3D Tools

263

□ The maximum distance between the searched plane and a point that belongs to this plane.

□ The expected ratio between the numbers of inliers and the total number of points in the
point cloud.
- An inlier is point that belongs to a plane (closer than this maximum distance).
- An outlier is a point that is not an inlier.

The picture below illustrates how points of the space are classified as inliers (in green) and
outliers (in red) according to their distance to the searched plane.

A EPlaneFinder object produces a E3DPlane object. The algorithm searches for a plane
containing as many inliers as possible. This plane is the biggest plane if the samples are evenly
distributed.

The maximum distance between the plane and the inliers is a mandatory parameter: it should
include the deviation due to the noise but also take warpage into account.

The parameter that specifies the ratio of inliers with respect to the total number of points has a
default value of 0.3, meaning that we estimate that about 30% of the points belong to the plane.
This parameter is not as critical as the maximum distance but it affects the maximum time the
algorithm will spend in searching a plane as well as its robustness.

Optionally, you can specify the expected normal vector to the plane to search. In that case, you
should also specify an angular tolerance with respect to this expected direction.

Open eVision User Guide PART VI 3D Tools

264

When an expected normal is specified, the algorithm only searches for a plane that satisfies the
condition. Setting this condition might speed up the plane search.

TIP
Finally, it is important to note that, by default, the EPlaneFinder decimates
the input point cloud to accelerate the search. The default decimator reduces
the input point cloud to 10000 points. Alternatively, you can disable this
decimation, or you can decimate a point cloud explicitly, by using an
ERandomDecimator object and use the decimated point cloud as input for
the EPlaneFinder. In this case you should disable the default decimator.

Once the main plane is found, a fit is done on all the inliers points and the result is returned (see
EPlaneFitter below).

EPlaneFitter

The EPlaneFitter operator computes a fit on all the points of a point cloud and returns a
E3DPlane object.

Aligning

EPrincipalAxisExtractor

The EPrincipalAxisExtractor computes the “principal axis” of an object from a point cloud
(EPointCloud) and returns a E3DTranformMatrix containing a solid transformation that
defines a new orthogonal basis.

This new orthogonal basis has the following characteristics:

□ The center is the center of gravity of the point cloud.

□ The axis are oriented along the “principal axis” of the object. This is the result of the “PCA”
calculation (principal axis analysis).

□ The directions of the axis are selected so that the new basis is as close as possible of the
basis defined by the reference transformation.

Open eVision User Guide PART VI 3D Tools

265

The next figure illustrates the orientation of the principal axis of an object.

The principal axis extraction is done using the Extract() method that takes a EPointCloud as
input and returns an E3DTransformMatrix. Optionally, you can pass 3 other output parameters
by reference to retrieve the value of the standard deviation along the 3 principal axis.

You can use the returned E3DTranformMatrix object to transform the 3D coordinates of a
point. For example, apply the transformation matrix to the origin (0, 0, 0) to return the center of
gravity of the object.

Specification of a reference transformation

The reference transformation is an optional parameter of the EPrincipalAxisExtractor
object. It defines a reference basis used to select an orthogonal basis out of the principal axis.
The selected basis will be the closest to the reference basis.

TIP
If no reference transformation was supplied, the default reference basis is
((0, 0, 1), (0, 1, 0), (0, 0, 1)), that corresponds to the identity transformation.
On the figure below, the default reference basis determines the direction of
the axis ex, ey and ez.

Open eVision User Guide PART VI 3D Tools

266

EFeaturesAligner

A EFeaturesAligner object finds the best transformation that maps a list of points to another
list of points.

● The first list of points is called the "model". It is stored in the EFeaturesAligner object.

● The second list of points is called "measured points". It is passed as a parameter to the
Compute() method. If successful, the result of this method is a E3DTransformMatrix
object.

● The 2 lists should form matching pairs. In other words, the first point of the first list matches
the first point of the second list, the second point of the first list matches the second point of
the second list, and so on…

With the Polarity parameter, you can define which transformation is returned. It can be either:

□ The one that moves one point from the first list (the model) to the second list of points
(the measured points) if the polarity parameter is set to EAlignmentPolarity_
ModelToMeasured (default).

□ The one that moves a point from the second list (the measured points) to the first list (the
model) if the polarity parameter is set to EAlignmentPolarity_MeasuredToModel.

Open eVision User Guide PART VI 3D Tools

267

The figure below illustrates the computation of the alignment transformation. In this example a
model is aligned to an object using the coordinates of their corners.

Once the transformation is computed, use the method GetOrthoBasis of the
E3DTransformMatrix object to get the basis (ex, ey, ez) and the center point t that defines the
new basis.

You can also apply the computed transformation on any 3D point as illustrated in the code
below.

EFeaturesAligner alignTool;
E3DTransformMatrix alignBase;
E3DPoint ex, ey, ez, t;
std::vector<E3DPoint> model3d;
std::vector<E3DPoint> points3d;
// add points to model3d and points3d
// ...
alignTool.SetModelPoints(model3d);
alignBase = alignTool.Compute(points3d);
// Get the orthogonal basis and store it in ex, ey, ez and t
alignBase.GetOrthoBasis(ex, ey, ez, t);
// Applying the transformation on point P1, results in point P1b
E3DPoint P1 = E3DPoint(...) ;
E3DPoint P1b = alignBase*P1;

As you can see, the application of the transformation on a point is simply done by multiplying
the transformation matrix by the point (as done in the example above).

On the other hand, if you need to transform a point cloud or a list of points, it is more efficient
to use the ApplyTransform() method of an EAffineTransformer object.

Open eVision User Guide PART VI 3D Tools

268

3.4. Mesh
A mesh is a geometric representation of a 3D surface. The surface is defined by a triangle mesh
connecting the 3D points. Like a point cloud, a mesh is expressed in the metric space.

Like a point cloud, you can generate a mesh from a depth map and use it to produce a ZMap.

Generation

An EMesh object is generated from a depth map using the EDepthMapToMeshConverter class.

Like EDepthMapToPointCloudConverter, this class uses a calibration model to transform the
depth map pixels to 3D world positions. In addition, the depth map pixel connectivity is used to
build the triangle mesh. Adjacent pixels produce surface triangles.

Use SetCalibrationModel() to select a calibration model and the method Convert() to
generate an EMesh from an 8 bits or 16 bits depth map.

Access and usage

In an EMesh object the 3D world positions are stored as an EPointCloud (accessible through the
method GetPointCloud()). The triangle mesh is stored as an array of point indexes, where 3
consecutive indexes define a triangle. The method GetTriangleIndexes() provides a read-
only access to the triangle mesh.

You can use either the Open eVision proprietary format to save and load EMesh objects using the
Save() and Load() methods, or use the STL standard file format
(https://en.wikipedia.org/wiki/STL_(file_format)) using the SaveSTL() and LoadSTL() methods
which respectively write to and read from ASCII STL files.

You can use an EMesh to produce a ZMap (see "Generating a ZMap" on the next page). Because
an EMesh represents a surface, the so generated ZMap can show better continuity and less
undefined pixels.

Open eVision User Guide PART VI 3D Tools

269

3.5. ZMap

Generating a ZMap
A ZMap is the projection of a point cloud or a mesh on a reference plane, with the distance
coded as gray scale values:

□ They are grayscale images, compatible with all Open eVision 2D libraries.

□ They are distortion free, with affine transformation from/to metric coordinate system.

A depth map (left) and the corresponding ZMap (right),
with default generation parameters and undefined pixel filling enabled

All Open eVision 2D processing are available on ZMaps: filtering, thresholding, blob extraction,
measuring with EasyGauge, model matching with EasyFind or EasyMatch…

The EPointCloudToZMapConverter class implements the conversion from a point cloud to a
ZMap (EMeshToZMapConverter converts a mesh to a ZMap). With all parameters at default
value, the Convert() method automatically chooses the projection plane, the orientation, the
map size and the resolution.

Several methods are available to further control the conversion:

● SetReferencePlane() defines a world space projection plane. The values of the ZMap
pixels are the distance of the point cloud to that reference plane.

By default, the reference plane crosses the origin and is perpendicular to the world Z axis.
The plane is defined as a E3DPlane object.

● SetOrientationVector() sets a world space vector representing the expected direction of
the X (width) axis of the ZMap.

The orientation vector allows to “rotate” the object around the normal of the reference plane.

● SetOrigin() specifies the world position that is on the ZMap lower left pixel (0, 0).

● SetMapSize() defines the resolution (number of pixels in X and Y axis) of the generated ZMap.

Open eVision User Guide PART VI 3D Tools

270

● SetMapXYResolution() adjusts the X and Y resolution of the ZMap pixels, in world space
unit per pixel (for example mm/pixel). This value is used to compute the ZMap size (width and
height), depending on the projected size of the point cloud on the reference plane.

● SetMapZResolution() sets the Z resolution, in world space unit per pixel unit (gray value). The
Z resolution is used to compute the transformation of the distance to the reference plan to
the integer 8, 16 or 32 bits pixel value.

● EnableFillMode() and SetFillMode() control the options used to fill the "hole" in the
ZMap. A hole exists when no 3D point is projected in the ZMap at a pixel position.

The methods SetReferencePlane(), SetOrientationVector() and SetOrigin() are used
to setup the transformation between the world space and the ZMap space. This transformation is
rigid (distances are kept).

Alternatively, it is possible to directly set that transformation with the method
SetWorldToZMapTransform() using a rigid matrix as parameter. In that case, the reference
plane, the orientation vector and the origin parameters are ignored.

The projection of a point cloud on a ZMap,
showing 3 coordinate systems: the world space, the ZMap space and the pixel space.

Open eVision User Guide PART VI 3D Tools

271

the Convert() method performs the effective projection of a point cloud (EPointCloud) or a
3D object (EMesh) to the 8, 16 or 32 bits ZMap.

When generating a ZMap from a point cloud, only individual points are projected on the ZMap.
Depending on the point cloud density and the ZMap resolution, some regions of the ZMap may
remain “undefined”. To get around this problem, adjust the resolution of the ZMap
(SetMapXYResolution method) to remove “holes” on the ZMap.

By default, the point cloud to ZMap converter performs a filling algorithm. This process tries to
replace undefined pixels with locally interpolated values.

Left: high resolution ZMap, the pixel scale exceeds the point cloud density
Center: the same generator parameters with the filling enabled

Right: a reduced ZMap scale/resolution, without filling

As a mesh defines a surface, its triangles are projected onto the ZMap plane. Thus, the generated
image shows better continuity and less undefined pixels. However, the generation of a ZMap
from an EMesh is slower than from an EPointCloud.

Creating a Point Cloud from a ZMap
To generate a point cloud from a ZMap, use the EZMapToPointCloudConverter class.

The Convert()method takes:

● A ZMap source

● A EPointCloud destination.

● 2 optional parameters:

□ An ERegion that defines the domain of the ZMap to convert.
By default, Open eVision uses all the defined pixels of the ZMap generate the point cloud.

□ A parameter to select the world space (by default) or the ZMap space to store the resulting
positions in the point cloud.

Open eVision User Guide PART VI 3D Tools

272

Managing the Coordinates
Coordinate systems on a ZMap

A ZMap has multiple coordinate systems:

□ The world space system is the original, metric space from which the ZMap has been
generated. Point clouds and meshes are expressed in the world coordinate system.

□ The ZMap space is defined by a rigid transformation of the world space. The basis linked
to this transformation is attached to the lower left corner of the ZMap.

□ The image space is the system attached to the image representation of the ZMap. Its
origin is the upper left corner of the ZMap and its unit length is one pixel along the X and Y
axis.

The transformations between:

□ The image space and the ZMap space include a scale factor.

□ The ZMap space and the world space are solid transformations.

Open eVision User Guide PART VI 3D Tools

273

EZMap

The EZMap object exposes a set a methods to convert coordinates between world, ZMap and
image spaces:

□ ImageToZMap converts a 2D position in the image to ZMap coordinates.

□ ZMapToImage is the reciprocal operation and converts a ZMap position to an image
position.

□ ZMapToWorld is a method to transform positions from the 3D ZMap space to the 3D world
space. The world space is the original point cloud or mesh space.

□ WorldToZMap is the reciprocal operation, converting from world space to ZMap.

□ ImageToWorld and WorldToImage combine the functions above to transform directly
from image space to world space (or the other way).

These methods only perform geometric transformations between the various coordinate systems
and do not access the actual ZMap gray scale values.

The functions that accesses the pixel values are:

□ GetWorldPositionFromPixelPosition() is a method transforming the actual pixel
value at integer position (u, v) to the original world space. This method queries the ZMap
internal representation to get the pixel value w and transform the pixel space (u, v, w)
coordinates to a world space position.

□ GetPixelPositionFromWorldPosition() is a method to get a pixel value from a world
position. The world position is projected on the ZMap and the pixel value is returned. If
the world position is outside the ZMap domain, the method returns FALSE.

Static Methods

EFilters class

The EFilters class contains static methods used to apply filters to ZMaps or depth maps.

RemoveNoise

The RemoveNoise() method removes outliers from a depth map or a ZMap.

● It takes a depth map or a ZMap as input and generates a depth map or a ZMap respectively.

The undefined points are not taken into account.

● It is based on a square moving kernel. The size of the kernel is (2 x halfKernelSize + 1)
where halfKernelSize is a parameter of the method.

● The threshold parameter is scaled with regard to the Z resolution of the filtered depth map
or ZMap.

Open eVision User Guide PART VI 3D Tools

274

● There are 3 variations of this filter, depending on the method parameter:

□ ENoiseRemovalMethod_AbsoluteDifferenceFromMean removes a point when it
deviates from the average in the neighborhood, including itself. The threshold is an
absolute difference.

□ ENoiseRemovalMethod_RelativeDifferenceFromMean removes a point when it
deviates from the average in the neighborhood, including itself. The threshold is a multiple
of the standard deviation.

□ ENoiseRemovalMethod_HighStandardDeviation removes a point when the standard
deviation in the neighborhood, including itself, is higher than a defined threshold.

Example: Removing points showing a high standard deviation

The code below removes pixels with a standard deviation higher than a defined threshold.

// Load the ZMap data
EZMap16 zmap;
zmap.Load(...);
// Compute the filtered ZMap. The new ZMap is called filteredZmap
// The size of the kernel is 7x7, the threshold is 30.0
EZMap16 filteredZmap;
filteredZmap.SetSize(zmap);
EFilters::RemoveNoise(zmap, filteredZmap, ENoiseRemovalMethod_HighStandardDeviation, 3, 30.0, 0.0);

EStatistics class

The EStatistics class contains static methods used to compute statistics on ZMaps or depth
maps.

ComputeAverageMap

The ComputeAverageMap() method computes the local average map.

● You can use this method as a low-pass filter.

● Undefined points are not taken into account.

Open eVision User Guide PART VI 3D Tools

275

● This method is based on a square moving kernel. The size of the kernel is (2 x
halfKernelSize + 1) where halfKernelSize is a parameter of the method.

ComputeStandardDeviationMap

The ComputeStandardDeviationMap() method computes a map of the local standard
deviation.

● You can use this method to determine visually the threshold value to use with the
RemoveNoise() method when using the ENoiseRemovalMethod_
HighStandardDeviation setting.

NOTE
Be aware, however, that in the generated map, a pixel with the value 0 can
either be undefined or have a standard deviation equal to zero.

Example: Using a low pass filter on a ZMap, then removing points showing a deviation
larger than a defined threshold

The code below first applies an low pass filter, then removes from the result the pixels showing a
deviation from the neighborhood larger than the defined threshold.

// Load the ZMap data
EZMap16 zmap;
zmap.Load(...);
// Compute the filtered ZMap. The new ZMap is called averagedZMap
// The size of the kernel is 7x7, the threshold is 30.0
EZMap16 averagedZMap;
averagedZMap.SetSize(zmap);
EStatistics::ComputeAverageMap(zmap, averagedZMap, 3, 0.2);
// Compute the filtered ZMap. From averagedZMap, compute filteredZMap
// The size of the kernel is 31x31, the threshold is 20.0
EZMap16 filteredZMap;
filteredZMap.SetSize(zmap);
EFilters::RemoveNoise(averagedZMap, filteredZMap, ENoiseRemovalMethod_AbsoluteDifferenceFromMean,
15, 20.0, 0.2);

Open eVision User Guide PART VI 3D Tools

276

ComputePixelStatistics

The ComputePixelStatistics() method returns basic statistical information about pixel
values:

□ Minimum

□ Maximum

□ Average

□ Standard deviation

□ Number of valid (not undefined) pixels).

Use an ERegion object to specify the region of the ZMap or depth map used to compute the
statistics.

ComputeStatistics

The ComputeStatistics() method returns the same information as the
ComputePixelStatistics() method, but scaled with respect of the Z resolution.

Use an ERegion object to specify the region of the ZMap or depth map used to compute the
statistics.

3.6. 3D Viewer
Use the E3DViewer class to easily create an interactive 3D display. The viewer displays point
clouds, meshes and ZMaps.

You can create E3DViewer as a child of an existing window or without a parent. In that last
case, a new window is created.

NOTE
As E3DViewer uses OpenGL interface, it requires a compatible display
device.

Call the ConfigureRenderSource()method with a valid 3D geometry to display it. At each call,
ConfigureRenderSource() replaces the current displayed object.

Open eVision User Guide PART VI 3D Tools

277

The supported classes are:

□ EPointCloud

□ EMesh

□ EZMap8, EZMap16 and EZMap32f.

TIP
When you configure a new render source with ConfigureRenderSource(),
the view point is automatically adapted to display the whole object.

E3DViewer in action: point cloud display (left) and 3D object display (right)

To display the geometry in false colors:

□ Use the GenerateColors() method that computes RGB colors from the position of the
vertices.

□ It supports various predefined color ramps.

□ Use the SetColors()method to use custom colors (one EC24 entry is requested for each
render source vertex).

Use the methods SetPointSize(), SetWireframeMode() and SetRenderDecimationLevel
() to adjust the rendering attributes.

E3DViewer in action: wire frame enable (left) and HueFromZ color ramp (right)

In the 3D navigation window, use the mouse as follows:

□ Press the left button to rotate the image horizontally and vertically.

□ Press the right button to translate the image horizontally and vertically.

□ Use the wheel to zoom in and out.

Open eVision User Guide PART VI 3D Tools

278

In addition, use the following keys:

□ Press R to reset the viewer.

□ Press W to show or hide the triangle edges (in wire frame mode).

□ Press + and – to increase or decrease the point size.

Use methods SetViewTarget(), SetViewingAngle() and SetViewDistance() to change the
view point programmatically.

Use the methods SetAutoRotate() and StopAutoRotate() to manage the automatic rotation
of the 3D view.

Open eVision User Guide PART VI 3D Tools

279

4. Easy3DObject - Extracting 3D
Objects

4.1. Purpose and Workflow
Introduction

● The Easy3DObject tool extracts objects and their features from a ZMap.

□ The E3DObjectExtractor class uses a set of criteria to select the objects to extract.

□ The extracted objects are instances of the ED3Object class.

● Open eVision provides a demo application with C++ source code and 2 C++ / C# samples:

This demo application exposes most of the features of the Easy3DObject tool.

Open eVision User Guide PART VI 3D Tools

280

Library workflow

1. Load or build a ZMap (from an image or a point cloud).

2. Construct an E3DObjectExtractor instance.

3. Set the selection criteria of the E3DObjectExtractor instance.

4. Extract the 3D objects, with or without an ERegion.

5. Get and process the extracted objects list.

Load or build a ZMap

A ZMap is a grayscale image with a metric coordinate system. It is sometimes referred to as a
“height map”.

You can create a ZMap from an 8- or a 16-bit image or generate it from a point cloud.

□ Before using an image as a ZMap, set the resolution.

TIP
The resolution is the metric size of a pixel (for example in mm / pixel) and the
height difference between 2 consecutive grayscale levels.

□ From a point cloud, use the EPointCloudToZMapConverter class to generate a ZMap.
Choose the target ZMap resolution according to the point cloud sampling.

□ Depending on the 3D scan precision, you can use a ZMap with 8- or 16-bit per pixel.

TIP
A 16-bit processing is more accurate but slower than an 8-bit processing.

Open eVision User Guide PART VI 3D Tools

281

4.2. Object Features
Units

Both the E3DObjectExtractor parameters and the E3DObject features are expressed in metric
units.

□ For example: if the resolution of the input EZMap is expressed in mm / pixel, the length
parameter is expressed in mm.

□ Use the Resolution accessors of the EZMap to query and change its resolution.

Angles are expressed in the unit defined by Easy.AngleUnit.

TIP
In this documentation, we use the default setting and all angles are expressed
in degrees.

Object plane and base plane

The E3DObjectExtractor fits a plane to the pixels of each E3DObject output:

□ Use E3DObject.Plane to access this plane.

The E3DObjectExtractor also tries to fit a plane to the pixels surrounding an E3DObject

□ This plane is called the base plane.

□ It is an estimation of the local background around the object.

□ If there are too many undefined pixels in this area, the base plane is equal to the reference
plane of the input EZMap.

Open eVision User Guide PART VI 3D Tools

282

Bounding box

The bounding box is the minimal enclosing rectangle for all the object positions.

□ It is oriented in the XY plane of the ZMap space (rotation around the Z axis of the ZMap).

□ Its rotation is used as the orientation of the object (see E3DObject.GetOrientation).

□ Its X and Y sizes are the object length and width (see E3DObject.GetLength and
E3DObject.GetWidth).

□ Its Z size is always in the Z axis of the ZMap direction.

Length and width

The length of an object is the largest dimension on the XY plane in the ZMap space. It is the same
as the size of the major axis of the bounding box.

The width of an object is the smallest dimension on the XY plane in the ZMap space. It is the
same as the size of the minor axis of the bounding box.

Use the E3DObjectExtractor.LengthRange and the E3DObjectExtractor.WidthRange
accessors to set the ranges of allowed values for the length and the width.

Local and reference top positions and heights

The local top position of an object is the position (3D coordinates) of the point in the
E3DObject that is the furthest from the base plane.

The local height of an object is the distance between the local top position and the base plane.

The reference top position of an object is the position (3D coordinates) of the point in the
E3DObject that is the furthest from the reference plane.

The reference height of an object is the distance between the reference top position and the
reference plane.

Open eVision User Guide PART VI 3D Tools

283

If there are too many undefined pixels in the object surroundings:

□ The base plane is equal to the reference plane of the input EZMap.

□ The local top position is equal to the reference top position.

□ The local height is equal to the reference height.

Use the E3DObjectExtractor.LocalHeightRange and the
E3DObjectExtractor.ReferenceHeightRange accessors to set the ranges of allowed values
for the local and the reference height.

Average position

The average position is the arithmetic mean of the 3D positions of the object, also known as the
barycenter.

In the illustration below:

□ The average position is displayed in blue.

□ The top position is displayed in red.

□ On the left object, the average and the top positions are at the same place.

□ On the center object the average position is “inside” the object.

Open eVision User Guide PART VI 3D Tools

284

Aspect ratio

The aspect ratio is the width (the smallest dimension on the XY plane) divided by the length (the
largest dimension).

□ It lies between 0 and 1.

□ The smaller the ratio, the more elongated the object is.

□ A square has an aspect ratio of 1.

Use the E3DObjectExtractor.AspectRatioRange accessor to set the range of allowed values
for the aspect ratio.

Orientation angle

The orientation angle is the angle between the X axis of the EZMap and the longest axis (the
length) of the object.

□ The angle is measured in the clockwise direction.

□ The value must lie between -90° and +90°.

Use the E3DObjectExtractor.OrientationRange accessor to set the range of allowed values
for the orientation angle.

Open eVision User Guide PART VI 3D Tools

285

Local and reference tilt angles

The local tilt angle is the angle between the base plane and the object plane.

□ A value of 0 means that the object top surface is parallel to its base.

□ The value must lie between 0° and +90°.

The reference tilt angle is the angle between the object plane and ZMap XY plane.

□ A value of 0 means that the object top surface is parallel to its base.

□ The value must lie between 0° and +90°.

Use the E3DObjectExtractor.LocalTiltRange and the
E3DObjectExtractor.ReferenceTiltRange accessors to set the range of allowed values for
the tilt angles.

Area

The object area is the area of the top surface of the object projected on the reference plane of
the EZMap.

□ It is equal to [the number of pixels in the object] × [the x-resolution of the EZMap] × [the y-
resolution of the EZMap].

Use the E3DObjectExtractor.AreaRange accessor to set the range of allowed values for the
area.

Open eVision User Guide PART VI 3D Tools

286

Volume

The object volume is the volume that lies between the top surface and the base plane of the
object.

Use the E3DObjectExtractor.VolumeRange accessor to set the range of allowed values for the
volume.

4.3. Extracting and Using Objects
Extracting the objects

Use the E3DObjectExtractor.Extract method to perform the objects extraction.

You can limit the extraction to an ERegion, for example to ignore parts of the ZMap that are not
interesting and/or to speed up the extraction process.

Open eVision User Guide PART VI 3D Tools

287

The processing speed of the extraction depends directly on:

□ The number of pixels in the ZMap or in the ERegion.

□ The number of segmented objects.

TIP
Adjust the extraction ranges to reduce the number of objects and speed up
the extraction process.

Using the objects

The E3DObjectExtractor.Extract method populates a list of E3DObject fulfilling your set
criteria.

□ Each E3DObject is a collection of descriptive features of the associated 3D points in the
EZMap, such as its oriented bounding box, its local height and its volume.

□ Call the associated E3DObject method to access a feature.

□ The E3DObject list is sorted from the smallest area to the largest area.

The code snippet below provides an example for extracting features from the E3DObject list.

//
// This code snippet shows how to read a QR code //
// and retrieve the decoded data. //
//

// get the extracted objects and loop over them
std::vector<Easy3D::E3DObject> objects = extractor.GetObjects();
int nObjects = objects.size();
for (int index = 0; index < nObjects; ++index)
{
// inspect bounding box dimensions
E3DPoint bbCenter = objects[index].GetBoundingBox().GetCenter();
float bbHeight = objects[index].GetBoundingBox().GetXSize();
float bbLength = objects[index].GetBoundingBox().GetYSize();

// inspect object plane and base plane
Easy3D::E3DPlane opjPlane = objects[index].GetPlane();
Easy3D::E3DPlane basePlane = objects[index].GetBasePlane();

// inspect the ERegion that exactly contains the object
ERegion objRegion = objects[index].GetRegion();

}

Open eVision User Guide PART VI 3D Tools

288

Visualizing the objects

To visualize some of these features in 2D or 3D:

□ Use the E3DObject.Draw method.

□ Or submit a list of E3DObject to an E3DViewer.

TIP
In an E3DViewer, use the ERenderStyle structure to choose your rendering
style.

The following code snippets illustrate how to draw some object features:

□ In a 2D graphic context: Drawing a 2D Feature from the List of E3DObjects

□ In a 3D viewer: Drawing 3D Features from a List of E3DObjects

Open eVision User Guide PART VI 3D Tools

289

4.4. Use Case - Inspecting a PCB
The purpose of this use case is to test if all the components are present and correctly placed on
the PCB.

TIP
This example uses the sample image Sample

Images\Easy3D\Easy3DObject\PCB.png and the illustrations are based
on the Easy3DObject demo application.

1. Load the PCB image.

2. Set the resolution.

□ The provided PCB sample is an 8-bit gray scale image.

□ Use a Z resolution of 0.3 metric unit per gray scale level for a realistic proportion.

3. Keep the suggested parameters for a first extraction.

□ The suggested parameters are set from the ZMap width, height and resolution.

Open eVision User Guide PART VI 3D Tools

290

4. Click on the Extract button to perform the extraction.

When the extraction is done:

□ The object list is filled.

□ Click on a column title to sort the object list.

□ The various measures are displayed.

□ The 2D View and the 3D View show the extracted object bounding boxes.

Open eVision User Guide PART VI 3D Tools

291

5. Use a polygon region of interest to restrict the searched area.

□ You can limit the extraction to a region defined as a rectangle, a polygon or an ellipse in
the demo application.

□ Use the Open eVision API, to define and use any ERegion.

6. Press again the Extract button to generate a new list of objects. Now, only the objects located
inside the region are extracted.

7. The 2D View and 3D View automatically focus on the object selected in the list. You can also
select an object by clicking on a bounding box in the 2D View.

Open eVision User Guide PART VI 3D Tools

292

8. Use the size ranges to discard the smaller components.

To add or remove objects:

□ Change the extraction parameters, like the length and width ranges.

□ In the illustration below, objects smaller than 10x10 metric unit are not extracted.

NOTE
After changing a parameter, press the Extract button to perform a new
extraction.

Open eVision User Guide PART VI 3D Tools

293

9. Check or uncheck the boxes at the top of the views to toggle the display of most of the object
features, either in the 2D View or the 3D View.

□ In the illustration below, the object list is sorted by local height.

□ The first object is selected and displayed in both views.

10.Adjust the extraction parameters to accept or reject objects based on the results.

Open eVision User Guide PART VI 3D Tools

294

11.Open the Help menu and click on Generate code snippet to generate the C++ code
corresponding to the current configuration.

The generated code illustrates how you can:

□ Load a ZMap.

□ Define a region.

□ Set the configuration parameters of the extraction.

□ Start the extraction process.

□ Iterate through the resulting objects list.

Open eVision User Guide PART VI 3D Tools

	PART I : Global Features
	1. Installing Open eVision
	2. Manipulating Pixels Containers and Files
	2.1. Pixel Container File Save
	2.2. Pixel Container File Load
	2.3. Memory Allocation
	2.4. Image and Depth Map Buffer
	2.5. Image Drawing and Overlay
	2.6. 3D Rendering of 2D Images
	2.7. Vector Types and Main Properties
	2.8. ROI Main Properties
	2.9. Arbitrarily Shaped ROI (ERegion)
	2.10. Flexible Masks
	2.11. Profile

	3. Multicore Processing
	4. EGrabberBridge - Using Images from Coaxlink

	PART II : Image Pre-Processing Libraries
	1. EasyImage - Pre-Processing Grayscale Image
	1.1. Intensity Transformation
	1.2. Thresholding
	1.3. Arithmetic and Logic
	1.4. Non-Linear Filtering
	1.5. Geometric Transforms
	1.6. Noise Reduction and Estimation
	1.7. Scalar Gradient
	1.8. Vector Operations
	1.9. Canny Edge Detector
	1.10. Harris Corner Detector
	1.11. Overlay
	1.12. Operations on Interlaced Video Frames
	1.13. Flexible Masks in EasyImage

	2. EasyColor - Pre-processing Color Images
	2.1. Bayer Transform
	2.2. LUT for Gain/Offset (Color)
	2.3. LUT for Color Calibration
	2.4. LUT for Color Balance

	3. EasyImage - Computing Image Statistics

	PART III : Inspection Tools
	1. EasyObject - Analysing Blobs
	1.1. Image Segmenters
	1.2. Image Encoder
	1.3. Holes Construction
	1.4. Normal vs. Continuous Mode
	1.5. Selecting and Sorting Blobs
	1.6. Advanced Features
	Computable Features
	Draw Coded Elements
	Flexible Masks in EasyObject

	2. EasyGauge - Measuring down to Sub-Pixel
	Workflow
	Gauge definitions
	Find transition points using peak analysis
	Find shapes using geometric models
	Gauge Manipulation: Draw, Drag, Plot, Group
	Calibration and Transformation
	Calibration using EWorldShape
	Advanced Features

	3. EasyMatch - Matching Area Patterns
	Workflow
	Learning Process
	Matching Process
	Advanced Features

	4. EasyFind - Matching Geometric Patterns
	4.1. Workflow
	4.2. Learning Process
	4.3. Finding Process
	4.4. Advanced Features

	5. Golden Template Validation (EChecker)
	5.1. Image Comparison

	6. EasyDeepLearning - Classifying Images
	6.1. What EasyDeepLearning Can Do
	6.2. Workflow
	6.3. EasyDeepLearning Studio
	6.4. Managing the Dataset
	6.5. Using Data Augmentation
	6.6. Using the Classifier
	6.7. Hardware Support (CPU/GPU)

	PART IV : Text Identification Tools
	1. EasyOCR - Reading Texts
	Workflow
	Learning Process
	Segmenting
	Recognition

	2. EasyOCR2 - Reading Texts (Improved)
	3. EasyOCV - Validating Texts
	3.1. Learning Passes
	Inspect and compare image with model
	3.2. Degrees of Freedom
	3.3. Quality Indicators
	3.4. Advanced Features
	3.5. Programming with EasyOCV

	PART V : Code Identification Tools
	1. EasyBarCode - Reading Bar Codes
	1.1. Reading Bar Codes
	1.2. Reading Mail Bar Codes

	2. EasyMatrixCode - Reading Matrix Codes
	2.1. Specifications
	2.2. EasyMatrixCode vs EasyMatrixCode2
	2.3. Workflow
	2.4. Reading a Matrix Code
	2.5. Learning a Matrix Code
	2.6. Computing the Print Quality
	2.7. Using GS1 Data Matrix Codes

	3. EasyMatrixCode2 - Reading Matrix Codes (New)
	3.1. Specifications
	3.2. EasyMatrixCode vs EasyMatrixCode2
	3.3. Workflow
	3.4. Reading a Matrix Code
	3.5. Learning a Matrix Code
	3.6. Computing the Print Quality
	3.7. Using GS1 Data Matrix Codes
	3.8. Asynchronous Processing
	3.9. Advanced Parameters

	4. EasyQRCode - Reading QR Codes
	Workflow
	QR code definition
	Read a QR code
	Advanced features

	PART VI : 3D Tools
	1. Understanding 3D Concepts
	1.1. Basic Concepts
	1.2. Laser Triangulation
	1.3. The Laser Line 3D Acquisition Pipeline

	2. Object-Based Calibration Guidelines
	3. Easy3D - Using 3D Toolset
	3.1. Laser Line Extraction
	3.2. Calibration
	3.3. Point Cloud
	Coordinates Transformations
	Reducing a Point Cloud
	Managing Planes
	Aligning

	3.4. Mesh
	3.5. ZMap
	Generating a ZMap
	Creating a Point Cloud from a ZMap
	Managing the Coordinates
	Static Methods

	3.6. 3D Viewer

	4. Easy3DObject - Extracting 3D Objects
	4.1. Purpose and Workflow
	4.2. Object Features
	4.3. Extracting and Using Objects
	4.4. Use Case - Inspecting a PCB

